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NikoLa OBRESHKOFF (1896-1963)

On April 19 and 20, 1996, a special scientific Session commemorating the
centenary of the birth of the great Bulgarian mathematician Nikola Obreshkoff
(1896-1963) took place in Sofia. The Session was organized by the Faculty of
Mathematics and Informatics at the “St. Kliment Ohridski” University of Sofia,
the Institute of Mathematics and Informatics of the Bulgarian Academy of Sciences



and the Union of Mathematicians in Bulgaria. The Scientific Committee of the
session comprised B. Penkov, L. Davidov, T. Genchev (Chair) and D. Skordev.
The Scientific Programme included six invited general lectures, devoted to the main
research interests and achievements of Obreshkoff. Twenty three contributions were
presented as well, most of them touching or connected to Obreshkoff’s works. The
full-length texts of those of the lectures, duly submitted to the Editors, are included
in this volume. ,

The Editorial Board uses the opportunity to dedicate this volume to Nikola
Obreshkoff. We think that it is the least that we can do to express, to a certain
small extent, our deep appreciation for his profound influence to Bulgarian, and
not only Bulgarian, mathematics. It is far beyond our ability and aims to give
here a proper survey and account of Obreshkoff’s numerous and deep contributions
in many areas of mathematics — a glimpse of some of them can be caught from
the papers that follow. We can only add that Nikola Obreshkoff is, in our view, a
spectacular example of the fact that in the realm of spirit and creativity there exist
no small and no big nations.

Editorial Board
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NIKOLA OBRESHKOFF (1896-1963)

Born: March 6, 1896, Varna, Bulgaria.
University Education: 1915-1920, University of Sofia.
University Positions (University of Sofia):
Assistant professor: 1920--1921;
Associated professor: 1922-1927;
Full professor: 1928;
Head of the Chair of Algebra: 1928-1963.
Scientific Degrees:
Doctor of Mathematics of Palermo University (Italy): 1932;
Doctor of Sciences of Paris University (Sorbonne): 1933.
Academic Positions:
Member of the Bulgarian Academy of Sciences: 1945;
Director of the Institute of Mathematics at the Bulgarian Academy of Sciences: 1951-1963.
Selected Addresses:
Hamburg University, Berlin University, Geneva University, Rome University, Palermo Uni-
versity, Paris University (Sorbonne), Leipzig University, Dresden University.
Invited Speaker: .
World Congresses of Mathematicians (Oslo 1936, Edinburgh 1958); First Congress of Slav
Mathematicians (Warsaw, 192_9); Congress of Balkan Mathematicians (Athens 1935); Con-
gresses of Hungarian Mathematicians (Budapest 1950, 1960); Conference (Tagung) on Proba-
bility and Statistics (Berlin 1954); International Colloquium on Numerical Analysis (Dresden
1955).

SCIENTIFIC HERITAGE

Papers: more than 250.
Monographs:
Zeros of polynomials, Sofia 1963, Publishing ITouse of the Bulgarian Academy of Sciences,
289 p. (Bulgarian);
Verteilung und Berechnung der Nulistellen reeller Polynome, Berlin 1963, VEB Deutscher
Verlag der Wissenschaften, 298 p.;
La statistigue mathématigues, Paris 1938, [Herman, 66 p.;
Quelques clusses de fonclions entieres limites de polyndmes el de fonctions méromorphes
limites de fractions rationelles, Paris 1941, Herman, 49 p.
Research Areas:
Location of Zeros, Summability of Divergent Series, Theory of Numbers, Real and Complex
Analysis, Differential Equations, Numerical Analysis, Integral Geometry, Probability and
Statistics, Mechanics.
Main Contributions:
— generalization of Budan-Fourier theorem and Descartes rule for complex zeros of algebraic
polynomials; ]
— generalization of Laguerre, Poulain-Hermite and Malo theorems;
— summation of the differentiated Fourier series;
— summation of the ultraspherical series by arithmetical means;
—- absolute summation by typical means;
— generalizations of Mittag-Lefller and Borel methods of summation;
-— characterization of entire and meromorphic functions as limits of classes ol polynomials and
rational functions;
—- generalization of the classical Laplace transform;
— asymptotic properties of the derivatives of functions defined on a ray of the real axis;
— solution of the problem for the exact value of the Borel constant;
— approximation of irrational numbers by continuous fractions;
-— asymptotics of probability densities;
— integral geometry in the hyperbolic plane;
— generalization of Taylor formula;
— numerical methods for solution of algebraic equations.



SCIENTIFIC PROGRAMME

of the Session, dedicated to the centenary of the birth of
Nilola Obreshkoff (1896-1963), Sofia, April 19-20, 1996

Invited Lectures

B. Boisanov. On a formula of Obreshkoff.

T. GENcHEV. On the investigations of Nikola Obreshkoff connected with the regularly monotonic
functions.

I. Dimovsky. Integral transforms in the late works of Obreshkoff.

A. OBRETENOV. The works of Obreshkoff on probability theo'ry and mathematical statistics.

P. RUssEV. Zeros of polynomials and entire functions in the works of Nikola Obreshkoff.

T. ToNkov. The theory of diophantine approximations and the contribution to it of Nikola
Obreshkoft.

Contributed Lectures

Sv. BILCHEV. Existence and uniqueness of the stationary solution of a nonlinear partial differential
equations.

Ts. DoNcHEV, 1. SLavov. Tikhonov's theorem for functional-difierential inclusions.

. (GAVRILOV. A proof of the Gauss reciprocity law.

. Hapinskl. Distributions of the zeros of a sequence of the best rational approximations.

. KARATOPRAKLIEV. On a nonlocal boundary-value problem for elliptic equations.

. KeNDEROV, V. MOORS. Fragmentability and o-fragmentability of topological spaces.

. Kiriaxkova. From the integral transform of Obreshkoff to the generalized fractional calculus

and the special functions.

M. ManEV. Contact conformal transformations of general type of almost contact manifolds with
B-metrics. Applications.

M. MITREvVA, T. STOJANOV. On certain problems of Obreshkoff.

S. MiHovsKY. Isomorphisms and automorplisms of cross products of up-groups.

N. NaciuEev. Invariants of the Silov p-subgroup of the group of normalized units of a commutative
group ring with characteristics p.

N. NacHev, T. MoLLov. Multiplicative groups of semi-simple group algebras of Abellian
p-groups over a field.

J. PaAnEVA-KONOVsKA. Complete systems of Bessel and inversed Bessel polynomials in spaces of
holomorphic functions.

Tz. RasHkova. On the minimal degree of =-identities of antisymmetric variables in the matrix
algebra of an arbitrary order with a symplectic involution x.

D. SKORDEV. An algorithmic approach to some problems about the representation of natural
numbers as sums without repetitions.

I. Soskov. Constructing minimal pairs of degrees.

P. Tonporov. A simple proof of a coincidence theorem of Rubinstein and Walsh and generaliza-
tions.

A. ToMOVA. Weakened Tchebyshev's method of second order for investigating trajectories of
associated dynamical systems by means of coloured fractal image's technique.

T. Tonkov. On certain.properties of Klosterman's sums.

V. VIDEV. On the geometry of 4-dimensional Osserman manifolds.

N. Yangev, K. MiTov. Asymptotical laws in the theory of “recovery” connected with “some
particular kinds of integral equations” considered by Obreshlkoff.

S. ZraTtiv, . MAKRELoOv. Iterative solution of operator equations in Banach spaces using
Obreshkoff’s method.
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CnoBo, npousteceno ot npod. T. 'eruen
IpM OTKPMBAHETO Ha loOuieliHaTa HaydHa cecus,
[IOCBETEHa Ha CTOUOAWIIHVHATA OT POKIEHUETO Ha

axanemuk Hukona O6pemkos

Was du ererbt von deinen Vatern hast,

erwirb es, um es zu besitzen.

Goethe

YBakaeMu KOJIETU, CKBIU roctu!

Inec cme ce cbOpaiu TyK 3a Oa U3Pa3uM HAlIaTa [OYUT K'bM KHUBOTA M
TBOpUECKOTO AeJio Ha akan. H. O6pemkoB — exnH 0T Hali-KpYNMHUTE NpeacTa-
BUTeJM Ha O'bJrapckaTa HayuHa MMUCBJI, ¥ [0 TO3M HAYMH K'bM Cb3UIJaHUETO U
TBOPUECKOTO HayaJlio Bbobiue. 3anbnboyennte uscnenpanuua va O6pemkos B
pPa3JIMUHUTE KJIOHOBE Ha aHajiM3a ¥ B TeOpUATA Ha uMciara oboraTuxa nalua-
Ta HayKa M My OoHecoXa MeXAyHapoaHo npusHaHue. [loayumsn nouTy BCUYKM
OTJWYMA, Ha KOUTO MOMXe Ja ce palaBa UCTHUHCKUAT ydeH, OOpellkoB 3ana-
31 CBOATa HEMOCPEICTBEHOCT M He M3HEBEPU Ha CBoeTo npu3saHMe. He caMmo
HEroBHAT TaJlaHT, HO ¥ HEroBOTO IIOCJOBUYHO TPYHoaiobOWe, MOAXPAHBAHO OT
YKMCcTaTa PalocT, KOATO My HOCelle TBOPYECTBOTO, I'0 HAIIpaBUXa aHAJIUTUK OT
espornelickd mamab. Tol HeHaBmkIalle NOMIO3HOCTTA M IIpa3HaTa ¢hpaseoo-
rufd, a camMopekxJaMaTa ¥ JaMTE&XDBT 33 aIMUHUCTPATUBHU MOCTOBE My 6Axa
OpraHMYeCcK! UyKIW. B noseneHMeTo My ACHO JMYellle M3BECTHO OUCTAHIMpa-
He OT TeKYIIMH MOMEHT, TOJIKOBa XapaKTePHO 3a YUYEHUTE MO MpU3BaHUE.

Hayunatra kapuepa Ha OOGpeImKoB € BreyaTagBalla: Ha OBAAECET U IUECT
FOOMHU € MOLEHT, Ha ABaJeceT U JeBeT — M3BBHPENeH lpodecop, a Ha Tpule-
ceT U nBe — DpEJIoBeH I1podecop U pbKOBOAWTeN Ha KaTenpa. Ha Tpuaecet n
HIecT roJWilHa Bb3pacT 3aliuTaBa DokTopal B CopboHaTa, & Ha YeTupuiaeceT
M oceM e akaneMuK. OGpeIlKoB e I'bPBUAT O'bJIrapCcky MaTEMATHK, J0Ka3all ue
U TYK, Ha Hama, 6bjarapcka mousa, gaske U 6e3 cnenuaju3auua B dy>Kb6uHa,
MoraT Ja ce NMpaBAT CEPDMO3HW Hay4yHM oTKpUTUA. Axanemux HamxakoB Hu
€ OCTaBWUJI KUB CIIOMEH 3a CHJIHOTO BIledaTJieHMe, koeTo O6pelkoB e Hampa-
BUJI Ha MPENOJaBaTeNId ¥ KOJIErH, NojiyyaBaliky ollfe KATO CTYOeHT coGCTBeHM
HAYYHU pe3yJTaTH.

XBhpaudAiky morjen Ha3al, HMe C OuyJBaHe KOHCTaTHMpaMe, Ue TBbpIe
MaJKo 3HaeM 3a HayuHarTa MjagocT Ha OO6pelukoB, 3a XopaTa M 3a KHUCH-
Te, KOUTO Ca My MoMorHainu aa ce Gopmupa kaTo maTemaTuk. CKpOMEH M
CABPXKAH, TOW He € OCTaBMUJ CIIOMEHW, Ha KOWTO A2 Ce Olpe eBEeHTYAaJHUAT
My HayueH Guorpa¢. Hanpumep dakrnT, Ye KaTo Myan noueHT O6pelkoB e
nosiyuust pokdesiepoBa cTUNEHIWA U npe3 ydebuata 1922/1923 r. e cneuna-
nusupa B Bepaun (seposarno npu llyp), cu ocTaBa MOYTH HEM3BECTEH.



ITopaay HAKOW ocebeHOCTM Ha CBOA xapaKTeDp akax. OGpeikoB He Cb3-
nane Hayuyda iukoJia. Toi#i oBaue Hu ocTapu HoraTo TBOpUueCTBO, KOeTO HUeE,
HETOBUTEe OYXOBHU HacJeIHUIM, TpAGBa Ia M3ydyaBaMe U pa3BUBaMe, 3a Ja He
103BOJIMM Ha 3abpaBaTa Oa 3aluuM Herosute cienu. IlbpBaTa BaxkHa Kpadka
Bede e HanpaBeHa. OT 1981 T. UMaMe HEeroBUA ABYTOMHMK, 3 Buepa HayuuXx,
Ue TPETUAT TOM OT HETOBUTEe ChYMHECHUA Ce HAMUpaA B NleyaTHUOaTa. JlHeluu-
AT CBEThJI aKaleMUYEeH NPA3HUK € HOBa, MaKap M CKDOMHA CT'bIKa B CHIIATA
TIOCOKA.

Karo uspassaBaM cbKaleHUETO Ha OPraHM3ALMOHHUA KOMUTET, Ue €OHO
BHE3aIlHOo, TeXKo 3aboJsiABaHe monpeuu Ha npod. Vis. YobaHor aga Gbae Merk-
Ly Hac 1 na Hanpasu o0630p Ha MocTwxeHuATa Ha OOpelIKoB B TeopuATa Ha
Pa3XoJAIIMTe peloBe, o0aABABaM 100uMIeliHaTa Hay4dHa cecus 3a OTKPUTA.

Cogus, 19 anpun 1996 .
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FOOAULIHUK HA CO®UNKCKUA YHUBEPCUTET ,CB. KJIMMEHT OXPULCKU«
PAKYJITET IO MATEMATUKA 1 UHPOPMATHEKA

Knura 1 — MaTemaTuka u MexanuKa
Tom 89, 1995

ANNUAIRE DE L'UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques et Mecanique
Tome 89, 1995

NIKOLA OBRESHKOFF (1896-1963)

ENCOMIUM*

BOYAN PENKOV

It is a honouring and pleasant duty to express my thanks to the organizers of
this memorial meeting for having invited me to hold an introductory encomium on
the occasion of the centenary of Nikola Obreshkoff, who was and continues to be a
significant phenomenon in Bulgarian mathematics.

Please do not interprete my first words as an attempt to justify myself before-
hand when confessing that I was confronted with obstacles, most of which pleasing
but difficult to overcome. The first obstacle has been formulated by Goethe in the
words of Faust:

Ach, die Erscheinung war so riesengross,
dass ich mich recht als Zwerg empfinden sollte.

The Bulgarian translation from 1905 of the seventeen years older colleague
and friend Alexander Balabanov (another great phenomenon at the then Bulgarian
horizon) of Goethes lines is as follows:

Bunenuero 6e mo nebeca,
a a3 npen Hero 6AX Wrpayka caMmo.

“ Invited address at the memorial meeting on the occasion of the 100th anniversary of N.
Obreshkoff held at the Bulgarian Academy of Sciences on April 18, 1996. The original talk was
held in Bulgarian. This is an English translation of the author.
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Goethe has grasped fairly deep how difficult it is to keep the distance to some-
body excelling you and yet to try to get knowing him better. So much about the
first obstacle.

The second obstacle is related to time — more precisely, the time that has
passed. And this kind of time is always long enough but also insufficient. Some
things languish in oblivion, some others have not yet settled down to be declared
history. It is now 33 years that Obreshkoff is not among us. He suddenly passed
away in the late summer of 1963 and just a month later was followed by Lyubomir
Tchakalov. Some colleagues called it the “black autumn” of Bulgarian mathematics.
33 years equals the age of Jesus and the span of a generation. The number of
colleagues having seen- Obreshkoff live can be counted today on the fingers of your
hands.

And last the third obstacle. We live in a country deprived of memory. How
many are our citizens who can cite the birthdates of their grandparents, how many
family, municipal or institutional archives are being preserved? To commemorate
people like Obreshkoff would be quite easier if there were in this country profes-
sional historians of mathematics, if such a subject was part of the curricula of the
now so many math departments and was not only taught but was also an object
of research. The fragmentary and pale efforts in this direction cannot fill the in-
stitutional gap. Lomnely enthusiasts have repeatedly tried to change the situation
(it suffices to recall the name of the late Boyan Petkantchin) but their voices faded
away in the wilderness. '

Obreshkoff’s creative activity spans over a 40 year period, from the beginning of
the twenties till the beginning of the sixties. The life of a genuine mathematician —
Obreshkoff was such one par excellence — consists of his research results. They have
been announced in about 250 publications. The average number of papers published
by Obreshkoil yearly is 6 or 7, the minimum of 2 papers falls at WW2 years 1944
and 1945 and the maxima — in 1938 (10 works) and 1949 (12 works). 74 of these
papers are by now collected in the first two volumes of Obreshkoff’s Collected Works
that started to appear in 1977 and stopped without any arguments in 1981, when
the third volume, ready to be printed, did not reach the Publishing house of the
Academy of Sciences. There is one more mystery around this edition. The first
volume, out of print for a long time, was republished by the renowned editing house
Birkhduser in Basel together with an announcement for several further volumes.
The Bulgarian mathematical community has not seen this republished volume.

Before starting the risky adventure to cast a bird’s eye view over the mathe-
matical problems that Obreshkoff has dealt with — they will be discussed in detail
tomorrow at a special session at the mathematical department — let me remind
you the main points of his CV.

Nikola Dimitrov Obreshkoff was born in the town of Varna on April 18th,
1896 as one of the last children in a large and bright family. The father, born
in 1858, was a military officer, achieving later the rank of a colonel. The mother
of ten children Kitza Obreshkova — a music lover and fluent in French, was the
moral and intellectual force of the family. With the beginning of this century the
family moved to the capital Sofia, where Nikola graduated in 1915 from the Second

12



Softa Boys High-school. Three years earlier the 16 years old high-school student
published in Vol. 8 of the Journal of the Bulgarian Physico-mathematical Society
a paper entitled Expressing functions of half angles through functions of whole
angles.In the fall of 1915 Nikola was admitted student in mathematics and physics
at the Physico-mathematical Department of Sofia University. The First World War
interrupted his studies temporarily and he served as private and later as officer in
a field engineering unit. Immediately after graduating in 1920 he was appointed
assistant at the Chair of Calculus. In this position he was conducting practical
works with the students not only in calculus but in other subjects too, that was
something common for the time, but not for nowadays. Even 25 years later most
of the assistants were multipresent and worked on many different math courses, at
least on two. At that time the Chair was not an organisational unit but an area
for which an ordinarius (full-time professor) was responsible. Let me leave it to
you to decide what kind of progress is the todays almost impossibility to ask an
assistant from the Chair of Algebra to conduct practical work in calculus for, say,
freshmen. Reflecting on the works of Obreshkoff, a difficult question arises: was he
an algebraist or an analyst or, say, a probabilist. He was all of this together.
After two years of assistantship Obreshkoff got his ‘Habilitation’ in 1922 as an
‘ordinary docent’ (= assistant professor) with his papers on distribution of zeros of
polynomials, his first' love to which he remained faithful to his last gasp. One of
the reviewers was Kyrill Popoff. His review reads as follows:
~ “Delighted by the results [of Obreshkoff] I communicated them to Prof.
Dr. Issai Schur, ordinarius for higher algebra at Berlin University. Here are
his impressions and his opinion on the value of the paper considered [the
Habilitation schrift] expressed in a letter, which I am citing here with his
kind permission:

Berlin, den 13 September 1921

Sehr gechrter Herr Kollege!

Die Arbeit des Herrn N. Obreschkoff “Uber die Verteilung der Wurzeln
der algebraischen Gleichungen”, die Sie die Treundlichkeit hatten, mir zu
tiberbringen, hat mich sehr interessiert. Die von Herrn Obreschkoff angegebene
Erweiterung des Budan-Fourierschen Theorems auf das Komplexe Gebiet ist
von bemerkenswerter Eleganz und Linfachkeit. Bedarf die Beweisfiihrung
auch noch einer erheblichen Kiirzung, so zeugt die Arbeit doch von dem
Scharfsinn des Verfassers und sein Resultat stellt einen wertvollen Beitrag
zur Theorie der algebraischen Gleichungen dar.

Mit hochachtungsvollen Grifien Ihr sehr ergebener
Prof. Dr. I. Schur.”

And Popoft continues:

“The Habilitation schrift of Mr. Obreschkoff is a valuable contribution to
the field of Higher Algebra, revealing his big talent and assuring him a leading
position among the young mathematicians. It shows original thought, gift to

13



see by himself the fundamental issues and to achieve the solution by his own
efforts. All this is demonstrated also by his paper on series, though not
solving problems of the same importance as the above mentioned, it shows a
formed mathematical insight and an outright individuality.

1 do recornmend warmly Mr. Obreshkoff for the position of assistant
professor at the Chair of Higher algebra.

Dr. Kyrill Popoff
Associate Professor of _
Differential and Integral Calculus.”

In 1925 Obreshkoff was promoted an associate professor and in 1928 -— a full-
time professor and Head of the Algebra Chair. He remained at this position for 35
years.

As a young lecturer he had different courses. According to the then termi-
nology, some ‘basic’ ones: Higher algebra (in two parts), Infinite series, Theory
of probability, and some ‘temporary’. Spherical and practical astronomy, Plane
analytic geometry, Differential geometry.

Obreshkoff has never been abroad for a long time as a postgraduate. His two
Ph.D. degrees — from Palermo and Paris, he got in 1932 and 1933, being yet a
full-time professor and author of more than thirty publications.

In order to accomplish this dry recording of facts, allow me, please, a digression.
I cited above the report of Popoff, the other reviewer was Emanuel Ivanoff, the
then Head of the Algebra Chair. Both reports are printed in vol. 19 (1922) of the
Annuatre de D’Untversité de Sofia and thus were immediately made open to the
public, together with the inaugural lecture of the newly elected professor, entitled:
Character and Problems of Algebra. Grace to such a publicity, it is not a secret to us
today who did recommend and with what arguments Obreshkoff’s promotion. The
responsibility which Ivanoff and Popoff assumed in 1921 we count today to their
merits. In later times, especially after the forties, unfortunately things became
anonimous, the reports of the reviewers being available only to a restricted circle of
scholars and the original documents sinking into the archives (if not destroyed) and
not made known to the general public. Try nowadays to discover who proposed
whom for a certain academic position! Let us hope that the Bulgarian Academic
society will realize the necessity of such a publicity, lost half a century ago.

In January 1945 Obreshkoff was elected directly as an Ordinary member of
the Bulgarian Academy of Sciences and Arts, as it was called at that time. The
usual path was through becoming first Corresponding member, but Obreshkoff was
elected directly Ordinary member. Earlier members were Ivan Tzenofl (elected in
1929) and Lyubomir Tchakaloff (elected in 1930). I do not count here the math-
ematicians Vassil Vassilieff, Ivan Gyuzeleff, Emanuel Ivanoff and Georgi Kirkoft,
who were members of the Bulgarian Literary Society, the ancestor of the Academy.

After the sovietisation of the Academy through the Acts of 1947 and 1949
and the foundation of some research institutes in the framework of the Acade-
my Obreshkoff was appointed in 1950 as the first director of the recently- created
Mathematical Institute. The death overtook him after 13 years in this position at a
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crucial moment of the institute’s development. As Marshall Stone has formulated
it, mathematics has turned to be not only a vocation, but a profession. Some times
earlier cybernetics (as the computer sciences were called) was declared sane and
removed from the ‘index scientiarum prohibitorum’. Mathematical methods in the
social sciences and in the humanities were accepted. The application of mathe-
matics in industry, even the intention to go in this direction, became fashionable.
Obreshkoff was not allowed to participate in this ‘taw’ development. I have remem-
bered his directorship (up to 1955) by two main characteristics — at first place his-
absolute intolerance of low quality research, and second, his highly developed sense
of responsibility concerning public affairs. And all this accompanied by an inborn
allergy towards bureaucracy. It was the essence, not the form that did matter for
him. He often repeated that this country is small and poor and we have to econo-
mize in everything and everywhere, and that in the field of research the then loudly
proclaimed law that ‘quantity develops into (of course better) quality’ was false.

Dear colleagues and esteemed audience! To discuss here, even minimizing the
details, the rich and diverse works of Obreshkoff is not possible and beyond my
scope.

Let me try to present a very brief and general sketch. Kyrille Popoff used to say
that one is working during all his life on his dissertation, literally on his ‘thesis’.
To some extent this applies to Obreshkoff, too. He impressed the mathematical
community with his very first paper on the distribution of zeros of polynomials.
His beautiful generalization of the theorem of Budan and Fourier was achieved by
generalizing a lemma of Johann von Segner from the midst of the 18th century. In
Segner’s original proposition the factor is linear, but Obreshkoff used a quadratic
one, thus generalizing Descartes’ rule of signs to complex valued zeros. During the
twenties and thirties of this century the distribution of values of polynomials was
a busy research area and Obreshkoff was one of the prominent dramatis personae,
along with Dieudonné, Faber, Féjér, Fujiwara, Kakeya, Marden, Montel, Polya,
Schoenberg, Schur, Szokefalvi-Nagy, Szego, Turan, Walsh et al. As yet mentioned,
Obreshkoff did not abandon these problems until his last days. Only few months
before his unexpected death two monographs were published: Zeros of Polynomials
(in Bulgarian, Sofia) and Verteilung und Berechnung der Nullstellen realer Poly-
nome (in German, Berlin). These books are the result of 40 years of active research
in this field. Earlier there were published only two monographs in this area: Nr
93 of Mémorial des sciences mathématiques by Dieudonné (1938) and Geometry of
polynomials by Marden (1949). The first volume of Obreshkoff’s Collected Works
contains 45 papers upon zeros.

In his inaugural lecture by “the basic problem of algebra” Obreshkofl meant the
solution of algebraic equations. Nowadays the term “algebra” has a quite different
meaning. The distribution of zeros of polynomials belongs therefore to the domain
of analysis. Dieudonné’s review of 1938 is called: Théorie analytique des polynomes
d’une variable.

Obreshkoff contributed also to the distribution of zeros of entire functions, to
particular meromorphic functions which are limits of special polynomials or rational
functions. These results interfere with his interest in functional series and lead him
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to his second great love that turned out to be very fruitful: the summation of
divergent series. Unfortunately, he did not succeed to present this part of his life
work in a bookform. But the bifurcations from this theory are very interesting.
In his famous paper on quadrature formulae, published in the Proceedings of the
Prussian Academy of Sciences in 1940, the approach is based on a summation
formula.

During the second half of the forties Obreshkoff achieved a brilliant result in
diophantine approximations and gave the answer to a problem posed by Borel as
early as 1903. Obreshkoff proved that the unknown ‘Borel constant’ is equal to 1.

Last but not least we should not forget that Obreshkoiff has interesting contri-
butions to the probability theory (series and polynomials of Charlier connected with
the Poisson distribution). They are published in the series Actualités Scientifiques
et industrielles in 1938.

Obreshkoft must be mentioned also as the author of many and influential text-
books. In a short period the young professor published as Ne 93, 110 and 153 (resp.
in 1930, 1932 and 1935) of the famous Bulgarian University library series two vol-
umes of Higher algebra and a Collection of problems in the same field. Within 25
years the Higher algebra underwent more than five editions. But comparing the
first edition (1930) with the last one (1955) you will notice the richness of the first.
It contains: fundamental properties of polynomials, determinants, basic properties
of algebraic equations, algebraic solution of equations, theory of numbers, theory of
groups and its applications to algebraic solution, theory of Galois and finally Abel’s
theorem. The later editions are somehow simplified, they contain linear algebra,
but some deeper topics are omitted. The second volume of this algebra textbook
is in fact the first textbook on probability and statistic written by a professor of
Sofia University, parallel to Oskar Anderson’s (the then director of the Economical
Research Institute at the University) Einfihrung in die mathematische Statistik
from 1935. During the fifties the two initial volumes of the Higher algebra (which
at least to me are still charming and challenging) were split among others into
textbooks on probability and theory of numbers.

One can meet the name of Obreshkoff also as author of some highschool text-
books and two popular booklets (one on Kuler, with co-author Yordan Duitchev,
and the another under the title What is differentiating? with co-author Dimiter
Skordev). These nice texts remind me of Herbert Robbins’ joke about his co-
authorship with Courant on What is mathematics. The version was that Courant
wrote the text but put on the front page the prestigious name of young Robbins,
as Hilbert did with Courant in Methoden der mathematischen Physik.

Tomorrow and after tomorrow during the specialised session many of you will
have the possibility of following the chalk on the blackboard (the good old way to
communicate mathematical ideas) to learn more on Obreshkoff’s works on integral
transforms and many other things. Therefore allow me to skip them here.

And now, after these words, you will be able to hear some reminiscences on the
human being Obreshkoff and I shall myself not elaborate on his image that was in
a moving manner unsophisticated. He had no hidder or surprising facets, but was
both direct and kind. Not alien to public problems, nevertheless he was absorbed
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by his internal mathematical world. | do not remember him in a bad mood, even
after his physical pains became more frequent in the late fifties. He was not a
lecturer for beginners but an excellent one for advanced students. This feature he
had in common with Kolmogorov — they shared a creative manner of speaking
and their words could be decoded only by the initiated. One more resemblance
between them was that scarcely you had shared a problem you could realize they
had gone through it and as Obreshkoff used to say: ‘I have been thinking about
this’. Indeed there were many things he had thought about.

The mathematical community of this country still owes much to Obreshkoff.
We have to accomplish the edition of his complete works and we must compilate
his scientific biography.

It is fine that Sofia has now an Obreshkov street, but his hospitable home at
Tzar Samuel street deserves since a long time a memorial plate.

The best what future generations of Bulgarian mathematicians can do to hon-
our the memory of Obreshkoff is to be exacting and persevering like him.

23 Oborishte str.
BG 1504 Sofia, Bulgaria
E-mail: bip@math.acad.bg
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ON A FORMULA OF OBRESHKOFF *

BORISLAV BOJANOV

We show that a formula given by Nikola Obreshkoff yields in a very simple way
the Bernstein comparison theorem.

Keywords: devided differences, Obreshkoff formula, Bernstein comparison theorem.
1991/95 Mathematics Subject Classification: 41A03, 41A10, 41A50.

Denote by f[zo, ..., zs] the divided difference of f at the points zo,...,z,. It
is well-known that if f € C"*[ae,b] and a < zo < --- < &, < b, then there is a point
£ € [zo, zn] such that
_ F(€)

n!

: (1)

Another basic fact from calculus is the following mean value theorem: If f and g
are continuously differentiable in (z,y) and g(t) # 0 for all ¢t € (z,y), then there
exists a point £ € (z,y) such that

g()—9(y) g€’

Nikola Obreshkoff [1] has obtained a formula which extends both (1) and (2). He
has exploited it to establish various inequalities for differentiable functions.

f[.’L‘Q, .. .,.’En]

* Invited lecture delivered at the Session, dedicated to the centenary of the birth of Nikola
Obreshkoff.
The research was supported by the Bulgarian Ministry of Science under Contract No.
MM-414.
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Obreshkoft’s formula. Assume that f and g are from C(™){a, b] and ¢g(™)(t) > 0
on [a,b]. Then for every set of points zo < --- < %, in [a,b] there exists a point
& € (w0, zn) such that

.f[E()) ) xn] _ f(n)(&)
glzo,--.,za] — g™(&)

Proof. Set
_ f[.’l:o, . ..,.’En]
“glzo, ... 2]’
Note that g[zo,...,z,] = g()(¢) for some t € [z, z,] and thus glzo, ..., z,.] # 0.
Consider the function

p(z) = f(z) — La-r(f; 2) = Alg(z) = La-i(g;2)],
where L,_i(h; z) is the polynomial from =,_; which interpolates & at z,,..., z,.
It follows from this interpolation that ¢(z;) = 0 for ¢ = 1,...,n. In addition, by
the definition of A ¢(z0) = 0 oo (because h(z) — Lo—1(h;z) = hlz),..., zq, 7]
X (x — z1)---(z — z,) for each function k). Thus ¢ has at least n + 1 zeros.
Then, by Rolle’s theorem, (™) vanishes at a certain point £ € (z¢,z,), that is
e(M(E) = FM(€) — 49\”)(5) = 0 and the procf is complete.

The aim of this short note is to point out the fact that Obreshkoff’s formula
implies the classical Bernstein comparison theorem [2] (see also [3, Theorem 59])
concerning the best uniform polynomial approximation of a function f:

Bo(f) = jnf mex 1) - p(e)]
Indeed, as well-known, the best approximation E,(f; zq, ..., Zn+1) of f by polyno-
mials from , on the finite set zp < -+ < Tp41 is related to the divided differences
of f by the formula

f[rox o T
ETL 1 1y n+l =\ 3
(fi 20 Znti) S[$0,-~-,1?n+1]
where s is any function taking the values (—1)* at z;, i = 0,...,n + 1. Therefore,
by Obreshkoft’s formula,
En(f;l'o)-”):rn+1) — f(n+1)(6)‘
En(g;l'o,'--;zn+l) g(n+1)(£)

Now the following assertion is clearly true:

Assume that f,g € C(**[q,b] and 0 < |f+I(2)] < g+ (1) for allt € [a, b).
Then for eacha < 2pg < - < Zpp1 < b

En(fizo,- - Zne1) < En(g;To, .-, Tag1).

Taking zq,...,Zn41 to be the alternating set for f, we get
E.(f) = En(f;z0, ... n41) < Enlg; 2o, ..., Tns1) < En(g), 3)
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which is the Bernstein comparison theorem.

Note that equality holds in (3) only if the functions f and g have a common
alternating set.
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B'BbPXY U3CJIEIBAHUATA
HA AKAIEMUK H. OBPEIIKOB, CBHLP3AHU
C PETYJIAPHO MOHOTOHHUTE ®YHKIINU!

[Tomop I‘EﬁqEB]

Todop I'enves. OB NCCJIIEJOBAHUAX AKAIJEMHWKA H. OBPEUIKOBA, CBfI3AH-
HBIE C PETYJIAPHO MOHOTOHHBIMHW ¢#YHKUNAMU

B aTom cTaThe npeacTaBieH KOPOTkuil 0630p mccnenoBanmii akagemuka H. O6pein-
KOBa, CBf3aHHbIE C PEryJ/JIAPHO MOHOTOHHBIMU (GYHKUVAMM.

Todor Genchev. ON THE INVESTIGATIONS OF ACADEMICIAN N. OBRESHKOFF CON-
NECTED WITH REGULARLY MONOTONIC FUNCTIONS

A short survey of some investigations of the academician N. Obreshkoff connected with the
regularly monotonic functions introduced by S. N. Bernstein is proposed.

B To3u KpaTbk 0630p mie ce crpa Ha ny6nukaiunTe Ha akan. H. O6pem-
KoB, OJIM3KK 110 AYX C HAKOM OT KiacudecknTe uacinenpauva Ha C. H. Bepn-
HIeliH B'bpXY PEryNApHO MoHOoTOHHUTE QyHKUMU. OcBeH Ye B Te3u Ny b AMKaAII
HaMMpaMe XapakTepHuTe 3a OOGpEIIKOB NPOCTOTa YW €JUHCTBO Ha METOAWTE,
MMEHHO TYK CE€ ChABDPXAT U HEPaBEHCTBAaTa, KOWTO [IPUBJINYAT BHUMAaHUETO
Ha mjamuA Torasa flpocias TaraMaMuky ¥ B Kpad Ha KDAMIIaTa r'o JOBEXIAT
Io "HerobaTa Teopema 3a xonycume.

1 Nownan, usnecen uwa 20 anpun 1996 r. Ha 106uneiinaTa HayuHa cecua mo cayuait
CTOroAMIHMHATa OT poXJaenueTo Ha akad. H. Ob6pemkos.
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KakTo me cTaHe ficHO OT CaMOTO M3JIOXKEHMe, 3a NIPAKO BJIMAHUE Ha pa-
Gorure Ha Bepuueitn Bbpxy OG6pemxos He Moxke Ja ce rosopu. Herosure
M3CIIeBaHUA Ca IPEAU3BUKAHU OT €CTECTBEHUA CTPEMEN la CH U3ACHUM Bph3-
KaTa MEXIYy HAKOU De3yJTATH OT TEOpHUATa Ha pa3XoUIUTEe peloBe, KOUTO
Beye e monyunn. Haucruna va c. 105 oT mai-pamnata my my6aukauma [1],
KOATO MOe Jla C€ IIPUYMCIM KbM Pa3drieKIaHUA LMKDBI, HaMUpaMe CJIeIHUA
nacax: , IIpy M3crenBaHMATa Ha 3aBUCHMOCTTa MEXIY YCJIOBUATA Ha Teope-
MMTe CTUrHaX A0 HAKOM Pe3yNTaTH, KOUTO MMaT HAKaKbB mHTepec®. Cren
TOBa MABa TeopeMa |, IpuUBelNeHa IIO-NOJY B JIEKO M3MeHEHa pelakKuuA. Easa
c Teyenue Ha roauvuuTe OOpemKoB och3HaBa uieiiHaTa 6JAU3OCT Ha CBOUTE
pe3ynTaTH ¢ Te3u Ha DepHuleiid U B caMua Kpail Ha CBOA KU3HEH U TBOPUYECKHU
I'bT AaBa [IPOCTU M eJIEFaHTHM JOKa3aTeJCTBa Ha JBe OT Hall-xyGaBuTe Teope-
MM Ha BepHieitn 3aeIHO ¢ €IHO ChLIECTBEHO 0600IieHMe HA CAMOTO NOHATHE
3a peryjifipHO MOHOTOHHA (yHKIMA.

Cunen ToBa BCT'hIUIeHMe IIe popMyaupaM TeopeMa 1, 3a KOATO CTaHa AyMa
[10-TOPE. '

Teopema 1. Hexa peaanume fynxyuu ¢ v 3 ca deunupanu sa & > o ¢ npu-
MENCABAT HENPEKFCHAMU NPOUIE0IHY 0o n-mu ped axawvumeano. Hexa oceen
mMoaa € 8 CuAd HEPUBEHCTNAOMO

le™(2)| £ (¢ (2)], @ > =, (1)
u epanuyume lim p(z) = a, lim ¢(z) = b coyecmaeysam. Hadi-cemne nexa
I —00 T-—r+400

P £ 0 8 yeaus unmepaaa (zo, +00). B maxse cayuail e usnsaneno u nepasen-
cmaeomo

lo(z) —a| £ [¢(z) -8, z>zo (2)

KaxTo or6enfAssa camMuAT aBTop, Ta3M TeOPEMa HU II03BOJIABA Ja CPAB-
HABaMe€ CKODOCTHUTE, C KOUTO ¢ M % KIOHAT KbM CBOMUTE T'DAHUIM, KOLaTo
r — +o0o. 3a na Mora aa haM IIPeACTaBa KaKTO 3a €CTECTBOTO Ha 3ajavaTa,
Taka U 3a MeTona Ha OBpELIKOB, Ile CH NO3BOJA KPAThK KOMEHTAp.

fcuo e, ue 3a na monyuum (2), Tpa6Ba na npouHTterpvpame (1) mo moa-
xonAam HauuH. B ciyyad n = 1 ToBa ce moctura HemocpencTBeHo. Haucruna
3a IIpOM3BOJIHM uMcla A M T, IpUHALJNEXKally Ha MHTepBaJa (g, +00), UMaMe

| / 1#'(8)] at)

< }] W(0)lde| = |]¢'<t) dt| = 1o(z) - w(A),

IIA

lo(z) — p(A)| = |/ o'(t) a’t'

OTKBIETO, KaTO 0CTaBUM A [a KIOHM K'bM +00 Npy GUKCUPAHO T > To, II0JIydYa-
same (2). OT ToBa pasuCKBaHe Ce BIDKIA, Ue MOXEM [la 3aMEHUM U3UCKBAHETO
¥' # 0 c ycnoBuero ¥/ na He CM CMeHA 3HaKa B MHTepBaJa (g, +00).
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B o6musa cayuail noxa3aTescTBOTO € MO-Cio¥kHO, HoO O6pemkos, npubsar-
BaiiKM K'bM €IMH 0T JIto6MMHUTE CH MHCTPYMEHTH — (GOpMyJaTa 3a n-TaTa pas-
JMKa, C JIEKOTa Ce CIpaBA C B'h3HMKHaJMTe 3aTpynHenus. llle mpumomnsa 3a
KaKBO cTaBa AyMma. AKo ¢ e AepuHupaHa B MHTepBaia (2o, +00) 3a GpUKCUPaHM
z > zg v h >0, Noslarame I0CJieJ0BATEIHO

Anp(z) = p(z + h) — p(z), Afp(z) = Arp(z + h) — App(x), ...,
Ro(z) = AR Asp(z)

U MHAYKTWUBHO CTHUraMe JO PaBEHCTBOTO

bo(e) = e+ ah) = (7 )ple -+ (n = DB

(3ot =D+t (0@ @)

Ot apyra cTpaHa, kaTo B3eMeM mpeasut (1), ¢ moMowra Ha KiacUuecKara
dopmyna
h h

2o(z) =/.../go(")(a:+t1+t2+---+in)a,’t1dt2...dt,,
0 0

=/¢(")(x+zn:tj>dt, dt = dtydty. .. dt,, (4)
) i=1

kbaero @ C R™ e n-mepuuar ky6, nepuHupan ¢ nepaBeHcrpaTa 0 £ §; S A,
j=1,2,...,n, HenocpeAcTBEHO NoJiyyaBaMe

J(¢(")(m+§tj)|dt S S[‘d»(”)(x+;tj)ldt

[ 40 (e + 3 6) | = 160w,
Q i=1

3all0TO 1,b(”) He CM CMeHA 3HaKa B Hejud uHTeppan (rg,+00). Ilo To3u Hauuu
O6penkoB cTHra [0 PEIlAaBAlIOTO C'bOTHOIIEHNE

OTKbAETO, UMaliky nmpemsun (3), cien PaHUYHMA NpeXohd A — 0O MOJYUYaBa
HePaBEHCTBOTO

o) —a > (-1~ (1)

v=1

[ARp(z)]

A

<

w(z)—b;:jl(—l)"-l(’;)), r> 20,

n
KoeTo cbBIaka ¢ (2), 3alI0TO OYEBUIHO z(—-l)"‘l(’;) =1.
v=1

Broparta ny6amkaurs [2] oT pasrieJIaHMA UMKbJ OTHOBO € OMECTEHa B
COAMIIHMKA Ha YHMBepCUTeTa. [yk OCHOBEH e CJIeNHMAT pPe3yJTarT:
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Teopema 2. Hexa f u ¢ ca dee peaanu gynxyuu, dedunupanu 3a r > a,
KOUMO NPUMENCAEAM HENPEKFCHAMY NPOU3BOIHY 00 N-ML ped 8KLIOUUMEANO U
o) # 0 8 yeaus unmepeas z > a. [o-namamax, nexa cowecmeyaam Gesxpatina
peduya {z,} — +00 u yauo wucao m, 0 < m < n, maxuaea, ve zpanuyume

lim M =A, lim M =B (5)

v—oo I v—oo T

da cawecmaysam. B maxse cayual om mepasencmeomo

)| £ JeMi(a)

A

, T>a, (6)
caedaa Hepasencmeomo

'f(m)(z) - m!A|

A

\(p(m)(:n) - m!Bl , T>a. (M

Ta3u Teopema € 3HAUMTENHO ITo-ABJIGOKa 0T TeopeMa 1. B pasrierxnana-
Ta pabora O6pemkoB naBa ABE JOKa3aTeJCTBa: B 'LPBOTO CU CIYXU C €JHO
HOBO NpEeACTaBAHE Ha N-TOTO HIOTOHOBO YaCTHO, a B'bB BTOPOTO —— C MO3HATa-
Ta ¢opmyna Ha MOHTEN 3a CBLIIOTO HIOTOHOBO UACTHO, KOATO LIy MO3BOJIABA
Ia obxBaHe W cjydasi, KoraTo [ IpMeMa M KOMILIEKCHM CTOMHocTH. 3a na
Mora Aa JaM IToBeve ToApo6HOCTH, Uie IIPUNOMHA, ye ako f e GpyHkuwms, nedu-
HApaHa B HAKAKbB MHTepBay (o, ), HEHHOTO N-TO HIOTOHOBO YaCTHO C B'b3JH
ro <y <...< &p, {z,}} C (o, ), ce nedunupa Guno upes popMmyarta

Zﬂ f(zv)
N L0, L1y -y Tn) = YT
(f ’ 1 ) u:DP(I’IV)

T
kbaeto P(z)} = [] (z — z,), 610 peKypeHTHO Upe3 paBEHCTBATA

v=0
T1)--J{&
N(f,fﬂo,ﬁ):f(—;z_:_j;()—o)’
N — N(f, zo,
N(f,$0,.’l?1,_"32/}: (f,l:(),fl??) (f,'L'O ;L'l)’
T2 — I
N{J —1y&m - N ') . 1, Tm
N(f;l'O)-'-):Bm,-'Bm_*_l): (fijI y -1, T +1) (f T T, )

Im41 — ITm

JlecHo ce Bwxaa [3], 4e ako f npuremaba n-Ta npomusBomHa B (a,f), To cb-
mecTByBa TakoBa yucio £ € (a,f), ue na nmame

_ f(n)(g)

n!

N(f,zo,21,...,Tn) ming, < § < maxz,. (8)

CnenoaaTenHo N1~TOTO HIOTOHOBO 4Ya.CTIO Ha €IHa. CIJyHKHVIH C Izeorpruna-
TeJHa N-Ta NPOMU3BOJHA € HEeOTPMUATENHO, KaKToO N Ja M36npa.Me BDB3JIUTE B
pa3rjexXaaHuA MHTEDBaJI.
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IlogroTmafiku ce 3a noxa3aTencTBOTO Ha TeopeMa 2, O6pemkoB naBa
cnemHoTo oGobuienue Ha paBeHCTBO (8): Ako f u.g ca aBe dyHKuuH, medUHU-
PaHu U n-IbTY AudepeHImpyemMu B uHTepBana (a, ), u ocer Toba g(™(z) # 0
3a z € (o, 8), TO

N(f) g, Ty, .. ‘lrn) _ f(n)(g)
N(g,z0,21,...,2n) g™’
Hoxasarencrsoro Ha (9) He ce pa3iMyaBa OT KJIACHYECKOTO U CE OIMPA Ha
TeopemaTa Ha Poi. Tpabsa na orbenexa, ye cTPOro MOrjenHATO €IUH MEX-
AYHEH eTall e NIPOIIyCcHAT: Hafi-Hanpen 6u TpaAaGBaso na ce ybenum, HanpuMep
c momomuTa Ha (8), ue N(g,zo,...,2n) # 0, U ciel ToBa Ja pa3chkaaBame Ta-
Ka, kakTo npaBu O6pemkos. TakuBa NIpoNycKH, KOUTO HE 3aCACAT ChIIHOCTTA
Ha IOKa3aTeNCTBaTa, HO 3aTPYNHABAT UeTeHeTO, HaMMpaMe U Ha APYCH Mec-
Ta B GoraTtoTo TBopuecTBOo Ha O6pewkos. Jluncara Ha MoApoBHO LUTUpaHeE,
KaKTO U Ha YBOJHM BeJie» Ky, KOUTO Ja IpuobulaBaT YATATENA KbM ChOTBETHA-
Ta npo6iemMaTHKa, CBIIO HE CIIOMAraT 3a IMonyJApM3MpaHeTo Ha Ge3cHopHUTe
nocTwkenua Ha O6pelkos.
Cien ToBa OTKJOHEHUE Ma C€ BbPHEM KbM J0K2a3aTEJICTBOTO HA TEOPEMa
2. Hafi-nanpen O6pewkos ¢urcupa uncnata g < 71 < ... < 1y, IPOU3BOJIHO B
WHTepBaJa Z > @ U cjel ToBa u3bupa or peauuata {z,} (Bx. (5)) Takasa moa-

a<é<p. (9)

. . t
pemyua {t;}, 4e na umame t; > 7, 0 £ & £ m, u ocBen ToBa thm zt—+1- = 00
i—oo 1
[lo-HaTaThK c MOMOIITA Ha THXKIAECTBOTO
N(vaO!nlt . -)ﬂm;tiati+1, - '1tn—m+i—1) _ \f(n)(é.) l <1
N(‘PanO’T)ly'-~)77m)ti1ti+11--~:tn—m+i—1) So(n)(f) =

TOI cTUra 10 HEepaBEeHCTBOTO

|N(f) 0,7, - - - ynmyti) ti+11 e :tn—m+i—l)|
é IN(QO, 0,71, - -+, Um,ti,ti+1, res )tn—m-l-i—l)l)
OTKBOETO, KATO YMHOXXHU C ltiti-i-l e -ti+n—m—ll W V3BBbPUIM TPAHMYHUA IIPpEX0n
t; — 00, nony4daBa

'N(f1770)771)--~ynm)—A| § |N(‘P,770y7711177m)—3|) (10)

f(”)(ﬁ) - m!Al < lgo(”)(ﬁ) —m!B|, rnkinn;c <¢é< max . (11)

Hait-cetHe, nonaraiiku y = ¢+ kh, 0 £ k£ £ m, KbOeTO T e NPOU3BOJIHO YUC-
1o ot unreppata (a,+00), O6pewkoB ocTaBA h Aa KIOHM KbM HyNa B (11) u
nony4asa (7).

3a Oa unocTpUpaMe Ka3aHOTO, Ie pa3rienaMe [POCTUA ciydvait n = 2,
m = 1. Ilonexe B cayuan

f(zo) f(z1) f(z2)
(21— zo)(z2 —20) (2o —z1)(z2 —21) (20— 22)(z1 — 22) "
a< rg <z <I2, HEPABEHCTBOTO
IN(f! Zo, 1'11172)' b |N(901 To, L1, I?)I

N(f)Iwaly:L‘Z) =
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B3€Ma BHIOa

f(z0) f(z1) f(z2)
(z1 —zo)(e2 — 20)  (zo—z1)(z2 —21) (20— @2)(z1 — )
#(zo) e(z1) p(z2)

(z1 —zo)(z2 — 20) (22 —z1)(zo—21) (20 — T2)(21 — T2) (12)

Karo ymuoxum (12) ¢ £3 — 29 ¥ M3B'bPIIMM IPAHUYHMA NPEXOd Ta — 00,

HaMHpaMe
f(z1) — f(za) p(e1) = p(zo) _ 5

Ty —Zo Ty — g
OTK'BJAETO, KAaTO OCTABUM I; MNa KJOHM KbM g, HOJNydaBaMe
|f'(zo) — Al £ I¢'(z0) - Bl
U 3aB’bpIIBaMe J0Ka3aTeJICTBOTO, 3allloTO Ty € NPOM3BOJNHA TOYKA OT MHTEp-
Bata (a,+00).
B cnempammre cr ny6nukauuu [4—6] O6pemkoB oNpocTABa CBOA METOI,

KaTo o6obniaBa MocTaHOBKaTa Ha BBIIDOCA, paarnemnaﬁkn " €eJHOCTpaHHHU He-
pPaBEHCTBa. CnenBamaTa TeopeMa € TUIIMYHa.

Al S

Teopema 3 ([4]). Hexa ¢ u 9 ca peaanu gynxyuy, depunupanu 3a ¢ < a,
KOUMO NPUMENCABAM N-MY NPOUIE00HY, YOOBAETNEOPABAW,YU HEPABEHCTILAOMO

o™ (z) € ¥ (2), = <a. (13)
ITo-namamsx 0a npednoroxcum, e 3a naxaxao yaro m, 0 £ m < n, cayecmayea

peduye {z,} — —o00, 3a xosmo zpanuyume

im 25D _ 4 4 gim Y&

z,——-co T Ty-———o0 g

=B (14)

cswecmayeam. B maxsa cayual umamMe
o'™(z) —m!A £ ¢™(z)—m!'B, z<a (15)

Hewo nosexe, axo 3a waxaxeo To (15) ce npeepswa 8 pasencmeo, mo umame
pasencmao 6 yeaus unmepaas T < Ig.

flcHo e, 4e Tasu Teopema e mo-o6ma oT TeopeMma 2, 3amoTo ako (™) #0
32 ¢ < @ M e HENpeKbCHaTa, MOMKEM la 3aMeHMM HepaBeHCTBOTO |p(™)(z)]|
[$™(z)], £ < a, c msere mepamencrBa (™ (z) £ ey (z) u —p()(z)
ep(™)(z), T < a, kbaeTo € e 3nakbT Ha P(M).

Iloka3aTelIcTBOTO Ha TeopeMa 3 Ce M3BbpIIBa [0 CXeMaTa, M3M0J3Ba-
Ha 3a JO0Ka3aTeJCTBOTO Ha TeopeMa 2, HO e IO-NIPOCTO, 3all[0OTO B ClydYad
e JOCTAT'hUHO JAa IPUJIOKHM DPaBeHCTBO (8) KbM m-TOTO HIOTOHOBO YaCTHO
N(f,mo,m, -y Bmytistid1, - - - tnem+i=1), KbAETO f = % — @, U clex rPaHUYHUA
npexoi t; — —00 nAa MOJYy4UM

N(99,7701771,-",7lm)—-4 g N(wx'rlo,"h,---lﬂm)—B;

KOeTo, KakTo BuaAxme, Boau no (15).

A A

1 Mpennonarame, Ye T2 — +00 Upes cToifnocTu oT peaunata {I,}, 33 KOATO FPAHUIMUTe

(5) cbwecTayBaT.
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Ocobeno unrepecen e cayyadT m = 0, A = B = 0. Tit kaTo Teau npen-
NONCXKEHUA HU OCUTYDABAT M PaBEHCTBATA,

im 28D o hm ) o ko010

L, ——00 _’L‘S T,—~—=00 1:‘15

n-—1,

yeeey
cTUraMe no ciieJHUA 3abelexuTeNeH pe3ynrartT:

Teopema 4. Hexa fynuxyuume ¢ u ¢ ca defunupanu 3a © < a u npume-
acaeam n-mu npoussodnu, yoossemeopseawy (13). B maxse cayuail, axo zpa-
nuyume lim o(z,) =0, lim 9(z,) = 0 csyecmaysam 3a nixaxaa peduya

T, ——00 T,——00

{z,} — —o0, mo nepasencmaama

ga(k)(:u) < w(k)(:c), r<a, k=012,...,n-1 (16)
ca naruye. Hewo noaexe, ako 3¢ nAKaxso g, To < a, u Haxakeo v, 0 S v < n,
umanme o) (zq) = ) (zg), mo *)(z) = $(*)(z) 6 yeaus unmepean ¢ < zo.

B vactHua ciaydait ¢(r) = e monyuyabaMe cuiHO oBoblueHMe Ha emHa

kpacuBa Teopema Ha Tarammam [7].

Teopema 5. Hexa n 2 1 e ecrmecmaeno wucao v gynxyusma f e n namu
dupepenyupyema 8 unmepeass £ £ 0. Axo f(z) £ e sax £ 0 u oceen mosa f
yooaaemeaopaaa ycaosuame lim f(z) = 0 u f(0) = 1, mo f(z) = €© 6 yeaus

T——00
unmepaaa T £ 0.

HauctuHa cnopexn Teopema 4 ¢pyuxumata F(z) = e — f(z) e MOHOTOHHO
pacTAlla 1 HeoTpulaTenHa B uHTepBata £ < 0. Iouexe no ycmosue F(0) =0,
To F(z)=03az £ 0.

Hle 3aBbpuia TO3M 10 HeOGXOAMMOCT KPAaTbK 00630p € HAKOJNKO AYMH 3a
uacineasannaTa Ha O6peIuKoB, HEOCPEeACTBEHO CB'bP3aHHU C TEOPUATA Ha pery-
JIApHO MOHOTOHHMUTe GYHKIMU. B cBosATa paBoTa [2], 332 KOATO Beue roBODUX,
usxoxxaaliku or dopmynara Ha MouTen

tn—l

. 1 t
N(f, zo,z1,...,%p) = /dtl/dtg . / F™) (w) dty,,
0 0 0
W= Zptn + Tno1(tn-1 —ta) + -+ zo(1 — 11), (17)
3a n-TOTO HIOTOHOBO 4YacTHO, OOpemKoB MeX Ay APYTOTO YCTAHOBABA CleOHa-
Ta

Teopema 6. Hexa f npumescaaa -n-ma npoussodna 6 unmepagaa > a U 30
naxexea besxpating peduya {z,} — +oo u naKareo ysao m, 0 £ m < n, zpanuye-

fz)

v
e cTo0u, 30 6CAKO T > @, PABEHCNEOMO

(_l)n—m
(n—m—1)!

me lim

T, —00

(o o]
=0 cswecmaysa. Tozasa, ako unmezpaasm [ "~ ™1 lf(”)(t)| dt
T

Fm(2) =m! A+ /(t —z)"" ™) dt, £ >a,  (18)

T

e ydog.naemeopeno.
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Iler roavan no-kbvcHo OBGpewmkos pa3BMBa Tas3u Tema U ny61MKyBa CBOA-
Ta 3abenexxurenta pabora [8], B koATO MeXIy OPYroTo OaBa 3abeleKUTeNHO
[IpOCTO M €JeraHTHO NOKa3aTeJICTBO Ha eQHa OT KJIACUUYECKUTE TeOpPeMHU Ha
Bepnmeitn. O6pemkos 3amoyBa pasuMcKBaHETO C'bC CiieqHaTa

Teopema 7. Hexa f e peaana ynxyua, defunupana 30 T > a, koAMo uMa
npoussodnu do (n+ 1)-eu ped exawuumeano v ydosaemeopasa ycaosusma

(-1)*f8)(z) 20, z2>a k=0,1,2,...,n41. (19)

B maxse cayvad ¢ o cuaa pasencmeomo

. / (t=2)" f"Qdt, z>a, (20)

T

@)= 6+

n!
xsdemo, pazbupa ce, § = lim f(z).
r— 00

Wmenno marerpanuoro npencrapsse (20) e maxonuuar nyskr va O6peur-
KOB K'bM TeopemaTa Ha BepHulelin, unATo ¢opMyIMpoBKa IPUBEXIaM CaMo 3a
I'bJIHOTA Ha M3JI0MKEHUETO.

Teopema (C. H. Bepuiueitn). Hexa f e peaana dynxyus, defunupana u
Gesbpotino Muozo nemu dufepenyupyema 8 unmepsara T 2 0. Hexa ycaosuemo
(-1)FfE)(z) 20, 220, k =0,1,2,... e ydosaemaopeno. B maxse cayxai f

uMa euda -
= 0]

flz) = /e"”" da(t), = >0, (21)
0
xsdemo « e Odefunupana, MOMOTMONHO PACTATUE U O0ZPANUNENA 6 UNTEPEAAQ
[0, 4+00).

3abenexka. PyHKIMUTe, YOOBNETBODHBAllM YCJIOBMATA Ha TE€ODEMATa,
ce HapU4aT PezYAFPHO MOHOMOHHIU.

Cera e MOMEHTBLT Oa CKMOMpaM JoKa3daTeicrBoTo Ha O6peumkon. Bes or-
paHMUYeHMe Ha OGLIHOCTTA MOXeM [a HPeANoJIoKUM, Ue Ili_)n;lo f(z) =0, 1. e. ue

B (20) umame § = 0. B TakbB ciydaii cien cybcturyuuAra T = ? ot (20)

TIOJly4YaBaMme

n

flz) = (—1)"“#1)!] (1 - f—nT-)n F}Tif("“) (;) dr, >0. (22)

0

(Uuterpanst (22) e cxonaul, 3amoTo cxoammoctTa Ha (20) e ycTaHoBeHa B
npolleca Ha J0Ka3aTeJCTBOTO Ha TeopeMa 7.) OcTapa HU Zla BbBEAEM MOHO-
TOHHO DACTAMATA ¥ OrpaHWYeHa (GYHKIUA

T 1 n
st = loore009 (2) g
0
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3a Oa npeacrasuMm (22) BB Buaa

V f(@) = / (1———)n darn(7). (23)

0

Haii-cerne, onmupaiiku ce Ha IBeTe KJacMuyecKu TeopeMU Ha Xesu, uabupame
CXOALIA MOAPeINLA OT {qr} M KATC U3BPIIUM TPaJUMLUOHHNUA, HO ASIUKATEH
IPaHMYeH IPpeXod n — oo B (23), monyuaBame (21) u 3aBbplIBaMe LOKa3aTel-
CTBOTO.

IMy6mukyBaHO B TOAMIIHMKA Ha (aKyNTeTa, CKAIMPAHOTO I0Ka3aTeJICTBO
ocTaBa He3abelfA3aHo. 3a CbXKaJeHHe MO CHUIOTO BpeMe MJaAUAT TOraBa Ch-
BeTCKU MaTeMaTHK 1. KopeubaioMm nybnukyBa B Yeneru MamemMamuneckus Ha-
yx [9] Mo CcbIMECTBO CHUIOTO NOKA3ATENCTBO, HO 3HAUMTEIHO II0-106pe peak-
TupaHo U mumdobaro. Ilpeneuarano ot lllnnos B HEroBrA 3HaMeHNT yUeOHUK
[11], »MeHHO To 3aBOKXOBA M3KJIIOUMTEJHA NOIIYJIAPHOCT.

Tyk ce HaTbKBaMe Ha fBJIeHME, KOETO He MCKaM Ja OTMMHA C M'bJUaHUe.
Ily6nukanmute Ha OGpeLUIKOB YeCTO ChAbPKAT GIECTAIN ULEH, HO Ca TBbPAE
ABJITU U IO NIPaBMJIO — HeGpeXHO HamucaHW. B TAX BaKHOTO U BTOPOCTe-
[IEHHOTO BOJAT ,,MUPHO CHBMECTHO chinecTRyBaHe“. Pe3aynraTsT 0T monobua
cTpaTerus Moxe na 6ble caMO eAVH — JuWIca Ha nonyiasapHocT. Hanpumep
pasriexaaHata pabota [8] e uskmouuTenHo 6oraTa mo chibpxanue. OcBeH
CKMLMPAHOTO NOKa3aTeJCTBO Ha TeopeMaTa Ha BepHUleliH TaM HaMUpaMe U
eJIEraHTHO JOKa3aTeJICTBO Ha TeopeMmaTa Ha XaycAopd 3a MOMEHTUTE, KaKTo
1 CKMLA Ha MHOUOMEDHMA BapMaHT Ha pa3rielaHaTa TeopeMa Ha DepHuleiiH.
Hapen c ToBa o6aue paboTaTa CbABPXKA K PA3JIUYHM BADUAHTH U OTKJIOHEHUSA,
KOUTO pa3BaJiAT oBIIOTO BIleYaT/eHUeE,

Ema or mocnemuute paBotu Ha OOpemwkos [10] cbabpxa CbIIECTBEHO
06oblIeHMe Ha Opyra KiIacudecka TeopeMa Ha bepHinelin, oTHacAla ce 10
perynfapHo MoHOTOHHUTe dyHKuMU. ETo HeitHaTa dopmMyaMpoBKa.

Teopema (C. H. Bepuueitn). Hexa peaanama fynxyus [ e PE2YATDPHO
Monomonna a xpadnus uwmepeas («,ff). Tozaea, xaxeomo u da bsde wucaomo
b€ (a,B), peaencmeomo

e 8 cuaa @ unmepsara o < x < b u caedosameano nu no380AT6L 0a NPOGEANCUM
f anaaumuvno e xpsea |z — b < b—a.

Kpa,TKO U eJIETAaHTHO JO0Ka3aTeJICTBO Ha Ta3M T€OpeMa MOe Ja C€ HaMeDU

B yuebuuxa Ha Tarammnuxuy {12].
3a na 06061wM To3u pesyaraT Ha BepHuleiiH, OGpelIKoB N3X0XAa OT €HO
CIIOJIYYJIMBO PA3IIMpEHME Ha IOHATUETO pery/APHO MOHOTOHHA (YHKLUA.

Hepmmunua (H. O6pemxon). Heka f e xommniexkcHa ¢yHkumA, nepunu-
paHa ¥ 6e36poitHo MHOro wbTu AudepeHLMpyeMa B KpaiiHua umHTepBai (a,b).
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Kassame, ue f e peeyasprno monomonna e cmucsa ne Obpewxos, KOraTo ca
M3II'BJIHEHY CJIEJHUTE U3UCKBAHUA:

A) 3a Beaxo ¢uxcnpano n 2 0 pyuxuuara | f()(z)| e uan monoTonHo pac-
TAIla, WM MOHOTOHHO HaMaJlABalla B IeJuA MHTepBaJ (g, b).

B) Korato z onucsa, (a, b), cToiiHoctute Ha f(")(z) nexaT B HAKAKBB BB
An C BPBX B HAYAJIOTO U C FOJIEMIHA, HEHaMUHABAINA T — §, KbAETO YUCIOTO

6 > 0 ne 3aBucu or n.

ScHo e, ye BCAKA PerynApHO MOHOTOHHA GYHKIMA € PeryJIAPHO MOHOTOHHA,
" B cMuchI Ha O6pemkos.
Cera Beue Mora na dopMynupaM OCHOBHMA peaynTar Ha OB6pelkos.

Teopema 8. Axo f e pezyaspno Mmonomonna e cMucsa na Obpeuxos a8 un-
mepaaaa (a,b), mo ma ce npodsancasa AHAAUMUNNO NOHE 8 004ACTRING, KOFMNO
ce noayuase xamo npexepame donupameanume om moxxume (a,0) u (b,0) xsm

Z—E—b < b—ea (¢pur. 1).

oxpamcrocmma

2 4

(e, 0)

Pdur. 1

Hoka3aTencrBoTo Ha OBpelIkoB ce pa3inuaBa CbILECTBEHO OT BCUYKHU J10-
Ka3aTeJICTBa, JaleHU B peanHua caydail. O6pelikoB uixoxaa oT eIHO UpEn-
CTaBAHE Ha N-TOTO HIOTOHOBO YAaCTHO, KOETO Ce MoJyyaBa KaTO INPHIIONKUM
KOMILJIEKCHUA BapHUaHT Ha TeopeMaTa 3a CpeJHUTe CTOMHOCTU KbM MHTEerpaJa
B (17). (CpasHete c [13, c. 72-73].)

Ioka3zatenctBoro Ha OGpelkoB HenocpencTBeHo ce obobmaBa 3a QyHK-
LMK CBC CTORHOCTY B KpafHOMepHM BEKTOPHM NPOCTPAHCTBA. 3a ChbiKajleHue
TYK He MOra ja JaM IoBede MoApoGHOCTH.

ON THE INVESTIGATIONS OF NIKOLA OBRESHKOFF
CONNECTED WITH THE REGULARLY MONOTONIC FUNCTIONS

(Summary)

Academician N. Obreshkoff came across this field of research studying the
connections between some of his theorems about summability of a class of divergent
series by typical means. His earlier result in this direction reads as follows:
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Theorem 1 ([1]). Suppose ¢ and 1 are real-valued functions defined for z >
and belonging to the class C™(zy,+o0), where zp € R, n = 1. Further let the limits
lim (p(.‘l?) = a, _l}r_ll_qoo ¥(z) = b exist. If &™) £ 0 in the whole inferval z > zg,

=400

the inequality

ERIO]

A

’1&(”)(1‘)', z > o, (I)

tmplies the inequality

A

l(x) =l £ (=)= bl, =>a0. (m

Obreshkofl’s proof is based on the well-known integral representation of the
n-th differences of ¢ and 9 (see (3) and (4) in the text), which leads to the decisive
estimate

|AFo(z)| £ [ARY(z)], z >z, h>0. (111)

Letting h — +oc in (III), Obreshkoff completes the proof.
In the second paper [2] of this series of publications we find a deeper result.

Theorem 2 ([2]). Let f and ¢ be real-valued functions in C"(a,+00), a € R,
n 21, and let (™ # 0 for £ > a. Suppose further that there exisis an infinite
sequence {:c,,}go — +00, , > a, and an infeger m, 0 £ m < n, such that the
limits

lim Li:l =A, lim Lﬁ:’) =B (IV)
v—oo IV v—oc 7
erist. Then the inequality
f(”)(a:)‘ < '<P(") ‘ z>a, (V)
implies the inequality
lf(”‘)(z) ~ m! Al < ‘¢<m>(z) — m B‘ . z>a. (V1)

Obreshkoff gives two proofs of this theorem. The first one uses his formula (9)
(see the text) for the n-th divided differences of f and 1, whereas his second proof
is based on the Montel formula (17).

In [4-6] Obreshkoff simplifies his methods and begins considering one-sided
inequalities. The following theorem is typical.

‘Theorem 3 ([4]). Let p and ¢ be real-valued functions in C"(—c0,a), a € R,
and let the inequality

e™(z) < ¥v(z), =z <a, (VII)
hold. Suppose in addition that the limits

lim L:c,,) = A, lim M = B,

Ty——o0 T T,~—c0
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exist for some integer m, 0 £ m < n, and for a sequence {z,} — —oo. Then we
have

o™ (z) —mlA £ ™ (2)—m!B, z<a. (VIII)

By applying Theorem 3 with #(z) = €*, m = 0, A = B = 0, Obreshkoff
obtains an interesting characterization of the exponential function.

Theorem 4. Let f € C"(—00,0], n 2 1, and the inequality
flz) s e, =20, (IX)
is satisfied. If in addition we have lim f(z) = 0 and f(0) = 1, then f(z) = €°
forz 0. T

‘ After 1950 Obreshkoff’s scientific interest came closer to Bernstein’s subjects.
In particular, in [8] we find the following

Theorem 5. Let f be a real-valued function in C™*(a, +00) and let
(-1 (2) 20 forz>a, £=0,1,2,...,n+1. (X)

Then the represeniation

v

[s]

Je-ersedma 6=t s@) (D

T

fla) =5+ DT

holds.

As a corollary of Theorem 5 Obreshkoff gets a simple proof of the classical Bern-
stein’s integral representation of the regularly monotonic functions in the interval

(0,+400). Indeed, if we set 7 = ; in (XI) and take é§ = 0, we obtain (23), where

{a,} is a bounded sequence of increasing functions. By means of the well-known
Helly’s theorems, passing to limit in (23), Obreshkoff gets (21). Independently, at
the same time a similar proof has been published by B. Korenblum in [9]. In fact,
the remarkable paper [8] also contains a draft of a proof of the multidimensional
version of (21), an original solution of the classical Hausdorff moment problem and
of its analogue for multiple sequences as well.

In his last publication [10] Obreshkoff gives an interesting generalization of the
Bernstein theorem about the analyticity of the regularly monotonic functions. In
order to state the Obreshkoff’s result we need a definition.

Definition. Let (a,b) be a finite interval on the real axis and let f be a
complex-valued function in C*(a,b). We say that f is regularly monotonic in
Obreshkoff’s sense if it has the following properties:

a) For any n 2 0 the function z — lf(")(a:)l is either increasing or decreasing
n (a,b).

b) For any n 2 0 there exists an angle A, with a vertex at the origin of the
complex plane C and with a magnitude |A,| £ #— 6, § > 0 (6 does not depend on
n). such that when z varies in (a, b), all the values of ™) lie in A,.
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Now we state the last result of Obreshkoff.

Theorem 6 ([10]). If f is regularly monotonic in (a,b) in Obreshkoff’s sense,

it s analytic in the domain D, D C C, enclosed by two arcs of the circle at b|

b—a

z —

< and four segments of the tangents to that circle passing through (a,0) and

(b,0), respectively (Fig. 1).
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INTRODUCTION

The great Bulgarian mathematician Nikola Obreshkoff (1896-1963) left a vast
scientific inheritance. About 45 of his papers contain the results of his investiga-
tions on the zero distribution of algebraic polynomials and some classes of entire
functions, as well as on the numerical methods for solution of algebraic equations.

N. Obreshkoff was a world-known expert with considerable contributions to
the field just mentioned. To write even a brief review on his achievements, seems
to be a very hard work. That is why the author of this short survey has chosen
some of the most remarkable results concerning zeroes of algebraic polynomials
and entire functions of exponential type. In the first place, of course, his famous
generalization of the classical Descartes rule is discusssed. Further follow his gen-
eralizations of Schur’s and Malo’s composition theorems obtained by means of the

* Invited lecture delivered at the Session, dedicated to the centenary of the birth of Nikola
Obreshkoff.
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generalized Poulain — Hermite theorem. Some attention is paid to his results on
zero distribution of finite Fourier transforms.

1. CLASSICAL DESCARTES RULE

1.1. The classical Descartes rule gives an upper bound for the number of
the positive roots of a non-constant algebraic polynomials with real coefficients.
It is remarkable that this upper bound depends only on the sign-changes of the
(non-zero) coefficients of the polynomials under consideration.

Let Ao, A1, Ag, ... be a finite or infinite sequence of real numbers. It is said that
between A, and A; (0 < r'< s) there isa variation iff Adpy; = Apga = ... = A;_1 =0,
and moreover A A; < 0.

Let,

f(z) =ao+ a1z 4+ asz® + ...+ apz” (1.1)

be a real polynomial of degree n > 1. Denote by V = V(f) the number of the
variations in the sequence

dp, a1, 42, ..., Qp (12)
and let p = p(f) be the number of the positive roots of f. Then the classical
Descartes rule can be formulated as follows:

The number p of the positive roots of the polynomial f is not greaier than the
number V of the variations in the sequence of ils coefficients and in any case the
difference V — p is an even number, i.c.

p=V -2k (1.3)
where k is ¢ non-negative integer.

Remark. Further, by V = V(f) will be named the number of the variations
of the polynomial f.

1.2. Descartes rule is formulated in the last part of his book Discours de la
methode pour bien conduir sa raison, el cherche la verité dans les sciences. Plus la
dioptrique, les Meteors et la Geometrie, qui sont des essais de set methode, Laiden,
1637, namely in la Geomeirie.

The first proof of Descartes rule for algebraic equations with only real zeroes
is due to J. A. von Segner. The auxiliar statement he has used is known now as
Segner’s lemma, namely:

Letc >0 and V be the number of the variations of the polynomial (x —c)f(z).
Then V =V 4+ 2k + 1, where k is a non-negative integer.

Descartes rule had been formulated, proved, as well as rediscovered by many
authors. Among them are J. Newton ( Universal arythmetic, 1728), J. P. de Guadet
Malv (1747),J. B. J. Fourier (1796) and F. I. Budan (1803). In the whole generality
it had been proved by K. F. Gauss (1828).

Remark. The above historical data are taken from the Bulgarian translation
of A. P. Jushkevitch’s Comments to Descartes Geometry (Descartes, Geometry.
Sofia, 1985, p. 199 (in Bulgarian)).
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A proof, as well as numerous generalizations of Descartes rule are due to E.
Laguerre (Oeuvres, 1, Paris, 1898).

1.3. Descartes rule is carried over equations of the kind
n
Zaktpk(z):O, a, €R, k=0,1,2,...,n, (1.4)
k=0

where {¢;, (r)}:=0 is a given system of real functions.

In the second part of G. Pélya and G. Szegd’s Aufgaben und Lehrsdize aus
der Analysis, Berlin, 1925,can be found a necessary and sufficient conditions which
“ensure” the validity of Descartes rule for the equation (1.4) provided that the
functions {‘pk(z)}::o are sufficiently smooth.

2. BUDAN - FOURIER THEOREM

2.1. The first generalization of the classical Descartes rule is due to Budan
and Fourier. Their theorem gives an upper bound for the number of the roots of a
non-constant real algebraic polynomial lying in an interval of the real axis.

Let f(z) be a real polynomial of degree n > 1. Then the sequence

f@), f'(2), f"(2), ..., fM(z), z€ER, (BF)

is called Budan - Fourier (BF) sequence for the polynomial f(z).
Denote by Vz = Vz(f) the number of the variations in the (BF) sequence.
Then the following statement is true, namely:

The number p(a,b) of the roots of the polynomial f in the interval (a,b) (a < b)
is not greater than V, — V and in any case the difference Vo, — Vi — p(a,b) is an
even number, t.e.

p(a,b) =V, =V, — 2k, (2.1)
where k is a non-negative inleger.

2.2. It is clear that Descartes rule is a particular case of Budan — Fourier
theorem. Indeed, if b > 0 is great enough, then V3 = 0, i.e. Vo = 0. Moreover,
since Vo = V and p(0, 00) = p, the equality (1.3) is a corollary of (2.1).

3. OBRESHKOFF’S GENERALIZATION OF BUDAN - FOURIER THEOREM

3.1. Let a < b and f(z) be a real polynomial of degree n > 1. Denote by
M (a,b) the inside of the rectangle which is determined by the following conditions:

(I) It is symmetrically situated with respect to the real axis.

(II) Two of its opposite vertices are at the points a and b.

(IIT) The angles at these points are equal to 27/(n—V,) and 27/ V}, respectively.

Remark. If V, = 0, 1.e. when b is great enough, then M(a,b) is an angular
domain with a vertex at the point a.
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Let further p(a, b) be the number of the roots of the polynomial f(z) in M(a, b).
Then the next statement is valid.

Theorem 1 (Obreshkoff’s generalization of Budan - Fourier theorem [1-3]).
Let f(a)f(b) # 0, then u(a,b) is not greater than V, — V; and in any case the
difference V, — V, — p(a,b) is even, ie.

p(a,b) =V, =V, —2s, (3.1)
where s is a non-negative integer.

The case a = 0 and b = oo gives the following statement:

Theorem 2 (Obreshkoff’s generalization of Descartes rule [1-3]). Let u be the
number of the roots of the polynomial f(z) having their arguments in the interval
(=a/(n=V), n/(n—=V)). Then

p=V —2s (3.2)
where s is a non-negative integer.

Remark. The classical Descartes rule is a corollary of the above statement.
Indeed, if 2¢ is the number of the non-real roots of the polynomial f in the angular
domain M = M (o, 00), then p = p+2q and (3.2) gives that p = V —2(q+s), where
¢ + s i1s a non-negative integer.

Another version of Theorem 2 is the next statement.

Theorem 3 (Obreshkoff [4]). If the real polynomial f of degree n > 1 has
p roots with arguments in the interval (—7/(n + 2 — p), 7/(n + 2 — p)), then the
number V of ils variations is at least equal to p and moreover, the difference V —p
s an even number, i.e. V = p+ 2k, where k is a non-negative integer.

Let us mention that Theorem 1 is proved by the aid of two statements, where

each of them can be regarded as analogous to Segner’s lemma. Let again f(z) be
a real polynomial of degree n > 1 and let V be the number of its variations.

Lemma 1 (Obreshkoff [1, 3, 5]). Let p >0 and 0 < o < w/(n+2-V), then
the number of the variations of the polynomial (2% — 2pcos p.z + p?) f(zx) is equal
to V +2(k+ 1), where k is a non-negative integer.

Lemma 2 (Obreshkoff [1, 3, 5]). If p > 0 and 0 < ¢ < w/(V +2), then the
number of the variations of the polynomial (z? + 2pcosp.x + p?)f(z) is equal to
V — 2k, where k is a non-negative integer.

4. SCHOENBERG’S EXTENSION OF DESCARTES RULE
TO THE COMPLEX DOMAIN

A corollary of Theorem 2 is the following statement:

Let f be a real polynomial of degree n > 1 and let V be the number of its vari-
ations. Then the number v of its rools with arguments in the interval (—w/n,w/n)
is not greater than V and differs from V by an even number, ie. v =V — 2k,
where k is a non-negative integer.
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The first attempt to generalize the above corollary to polynomials with ar-
bitrary complex coefficients is due to I. J. Schoenberg (Eztension of theorems of
Descartes and Laguerre to the complez domain. — Duke Math. J., 2, 1936, 84-94).
In order to formulate his result we need some definitions.

Let A be an open and convex angular domain with vertex at the origin. Define
C to be its opposite angular domain, i.e. C:={z € C: -z € A}. Both 4 and C
form a pair of sectors, which we denote by S = (A4, C).

The complement of AJ C with respect to the complex plane is a union of two
closed angular domains B and D, each of them being the opposite of the other.
Let B* = B\ {0} and D* = D\ {0}.

Let F(z) = ¢co +¢12 + €222 + ...+ ¢, 2" be a non-constant polynomial with
arbitrary complex coefficients. If there exists a pair of sectors S = (A4, C) such that
all its coefficients are in B U D, then we say that S is a dividing pair of sectors for
the polynomal F.

If0<r<sande¢ € B*, ¢, € D* or ¢, € D*, ¢, € B*, and moreover
Crtl = Crq2 = ... = €s—1 = 0, then we say that there is a variation between ¢, and
¢s. We denote the number of the variations by V(F, 5) in order to emphasize that
it depends on the polynomial F/, as well as on the dividing pair of sectors S.

Schoenberg’s extension of Descartes rule is the following statement:

Let there ezist a dividing pair of sectors S(A,C) for the polynomial F and let
8 € (0, ) be the angular measure of A. Then the number of the roots of F having
their arguments in the interval (—0/n, 6/n) is not greater than V(F,S).

A refinement of the above theorem is given later by N. Obreshkoff [6].

5. VARIATION-DIMINISHING TRANSFORMATIONS

5.1. Let A = (a;;) be a real m x n-matrix. We say that the linear transorf-
mation R* — R™ defined by the matrix A (or simply the matrix A) is variation-
diminishing iff whatever the vector z = (z),3,...,z,) € R" be, then V(z) < V(y),
where y = Az and V(z), resp. V(y), is the number of the variations in the sequence
£1,T3,...,Tn, I€P. Y1,Y2, -, Ym-

In 1930 Schoenberg gave ( Uber variationsvermindernde lineare Transformatio-
nen. — Math. Zeitschr.,32, 1930, 321-328) a sufficient condition for a real matrix
to be variation-diminishing, namely:

If the mairiz A is totally positive, i.e. all ils minors are positive, then it is
variation-diminishing.

Later T. Motzkin (Beitrdge zur Theorie der linearen Ungleichungen, Disserta-
tion, Basel, 1936) found necessary and sufficient conditions for a real matrix to be
variation-diminishing.

A shorter proof was given by I. Schoenberg and A. Whitney (A theorem on poly-
gons in dimensions with application to veriation-diminishing and cyclic variation-
diminishing linear transformations. — Compositio Math.,9, 1951, 141-160).
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It seems that the notion of variation-diminishing transformation, as well as
Schoenberg’s criterion have been inspired by Obreshkoff’s proof of the generalized
Budan - Fourier theorem, and in particular by that of Lemma 2. In fact Obreshkoff
has proved that the matrix

2

—2pcos @ P 0 0 0...0 0
0 1 —2pcosp p* 0...0 0
0 0 0 0 0...1 —-2pcosy

is variation-diminishing by establishing that all its principal minors are positive.

5.2. In Obreshkoff’s paper [6] by means of Schoenberg’s criterion a pure al-
gebraic proof (i.e. without using the continuity of the polynomials considered as
functions of a real variable) of the classical Budan - Fourier theorem is given. In
the same paper, again by the aid of Schoenberg’s criterion, the following statement
is proved:

Theorem 4 (Obreshkoff [6]). Leta €R, ar €R, £ =0,1,2,...,n, and h > 0.
Then the number of the roots of the polynomial

ag+ai(z—a)+ay(z—a)(z—a—2h)+- - -+ay(z—a)(z—a—nh)*"!, n>0, an #0,

is less or equal to the number of the variations in the sequencé ag,@1,--.,qn-
The last sequence can be replaced by the sequence

fla), f'(a+h), f'(a+2h),..., f™(a+nhk).

" Remark. If @ = h = 0, then as a corollary of the above theorem one gets
again the classical Descartes rule.

6. COMPOSITION THEOREMS

6.1. Let

A(z) =2 ag + (T)dlz + (;>agz2 +...+a,z",

B(z) = bO + (?)blz + (;)bzzz + ...+ ann

be polynomials of degree not greater than n and with arbitrary complex coefficients.
Let us form the polynomial

C'(z) = apbgy + (7;) arbiz+ (;) a2b222 + ...+ agbn.

It is of great importance to know how the distribution of the zeroes of the
polynomial C(z) in the complex plane depends on the distribution of the zeroes of
A(z) and B(z).

The most popular statement answering the above question is due to G. Szego
(Bemerkungen zu einem Satz von J. H. Grace dber die Wurzeln algebraischer Gle-
ichungen. — Mathem. Zeitschr., 13, 1922, 28-55), namely:
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Let the zeroes of A(z) be in a circular domain K and f1,0s,...,8n be the
zeroes of (B). Then every zero of C(z) has the form —Af;, where A € K and s is
some of the numbers 1,2,3,..., n. '

Remark. A circular domain in the complex plane is either the closure of the
inside or the closure of the outside of a circle, or the closure of a half-plane.

The above theorem of Szegd is a corollary of a statement known as the theorem
of Grace (The zeroes of a polynomial. — Proc. Cambridge Philos. Soc., 11, 1902,
352-357). In fact Szegd has given to the Grace’s theorem a form which is more
convenient for applications.

Here are two statements which can be proved by using Szego’s theorem. The
first one is due to I. Schur (Zwej Sdize tber algebraische Gleichungen mit lauier
reellen Wurzeln. — J. reine u, angew. Math., 144, 1914, 75-88) and the second to
E. Malo (Note sur les équations algébriques dont toutes les racines sont réelles. —
J. de Math. spéciales (4), 4, 1895, 7-10):

(1) Let the real polynomaal
f(z) =ao+ a1z + asz? + ... +apz™
have only real roois and let the real polynomial
g(x) = bo+ b1z + box® + ... + byz”
have either only real and positive or real and negative roots. Then the polynomial
aobd + Vahiz + 2agzboz? + ... + klagbpz®, (6.1)

where k = min(m, n), has only real roots.
“(I1) Under the same conditions and notations the polynomial

aobo + a1 b1z + asboz® + ...+ apbpz®
has only real Toots.
6.2. The following statements generalize Schur’s and Malo’s theorems:

Theorem 5 (Obreshkoff [7-9]). Let the polynomial f(x) have only real zeroes
and let the zeroes of the real polynomial g(z) lie in the angular domain G(m) defined.
by the inequality |sin8| < m~'/2 (§ = argz). Then the polynomial (6.1) has only
real zeroes.

Theorem 6 (Obreshkoff [7-9]). Let the zeroes of the both real polynomials
f(z) and g(z) lie in the domain G(m). If all the coefficients of g(z) or g(—z) have
the same sign, then the polynomial (6.2) has only real zeroes.

A classical result due to Ch. Hermite (Questions. — Nouv. Ann. Math., 2
sér., 5, 1866, 432-479) and S. J. Poulain (Théoremes génerauz sur les équations
algébriques. — Nouv. Ann. Math., 2 sér., 6, 1867, 21-33) is the following statement:

If the polynomials f(z) and g(z) have only real zeroes, then so does the poly-
d
nomial g(D)f(z), where D = e

A generalization of Hermite — Poulain theorem is given by the next statement.
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Theorem 7 (Obreshkoff [7-9]). Let the polynomial f(zx) of degree m have only
real zeroes and let the zeroes of the real polynomial g(z) lie in the domain G(m).
Then the polynomial g(D)f(z) has only real zeroes.

The above theorem is a simple corollary of the following lemma:
Lemma 3 (Obreshkoff [7-9]). If the polynomial f(z) of degree m has only real
zeroes and, moreover, |sinf| < m~/2, then the polynomial
f(z) = 2pcosb.f'(z) + p* f"'(z), p>0,
has only real zeroes.

Let us mention that the generalized Schur’s and Malo’s theorems are proved:
in [7-9] by means of Theorem 7.

7. ZEROES OF FINITE FOURIER TRANSFORMS

A well-known fact is that the entire functions of exponential type defined as
finite Fourier transforms, namely
a
Hﬂ:/¢@aMMMt (7.1)
-a
where 0 < a < oo and ¢ € Li(—a,a), play an important role in the mathematical
analysis and its applications.

A great number of classical special functions have integral representations of
the kind (7.1). A typical example is the Poisson formula

1
VT (v +1/2) (%) ) Jo(2) = /(1 —12) =2 exp(izt) dt,
Z1
where J, is the Bessel function of the first kind with index ».
Particular cases of (7.1) are the entire functions

a

C(z)= /cp(t) cos zt dt (7.2)
and
ﬂﬂ:/ﬂﬂmﬂﬂ. (7.3)

0

Remark. It is clear that when studying the entire functions (7.1) it can be
assumed a = 1.

A problem of considerable importance is that of the zero distribution of the
entire functions (7.1), resp. (7.2) and (7.3). It has been studied by many authors
and it seems that it is not exhausted till now. E. g. the problem of finding necessary
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and sufficient conditions the entire functions (7.1), resp. (7.2) and (7.3), to have
only finite number of non-real zeroes seems to be still open.

Remark. A more difficult problem is that of finding necessary and sufficient
conditions an entire finction of the kind

/@(t) cos 2t di (7.4)
0

to have only finite number of non-real zeroes. This problem has been inspired by
the fact that the Riemann’s (-function has a representation of the kind (7.4).

G. Pélya was the first who studied systematically the zero distribution of the
entire functions (7.1), resp. (7.2) and (7.3) (Uber die Nullsiellen gewisser ganzer
Functionen. — Math. Zeitschr., 2, 1918, 352-383). In order to formulate his main
result, we introduce the class F of the real functions ¢ defined and R-integrable on
the interval [—1, 1] and having the property that the polynomials

) k
Py(p;z) =) np (;) z*
k=0

have their roots in the unit disk, provided that n is great enough. Pdlya has proved
that:

If the function © is in the class E, then the entire functions C(p;z) and S(p; z)
have only real zeroes.

Example. If y is'non-negative and not decreasing, then it is in the class F.

A rather surprising result concerning the zero distribution of the entire func-
tions of the kind (7.2) and (7.3) has been established by N. Obreshkoff. It can be
formulated as the following statement:

Theorem 8 (Obreshkoff [6]). If the function ¢ € E and h is a real plynomial
having all its roots in the half-plane Re2 < 1/2, then the entire functions C(ph; z)
and S(ph;z) have only real zeroes.

In fact Obreshkoff has proved that if ¢ € F, then ph € E. He has succeeded
to get this result by using the following statement:

Lemma 4 (Obreshkoff [6]). Suppose that the (algebraic) polynomial f(z) of
degree n > 1 has all its roots in the unit disk. Then whatever the complez number
~ with Rey > —n/2 be, all the roots of the polynomial yf(z) + zf'(2) are in the
unit disk loo.

The above statement can be regarded as a “complex version” of an well-known
theorem due to E. Laguerre, namely:

Let f(z) be a real polynomial of degree n and v be a real number outside of the
interval [—n,0]. Then the polynomial yf(z) +zf'(z) has as many real roots as the
polynomial f(z).
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THE CONTRIBUTION OF NIKOLA OBRESHKOFF
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TONKO TONKOV

Toutes les Mathématiques peuvent

se déduire de la seule notion de nombre entier;

c’est 1a un fait aujourd'hui universellement admis.
Emile Borel

The results of Obreshkoff are compared with the similar or the same results of
other mathematicians.
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1. THE THEORY OF DIOPHANTINE APPROXIMATION
IN DEVELOPMENT

The theory of diophantine approximation, i.e. the approximation by rational
numbers, begins with an investigation of Peter Gustav Lejeune Dirichlet (1805-
1859). The prehistory begins with the first known approximation of an irrational
number by a finite continued fraction, which is the first known writing by continued
fraction. This was the Italian mathematician and engineer Rafael Bombelli (1526~

in his book Algebra,

4
1573) who presented the number /13 as equal to 3 + T

6
édited in Venezia in 1572, making an error of v/13 — 3,6 < 0,006.

* Invited lecture delivered at the Session, dedicated to tlre centenary of the birth of Nikola
Obreshkoff.

47



A half century later another Italian mathematician, Pietro Anionio Kataldi
(1552-1626), introduced and studied continued fractions by using notations, close
to the contemporary ones. In the book “Trattato del modo brevissimo di trovere
la radice quadra delli numeri”, edited in Bolognia in 1613, he wrote:

=kl |

R

2,2, 2
, briefly, 4.8& & —& —.
on PRe SRR R
This is a particular case of the formula
Val+b=a+ b 7

2a +
2a +

2a 4. --

The first known application of continued fraction convergents for approxima-
tion by rational fractions with large numerators and denominators was made in
1625 by the German mathematician and philologist Daniel Schwenter (1585-1636).
He used recurence relations. A more detailed study of the recurrence relations for
the convergents was made by the English mathematician John Wallis (1616-1703)
in his book “Arithmetica infinitorum”, edited in 1656. In it he introduced the
special term “fractiones continue fractae”.

An important application of continued fractions was made by the Dutch math-
ematician, physicist and astronomer Christian Huygens (1629-1695) in connection
with the planetary model of the solar system, exposed in Paris in 1680. The the-
oretical basis was described in his book “Descriptio automati planetarii”, edited
in 1698. Huygens gave the optimal ratio of the numbers of teeth of the gears, by
which he modelled the revolutions of planets around the sun. He found that the
convergents are the optimal rational fractions in the following meaning: If the real
number o has an expansion in continued fraction and Py /Q} is its convergent with
@ > 1, and if p/q is a rational fraction for which (p,q) = 1 and ¢ < Q}, then
from |a — (p/@)] < |a — (Pe/Qr)| it follows that ¢ = Q, and p = P;. (A stronger
result was given as late as 1877 by the English mathematician Henry John Smith
(1826-1883)). ’

During the 18th century the theory of continued fractions was directed to
the Analysis. Interesting results were given by Leonard Euler (1707-1783). He
applied continued fractions in his monograph “Introductio in analysin infinitorum?”
(first edition — 1748). Euler showed that periodical continued fractions are equal
to quadratic irrationalities. The reciprocal theorem was proved by Joseph Louis
Lagrange (1736-1813). In a publication in 1798 Lagrange deduced the following
relations:

1
> Qr(Qk + Qrt1)

1

< < 1 Py
T Q@i G}

Qe

Py

- (1)

and |«

(o4
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These relations express properties of continued fractions in themselves. In the
second edition of his book “Essal sur la theorie des nombres” in 1808 Adrien Marie
Legendre (1752-1833) proved that if (p,¢) = 1 and
2 1
Ty } <32 @
then p/q is a convergent to the continued fraction of c.

The theory of diophantine approximation begins with the study of the approx-
imation of real numbers by rational fractions. The first result was deduced and
proclaimed on April 14, 1842, by Lejeune-Dirichlet [2], who generalized a theorem
about continued fractions and applied it in the theory of numbers. Dirichlet proved

that if a;, ..., @, are arbitrary real numbers and s is a positive integer, then there
exist integer numbers z1, .. ., n,, not all equal to 0, for which |z;| < s,i=1,...,m,
and integer number zg, so that
1
|Zo + @121 + . . .amTm| < e
s

The proof is very interesting and remarkable. In the contemporary literature
the theorem of Dirichlet for the case m = 1 is usually formulated in the following
form:

Theorem of Dirichlet. Let a and @ be real numbers and @ > 1. Then there
exist integer numbers p and g such that

|aq——p]<é— with 0<q<@. (3)

Proof. Case 1. @ is an integer. We consider the following ¢ + 1 numbers:

0, {a}’ {20‘}) {301}1 RS {(Q_ 1)0{}, 1, (4)
where {2} is the fractional part of , i.e. {} = z — [z}, and [z] is the integer part
of z (the greatest integer number not greater than ). These 4+ 1 numbers belong
to the interval [0, 1]. We divide the interval [0, 1] into the following @) subintervals:

ba) [73) - %) %l @

Obviously, there is at least one subinterval (§) which contains at least two numbers
(4). Let they be {ra} and {sa} with integers r and s, r > s for instance, and
0<r<@-1,0<s5<Q—1. Their difference will be not greater than the length
of any of the intervals (5), and this length equals to 1/Q. So

1
{ra}—{sa} < 5,

1
ror = sa = ] + sal] < &
and denoting r — s = ¢, [sa] — [ra] = p, we have

1
lge-p|<= and O0<g=r—-s5<Q

Q
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as in (3).

Case II. Q is not an integer. Then instead of Q we use the number Q' = Q +1
and proceed similarly to Case I.

With this the theorem is proved.

The main idea of Dirichlet, applied in this proof, can be expressed as the
following principle:

If n+ 1 things are put on n places, then there will be at least one place
containing et least two things.

This is the famous principle of Dirichlet. Later, in 1907 Herman Minkowski [3]
named this principle as “pigeonhole principle”, thinking the places or subintervals
as “pigeonholes”.
The inequality of Dirichlet’s theorem can be written in the following way:
b

1 1

a—-=-[<—< = (6
7|~ Q¢ & )
These inequalities are similar to (1) and we can say that every real number can be

approximated by a rational fraction p/q with exactness 1/¢%. It is easy to deduce
from (6) that if  is irrational, then there exist infinitely many rational fractions Z—

with (p,q) = 1 for which

a p < e (7)
This follows from the left inequality in (6) when @ tends to co as « is irrational,
so a — (p/q) # 0. Inversely, if « is rational, the inequality (7) can be satisfied only
for finitely many rational fractions p/q with (p,q) = 1. Indeed, let & = a/b # p/q
and (a,b)=1,b> 0, ¢ > 0. Then ag — bp # 0 and

pll

a_p|_lag=bpl 1
b ¢ bg bg
If p/q are infinitely many, then there will be ¢ > b for some ¢ and
a pl_ 1 1
—_—— - p— > -,
b q‘ TP

which contradicts (7).

Thus the theorem of Dirichlet shows different approximability of the rational
and irrational numbers. This singularity was generalized two years later by Joseph
Liouville (1809-1882) who proved in 1844 the remarkable theorem that if & is a
real algebraic number of degree n > 1, then there exists a constant C' = C(«) such
that

a—§,>q£n (8)

for all rational numbers p/q, ¢ > 0, p/q # a.
It is easy to find examples for & when (8) is not satisfied, such that these a are
non-algebraic, transcendental numbers. The theorem of Liouville was continued by
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A. Thue, C. L. Siegel and others, and completed finally by K. Roth in 1955, but
here our aim is to follow dlrectly the Dirichlet’s theorem.

In 1891 Adolf Hurwitz (1859-1919) [4] proved that if « is irrational, then the
inequality

D 1
a . < NP 9)
has infinitely many solutions in integers p, ¢ with (p,¢) = 1. This is not true if in
(9) we substitute v/5 by a greater number.

In 1895 K. Vahlen [5] proved that if p,_1/gn_1 and p, /g, are two consecutive
convergents of the real number o, expanded in a continued fraction, then at least
one of them satisfies the inequality

1
2q2

p
a__

q
The theorem of Vahlen complements the assertion of Legendre about (2) that
p/q can be only convergent.
In 1903 Emile Borel (1871-1956) [1] proved that if P,_5/Qn—2, Pa_1/Qn_1 and
P,/Q, are three consecutive convergents to a, then at least one of them satisfies
the inequality

<

Qo — —

i<
\/— 5q
The proof is achieved by reductio ad absurdum.
Let « be an arbitrary irrational number. Its expansion in a simple continued
fraction has the form

1
a=ag+ — (10)
a +
1 as + e
or, briefly, @ = [ao; a1, as,...], where ag is an integer and a; (¢ = 1,2,...) are
positive integers. (a; — incomplete quotients of . If « is rational, then o =
[ao; @1, a3, ..,ans] for some integer n > 0.)

In 1918 M. Fujiwara (6] proved that if » > 1 and an41 > 2, then

o7 P < 2

Qi 5Q7
fori=n—1ori=n+ 1 (For more details about Diophantine approximation
until 1936 see [7].)

2. TWO THEOREMS OF OBRESHKOFF ABOUT RATIONAL
APPROXIMATION

Academician Nikola Obreshkoff (1896—1963) wrote 18 publications about dio-
phantine approximations ([8-25]). In the first of them [8] and briefly in [12] he

deduced a very important result, expressed by two theorems:
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First theorem of Obreshkoff for rational approximation. Let a be an
arbitrary irrational number with expansion in simple continued fraction (10). Then
at least one of the convergents Pn_3/Qn—2, Pn_1/Qn_1 and P,/Qn to a salisfies
the inequality
- il < ——1— (11)

Q; | Ve +4Q?

Second theorem of Obreshkoff for rational approximation. Let m be
an arbitrary integer number, m > 1, and let E be the set of all irrational numbers
whose incomplete quotients are < m — 1 and of their equivalent numbers. Let a be
an arbitrary irrational number not belonging to E. Then for at least one of three
consecutive convergents p/q to o we have

«

1
- (12)

<K —
7] Vm?+4gq?
The number vVm? 4+ 4 in (12) can not be substituted by a greater number.

The first theorem of Obreshkoff evidently is.a nice generalization of the theorem
of Borel. The proof is deduced by reductio ad absurdum.

These two theorems of Obreshkoff are reviewed in the international journals
very modestly.

In Mathematical Reviews the great number theorist H. Davenport [26] wrote
about the first theorem of Obreshkoff: “The author’s first result is a simple gener-
alization of Borel’s theorem on three successive convergents to a continued fraction.
Let

6= ag+ 1 1
- a+ azx+
and let p,/gn be the general convergent to §. Then the inequality
‘g I
| < T+ 07

is satisfied for at least one of the three values n — 2, n — 1 and n”.

In Zentralblatt fir Mathematik another great number theorist K. Mahler [27]
described the first theorem of Obreshkoff, showing the inequality (11).

In spite of the original and official publications of the theorems of Obreshkoff
and their international reviews, these theorems were forgotten for years.

3. REDISCOVERING THE THEOREMS OF OBRESHKOFTI

In 1955 Max Miiller [28] proved several theorems and two of them punctually
repeat the theorems of Obreshkoff, but his name is not cited. (In conversations
with me, Obreshkoff said that he did not like the fact that his name was not cited.)
The paper of Miiller was reviewed in Zentralblal fur Mathemotik (Bd. 64, 1956,
p. 44) by the very known J. W. S. Cassels, who wrote that “Theorems of Vahlen,
Borel follow at once since ap41 > 1, and theorems of Fujiwara if a,41 > 2”. In
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Mathematical Reviews, vol. 16, No 11, 1955, p. 1090, J. H. H. Chalk wrote thaf,
Miiller “establishes several inequalities of which the following is typical. If n > 1 and

1

<
for at least one of the values v = n — I,n,n + 1”7, but this is the first theorem
of Obreshkoff. In Pefepamusnni acypras, Mamemamuxa, No 987, 1956, P. G.
Kogoniya accurately described all the theorems of Miiler. But nobody of these
reviewers noted that Obreshkoff was the first. In 1959 F. E. G. Rodeja [29] proved
a theorem, which was reviewed by the great specialist on continued fractions A.

v

2 — —

the continued fraction has at least n + 2 elements, then

v

N. Hovanski [30] in the form: “Ecmm Pe (k=0,1,2,...) — noaxoasmue apobu
qk '

LenHoi Jpo6y, B KOTOPYIO pa3jioMmeHo Yucio «, « = (ap,a;,as,...), TO BLINOJ-

HAETCA N0 MeHbIlle# Mepe OJHO M3 TpeX HepaBEeHCTB | — —

Im \/ 4+ ai+1 VEN
m==k—1, k, k+1. Ilpu sTom uncio /44 a}_, Hesb3s 3aMennTb 60abILMM
JaxKe pu yBeanuyenuy uncia HepabeHcTs.” Obreshkoff is not cited.

Evidently, Rodeja also rediscovered the theorem of Obreshkoff. But he added
more about the exactness of the constant.

In 1966 F. Bagemihl and J. R. McLaughlin [31] proved the following theorem:

Let « is an arbitrary real number with expansion (10). Let s be a natural
number (positive integer). If a,_y > s for some n > 1, then at least one of the
three inequalities

PmiS 1

Pi

1
o | < ——,
Qi’ \/52—1-4qJ2

j=n—1,n,n+1,

holds.

Evidently, this is the second theorem of Obreshkoff, but the authors do not
cite it.

In 1982 Fuzhong Li [32] published certain results in Chinese, whose English
summary in Zentralblail fur Mathematik [33] shows full coincidence with the first
theorem of Obreshkoff.

In 1983 Jingcheng Tong published a paper [34], in which he defined the number

1 . .
= ——, and wrote: “In this paper we prove the

M, qr2; ,
following theorem which shows the conjugate property of the Borel theorem.

Theorem. For n > 2, at least one of M;, i = n—1, n, m+1, exceeds , /a721+1 + 4,

at least one of M;, i =n —1,n,m+ 1, is less than /a2, +4.”

Evidently, the first part of this theorem coincides with the first theorem of
Obreshkoff and is not new. But its second part is really a new theorem of Tong.
We shall call it the Theorem of Tong of 1983. This Tong’s very interesting theorem
completes the theorem of Obreshkofl.

M,, from the equality |a — P
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In 1994 Tong [35] achieved in some sense the best improve of the first theorem
of Obreshkoff by proving, with the above notations, that

Mn S \/(an+1 + ﬂn)2 + 4

implies

(Mn—la Mn+l) > ~\/(aﬂ+1 + 'uﬂ)2 + 4,
where

I'Ln: |an_ﬁn[, aﬂ:[O)an+2;aﬂ+3)"']l ,Bn :[Oiaﬂ)aﬂ-—].;"')al]'
But the name of Obreshkoff is not mentioned. Instead of this the reviewer Hans
Kopetzky wrote in Mathematical Reviews [37) how to obtain the result of Miiller

as a particular case. Evidently, it was not known yet that “the result of Miiller” is
the first theorem of Obreshkoff.

4. ASYMMETRIC APPROXIMATION — ANOTHER WAY FOR
REDISCOVERING THE OBRESHKOFF’S THEOREMS

In 1945 Beniamino Segre [38], using a geometrical method, proved the following
theorem:

Let « be an arbitrary real number. Then for every real 7 > 0 there exist
infinitely many rational fractions p/q such that

1 p T
—————<a— <
AVitar PR v
A precision of this result of Segre was proposed by Nicolae Negoescu [39], but
it turned out to be wrong, as remarked by R. A. Rankin [40]. In 1953-1954 W.
J. LeVeque [39] proved the precise theorem. The author of the present paper has

written more details about this history in [45].
In 1988 Jingcheng Tong [35] proved the following theorem:

(13)

Let 7 > 0 and let « be an irrational number with expansion (10), and let p,/¢n,
n = 1,2,..., be its convergents. Then among the three consecutive convergents
pifgi,i=2n—1,2n,2n+ 1, n > 1, at least one satisfies the inequalities

T Di 1

qz?\/a%n+1 +4r e qiz\/ a3, 41 T 47

Evidently, putting 7 = 1, we receive a variant of the theorem of Obreshkoft.

5. THE FIRST CITATION OF THE FIRST THEOREM OF OBRESHKOFF
IN THE FOREIGN LITERATURE

Very probably, it was H. Jager and C. Kraaikamp [44], in 1989, who first
among the foreign mathematicians (relative to Bulgarians) cited the first theorem
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of Obreshkoff. In his paper, Jager and Kraaikamp gave a new proof of the first
theorem of Obreshkoff and of the Theorem of Tong of 1983.

However, the second theorem of Obreshkoff, which was rediscovered also by
M. Miller, and by F. Bagemihl and J. R. McLaughlin, remaines forgotten (not
counting the present paper and [45]).

6. ON THE CONSTANT OF BOREL

In his memoir of 1903, K. Borel [1] proved many theorems; one of them we
cited above as the theorem of Borel, another one is the following:

Let a and b be given real numbers. Let M be an arbitrary positive number.
Then there exist integer numbers z, y and z such that

fvaZz+b2+1

M2 '
where 8 is a constant, not depending on a, b and M. In his History, L. E. Dickson
[43, p. 96] called @ the constant of Borel, and wrote that it was not found. But in
1956, i.e. after 53 years, N. Obreshkoff [18] (also [20, 24]) proved that § = 1. We
see that, unfortunately, the constant of Borel is not remarkable, and furthermore
we shell speak about “constant of Borel” only historically.

lz|< M, |yl < M, |z| < M and |az+by+z| <

7. OTHER OBRESHKOFF’S RESULTS ABOUT DIOPHANTINE
APPROXIMATION

In his first paper [8] Obreshkoff improved not only the theorem of Borel, but
also the classical inequality of Dirichlet, demonstrating the validity of the following
theorem:

Let o be an arbitrary real number and let » be an arbitrary positive integer.
Then there exist integer numbers z and y, for which 1 <z < n and
| 1
n+l

laz - y| <

The equality sign of the inequality is achieved only if @ = d(n + 1), where d is an
arbitrary positive number with (d,n+1)=1.

In the last paper [25] he generalized this theorem in the following way:
Let o be an integer > 0 and n be an integer > a. Then for every real a, for

which 0 < a, there exist at least two integer non-negative numbers z and y, for
which 0 < z +y < n and

n+a
n+1

laz —y| <
[ ]+2

Moreover, the equality sign is achievable.
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In some papers Obreshkoff generalized the inequality of Dirichlet for sever-
al variables. Especialy, in [23] he deduced as a consequence of his theorem the
following theorem of Thue - Nagel:

Let @ and b be integer numbers and m be an integer positive number. Then
the congruence
az + by =0 (mod m)
has always a solution in positive integer numbers z and y, for which z2 + 4% > 0

and [e| < v/, Jy| < v/,

The generalization of Obreshkoff is the following:

Let ay, @g, ..., ax be k integer numbers and let m be a positive integer. Then
the congruence
a1z1 + @z + ...+ a2y =0 (mod m)
has a solution in integer numbers z1, z3, ..., zg, not all equal to 0, satisfying the
conditions

k
IIPIS '\/ﬁa p:1,2,--.,k.

When k = 2, we have the above cited theorem of Thue — Nagel.

In [15] Obreshkoff proved a theorem and H. Davenport wrote about it in Math-
ematical Reviews (vol. 12, No 3, 1951, p. 163):

“The author proves the following simple but elegant variation of a well-known
result on diophantine approximation. Let wi, ..., wg be real numbers, and n a
posiiive integer. Then there exist integers zi, ..., ; (not all zero) and y, such
that 0 < z; < n and

lwizy + ... +wrzp +y| < N7,
where N = kn + 1. The proof is by Dirichlet’s principle.”

Obreshkoff showed the conditions when the equality sign is achieved. The
reviewer had a remark that the conditions “does not seem obvious to the reviewer”.

In [23] Obreshkoff proved a more precise and general theorem:

Let us have the linear form
na

f= Z (11“:135‘1) +Z agﬂ.’L’ELZ) + ...+ Z aPI—‘a:Etp)’
pw=1 p=1 u=1

where a1,, @a,, ..., Gp, are arbitrary real numbers and ny, na, ..., n, are integer
positive numbers. Let m;, ma, ..., m, also be integer positive numbers. Then
there exist integer numbers :c(lu), z(zu), ce :1:5,”"), n=1,2,...,p, not all zero but all

non-negative or all non-positive, and integer y, for which

£V <m,, 1<u<n, 1<v<p,

and

1
—uyl < =— (14
IR (19
where M = (nymy + 1)(namg + 1) ... (npm, + 1).
The equality sign in (14) can be achieved.
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This is a functional equations approach to the non-negative functions k(z,y) and
e(z,y) as defined in formulas (1) and (2). Moreover, all distance functions of R™ are
characterized, which are invariant under linear and orthogonal mappings (see Theorem
1), and, especially, all functions of this type are determined, which satisfy in addition
(D2) (see Theorem 2). Here (D2) asks for the invariance under euclidean or hyperbolic
translations of the zj-axis. Finally, additivity on the z;-axis is considered, leading to
the distance functions 4 and e up to non-negative factors (see Theorem 3).

Keywords: hyperbolic distance, invariance of distance functions under special mo-
tions, additivity on a line. theorems.
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1. Let n > 1 be an integer and let Ry be the set of all non-negative real
numbers. A function
d:R* x R" — Ry

is then called a distance function of Ryo. Especially, we are interested in the
hyperbolic distance function h(z,y) satisfying

cosh h(z,y) = \/r 1+ z2v/1+ y? — zy, (1)

* Lecture accepted for the Session, dedicated to the centenary of the birth of Nikola
Obreshlkofi.
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and, moreover, in the euclidean distance function e(z,y) defined by

e(z,y) = /(z — y)% 2
In formulas (1) and (2)
uv = U1ty + ugvz + -+ Up Vs
denotes the usual scalar product of the elements
v=(u1,...,us) and v=(vy,...,vp)

of R™.

We will say that the distance function d of R is of type (D,) if, and only if, it
satisfies

(D)  d(z,y) = d(p(x),(y)) for all z,y € R™ and all linear and orthogonal
mappings p of R™.
Obviously, distance functions & and e are of type (D,).

2. It is posible to determine all distance functions d of R" ‘which are of type
(D;). We would like to prove the following

Theorem 1. Define »
K = {(1,62,63) € R® | £1,63 € Ryo and €3 < £163) .
Suppose ifnftf K — Ryq s chosen arbitrarily. Then
d(z,y) = f(z?, 4%, zy) (3)

is o distence function of R™ of type (D1). If, vice versa, d is a distance funclion of
R" of type (Dy), there exzists f : K — Ryq such that (3) holds true for all z,y € R™.

Proof. Since 2 = [p(2)]? and zy = ¢(z)p(y) for all z,y € R” and for every
linear and orthogonal mapping ¢ of R™ into itself, we get

d(z,y) = d(v(z), ¢(v))-
d is hence of type (D;).
Assume now that d is a distance function of R”. Suppose that

(€1,82,&3)

is an element of K and define
e1 =(1,0,...,0) and e2=(0,1,0,...,0)

as elements of R™. Put
zo=0 and wo :61\/6_2

in the case £, = 0. Observe here £3 = 0, in view of £2 < £,€;. Define now

f(&1,E2,E3) = d(zo, y0).

_ e1€3 + ea /1€ — 3
V&

Put z¢ = e;+/€; and
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in the case £; > 0. Again define
f(€1.&2,€3) = d(zo, yo)-

Two things must now be proved. First of all we have to show that the function
[ is well-established. But since (£;,£2,£3) is in R, there are only these two cases
é1 =0o0r & >0, and in both cases the value under f is uniquely determined. The
second thing we have to prove, is that

d(z,y) = f(z*, 9%, zy)
holds true for all z,y € R"™. Let z, y be elements of R™ and put
gt =16, YP=1&, zy=ila

Because of the Cauchy-Schwarz inequality, (€1, &2, €3) must be an element of K. If
we are able to prove that, there exists a linear and orthogonal mapping

¢ :R* = R"
satisfying
olzg) =z and p(y) =y,
where zg, yo are the already defined elements with respect to &;, then
d(l‘, y) = d(xO) 1/0) = f(&lyf?)éf]) = f(‘z‘z) yzl Iy)

holds true and (3) is established. We now malke use of the following simple state-
ment: let a1, as, as, b1, bz, ba be points of R™. Then there exists an orthogonal
mapping ¢ of R™ with

v(a;)=b; forall ie{1,2,3}

if, and only if,
(ai = a;)* = (bi — b;)? (4)
is satisfied for all ¢, 5 € {1,2,3} with ¢ < j.
In order to apply this statement, we put
a) = 0= b1
and as = To, az = Yo, ba = z, b3 = y. Since the assumptions (4), namely
=b=2% y=6=y
and (zp—y0)? = &) — 263 +&2 = (z — y)? are satisfied, 9 exists; which is in addition
linear in view of
¥(0) = ¢(ay) = b; = 0. E
In the case of the hyperbolic distance function we apply the branch arg > 0 of
the inverse function of cosh and we have

F(z?,y% zy) = arg (\/1 +z2/1+¢2 - zy) .
In the case of e(z, y) we get

f(l.'l, 1/2})931/) =V ‘1"2 + y2 - 21:3/
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3. We would like to prove the following statement. If z # 0 is an element of
R™, then there exists a bijection v of R* with v(0) = z and

h(z,y) = h(v(2),7(v))
for all z,y € R".
There definitely exists a linear and orthogonal mapping ¢ with ¢(z) = e;V/z2.

Take now ¢ > 0 satisfying
cosht = /1 + 22

Then 7(z) := (z; cosht + /1 + z2 sinht,zs,...,z,) must be a bijection of R,
transforming 0 into
(sinht,0,...,0) = e; V22

7 and observe that

h(z,y) = h(r(z), 7(y))

Now put v = ¢~}

holds true for all z,y € R™.

Remark. For more information about the mapping 7 see the book [5] of the
author.

It it well-known that R™ is a metric space with respect to the distance function
e(z,y). We would like to show the following

Proposition. R" is a meiric space with respect to the dislance function
hiz,y).

Proof. Suppose that z, y are elements of R". The inequality of Cauchy-Schwarz

(zy)* < 2y’
then implies (zy)? < z2y? + (z — y)?, i.e.
(zy)* + 22y +1 < (1+2°)(1+¢°)
and hence zy+ 1 < [zy+ 1] < \/H-—Z'Z\/W We thus have
Vita/l+y?—ay> 1,
so that (1) determines h(zy) > 0 uniquely. In view of (1), obviously,
h(z,y) = h(y, z)

holds true for all z, y € R™. Observe, moreover, h(z,z) = 0 for all z € R™. Suppose
now that h(z,y) = 0. Then (1) implies

(xy)z — (17 _ y)z + 1'2:(/2-
If £ were # y, we would have the contradiction
(zy)® < 2%y’ < (z — 9)* + 2%y°.

In order to prove the triangle inequality

h(z,z) < h(z,y) + h(y, 2), (5)
take a bijection y of R satisfying y(0) = y and
h(p,q) = h((p), 7(9)) (6)
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for all p,g € R". Put @ =y~ !(z) and b = y7}(z). Then we shall prove
h(a,b) < h(a,0) + A(0, b), (7)
which leads to (5) by applying (6). Now observe
—ab < |ab] < Va2 V2,
ie. V14 a2V/1+b%—ab < V1 + a®V/1+ b2 + Va2/b2. Hence
cosh h(a, b) < cosh h(a,0). cosh h(0, b) + sinh h(a, 0).sinh A(0, b)

0 < sinh h(a, 0) = y/cosh® h(a,0) — 1 = a®
and 0 < sinh h(0,b) = b2. Thus
cosh A(a, b) < cosh(h(a,0)+ h(0,5)).

by observing

This implies (7) since cosht; < coshiy leads to ¢1 < tp for non-negative real
numbers £, t5.

Remark. Observe that R" is also a metric space under the rather strange
distance function

d(z,y) == h(z,y) + ez, )
(for all z,y € R™) which is of type (Dy) as well.

4. We shall call a distance function d(z,y) an euclidean (or a hyperbolic)
distance function if it admits all euclidean (or all hyperbolic) motions.
Define for a distance function d the property (D), as follows:

(D2) d(z,y) = d(7(z), 7(y)) for all z,y € R™ and all euclidean (or hyperbolic)
translations of the z-azis.

The euclidean translations of the z;-axis are the mappings
(z1,-.-,2Zn) — (21 +1,29,...,20)

for t € R; the hyperbolic translations of the same axis are the already defined

mappings
T — (mlcosht+\/1+mzsinht,:1:2,...,:cn) ) (8)
Theorem 2. Let g be a function from Ryq into R>q. Then
d(z,y) = g(e(z,y))

s an euclidean disiance function, and

d(z,y) = g(h(z, y))
is a hyperbolic distance function. There are no other distance functions satisfying

(D1) and (D2).
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Proof. a) Let us assume that d satisfies (D,) and (D) with respect to euclidean
translations. Then d admits all congruent mappings of R", in view of (D;) and
(D3). Hence

d(z,y) =d(z + (-v),y + (-v)) = d(z — y,0)
and thus d(z,y) = f((z — y)?,0,0) because of Theorem 1. Define

g(€) == f(€%,0,0)
for all real £ > 0. Ience

d(z,y) = ¢ (Ve = 97) = g(e(z,9))-

b) Suppose that d is a distance function satisfying (D;) and (D) with respect
to hyperbolic translations. From

(z1,...,z,) ER"

we go over to Weierstrass co-ordinates
The mapping (8) then reads
T(ml,...,zn,\/l—l-—:cz) = (zl,...,zn,m) H(t)

with the (n + 1,n + 1)-matrix

cosh ¢ sinh ¢
1
H() =
1
sinh ¢ cosh ¢
with zeros elsewhere. Let
B(pi,...,pn; k)
be an arbitrary Lorentz boost (see [3, Sections 6.10, 6.11]). We hence have k > 1,
pi++pi <1, 9
k2(1_p?_...—pi) :1.
Set cosht :=k,t >0, and
cosht
(011,021, ceey anl) = ginTt_(pl' s :Pn)

fort > 0. (For t =0, i.e. k=1, the matrix B must be the identity matrix E, and
we are not interested in this case.) Observe

-
a%l"f‘"""aﬁl:p_—lzpz?:l
i=1
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from (9). Extend

to an orthogonal matrix

0
A= A :
0

B(p1,....pn; k) = AH(t)A™L.

(In the case B = E we have E = EH(0)E~!.) Because of A.10.1 (see [3. p.
249]), an arbitrary orthochronous Lorentz matrix of R**? can be written as the
product of a Lorentz boost and an induced Lorentz matrix. This implies that the

and observe

group EF? of all motions of n-dimensional hyperbolic geometry (that is the group
of all orthochronous Lorentz matrices of R**! see [4, Sections 2.6 and 5.7]), can
be generated by H(t), ¢ € R, and the induced Lorentz matrices, i.e. by linear
orthogonal mappings of R" and hyperbolic translations concerning the zi-axis.
We now would like to define a function

g :Ryo— Ry
as follows: for € > 0 set
g(€) :=d(0, ey sinh £).
We then have to prove
d(z,y) = g(h(z,y))
for all z,y € R". Put h(z,y) =: €. Hence
h(z,y) = h(0, e; sinh &).

Take a linear and orthogonal mapping ¢; of R™ that transforms z in e;Vz2, then
a 7 which maps this latter point into 0. With another @2 we get

p27p1(z) =0 and 2rp1(y) =t e1n
with n > 0. Because of
£ = h(z,y) = A0, e1n),
it follows cosh & = cosh h(0, ;) = /1 + 72, i.e.
7 = sinh .
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Hence with v := pa1¢;

d(z,) = d(7(z), 7(y)) = (0, e1 sink ) = g(€) = g(h(z,1))
With respect to the first part of Theorem 2 we know that e and kA admit the
corresponding mappings mentioned in (D;) and (D). But those mappings already
generate the automorphism groups of the geometries in question. a
A distance function d of R™ will be called addztzve on the z;-axis if, and only
if, the following property holds true:

(Da) Let a, B, v be real numbers with @ < 8 <. Then
d(aey, ve1) = d(aey, fe1) + d(fBer, ver). (10)

Theorem 3. Let d be a distance function of R™ satisfying (D1), (D2), (Ds).
Then

d(z,y) = ke(z,y)
or

d(z,y) = kh(z,y)
holds true with o fized real number &k > 0.

Proof. a) Fuclidean case. Taking into account Theorem 5 (see [4, Section 5.1])
we only need to prove that (Dj3) carries over to every euclidean line of R". Let z,
z be distinct elements of R” and let y be the element

y=Az+(1-X)z
with 0 < A < 1. We then transform z, y, z In
e1, Pei, rer
with a =0, § = (1 — Ne(z, z), v = e(z, z). Now with Theorem 2
d(z,v) = g(e(z, 1)) = g(e(0, Ber)) = d(0, Bex)
and so on. Hence (10) yields
d(z,2) = d(z,y) + d(y, 2).
Then everything else depends on the solution of the functional equation
e+ B) = g(a) +9(8)

for all &, 8 € R>q (see [1]).
b) Hyperbolic case. We have to apply Theorem 9 (Section 2.6 in [4]) and a
similar procedure as in part a). .

Remarks. 1) It is possible now to determine all distance functions d satisfying
(D1), (D2), constituting a metric. By applying Theorem 2 the reader might verify
the next statement which we shall formulate for the hyperbolic case. The situation’
in question is characterized by all functions

g: RZO —* ]Rzo

satisfying
(@) 9(6) =0 = £=0;
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(ii) Let «, 4, v be real numbers such that there exists a triangle zyz with
a=h(z,y), 6=h(y, z),v=h(z,z), then

9(7) < g(a) + g(B).

2) For general information about hyperbolic geometry compare [5-8].
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TIKHONOV’S THEOREM FOR FUNCTIONAL-DIFFERENTIAL
INCLUSIONS™

TZANKO DONCHEV, IORDAN SLAVOV

We investigate differential inclusions and equations of a retarded type with a small
real parameter £ > 0 in part of the derivatives. Analogues of the well-known in the
theory of singularly perturbed ordinary differential equations theorem of Thikhonov
are obtained. We prove lower semicontinuity of the solution set for inclusions and
continuity of the solution for equations in the most appropriate topology when £ — 0.
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1. INTRODUCTION

Suppose that the functional-differential inclusion

<Ea;(gt)))eF(i,a:(t),y(t),zrt,yz), fo=d w=v, tel=[01, (1)

is given, where z € R, y € R™ and € > 0 is a real parameter.

In the sequel, C(I, X) and L'(I, X) are the usual spaces of respectively con-
tinuous and integrable functions on I with values in X. For any z € C([-r, 1], R¥)
and t € I we let z; € C([—7,0], R¥) be defined by z(s) = z(t +s), —7 < s < 0.

* Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
This work is partially supported by the National Foundation for Scientific [lesearch at the
Bulgarian Ministry of Science and Education, Grant 701/97.
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Here 7 € (0,1) and F is a map from I x R**™ x C([-,0], R") x L!([-7,0],R™)
into R™ x R™, while ¢ € C([~7,0],R"), ¥ € C([-7,0], R™).

There is a fundamental theorem refered as Tikhonov’s theorem [10] dealing
with the continuity of the (unique) solution of (1) when F is single valued and does
not contain (z:,7;). Namely, continuous dependence of the solution with respect
to C(I,R™) x C([6,1],R™) topology (0 < 6§ < 1) when ¢ — 0 is stated. Our
considerations differ from the situation in [10] also in the fact that we assume only
measurable on ¢ right hand side. Then it is natural to define the solution set Z(¢)
of (1) when € > 0 as the collection of all absolutely continuous functions (z,y)
satisfying (1) for a.e. t € I. When ¢ = 0, inclusion (1) becomes

<¢g)> €F(t,o(t),y(t),z0,), mo=¢ vo=% tel=[01  (2)

Here solutions are all pairs (z,y) of absolutely continuous functions z(-) and L!-
functions y(-) such that (2) holds for a.e. ¢ € I. As in the ordinary differential case,
y(-) can differ from the initial condition ¥(-) at ¢ = 0.

It is too restrictive to assume the y-part of the solutions of the above “degen-
erate” inclusion to be continuous in view of the following simple example:

ey(t) = —2ay(t) + ay (t — %) , y(s) =1, se [—%,O) , a>0.
For ¢ = 0 one has 0 = —2y(?) + y(t — 1/2), i.e. y(t) = (1/2)y(t — 1/2). Thus
y°(t) = 1/2 for t € [0,1/2) and y°(¢) = 1/4 for t € [1/2,1). For this reason the
C-topology used in [10] is not suitable and must be replaced with another one.
In Examples 2.1 and 2.2 we show that when the delay is not fixed it happens the
classical Tikhonov’s theorem not to be valid. So it must be reformulated in the
functional-differential case when it holds at all.

Here we examine first the lower semicontinuity properties of the solution map
Z(e) as € — 0% and then derive on this base the continuity dependence of the
solution for equations. For inclusions without the functional arguments (x4, y;) the
lower semicontinuity is studied initially in [11]. The results then are extended un-
der weaker type of assumptions in [3] for functional-differential inclusions with fixed
time delay. The main assumption in the last paper is a version of the one-side Lip-
schitz condition used first for multivalued maps in [2]. Since singular perturbations
are not presented in [2], this key condition is modified in [3] and here in a suitable
way. We do not consider upper semicontinuous properties since, as shown in [3],
the solution set is not upper semicontinuous in used here C'(I,R™) x L!(I,R™)
topology, even for linear control system. Moreover, in the case considered in [3],
redefining the solution set of (2) to obtain upper semicontinuity one will lose lower
semicontinuity. Some upper semicontinuous results under restrictive assumptions
are obtained in [3-5].

At the end of the section we shall give some ‘notations and definitions. In-
troduce the subspaces ; = {a € C([-7,0], R¥) : |a(0)] = mak_r<;<o |a(s)|},
ky = n, k3 = m, which are used in Razumikhin type conditions [7]. The norms
in C(I,X) and L'(I,X) are denoted with || - [|c and || - ||z, respectively. For the
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salke of simplicity we will denote by ||a¢||c and [|ay||r1, respectively, the norms

0
max_r<s<o |a(t +s)| and [ |a(t+s)|ds. For aset A C RF and a vector I € RF we

-7

let o(l, A) = sup,¢ 4 (!, a) be the support function, where (-, -) is the scalar product.

If A C Rt we denote by A the projection of A on R”, by A the projection of A
on R™, and by clA (elcoA) the closed (the closed convex) hull of A. The set-valued
map G : I x Z — Z s called: a) lower semicontinuous (LSC) when for every (¢, z)
and every u € G(t, z) there exists u; € G(t;, z;) such that u; — u when t; — t,
z; — z; b) upper semicontinuous (USC) if for every (¢,z) and every v > 0 there
exists 6 > 0 such that G(s,w) C G(t,z) + vU (here U is the unit ball in Z) when
[t —s|+ |z —w| < & c) continuous when G is LSC and USC. G is called almost
continuous (resp. LSC, USC) when for every § > 0 there is a compact set Iy C I
with meas(I \ Is) < 6 such that G is continuous (resp. LSC, USC) on I x Z. For
more detailed considerations of definitions and concepts used bellow we refer to [1]

and [7].

2. LOWER SEMICONTINUITY IN C x L'-TOPOLOGY

We take an example which tells us that for continuity with respect to C[é, 1]
topology on y(-) there have to be restrictive assumptions.

Example 2.1. Consider the following equation:

ey(t) = —2y(t) + max yit+s), ¥(0)=1,

where I; = [max{—1/2,—t},0] for ¢t € [0,1]. For € > 0 one can find
1 1 1
N _ — < < o
y(t)22<1+exp< 5)) 0<i<yg,

¥ (t) > % <1+exp (—% <t—%>)> %951-

For € = 0 we get the “degenerate” equation

= t .
2y(t) = maxy(t + 5)

Obviously, 7°(1) = 1/2,t € (0,1/2]; §°(t) = 1/4, t € (1/2,1] with 7°(0) = 1 is a
solution of the above eguation. Also it is not difficult to see that y*(t) — (1),
¢ — 0 fort € I and that this convergence is uniformon [§,1/2)U[1/2+6,1]. On the
other hand, 4°(1) =0 ont € I is  other solution of the “degenerate” equation.
The last implies that there is no continuous in C[8, 1] but only USC dependence in
C([6,1/2) U [1/2+ 6,1]) topology.

Example 2.2. Let us combine the above equation with the control system
from Example 2.5 of [3], i.e. consider

T = |yl_2y2[7 I(O):O’
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e = -y +u(t), 1n(0)=0,
€y2 = —2y2 +u(t), y2(0)=0,
€gs = ~2y3(t) + maxys(t +5), ya(0) =1,

where u(t) € [—1,1] is measurable. It is shown in [3] that the solution set of
the subsystem consisting of the first three equations is not USC in C([0,1], R) x
L1([0,1],R?) topology at ¢ = 0. Thus the solution set of the above inclusion is
neither LSC nor USC.

These examples tell us that when the delay depends on time ¢ it is hard to
expect that Tikhonov’s theorem is true. But still there are situations in which we
could formulate a very close result. Consider first (1) under the following assump-
tions:

Al. The map F is almost continuous and bounded on the bounded sets.
Moreover, there exist constants a, b, u > 0 such that for every (z,y) € R**™

o(e, F(t,z,y,0,0) <a(l+ |z +[y* +18lIE), e€, BeC(-r, 0], R™),

U(yY F(t’ Y, Q’HB)) S b(l + |{E|2 + ||a||2C) - /‘lly|2) a € C([—'T! 0]|Rn)) ﬁ € Q2;
for a.e. t € I. Here a(0) = z, A(0) = y.

A2, There exist positive constants 4, B and p such that if we choose arbitrary
(z:,vi, @i, B;) € R"™ x C([-7,0],R™) x L*([-7,0],R™), i = 1,2, then for every
(f1.91) € F(t,21,y1, 01, 1) there is (f2, g2) € F(t, 22, y2, a2, B2) such that

(z1 — T2, 1 = f2) S A(lz1 — 22* + |y1 — y2l* + (|81 — Ba]|7:), for @1 — s € O,
(1 — y2, 91 — 92) < B(lz1 — 2o + [lay — e2llE + 161 — BallZ:) — lyr — w2/?
_fo.r a.e. t € I. Here o;(0) = z; and for §; continuous 5;(0) = y;, ¢ = 1, 2.

The next result is proved in [3].

Lemma 2.3. Under Al there ezists a constant M > 0 such that |z°(t)| +
Iy (t)| < M for everyt € I, (z,y°) € Z(€) and € > 0, and a.e. on I if e = 0.

By Al it follows that there exists L > 0 such that |F(t,z,y,e,0)| < L for
every t € I, [z|+ |y < M + 1 and ||a|lc + ||Bljr= < M + 1.

Theorem 2.4. Under assumptions Al and A2 the solution set Z(¢) is LSC
at £ = 0% with respect to C([0,1],R™) x L([0, 1], R™) topology.

Proof. Let (z° 4°) be a solution of (2) and § > 0 be given. Then there is
a Lipschitz on I function z with a Lipschitz constant Ky such that z(s) = ¥(s),
s € [~,0], and

lz = 9"llcr < 6 lpller < &
Here p(t) = Dy (F(t,2°% 4, 20,4?), F(t,2° 2,20, 2;)) and Dy (-, ") is the Hausdorff
distance between sets. Therefore

d((2°(t), e2(1)), F(t, 2°(t), 2(t), 27, z2)) < €K + p(2). (3)
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Introduce the following conditions:

(z°(t) — u,2°(t) - f)

< 2A(|2°(t) — ul’+]2(t) — v’ + ||z — Bl|F:) + eKs + p(t) + 6, (4)
(2(t) —v,e2(t) — g)

< 2B(l2°(t) — u*+|z? — allE + ||2: = BlF1) — ulz(t) — o + eKs + p(t) + 6. (5)

Consider the map I's(¢, u, v, &, §), which we define only for continuous 3, with
values as follows:

a) cl{(f,g) € F(t,u,v,a,8) : g satisfies (5)} for & — z0 ¢ Q1,u = a(0) and

v = B(0);

b) cl{(f,9) € F(t,u,v,a,pB): (f,g) satisfies (4) and (5)} for a —z € 1, u = a(0)
and v = §(0);
¢) Ts(t,u,v,,8) = F(t,u,v,a,B) when u # «(0) or v # 5(0).

Note that F' is almost continuous on I x R**™ x C(I, R**™). We claim that
Ts(-) is almost LSC with nonempty and compact values. To prove that we first
note that I's(+) is compact valued by its definition, Lemma 2.3 and Al. We will
show the nonemptiness of T's(-) only in case b).

By (3) there is (f°(t), ¢°(t)) € F(¢,z%(¢), 2(t), 2%, ;) such that for a.e. t € I

|(2°(t),e2(t)) — (F°(1), 6°(1))] < eKs + p(2).
So, there exists (f,g) € F(¢,u,v,qa, ) such that for z; = z°(t), z2 = u, y; = 2(1),
va=v, fi=f° fo=f, 91 = ¢° and g3 = g the inequalities of A2 hold, i.e.
(@) = u, f° = f) < A(|z°(t) = ul® + ]2(t) = o> + [|z¢ = BIIL0),

((t) = ,8° - g) < B(12°(t) — ul? + [1a? — all% + [z — BI2.) — wlz(t) — ol?.
Therefore the inequalities (4) and (5) are fulfilled.

The fact that I's(-) is almost LSC has a standard proof (see [1]), which is

omitted.
Now, from [6] we know that the inclusion

(Ezél((tt))) € F's(t)l‘(t))y(t)yl‘hyl)) x0:¢,yo=1/), tel-: [0)1]1 (6)
has a solution (¢, ¥°) in this case as well. On the other hand, |z (t)—z%(¢)|? < 2h(?)
and |y*(t) — z(2)|2 < 2r(t), where:

h(t) = 2Ah(t) + r(t) + |Ireflz1) + p(t) + 6+ eKs,  h(0) =0,

er(t) = 2Bh(t) — pr(t) + 2B(||htllc + |Iri]|pr) + p(t) + 6+ K5,  7(0) = ro.
We do not indicate the dependence on ¢ of the solution of the systemn for the sake
of simplicity of notations. Let & be a sufficiently large natural number. We divide

[0,1] on k parts with equal lengths. Obviously, by the first equation above we have
that h(-) increases, i.e one can suppose without loss of generality that A(t) = ||h:||c.
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Then solving the second equation on [0, 1/k] and integrating by parts one obtains
14
r(0) < exp(—pt/)ro + (1) [ exp(—ult - 9)/e)(4ABAS) + o(6)
0
+ 2B”T‘s”Ll + 6+ 61\"5) ds
t

< expl—nt/ero + (1/¢) [ exp(=ult = 5)/e)(p(s) + 2Blrs 1) ds
0
+ (1/1)(A4Bh(t) + § + £K).

Denoting further with C' an arbitrary positive constant dependent only on 4, B
and u (in the following inequality for example C = 24 + 8AB/u), we derive that

1

ht) < /exp'(C'(t—s))(p(s)+2A||rs||L:+(1+2A/p)(6+51(5)+2Aexp(—,us/e)rg)ds

+247e) [ [ exp(Ct = ) exp(=uls = N/e)p(0) + lIrallzr) drds,
0 0

Thus changing the order of integration we get h(?) < C(2eK; + 6 + 1/k) for t €
[0,1/k]. Consequently,

1
1 1
/|r(s)| ds<C (25[{,5 + 6+ E) fort € [0, %jl .
0
By induction one can show that

. 11 1
h(t)50(251\5+5+E+k_2+...+ﬁ),

(o . 1 1 1 i
lirlizipo,n < ¢ \ZeBs+8+ gt ttm) 1€ |0yl
Finally, one obtains

1
K1) < C (251&’5 +6+ ﬁ) v IrOller <€ (251"6 Ho+ 1o 1) '

Since k is arbitrarily large, we get that there exists a solution (z°,y°) of (1) such
that

llz® — 2®lZ < CeKs +6), ly* = 3°llZ: < C(eKs +6).
Since 6 is arbitrary and Ks depends on é but not on ¢, the LSC in the considered
topology is established. =

Remark. A preliminary version of this theorem is reported in [9].
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Consider the following special case of (1):

() € Pt.o,00). 26~ 7). st ~ ), Q
I(t) = ¢(t), y(t) = 'l,/)(t), te [—)\,O],

where 7(t) € [0, A] is a monotone non-increasing function on I. Suppose that:
,Bl' The map [ is Caratheodory’s and bounded on the bounded sets. More-
over, there exist constants a, b, £ > 0 such that for every ¢ € 1, (z(t),y(t)) € R*+™

o(z(t), F(t, (1), y(t), z(t — 7(2)), y(t — 7(1)))) < a1+ |2(t)[* + |y(t)[?
] +lz(t = (@) + [yt — 7(t))I%),
o(y(®), (2, 2(t), y(t), z(t — (1)), y(t — 7(1)))) < b(1 + [2(t)[* + |=(t — 7(t))]?
+ly(t = 7)) — uly(t))*.

B2 (one-side Lipschitz condition). There exist positive constants A, B and
p such that for every (fi1,g1) € F(t,z1(t), y1(t), z1(t — 7(t)), y1(t — 7(¢))) there is
(f2,92) € F(t,z2(t), y2(t), z2(t — 7()), y2(t — 7(t))) such that

(z1 — 22, L = fo) S Alzr = z2)* + 11 — 121 + |ar — a2 + |81 = B:]%),

(y1 — y2, 01 — g2) < B(|z1 — za|* + a1 — ao* + |81 = Ba]?) — ply1 — ya?
for a.e. t € I. Here o;(t) = z;(t — 7()), Bi(t) = wi(t — 7(2)), 1 = 1,2.

B3. If inf;e; 7(t) = 0, then p > B.

w

Theorem 2.5. Under the assumptions B1-B3, the solulion set Z(.) is lower
semicontinuous in C(I, R™) x L'(I, R™) topology.

Proof. Define the sequence t;4; = sup{t € I|t;_; < t— 7(t) < t;}, where
to = —A, t1 = 0. There are two cases. If t;, = 1 for some k, one can easily complete
the proof exploiting the same fashion as in a fixed time lag, see Theorem 3.2 from
[3]. In the opposite case there exists obviously v < 1 with v = lim ¢;. Then B3

holds. Moreover, 7(t) = 0 for t > v, i.e. the inclusion (7) becomes an ordinary
differential one. Let § > 0 be given and (z°, y®) be the solution of (7) for £ = 0.
Then for every ¢ < v again on the base of [3] one can find €(¢, ) such that there
exists (z,y°) € Z(g) whenever 0 < e < g(t, 6) with

l12° = 2%llcqo,n + Ilv° — ¥ lloao < 6/3.

Note that the norms above are evaluated on [0,t]. Moreover, Z(¢) is LSC on [v, 1]
with respect to C([v, 1], R™) x L*([v, 1],R™), see [11]. So without loss of generality
one can suppose that

li2° = z°|lew,u + 11° = ¥ llepay < 6/3.

Using the boundedness of the solution set and thus of the right hand side of (7),
we can manage also on the interval [t,#]. Namely, if v — t is small enough, then

l2° — &% |lcge,w) + 1190 = ¥ |zt < 6/3.
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Consequently, there exists (z°,y°) € Z(¢) such that
ll2° = 2fllc +18° — ¥l < 6

for sufficiently small . m

3. TIKHONOV TYPE THEOREM FOR FUNCTIONAL-DIFFERENTIAL
EQUATIONS

Consider now the following singularly perturbed system of functional-differen-
tial equations:
.’L'(‘t) = f(tlm(t))y(t)::chyt); Lo :¢)
ey(t) = g(t,=(t), y(t), 2, 1), wo =9, (8)
derived from (1) when F is single valued. Here f(-) and g(.) are Caratheodory’s

functions, satisfying Al and A2.
First we shall show that the reduced system

(t) = f(t,2(t), y(t), 21, 9:),  To =9,
0=g(t, @), y(t),z0,%), v =1, (9)
admits C(I,R™) x L'(I,R™) solution, i.e. the next lemma is true.
Lemma 3.1. Under the assumptions Al and A2 the degenerale system (9)
has a solution.

Proof. First we shall consider the case when f and g are jointly continuous,
1.e. continuous in all arguments.
By Lemma 2.3 for 0 < § < u there is a constant M; such that for allt € [

lz(t)| + |y(¢)| < Ms, when
[T(t) - f(t7r(t)ry(t)rm¢)yt)l < 6» ]g(t,:r(t), y(t),rct,yz)l < 6.

Choose a sequence §; — 07 and construct the corresponding sequence of approx-
imate solutions (z¢,y') as follows. By the well-known theorem of Minty-Browder
there exists fp € R™ such that

Let _
z'(t) = ¢(0) + t/(0, ¢(0), o, 6, %),  ¥'(t) = Fo,
for t € [0,v,]. Here v; is the maximal v for which (10) and
(1) = £t 2 (), 4 (8), 2h, v < 6y Lot 2" (1), 9 (E), 2, )| < 6

hold on [0,v]. Using continuity of f,g and Zorn’s lemma, it is not difficult to
show the existence of such (z¢,y') on the whole I. By the Arzela-Ascoli’s theorem
{z'()}2, 1s C(I,R™) precompact and passing to subsequences if needed, there
exists a cluster point z°(-) € C(I, R™). We shall show that {y*(-)}2; is a Cauchy
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sequence in L' (I, R™). Denote r(t) = r;;(t) = |y'(t)— 1 (2), 6; = Iz () =27 ()lc.
Then, of course, ||zi — zl||1 < 6;; and by A2 we obtain
ur?(t) < B(6F; + lIrdlZ:) + C(6: + &5).

For the sake of simplicity of notations here and further we denote with C an arbi-
trary constant and with 6;; an expression tending to zero with i, j — co. Hence

r(t) < C(6;5 + |Irellz1), t€Tand r(t) =0, t € [-1,0].
?
Let »(t) = M on [0, 7]. Thus ||r¢||z» < [ M ds = Mt for t € [0, ]. Therefore
0
r(t) < C6; + CMt, t€[0,7].

T t
Since |[re||z: = [ r(t — s)ds = [ r(s)ds, we have
0

0
[Irelly < Céist + CM2,, teo,r].
Then it follows
r(t) < Céy; (1 + %) + CJV[2|, te[o,7].

Proceeding in the same way, we find that

(Ct), tel0,7].

21 n—00 ="

r(t) < Cb; ( + T + (cy)? +) +M lim (C:!)”

Thus lim r() = lim r;;(t) = 0 and {y'(-)}2, is a Cauchy sequence on [0, 7].
1,7—00

i,j—00
Therefore ihTo ¥ (t) = y(t),t € [0, 7] exists. It is easy to show that (z(¢),y(t)) is a
solution of (9) on [0, 7]. Analogously (keeping in mind that r(¢) = 0, ¢ € [0, 7]),the
solution can be extended on [r,27] and therefore by induction on [0, 1].

Now let f(-) and g(-) be Caratheodory’s functions. By Scorza-Dragoni’s theo-
rem f(-) and g(-) are almost continuous, so we can use the same fashion. Namely,
for 6; > 0 consider A; C I with measA; < 8;, A;41 C A;. Also let us have on
I'\ A; that f(-) and g(-) are continuous and for the approximate solutions (z*, ')
the following relations are true:

|2°(t) ~ F(t, (), ¥ (2), zh, i) | < 6, la(t,2°(2), ¥ (1), 24, })| < 6.
On A; the above distances are less .or equal to L.

Denote again r(t) = |y* — y/|. One can show that r(t) < 6;;(t) D exp(t), where
6;;(t) < M,t € A;, and 6;;(t) < &;5,t € I\ A;, where lim 6; = 0. Therefore
1,j—co

(z'(), ¥ (-)) — (z(-), y(*)), which is a solution of (9) on [0,1]. m
Now one can easily prove the next variant of the Tikhonov’s theorem.

Theorem 3.2. Under conditions Al, A2 for single valued F the solution set
Z(c) of (8) is continuous in C([0,1],R™) x L*([0, 1], R™) topology et € = 0%.
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Proof. The solution set Z(0) of (9) is non-empty thanks to Lemma 3.1. By A2
it follows (see [8]) that Z(e) is single valued. Then by the LSC of Z(c) at ¢ = 0t
(Theorem 2.4) the proof is completed. =
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COMPLETE SYSTEMS OF BESSEL AND INVERSED BESSEL
POLYNOMIALS IN SPACES OF HOLOMORPHIC FUNCTIONS *

JORDANKA PANEVA-KONOVSKA

Let Bn(z), n =0,1,..., be the Bessel polynomials generated by

1— (1 - 4zw)/? =
(1 — 42w)~1/2 exp{—%} = ZBn(z)w", [4zw] < 1

n=0
and the functions En(z) be defined by the relations
En(z) =47"2"Bu(1/2) exp(—z/2).

Let K = {kn}32 , be an increasing sequence of non-negative integers.

Sufficient conditions for the completeness of the systems {Bj,(z)},_

o and
-~ o>
{Bkn (z)}n=0 in spaces of holomorphic functions are given in terms of the density

of the sequence K.
Keywords: holomorphic functions, complete systems, Bessel polynomials.

Mathematics Subject Classification: 30B60, 33D25, 41A58.

1. INTRODUCTION

Let G be an arbitrary region in the complex plane C and H(G) be the space
of the complex functions lHolomorphic in G. As usual, we consider H(G) with the
topology of uniform convergence on compact subsets of G. A system {¢,(2)}22, C

* Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
This worle was partially supported by the Ministry of Education and Science, Bulgaria, under
Project MM 433/94.
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H(G) is called complete in H(G) if for every f € H(G), every compact set K C G
and every € > 0 there exists a linear combination '

]\7
P(z)= eapn(z), e €C; n=0,1,2,...,N,
n=0
such that |f(z) — P(z)| < € whenever z € K. For example, if G C C is simply

connected, the system {z"}3%, is complete in H(G) and this assertion is nothing

but a particular case of the Runge’s approximation theorem [1, (2.1), p. 176].

Let 4 be a Jordan curve in C and C, be the closure of its outside with respect
to the extended complex plane C = CU {oo}. By H. we denote the (vector) space
of all complex functions, holomorphic in an open set containing C, and vanishing
at infinity. The next statement is a criterion for completeness in the space H(G)
[2, Theorem 17, p. 211).

(CC) A system {pn(2)}3%, of complex functions holomorphic in a simply con-
nected region G C C is complete in the space H(G) iff for every rectifiable Jordan
curve ¥ C G and every function F' € H the equalities

/F(z)gan(z)dz =0, n=0,1,2,...,
5
imply F = 0.
Completeness of systems of special functions in spaces of holomorphic functions
has been considered also by Kazmin [3], Leontiev [4, Ch. 3], Rusev [5-9].

2. BESSEL AND INVERSED BESSEL POLYNOMIALS

Let us define the function ®(z, w) as
1—(1—4zw)'/?
2z

®(z,w) = (1 — 4zw)~Y?exp { } , Jdzw] < 1. (2.1)

Note that the identity
1—(1—4zw)t/? 2w
2z T 14 (1 - 4zw)t/?
implies that the point z = 0 is a removable singularity of this function for every

fixed w.
Let B,(z), n=0,1,..., be the Bessel polynomials defined by [10, (11.2), VII] -

(2.2)

[o e]
®(z,w) = _ Ba(2)uw", |4zw|< L (2.3)
n=0
The polynomials y,(z;a,b) [11, 6] are defined by
11 2o b
_ -1/2 o 1/2 O 9.1/2
(1 — 2zt) exp (2 2(1 2zt) ) exp <2.7: (1 (1 —2zt) )>

_ i (g)n un (230, Bt (1)~ (2.4)

n=0
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Their explicit form

O 0l aarcas IO N

is given in [12, 19.7, (19)]. The substitution of , t, a and b, respectively with 2z,
w, 2 and 2 in (2.4) and (2.5), gives the equality

&(z,w) = Z yn(22;2, 2)w™(n))7!,

n=0
ie.
TL + k k \
Ba(2) = ~ Z ey (2.6)
The polynomials (—1)"n!B,(—z), whlch are a]so called Bessel polynomials, are
considered in [13].
Denote
~ _ 1 z
B,(z) =4""2"B, (;) exp (—§> . (2.7)
Having in mind (2.6), we get
= _exp(—z/2) (n+ k)! .
Bn(2) = — o Z T k)' . (2.8)
Let

®(z,w) = (1 —w)~Y2exp {—%(1 - w)l/z} , z€C, weC\[l,00). (2.9)

Lemma 2.1. If lw| <1 and z € C, then

= ZE (2.10)

Proof. The substitutions z = (! and w = (w/4 applied consecutively in (2.1),
(2.3) give

‘I’(C'l.w)=(1—4wC‘1)‘1“exp{ (1—24“”1/2} ZB ¢THun,

— (1 —w)1/2
®(¢ ! Cw/4) = (1 —w) Y2 exp {1—(12L<} = Z4‘"(,’"Bn(C'1)w”.

After multiplication of the last equality by exp(—({/2) we obtain

o} =3 B

l—w 1/2

exp(~¢/2)®(¢7 1 (w/4) = (1 - w)_l/2 exp { (
and since |4zw| < |w| < 1, the lemma is proved.
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3. AUXILIARY STATEMENTS

Denote
Aa={z:2€C", |argz|<ar}, C =C\{0}. (3.1)
Lemma 3.1. Let G C A,, 0 < a < 1, be a simply connected region, v C G be
a rectifiable Jordan curve, F € H,, F #0, and iIelf |z| = 7. Let |w| < 1/(47r) and
z€7y

fw) = /F(z)d)(z,w) dz. (3.2)
Then the following ezpansion hozds;7
Fw) = 3 An(FYu” (.3)
with the coefficients "~
An(F) = / F(2)Bn(z) dz. (3.4)

5
Moreover, the radius of convergence of the series (3.3) is finite.
L (9%, w) . Since f(w) is
n! ow™ w=0

holomorphic for |w| < 1/(47), then f(w) can be expanded in a Taylor series

Proof. 1t follows from (2.3) that B,(z) =

flw) = i . ( [re{ %"’)} dz) w* = i( [ @8 dz) W)

which yield (3.3), if the notations (3.4) are taken into account.
Having in mind the identity (2.2), we get

2w
—(1_ ~1/2
®(z,w) = (1 —4zw) exp T (A= dz0)i?
—2w
—(1_ —1/2 _
= (1 —4zw) exp { T 4zw)1/2} . (3.5)

Suppose that the radius of convergence of (3.3) is infinite. This means that
(3.3) defines an entire function. Let us evaluate the order of f(w). Using (2.1) and
(3.2), we get consecutively

ds

|f(w)| < / ‘F(z)(l — 4zw)" V2 exp { 1-(1 —2;121”)1/2}

w-1/2 _ (w—l._ 4z)1/2
2-1/2

bs

s/|F(z)||1—4zw|—1/2exp{|z|—1/2|w|1/2
Y
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As lim
Jwl—oa

following inequalities hold:

w2 — (w‘1 — 42)
221/2

w2 — (w! — 42)1/2\ = 2|z|*/? and l llim (1—4zw)~1/2 = 0, then the
w|—0o0

1/2
<2, [1—4zw|"?<1,

for sufficiently large |w|. Denoting
m =sup |F(z)|, p(y)=L, M=mlL, (3.6)
2E€y

we conclude that there exists a constant B > 0 such that the inequalities
|F(w)] < M exp (2027 /2|w]/?) < Mexp (r~/2u|!/?)

hold for every |w| > B. Therefore, the order of the function f is p < 1/2.

Further we apply the Phragmen-Lindelof theorem [14, p. 206] for f(w). To
this end, consider first f(—u), v > 0, and use ®(z,—u) as given in (3.5).
Since ¥ C Aq, then |arg(l + 4zu)| < a7 and |arg(1 +4zu)1/2[ < awn/2. There-

2u
. 1/2
fore [arg (1+ (1 +4zu)'/?)| < am/2. Then‘afgit;zii:z;;ﬁ75
2u

1+ (1 +4zu)l/2

< arm/2, ie.

Re
get

> 0. Further, using the notations r; = ir€1f Rez and (3.6), we
z€y

ds

\ 5
[f(=u)l < m/ (@ + 420)72 72 exp (—1+(l+u4zu)1/2>
J

—2u
. -1/2
S m(l +471u) / /exp (Re m) ds
v

< M(1+ 4ru)~Y2 (3.7)

Now, let max(e;1l — @) < f < 1, arg(—w) = (1 — f)w, argz = 6. Then
arg(~zw) = (1 — f)m + 0, and as —aw < § < a7, we get consecutively

(1 -a-—p0)r < arg(—zw) < (1+ a — f)r,
(1—a-pB)7r <arg(l —4zw) < (1+a — f)r,
(l—a—ﬂ)g < arg(l — 4zw)!/? <(17|-a—ﬂ)g-

Denoting ¥ = arg (1 + (1 — 4zw)/2), we have

—2
(1—a=B)F <¥<(ta=fg, agqmg—iom=0-0r ¥
(l-a-pz=01-fr-(1+a=p7
<U-Pr-v<1-Pr—-(l-a-fz=(1+a-H7Z,

83



—2w <7 ie R —2w
—, L.¢.
T+ (1 - 4zw)/2| ~ 2 T+ 0= 4w)ii

| llirn (1 —4zw)~*/2 = 0 and (3.6, we conclude that there exists a constant P > 0
w|—0oa

such that

hence {arg

) > 0. Now, using

|f(w)| £ mP/exp {Re (—1 n (1__2:;1”)1/2)} ds < MP. (3.8)

Therays I} = {w:w=—vu, u>0}and l; = {w: arg(—~w) = (1 — )} divide
the complex plane into two angular domains of sizes (1 4 8)7. The order of the
function is p < 1/2. It follows from (3.7) and (3.8) that |f(w)| is bounded along /;
and 3. As 1/2 < (1 £ )7, according to the Phragmen-Lindelof theorem f(w) is
bounded in both angular domains and therefore in the whole complex plane. Hence
f = const. It is seen from (3.7) that ulirgo f(=u) = 0, which means f = 0. Since
F # 0 and the system {B,(2)}2%, is complete in H(G), see Theorem 1, the last

equality contradicts the criterion for completeness (CC). Therefore the radius of
convergence of the series (3.3) is finite.

Lemma 3.2. Let G C Ay, 0 < a < 1/2, be a simply connected region, vy C G
be a rectifiable curve, F € H, and F # 0. Then there ezists a real number ¢ € (0, a)
such that the funclion f has no singular points outside the set A,.

Proof. The curve v is a compact set, hence there exists a closed domain A,
0 < ¢ < a,of the kind (3.1) such that y € A, and yNJA, # 0. The values of w, for
which 1 —4zw = 0, are w, = (4z)~!. Let z € y. Then w, € A, too. Therefore all
the points for which 1 — 4zw = 0 are in the set A4, and the function (1 — 4zw)~/2
is a holomorphic function of w outside A,. Hence the function (3.2) is holomorphic
for w € Ext A, too.

Lemma 3.3. Let G C Ao, 0 < @ <'1/2, be a simply connected region, v C G
be a rectifiable Jordan curve, F € H, and F #0. Let

Flw) = /F(z)&)(z,w)dz, we C\[1,00). (3.9)

Then the following ezpansion holds:

flw)y=3Y_ A (F)w" (3.10)
n=0
for |w| < 1 with coefficients
A (F) = /F(z)fén(z) dz. (3.11)

Y

Moreover, the radius of convergence of the series of (3.10) s finite and it has no
singular points in C\ [1, c0).
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Proof. From (2.10) it follows that B,(z) = %{—6—%} . As f(w) is
- w=0

holomori)hic for |w| < 1, then f(w) can be expanded in a Taylor series, i.e.:

f(w) = Z nl'-( /F(z) {%} dz) w" = Z( /F(z)ﬁn(z) dz) w”,

which yields (3.10), if the notations (3.11) are taken into account.
Suppose that (3.10) has infinite radius of convergence. This means that (3.10)

defines the entire function f. From (2.9) and (3.9) we obtain

7w < [1r@In - w7 esp { Eljwpr2jumr -1 s
Y

Since lim Iw‘l - 1]1/2 = 1l and lim |l — w|~Y/2 = 0, then the inequalities
|lw|—o0 jw|—oo
|w'1 -1 < 2, |1 — w|~Y/% < 1 hold for sufficiently large |w|. If we denote

R = sup |z| and use (3.6), we obtain that there exists a constant D > 0 such that
Z€~

the inequality |f(w)| < M exp (R|w|*/?) holds for every |w| > D. This means that
f is of order p < 1/2.

Now let us investigate the behaviour of f(w) along each of the rays I} = {w:
w=-u, u >0} and I3 = {w : arg(—w) = (1 — 2a)r/2}. As vy C A,, then

arg (%(1 + 11)1/2>

we get

< aw, ie. Re (%(1 + u)1/2) > 0. Using the notation (3.6),

If(—u)| <m(l+ u)'1/2/exp {Re (-%(1 + u)1/2> } ds

<MQA+u)" V2 < M. (3.12)

Now let w € l3. As —aw < argz < am, we have consecutively

0<arg(l—w)<(1l- 2a)g,
1/2 T
0 < arg(l — w) <(1—2a)z,

0< arg (%(1 - w)1/2) <+ 201)%, ie. Re (%(1 -~ w)1/2> > 0.
Using that | 1|i—n»loo |[1—w|[~*/? = 0 and (3.6), we conclude that there exists a constant
@ > 0 such that
Fo)| < m@ [op{Re (~5a-up?) Jas<ma. @1y
J :
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The rays [; and I3 divide the complex plane into two angular domains with sizes
(1 = 2a)7/2 and (3 + 2a)r/2. The order of the function is p < 1/2. As seen. from

(3.12) and (3.13), f(w) is bounded along I; and I3. Because of 1/2 < 2(1-2a)~! and
1/2 < 2(3+2a)~!, according to the Phragmen- Lindelof theorem f(w) is bounded in

both angular domains and therefore on the whole complex plane. Hence fE const.
From (3.12) it is seen that lim f(—u) = 0, that is f = 0. Since F' # 0 and

the system {En(z)} . is complete in H(G), see Theorem 2, the last equality

contradicts the criterion (CC). Therefore the series (3.10) has a finite radius of
convergence. Finally, let us note that (3.9) has no singular points in C\ [1, c0).

4. MAIN RESULTS

Theorem 4.1. Let G C C be a simply connected region. Then:

i) The system of the polynomials { B, (2)}22, is complete in the space H(G);
i) The system of the functions {En(z)} is complete in the space H(G).
n=0

Proof. i) According to (2.6) deg B, = n, n = 0,1,2,..., and therefore the
system {B,(z)}2%, is linearly independent. Therefore {B,(z)}3%, is a basis in the
space of the algebraic polynomials. Hence 2" is a linear combination of {Bk(z)}7_,
therefore it can be concluded that {B,(2)}3%, is complete in H(G).

ii) According to (2.8) the coefficients of the polynomials exp(z/2)B,(z) are
all different from zero, i.e. deg (exp(z/?)ﬁn(z)) =n,n=0,1,2,... Therefore
the system {exp(z/?)ﬁn(z)}m_
a basis in the space of algebrai_c polynomials. Then z” is a linear combination of
{exp(z/?)ﬁk(z)}: . That is why {exp(z/?)ﬁn(z)} , is compete in H(G), and

=0 n=

since exp(z/2) # 0 for each 2 € C, the correctness of the theorem is proved.

is linearly independent, which means that it is
0

Theorem 4.2. Let 0 < @ < 1 and lim (n/k,) = 6 > a. Then the system of
n—oo

the polynomials

{Bk. ()}, 20 (4.1)
is complete in the space H(G) for each simply connected region G C A,.

Proof. Suppose the statement is not correct. Then there exists & simply con-
nected region G C A, such that the system (4.1) is not complete in H(G). Ac-
cording to the criterion (CC) this means that there exist a rectifiable Jordan curve
¥ C G and a function G € H,, such that F # 0, but

/F(Z)Bkn(z)dz:O, n=0,1,2,... (4.2)
5
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Let r = ;Iel—fyl |z] and jw| < (4r)~'. Consider the complex-valued function f(w),

defined in (3.2). Let us note that it is not identically zero. Moreover, if k, are
the indices of the coefficients (3.4) in the power series (3.3), for which {/c } =

n=0
{n}s%o \ {kn}3,, it follows from (4.2) that

F(w) = Z Ap (Fywb=, (4.3)

For the density of the sequence {L } we have
=0

A=1-6<1-o. (4.4)

As F # 0, not all the complex numbers (3.4) are zeroes. Then, according to Lemma
2, there exists a number ¢ € (0, @) such that all singular points on the circle |w| =
(R is the radius of the convergence of the series (3.3)) lie in the set A, i.e. there is
a closed arc with lenght 27(1 —¢), where (3.3) has no singular points. On the other
hand, by a Polya theorem [15, Th. 7, p. 625] every closed arc of the circle |w| =
with lenght 2mA contains at least one singular point of (4.3). Because of (4.4) we
have 27A = 27(1 — é) < 27(1 — @) < 27(1 — ¢) and we come to a contradiction.
Therefore the system (4.1) is complete in H(G) for every simply connected region
G C As.

Theorem 4.3. Let 0 < a < 1/2 and nlimoo (n/kyn) = & > 0. Then the system

of the functions
~ oQ
{Br.)} (4.5)
is complete in the space H(G) for every simply connecled region G C A,.

Proof. Let us suppose that the statement is not correct. Then there exists
a simply connected region G C A, such that the system (4.5) is not complete in
H(G). That means that there exist a rectifiable Jordan curve v C G and a function
F € Hy such that FF # 0, but

/F(z)gk"(z) dz=0, n=0,1,2,... (4.6)
5
Let |w| < 1. Consider the complex-valued function f(w),~deﬁned by the equality
(3.9). Observe that it is not identically zero. Moreover, if k, are the indices of the
coefficients (3.11) in the power series. (3.10) for which {%"}::o = {n}22\{k.} 20,
it follows from (4.6) that

o0}

F(w) =Z wke, (4.7)

We have
A=1-6<1 (4.8)
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for the density of the sequence {;n} 0 As F' # 0, not all of the complex numbers

(3.11) are equal to zero. Then, according to Lemma 3, the unique singular point
of f(w) on the circle |w| = R (R is the radius of convergence of the series (3.10))
is w = R. On the other hand, according to a Polya theorem [15], every closed arc
of the circle [w| = R with lenght 27 A contains at least one singular point of (4.7).
Because of (4.8) we have 27A = 27(1 — ) < 27 and we come to a contradiction.
Therefore the system (4.5) is complete in H(G) for every simply connected region
G C A,.
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AN ALGORITHMIC APPROACH TO SOME PROBLEMS
ON THE REPRESENTATION OF NATURAL NUMBERS
AS SUMS WITHOUT REPETITIONS!

DIMITER SKORDEV

Given any strictly increasing computable function in the set of natural numbers,
certain algorithmic problems arise on the representation of numbers as sums of distinct
values of the function. The problem whether a given natural number is representable
in this form is obviously algorithmically solvable, but we propose some methods for the
solution of the problem that seem to be better than the straightforward ones.

It is easy to see the algorithmic unsolvability of the problem whether all natural
numbers are representable (under the usual assumption that an index of the given
computable function is used as input data). However, under an appropriate restriction
concerning, roughly speaking, the speed of the growth of the function, we present
an algorithm for solving this problem and the more general one whether all natwral
numbers greater than a given one are representable (the restriction is satisfied, for
example, when the given function is a polynomial).

We make applications of the presented positive results to concrete problems con-
cerning, for instance, the representation as sums of distinct squares or as sums of
distinct positive cubes.

Keywords: algorithm, sums without repetitions, representability of natural numbers,
sums of distinct squares, sums of distinct positive cubes.
Mathematics Subject Classification: 11-04, 11B13, 11E25.

1. INTRODUCTION

Let N4 be the set of the positive integers. Suppose f is a strictly increasing
function in Ny. An integer n will be called edditively f-representable without

1Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
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repetitions (f-representable, for short) iff

n=>"f(i)

€A

for some finite subset A of N ; any such A will be called an f-representation of
n. Of course, all f-representable integers are non-negative, and the number 0 is
f-representable (with an empty f-representation).

There is a case when any non-negative integer is f-representable and has a
unique f-representation. This is the case when f(i) = 2°-! fori=1,2,3,... To
have a more complicated example concerning f-representability, let us consider the
case when f(i) = i2 for any ¢ in N, . Then there exist positive integers that are
not f-representable, as well as ones having more than one f-representation. Some
results connected to f-representability in this case have been presented in [2-5],
but without giving a complete description of the set of the representable integers.
Such a description can be derived from certain results given in [1] that show the f-
representability of all integers greater than 128 as well as of the most of the smaller
positive integers. By checking individually the few remaining positive integers, one
gets the following conclusion: there are exactly 31 positive integers that are not
f-trepresentable, namely the integers 2, 3, 6, 7, 8, 11, 12, 15, 18, 19, 22, 23, 24, 27,
28, 31, 32, 33, 43, 44, 47, 48, 60, 67, 72, 76, 92, 96, 108, 112, 128.

The mentioned results from [1] are proved by using tools from Number The-
ory (such as, e.g., divisibility considerations). Those results give in fact consid-
erably more precise information about the f-representations in question. For ex-
ample, it is seen that each f-representable integer in the considered case has an
f-representation consisting of not more than six elements. However, it could be
possibly interesting to know that the less precise statement, formulated at the end
of the previous paragraph, can be proved in an algorithmic way without using any
specific tools from Number Theory. This can be done as an application of a certain
method that will be exposed in the present paper.

2. A USEFU". EXTENSION OF THE INVERSE FUNCTION f-!

We turn back to the general case described in the first paragraph of the intro'—
duction. Given the function f, we define three other functions REPRy, L; and f!
with domain N, the first two of them being set-valuéd and the third one being
integer-valued. We define them as follows. Let n be an arbitrary element of N.
We adopt REPRf(n) to be the set of all f-representations of n; clearly, this set
is finite (possibly empty) and its elements (if any) are non-empty finite subsets of
N, . Then we set

L¢(n) = {min A | A € REPRf(n)}.
Of course, Ls(n) is a finite subset of Ny, and Ly(n) is empty iff REPR;(n) is
empty, i.e. iff n is not f-representable. Finally, if L;(n) # 0, then we set fT(n)

to be the maximal element of L;(n), otherwise we set fT(n) = 0. Thus fT(n) is a
non-negative integer that is equal to 0 iff n is not f-representable.
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Example 1. If f({) =% fori=1,2,3,..., then
REPR;(50) = {{1,7},{1,2,3,6},{3,4,5}},
hence L;(50) = {1,3}, ff(50) = 3.

For any positive integer 7 the singleton {i} is an f-representation of the number
f(7), and any f-representation of this number contains some element not greater

than 7, hence the equality fT(f(i)) = ¢ holds. Thus the function fTL is an extension
of the inverse function f~!

We also note that for any f-representable positive integer n the number fT(n)
belongs to some f-representation of n, hence the inequality f(fT(n)) < n holds.

The consecutive values of the function f]L can be recursively computed on the
base of the next proposition.

Theorem 1. For any posilive inleger n we have the equalily

Lyny={k €Ny | f(k)=n or (f(k) <n and fi(n— f(k)) > k)}.

Proof. Let n be a positive integer. Consider first any k belonging to L;(n).
Then & = min A for some f-representation A of n, hence £ € N,. If k is the only
elernent of A, then f(k) = n. Otherwise n — f(k) is a positive integer, and A\ {k}
is'an f-representation of n — f(k). Therefore

A (n— £(k)) > min(4\ {k}) > k.

Thus in both cases k belongs to the right-hand side of the equality. For the reasoning
in the opposite direction, suppose now that k belongs to the right-hand side of this

equality. Then & € N, and either f(k) = n or f(k) < n and fT(n— f(k)) > k. If
f(k) = n, then we set A = {k}. Otherwise we consider an f-representation B of

n — f(k) such that fT(n — f(k)) = min B, and we set A = {k} U B..In both cases
A is an f-representation of n and k£ = min A4, hence k € Ls(n).

Example 2. Let f enumerate the set of the prime numbers, i.e. f(1) = 2,
f(2) =3, f(3) =5, f(4) =17, f(5) = 11 and so on. Then, making use of Theorem 1
and of the definition of the function f!, we get consecutively:

Ly(1) =0, flay=o,
Ly(2) = {1}, fey=1,
Lf<3)={2}, i3 =2,
L(4) =0, i@y =o,
L;(a)-{l 3}, fi5) =3,
Ly(6)= i) =o,
Lf(7)-{1 4}, i1 =4,
Ly(8) = {2}, fl®) =2,
L(9) = {1}, 19 =1,
Ly(10) = {1,2}, FOES
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T ft(101+y)
y=0|y=1|y=2|y=3|y=4|y=5|y=6|y=T{y=8|y=9

0 1 0 0 2 1 0 0 0 3
1 1 0 0 2 T 0 4 1 0 0
2 2 1 0 0 Q 5 1 Q 0 2
3 1 0 0 0 3 1 6 1 2 1
4 2 4 1 0 0 3 1 0 0 7
5 3 1 4 2 2 1 2 1 3 1
6 0 5 2 1 8 4 1 0 2 2
7 3 1 0 3 5 1 0 4 2 1
8 4 9 1 3 2 6 3 2 . 1 5
9 4 1 0 2 3 1 0 4 3 3
10 10 4 2 2 2 4 5 1 0 3
11 5 1 0 7 3 3 4 6 2 3
12 2 11 4 2 1 5 4 1 0 4

Fig. 1. The first 129 values of the function f'r in the case of f(i) = i

Clearly, it is not always necessary to find all elements of the set L;(n) in order
to see that it is not emply and to find its maximal element. We have f(k) < n

for any k imr Ly(n). Therefore, to calculate fT(n), one could simply find the least
positive integer k such that f(k) > n and then execute the operator

repeat k:=k— luntilk =0 or k € Ls(n)

(interpreted in a Pascal-like way).

Example 3. Fig. 1 contains a table of the values of fT (n)forn=1,2,...,129,
calculated by computer in the above way in the case of f(i) = i?. The table shows
that among the positive integers not greater than 129, exactly the 31 ones listed in
the introduction are not f-representable.

The amount of operations can be somewhat reduced by noticing that for
positive integers n, not belonging to the range of f, one could start executing
the above operator from the least positive integer & such that f(k) > n/2 (if
n € N4\ range(f), then f(k) < n/2 for any k in Ls(n), since any k in L;(n)
belongs to some f-representation of n together with at least one greater number).
Working in this way, one could manually verify the correctness of the values in
Fig. 1 in the course of, let us say, one and a half hour.

Let N be the set of all non-negative integers. The indicated method for com-
puting values of the function f]L can be modified by introducing a binary relation
H; in N as follows: n Hy i iff n has an f-representation A such that all elements
of A are greater than i. We have 0 H; ¢ for any 7 in N by trivial reasons. On the
other hand, the following equivalence holds for any n in N} and any ¢ in N: n Hy ¢

iff fJr (n) > i. Making use of these properties of H; and of Theorem 1, we get the
following result.
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Theorem 2. Let n € N;. Then
Ly(n)={k €Ny |f(k) <n and n— f(k) Hy k)}
and for any i in N
nHpi < 3keNy (k>iand f(k) <n and n— f(k) H; k).

To illustrate the application of the relation H; to the computation of values
of fT, we shall consider one more example.

Example 4. Let, as in Examples 1 and 3, f(i) = i for i = 1,2,3,... We
shall compute fJr (50) by using the properties of the relation H;. Since 50 is not
a value of the function f and the least positive integer k satisfying the inequality
k? > 50/2 is 5, the value of fT(SO) can be obtained from % = 5 by applying the
operator

repeat £ := k — 1 until k =0 or k € L;(50).
By Theorem 2 we have
4€L;(50) & 50-4°H; 4 & 34 H; 4 &

JkeNy (k>4 and k<34 and 34— k*Hj k) & 34-52H; 5 &
9H;5 ¢« Jk €Ny (k>5 and k> <9 and 9—k* H; k),
hence 4 g L;(50). Again by Theorem 2

3€L;(50) & 50-3°H;3 & 41 H; 3 &

Jk € Ny (k>3 and k* <41 and 41 -k* H; k) &
41— 4> Hp4 or 41—-5* H; 5 or 41— 6% H; 6,
41-4°H;jd4 & 25Hi 4 &
JkeNy(k>4and k2 <25 and 25-k* H; k) &
25—-52 Hy 54 0 H; 5,

hence 41 — 4% H; 4, and therefore 3 € L;(50). Thus _fT(SO) =3.

Remark. The method used in the above example is convenient when some
value of the function f]L has to be computed without necessarily computing the pre-
ceding ones (an additional reduction of the count of the operations could be achieved
by noticing that the statements of Theorem 2, in particular the second one, hold
also with “f(k) < n/2” instead of “f(k) < n” in the case of n € N \ range(f)).
However, if one has to make a table of the values of fT(n) forn =1,2,...,m,
where m is a given positive integer, then it seems more reasonable to proceed by
consecutive straightforward applications of Theorem 1 as in Example 3.
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The function f]L can be used not only for checking whether a given positive
integer is f-representable, but also for finding one of the f-representations of a
given f-representable natural number. This way of using fT i1s possible on the
basis of the next proposition.

Theorem 3. Let n be an f-representable non-negative integer. Let the integers
no,n1, ... be defined as follows, taken for granted that njy, is defined iff the right-
hand side of the Second equality makes sense:

ng=n, nj4=n;— f(fT("j))-

Then there is ¢ non-negative integer v such that n, = 0, and if r is such an integer,
then the set {fT(nj) |0< j<r}isan f-representation of n.

Proof. Tt is clear that n;, is defined iff n; is positive and f-representable.
Hence, if n. is defined for a certain r, then n; is defined, positive and f-represent-
able for any j < r, and if n, = 0, then n; is undefined for any j > r. Applying
the last statement in the case of » = 0, we see that the theorem is trivial if n = 0.
Suppose now that n > 0. Then ng is positive and f-representable. On the other
hand, if for a certain j the number n; is defined, positive and f-representable,
then, by the definition of the function er, the number n;;, is not only defined,
but it has an f-representation whose elements are all greater than fJr (nj), and
this implies the inequality fT(nj) < fJf(nj_H) in the case of nj4; > 0. Since the
values of the function f are positive, we thus see that the defined numbers n; form
a strictly decreasing sequence of f-representable and hence non-negative integers,
and the defined numbers f1(n;) form a strictly increasing sequence. The sequence
ng,ny, ... should be necessarily finite, and it is clear that its last member should
be 0. Consider now an r such that n, =0, and set A = {fT(nj) |0 < j<r}. Then

r—=1
n:no_n,_z j=nie) = > f(F () = D £G).
0

i= i€A

Hence A is an f-representation of n.

Example 5. We shall apply the above theorem to f(i) = i and n = 124. In
this case we get (using the table from Fig. 1)

no =124, fi(ne) = 1, m = 123, fI(n) = 2, ny =119, fi(ny) =3,
ns = 110, fT(n3) =5, ns = 85, fT(ny) =6, ns =49, fi(ns) =7, ng=0.

Hence, by Theorem 3, the set {1,2,3,5,6,7} is an f-representation of the num-
ber 124.
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3. CHECKING II' ALL NATURAL NUMBERS GREATER THAN
A GIVEN ONE ARE f-REPRESENTABLE

As until now, a strictly increasing function f from N, to N, is supposed to
be given. If this function is computable (in the precise sense given by Recursive
Function Theory), then there are obvious algorithms solving the problem whether a
given natural number is f-representable, and the considerations from the previous
section yleld certain better algorithms for the same purpose. A more difficult
problem is to decide whether all natural numbers are f-representable. This problem
is algorithmically unsolvable in the following natural sense: there is no computable
function h defined on the indices of all strictly increasing computable functions f
in N4 and transforming such an index into 0 exactly when all natural numbers
are f-representable with respect to the corresponding function f. To prove this,
let us consider a two-argument primitive recursive function g such that the set
P = {z]3y (g9(z,y) = 0)} is not recursive. For each z in N we define a strictly
increasing function f; from N into N as follows: for any ¢ in N4, if g(z,y) > 0
for all y less than i, then fr(i) = 2!~!, otherwise fz(i) = 2°. If 'z € P, then
the range of the corresponding function f; is the set {1,2,2% 23 ...} with one of
its elements missing, otherwise the range of f; is the whole set {1,2,22,23 .. }.
Hence, if £ € P, then there are infinitely many natural numbers that are not f,—
representable, otherwise all natural numbers are f;-representable. If we suppose
that a computable function h exists telling apart indices as said above, then we get
a contradiction with the non-recursiveness of P.

Of course, the established algorithmic unsolvability-directly implies the unsolv-
ability of the more general problem to decide whether all natural numbers greater
than a given one are f-representable. However, we cannot exclude the possibility
of an algorithmic solution of the last problem under some reasonable restrictions
imposed on the function f. A realization of this possibility will be demonstrated
in the present section.

For any two integers a and b let [a..b) denote the set of all integers n satisfying
the inequalities a < n < b (of course, this set is non-empty iff a < 4). Let [a .. o0)
denote the set of all integers n satisfying the inequality a < n.

Theorem 4. Suppose ig € N4, ng € N, and the following two conditions are
satisfied:

1. For any i in [ip ..o0) the inequality 2f(i) — f(i + 1) > no holds.

2. All elements of [ng..no+ f(io)) are f-representable.
Then all elements of [ng ..o0) are f-represeniable.

Proof (making use of an idea from [5]). For any positive integer i we set
S; = [no+f(7)..2f(3)). We'shall first show that any element of the set [ng+f(ig)..00)
belongs to some S; (with ¢ > ip). In fact, given an element n of [ng+ f(ig)..00), let
us consider the greatest 7 in N satisfying the inequality no + f(¢{) < n. For that
i we have the inequalities ¢ > ig, ng + f(i 4 1) > n. From them and Condition 1,
the inequality n < 2f(7) follows, hence n € S;. Now we shall prove the conclusion
of the theorem by means of an induction of the following kind: we shall show that
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whenever an integer n belongs to the set {ng..00) and all smaller integers belonging
to this set are f-representable, then n is also f-representable. Suppose n is an
integer satisfying the above assumptions; we shall prove that n is f-representable.
By Condition 2, we have to examine only the case when n > ng + f(40). Then we
consider a positive integer ¢ such that n € §;. The last condition is equivalent to
the inequalities ng < n— f(i) < f(i). The first of them, together with the inequality
n — f(7) < n and the induction hypothesis, shows that n — f(z) is f-representable.
Let A be an f-representation of n — f(7). The inequality n — f(i) < f(?) implies
that i ¢ A. This fact, combined with the equality n = (n— f(7)) + f(4), shows that
AU {¢} is an f-representation of n, hence n is f-representable.

Remark. An inspection of the proof shows that Condition 2 may be weakened
by requiring f-representability only of the elements of [ng..ng+ f(ig)) that belong
to none of the sets S;, { = 1,2,3,...

Suppose now some ng € N is given. Theorem 4 immediately implies the
following statement: whenever ig € N} and Condition 1 is satisfied, then the f-
representability of all elements of [ng ..00) is equivalent to the representability of
the elements of [ng..ne + f(in)). If the function f is computable, then the last
condition can be checked in an algorithmic way, and this will be an algorithmic
way to check whether all elements of [ng..00) are f-representable. Of course, we
may use this way only if we succeed to find some ig € N, satisfying Condition 1.
We shall show now some examples when such an iy really can be found.

Example 6. Let f(i) = 2~ fori = 1,2,3,... Then 2f(i) ~ f(i+1) =0
for any such 7, hence Condition 1 is satisfied with ng = 0, 7o = 1. Therefore the
well-known f-representability of all non-negative integers in this case can be proved
by checking the f-representability of the elements of the set [0.. f(1)). Thus the
f-representability of all non-negative integers is reduced to the trivial fact that 0
is f-representable.

Example 7 (generalization of the previous example). If 2f(i) — f(i + 1) > 0
for any 7, then the f-representability of all non-negative integers is equivalent
to the equality f(1) = 1 (since no f-representable positive integer can be less
than f(1)). As a particular instance of this we could consider the case when f
enumerates the T'ibonacci numbers 1,2,3,5,8,13,..., i.e. f(1) = 1, f(2) = 2
and f(?) = f(i — 1)+ f(i —2) for i = 3,4,5,... In this case, if ¢ = 1, then
2f(i) = f(i+ 1) = 0, otherwise 2f(¢) — f(i + 1) = f(i) — f(i — 1) > 0. Thus all
non-negative integers are f-representable with respect to this particular function f.

Example 8. Let the function f be a polynomial, i.e.

f() =api” + a1 +ai %t ariitoar,

where r € N, r,a9,4a1,...,a-_1, a- do not depend on 7, and ag # 0. Obviously, we
should have » > 0, ap > 0, and all coefficients ag, @1, ...,ar_1, @, must be rational
numbers. The function 2f() — f(i + 1) is also a polynomial, namely

2f(8) — J(E+ 1) = agi” + b1 + b2 L+ b+ by

with the same ap and new coefficients b;,b9,...,b,_1,b, that are again rational
numbers. Clearly, these new coefficients can be effectively found (assuming, of
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course, that the degree r and the coefficients ag, ay, ..., a,_1, a, are explicitly given
or can be effectively found). Therefore, given any non-negative integer ng, one
can effectively find a positive integer iy satisfying Condition 1. This allows us to
check algerithmically whether all elements of the set [ng..oo) are f-represent-
able (the result can be obviously generalized to computable functions f such that
2f(%) — f(i +1) effectively diverges to +oo together with ¢, i.e. such that there is a
computable function transforming any non-negative integer ng into some positive
integer iy satisfying Condition 1).

Example 9 (a particular instance of Example 8). Let f(i) = 2 for any 7 in
N+. Then

2f() = fi+ 1) =2 -2i—1=i(i —2) -1,

and therefore 2 f()— f(i+1) > 129 for any 7 in [13..00). Since 129+ f(13) = 298, the
f-representability of all elements of [129..00) is equivalent to the f-representability
of the elements of [129..298). The f-representability of the mentioned finitely

many integers can be shown by computing the corresponding values of fJr (using
Theorem 1) and showing that they are all positive, i.e. by a certain continuation
of the computations that produced the table from Fig. 1. We have done this by
computer, but we do not present the corresponding continuation of the table here.
We preferred to present a table of f-representations of the numbers from 129 to
297 (cf. Fig. 2), since its correctness allows an easier manual verification (the table
itself is produced by computer on the basis of Theorem 3; the representations are
written without the curly brackets for the sake of saving space).

Remark. Some of the considered numbers have shorter f-representations
than the ones given in the table. For instance, the number 131 has also the f-
representation {1,3,11}. Note also that one could (especially at manual verifica-
tion) use the remark after the proof of Theorem 4 and somewhat reduce the count
of the numbers to be checked. In the concrete situation (f(i) = 2, ng = 129) we
have S; = [129 + 42 .. 2i?) for any positive integer i. We see that S; = @ for i < 11,
S12 = [273 ..288), and S; consists of numbers not less than 298 for i > 13. Hence
it would be enough to check the numbers belonging to [129..298) \ Sio, i.e. one
could skip the check of 15 numbers.

Example 10 (several other particular instances of Example 8). Fig. 3 contains
a summary of results of applying Theorem 4 to concrete polynomials f for obtaining
results of the form “All elements of [ng..oc0) are f-representable”. In any of these
results the number ng is the least possible for the polynomial in question and has
been found by means of an iterative process starting with ng = 0 as an initial value.
The iteration step and the termination of the process can be described as follows.
We find a positive integer iy satisfying Condition 1 for the current no and then we
consecutively check for f-representability the numbers in [ng..no+ f(éo)). If all of
them turn out to be f-representable, then the process terminates with the current
ng as its result. Otherwise, if m is the least number from [ng..ng+ f(40)) that is not
f-representable, then we take the number m+1 as a next value of ng. Note that at
the moment of the termination of the process all integers in the set [0..7nq+ f(é0))
turn out to have been already checked, hence the method can be obviously refined
to compute also the total count of all positive integers that are not f-representable
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n f-represen- n f-represen- n f-represen- n f-represen-
tation of n tation of n tation of n tation of n
129 4,78 172 | 1,4,57,9 | 215 | 3,6,7,11 258 58,13
130 7.9 173 4,6,11 216 | 4,6,8,10 259 | 5,7,8,11
131 3,4,5,9 174 5,7,10 217 6,9,10 260 8,14
132 | 1,3,4,59 | 175 3,6,7,9 218 7,13 261 6,15
133 4,6,9 176 | 1,3,6,7,9 | 219 5,7,8,9 262 | 4,5,10,11
134 3,5,10 177 | 4,5,6,10 220 | 3,457,11 | 263 | 56,911
135 | 3,4,56,7 | 178 3,13 221 10,11 264 | 3,5,7,9,10
136 6,10 179 3,7,11 222 4,6,7,11 265 11,12 .
137 4,11 180 6,12 223 | 2,5789 | 266 8,9,11
138 57,8 181 9,10 224 4,812 267 | 4,7,9,11
139 3,7,9 182 5,6,11 225 15 268 3,5,7,8,11
140 2,6,10 183 | 3,5,7,10 226 | 4,5,8,11 269 10,13
141 4,5,10 184 2,6,12 227 5,9,11 270 | 7,10,11
142 5,6,9 185 8,11 228 | 3,57.89 | 271 | 45,7,9,10
143 2,3,7,9 186 4,7,11 229 6,7,12 272 4,16
144 12 187 | 2,3,5,7,10 || 230 7,9,10 273 | 4,7,8,12
145 8,9 188 | 1,2,3,5,7,10 || 231 | 5,6,7,11 274 7,15
146 5,11 189 5,8,10 232 6,14 275 59,13
147 3,5,7,8 190 | 4,5,7,10 233 8,13 276 | 5,7,9,11
148 2,12 191 5,6,7,9 234 7,8,11 277 9,14
149 7,10 192 | 15,6,7,9 | 235 | 4,57,8,09 278 3,10,13
150 | 3,4,5,10 193 7,12 236 | 3,5,9,11 279 | 5,6,7,13
151 3,5,6,9 194 7,8,9 237 | 4,10,11 280 | 6,10,12
152 4,6,10 195 5,7,11 238 6,9,11 281 | 6,8,9,10
153 3,12 196 14 239 3,7,9,10 282 7,8,13
154 4,57,8 197 4,9,10 240 | 3,56,7,11 | 283 3,7,15
155 57,9 198 4,5,6,11 241 4,15 284 3,5,9,13
156 | 2,4,6,10 199 | 34,5710 | 242 | 5,6,9,10 285 8,10,11
157 6,11 200 6,8,10 243 57,13 286 6,9,13
158 4,5,6,9 201 4,8,11 244 10,12 287 6,7,9,11
159 2,5,7,9 202 9,11 245 8,9,10 288 | 3,5,6,7,13
160 4,12 203 3,7,8,9 246 5,10,11 289 17
161 5,6,10 204 | 3,57,11 247 | 4,5,6,7,11 | 290 11,13
162 4,511 205 6,13 248 4,6,14 291 | 5,8,9,11
163 | 3,4,578 | 206 6,7,11 249 | 6,7,8,10 292 6,16
164 8,10 207 | 4,56,7,9 | 250 9,13 293 7,10,12
165 4,7,10 208 8,12 251 7,9,11 294 | 7,8,9,10
166 6,7,9 209 4,7,12 252 | 3,5,7,13 295 | 5,7,10,11
167 3,4,5,6,9 210 5,8,11 253 3,10,12 296 10,14
168 2,8,10 211 | 4,5,7,11 254 6,7,13 297 | 4,6,8,9,10
169 13 212 4,14 255 | 5,7,9,10
170 7,11 213 7,8,10 256 16
171 4,579 214 3,6,13 257 7,8,12

Fig. 2. Some f-representations of the numbers from 129 to 297 for f(i) = i

98




f(z) g 'l:o Mo + f(Zo)
1z +1)/2 34 9 79
?+1 52 9 134
(i+1)? -1 157 | 13 352
(i +1)(142)/6 559 | 16 1375
N 12759 | 25 28384

Fig. 3. Several other instances of application of Theorem 4

(we established in this way the existence of exactly 2788 positive integers that are
not f-representable in the case of f(i) = i3). It is easy to design the process so
that the output includes also the complete list of the non-representable positive
integers.

Acknowledgments. Thanks are due to Professor S. Dodunekov and to Pro-
fessor T. Tonkov for their valuable help in the search of sources discussing repre-
sentation of natural numbers as sums of distinct squares.
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We prove that there exist sets of natural numbers A and B such that A and
B form a minimal pair with respect to Turing reducibility, enumeration reducibility,
hyperarithmetical reducibility and hyperenumeration reducibility. Relativized versions
of this result are presented as well.

Keywords: Degrees, reducibilities, minimal pairs, forcing, enumerations.
1991/95 Mathematics Subject Classification: 03D30.

1. INTRODUCTION

In the present paper we consider four kinds of reducibilities among sets of
natural numbers: Turing reducibility (<r), enumeration reducibility (<.), hyper-
arithmetical reducibility (<) and hyperenumeration reducibility (<z.). The first
three of those reducibilities are well-known. The hyperenumeration reducibility has
been introduced by Sanchis in [5] and further studied in [6]. It is a kind of pos-
itive reducibility which relates to hyperarithmetical reducibility, as enumeration
reducibility relates to Turing reducibility.

Let o € {T,e, h, he}. By 0, we shall denote the class

{AlACN& A<, 0).

So, 07 consists of all recursive sets, 0, — of all recursively enumerable sets, 0
is equal to the class of all hyperarithmetical sets, and 0y, consists of all II! sets.

* Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
This work was partially supported by the Ministry of Education, Science and Technologies,

Contract [ 412/95.
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Two sets A and B are a minimal pair with respect to the o-reducibility if for
all sets X of natural numbers X <, A & X <, B= X € 0,.

It follows from the results of McEvoy and Cooper [3] that there exist sets of
natural numbers A and B such that the pair (A4, B) is minimal with respect to
Turing reducibility and in the same time with respect to enumeration reducibility.
Up to our knowledge, minimal pairs for the higher order reducibilities <, and <j.
are not well studied and an analogue of the result of McEvoy and Cooper is not
known.

The aim of the present paper is to present a uniform construction of minimal
pairs. In this way we shall obtain two sets A and B such that the pair (4, B) is
minimal with respect to each of the reducibilities <7, <., <; and <;.. Namely, we
are going to prove the following theorem:

1.1. Theorem. For every A C N, such that (N\ A) <. A, there erisis a
B C N which is not I1} and such that if o € {T,e,h, he}, X <, A and X <, B,
then X € 0,

In partlcular if we pick up a sufficiently complex set A, i.e. if A is not Hl, then
we can find a set B such that for every o € {T)e, k, he} the o-degrees determined
by the sets A and B form a minimal pair.

The proof of the theorem is based on a forcing technique introduced in [8] and
used there for the purposes of the abstract recursion theory.

The paper is organized as follows. In Section 2 we summarize the basic defini-
tions and results used in the sequel. In Section 3 we describe our forcing construc-
tion. The last Section 4 contains the proof of the theorem and some generalizations.

2. PRELIMINARIES

Throughout the paper we shall assume fixed a standard Goédel enumeration
Wo, - .. ... of the recursively enumerable sets. We shall assume also that an
effectlve codmg of the finite sets of natural numbers is given. By D, we shall denote
the finite set having code v.

By capital letters A, B, X etc. we shall denote sets of natural numbers.

We shall use the following definition of enumeration reducibility given in [4].

2.1. Definition. Let A and B be sets of natural numbers. Then A is enu-
meration reducible to B (A <. B) if for some a € N and for all z € N

z€ A < Ju({v,z) e W, & D, C B).
Turing reducibility can be described in terms of enumeration reducibility.
Given a set A, denote by A% the set A@® (N\ A). Then we have
A<y B < A% <, B,
Here @ is the usual join operation. So,
teA®B < In((z=2n&neA)V(z=2n+1& ne B)).

The notion of hyperenumeration reducibility is introduced in [5]. Let f, g
denote arbitrary total functions in N. By f(n) we shall denote (the code of) the

sequence {f(0),..., f(n —1)).
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2.2. Definition. Given sets A and B of natural numbers, say that A4 is
hyperenumeration reducible to B (A <, B) if for some a € N and for all z € N

z €A < YfInFv({v,z, f(n)) € W, & D, C B).

From the definition it follows immediately that A is II} in B iff A <,. Bt and
hence we can express hyperarithmetical reducibility in terms of hyperenumeration
reducibility:

A<y B < At <. BT,

A set A of natural numbers is called total if (N\ A) <. A or, equivalently, if
At <. A. The following obvious lemma shows that if two total sets form a minimal
pair with respect to enumeration reducibility and hyperenumeration reducibility,

then they form a minimal pair with respect to Turing reducibility and with respect
to hyperarithmetical reducibility.

2.3. Lemma. Let A and B be 1otal sels of natural numbers. Then:

(VXX < A& X <. B=>X€0,)=>VX(X <r A& X <r B=> X €07);

() VX(X <he AZ X Spe B=>X €0pe) 2 VX(X < A& X < B>
X €04).

We shall identify the partial predicates on N with the partial functions, taking
values in {0, 1}, assuming that 0 stands for true and 1 for false.

By 2Us; we shall denote the structure (N;G, %), where G is a total binary
predicate which is equal to the graph of the successor function, in other words,

0, fy=z+1,
Glz,9) = { 1 otherwise,

and ¥ is a unary partial predicate on the natural numbers.

Enumeration of Uy is a total surjective mapping f of N onto N. Clearly,every
enumeration determines a unique structure B; = (N; G®1,£31), where for all z, y

G®(z,y) = G(f(2), f(y)) and T®!(z) = T(f(z)).
Given an enumeration f of Uy, denote by D(B;) the set of all Gédel numbers
of the elements of the diagram of B;. In other words,

D(B;) = {(1,n,m,&) | GB!(n,m) ~ e} U{(2,n,€) | TP/ (n) = €}.

Notice that if the predicate ¥ is total, then D(By) is a total set.

The main property of the structure 2y is that it is relatively stable. This means
that for every enumeration f of s the function f is partial recursive relatively
D(B;), 1.e. graph(f) <. D('By).

2.4. Proposition. Lel f be an enumeration of As,. Then f is partial recursive

Proof. Let us fix a natural number 0; such that f(0;) = 0. First we are going
to show that

f(n) =0 < Jy(G®/(0s,y) & GB'(n,y)).
Indeed, suppose that f(n) = 0. Take an y such that f(y) = 1. Then we have
G(f(05), f(y)) and G(f(n), f(y)), and hence G®/(0;,y) and G37(n,y). Now
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suppose that for some y, G®37(0s,y) and G®!(n,y). Then f(y) = 1 and since
G(f(n), 1), we get that f(n) = 0.
In the same way one can show for £ > 0 that
f(n)=Fk < 3z,...241 (GB1(04,21) & .. . &GB! (Zk—2,Tr-1) & GBI (z_1,n)).
So the graph of f is enumeration reducible to D(B;) and hence f is partial
recursive in D(By). m
2.5. Corollary. For every enumeration f of Us, ¥ <. D(B;).
2.6. Definition. Let ACN, o € {T\e, h,'he} and f be an enumeration of Uyx.
Then A is o-admissible in f if f~1(A) <, D(B;).
Now we are ready to describe the plan of the proof of Theorem 1.1. Let ¥ be
-a total recursive predicate, for example let ¥ = Az.0.
Given a total set A, denote by Q,, ¢ € {e, he}, the class of all sets which are

o-reducible to A. In what follows we shall show that there exists an enumeration
f of Us having the following properties:

(1) f and hence D(*By) is not I1};
(2) If o € {e,he}, X € @, and X is o-admissible in f, then X € 0,.

Denote the set D(B;) by B. Now suppose that ¢ € {e,he} and X <, A and
X <, B. Using the stability of 2y, we obtain from here that X is c-admissible in
f and hence, by (2), X € 0,.

From here by Lemma 2.3 we obtain for all ¢ € {T e, k, he}

X<, A& X<,B=Xeco,.

In the same way, using appropriate definitions of the predicate X, we shall
obtain also relativized versions of the theorem.

3. GENERIC ENUMERATIONS

Every finite mapping of N into N is called finite part. By A we shall denote
the set of all finite parts. Elements of A will be denoted by lowercase Greek
letters 6, 7, p, ... We shall use “C” to denote the usual inclusion relation on partial
functions. Clearly, “C” induces a partial ordering on A.

3.1. Definition. Let £ C A and f be an enumeration of 5. Then:
(1) E is dense if for every é € A there exists a 7 € E such that § C r;

(2) E is dense in the enumeration f if for every finite part § C f there exists a
7 € E such that 6§ C 7

(3) f meets E if there exists a finite part § € E such that 6 C f.

Notice that a dense set E is automatically dense in every enumeration of 2s.
Let F be a countable family of subsets of A.

3.2. Definition. An enumeration f is F-generic if
(VE € F)(F is dense in f = f meets E).
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Let D(X) = {(n,e) | B(n) ~ €}. Let o € {e,he}. Given a set A, say that
A<, Eif A<, D(X). For afunction f let f <, ¥ if graph(f) <, D().

3.3. Proposition. Let § € A. There ezists an F-generic enumeration f of
U, which extends § and such that f £, X.

Proof. A usual finite end-extension construction of the mapping f. Start with
6o = . Consider three kinds of steps. On steps ¢ = 3r ensure that f is total and
surjective. On steps ¢ = 3r + 1 ensure the genericity. Finally, on steps ¢ = 3r + 2
consider the r-th Ae-reducible to ¥ partial function ¥, and ensure that f # .. &

Denote by € the class of all enumerations of Us.

3.4. Definition. Let S C N x £. The set S is called complete relative to F if
for every n € N, § € A there exists a 7 D 6 such that if f is F-generic and 7 C f,
then the pair (n, f) belongs to S.

The next proposition is a generalized version of Proposition 3.7 [8]. The simple
proof presented here is based on a suggestion of V1. Soskov.

3.5. Proposition. Let S C N x € be complete relative 1o F. Then there
erisis a countable family Fs of subsets of A such that if f is Fs-generic, then
vn((n, f) € S).

Proof. Given a natural number n, let

En, = {7 |Vf(f is F-generic & 7 C f = (n, f) € S)}.
It follows from the completeness of S that the set E,, is dense.

Denote by Fg the family {E, | n € N} UF. Suppose that f is Fs-generic. Fix
an n € N. Since E,, is dense, f meets it. Let 7 € E,, be such that 7 C f. Clearly,
f is F-generic. Hence, by the definition of E,, (n,f) €S. n

Let o € {e,he} and let P§,...,P?,... be a sequence of unary predicate let-
ters. Assume that a satisfaction relation “f F, PZ(z)” is defined, so that for every
enumeration f of Ax

A<, D(By) <= Fa(A={z|fE,P/(x)})
Suppose also that “6 |-, P7(z)” is a forcing relation satisfying the following forcing
condilions:
(T) §C 1 & b1y PI(z) = TIks PI(2);
(F2) There exists a countable family F, of subsets of A such that for every F,-
generic enumeration f, f £, PZ(z) <= (36 C f)(6 Irs P7(x))..

3.6. Definition. Let A C N. The set .A has a o-normal form if for some
a €N, é € A and for all n ¢ dom(6), z € N,
t€A < 3Ir(6CT)r(n)~z & T, PJ(n)). (8.1)
Given a set A, call P7 an f-associate of A if foralln € N
f(n) €A <= fE; P/(n).
Assume that the recursive pairing function (-, -} is chosen, so that every natural
number is a code of an ordered pair.
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3.7. Proposition. Let Q = {Ao, A1,...,A,,...} be a countable family of
subsets of N. Let the subset S of N x & be defined by

({a,r),f) € S <= A, has a o-normal form or P? is not an f-associate of A,.

Then S s complete relative 1o F,.

Proof. Let us fix a natural number m = (g, ) and a finite part §. Assume that
A, has a o-normal form. Clearly, for every enumeration f the pair (m, f) belongs
to S.

Now suppose that A, does not have a o-normal form. Then there exist natural
numbers ¢ and n ¢ dom(8) for which the equivalence (3.1) fails. We have two
possibilities. First suppose that

t€ A& V(6 CT)(7(n) ~z =7, PJ(n)).
Take a 7 such that 6 C 7 & 7(n) >~ z. Let f be an JF,-generic enumeration which

extends 7. Clearly, f(n) = 2 € A,. Assume that fk, PZ(n). Then, by (F2),
there exists a p C f such that p I, PZ(n). By (F1) we may assume that 7 C p. A

a
contradiction. So, PJ is not an f-associate of A, and hence.(m, f) € S.

Now suppose that
@A & 3r(6 C1)(r(n) =z & T Ik, P(n)).
Let [ be F,-generic and 7 C f. Then, by (F2), f E, PZ(n) but f(n) = z ¢ A-.
Hence (m,f)€S. m
Combining the last proposition and Proposition 3.5, we get the following

3.8. Corollary. Let Q be a countable family of sets of natural numbers. There
exists a countable family F of subsels of A such that if f is F-generic, A€ Q and
A 15 o-admissible in f, then A has ¢ o-normal form.

4. PROOF OF THE THEOREM

We start by defining appropriate £, and I+, relations for o € {e, he}. Con-
sider first o = e. '

4.1. Definition. «.iven natural number @ € N and enumeration f of s, let

fEP(n) <= Fv({v,n) € W, & D, C D(By)).

From the definition above it follows immediately that for every enumeration f

and ACN
A <. D(Bj) <= Ja(A={n| f EP{(n)}). (4.1)

The definition of the forcing relation |-, is a little bit more complicated. Let
6 be finite part. Given a natural number u, let é Iou if u = (1,n,m,¢€) for some
n,m in dom(6) and G(6(n),6(m)) ~ € or u = (2,n,¢) for some n € dom(é) and
Z(6(n)) ~e¢.

For a finite set D let 6 [, D <= (Yu € D)(6 IFcu).

Finally, given a € N, let

6 lIFePi(n) < Fv((v,n) € W, & 6 IF.Dy).
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It is obvious that the forcing conditions (F1) and (F2) hold for k, and |F.,
where the family F, is empty.

4.2. Proposition. Let A C N have an e-normal form. Then A <, T.

Proof. Let 6 and a be such that (3.1) holds for all n ¢ dom($) and = € N. Fix
an np € dom(é). Then

€A <= AT Cr)(r(no) ~a & 7 IF.Pi(no)).

Assume that an effective coding of the finite parts is fixed. From the definition
of IFe, using the recursiveness of G, we obtain that the set {7 | 7 |F.P%(no)} is
e-reducible to . Therefore A <, ¥. m

Now let us turn to the hyperenumeration case. Consider two sequences
Ry, ..., Rq,...; Fo,...,Fg,...
of new binary predicate letters. Given an enumeration f, let
[ EneRa(z,5) <= Fu((v,z,s) € W, & D, C D(By)).

Let s denote (codes of) arbitrary finite strings of natural numbers. If s =
(21, ...,2a), then by s % z we shall denote the string (21, ..., z5,2). By () we shall
denote the empty string.

Given a finite string s and a natural number z, define f . F,(r, s) by means
of the following inductive

4.3. Definition.
Iff ':he Rﬂ(m)s)) t'hen f ':he Fa(JB,S);
IEVz(f Epe Fa(x,s*z)), then f Epe Fo(z,s).

Suppose that f EF,(z,s). By |z, s| we shall denote the first ordinal at which
the pair (z, s) appears in the inductive definition. In other words,

Im Sl__ 0) lff ':he RG(I,S),
17 U sup(lz,s* z| +1:z € N) otherwise.

4.4. Lemma. Let A CN and f be an enumeration of Ayx. Then
A <ne D(By) <= Fa(A={z| [ Fre Falz,()}).
Proof. By definition A <p. D(B;) if, and only if, for some a € N
z € A < VYgInIv((v,z,3(n)) € W, & D, C D(By)).
Hence A <g. D(B;) iff there exists @ € N such that
z €A < VYgIn(f Fre Ro(z,3(n))).
We shall show that

VYgIn(f Ere Ra(z,3(n))) < f Ene Falz, (). (4.2)

Suppose that the left hand side of (4.2) holds. Towards a contradiction assume

that f Ere Fa(z, (). Then there exists a sequence zg, 21, . . ., zn, . .. of natural num-
bers such that if s, = (z9,...,2n-1), then

f Pre Ra(@,50) &  ¥he Falsn * 2n, 7). (4.3)
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The construction of zg,21,...,2n, ... is by induction on n. Since f ), Fu(z,()),
f Ere Ra(z,()) and for some z, f Ep, Fe(z,(2)). Set zp = z.
Suppose that zg, . .., 2z, are chosen, so that (4.3) holds. Let sn41 = (zo, ..., 2a).
By (4.3) f #he Ra(z, 5n41) and for some z, f B, Fo(z, 5041 % 2). Take zp4; = z.
Now let g(n) = z,. Clearly, Vn(f Ene Rao(z, §(n))).
Given a finite string s = (2q,...,2,—3) and a function g, let
sCyg <= (Vk < n)(g(k) = z).
To prove (4.2) in the right to left direction, we shall show by means of transfinite
induction on |z, s| that
f Ehe Fa(z,5) = Vg 2 s3n(f FR4(z, §(n))) (4.4)
and use that every function extends the empty string ().
Indeed, if f Ep. Ra(z,s), then (4.4) is obvious. Suppose that f ;. R.(z,s).
By induction (Vz)(Vg 2 s*z)3n(f Epe Ra(z,§(n))). Suppose that ¢ D s. Then for

some z, g D s * z and hence In(f Fp. Ra(z,§(n))). =
Let f Ehe P:e(l') — f t:he Fa(a“v())'

Our next task is to define an appropriate forcing relation & [, P!e(z). First

let
8 lFpe Ro(z,s) <= Fv((v,z,s) € W, & 6 IF.D,).

Clearly, we have as for enumeration reducibility:
(R1) 6 Ikpe Ra(z,5) & 6 C 7= 7 lFpe Ra(z,s);
(R2) For every enumeration f, f Fpe Ro(z,5) <= 36 C f(6 IFne Ra(z, $)).

Now we are ready to define & |+, Fa(z, s) by means of the following inductive
definition.

4.5. Definition.
If 6 IFpe Ra(z,s), then 6 by Fa(z, s);
IfVz € NY7 D 63p D 7{p Ikpe Falz, s* 2)), then & Ik, Fa(z,s).

We associate ordinals with the tuples (6, z, s) such that 6 IFn. Fa(z, s) as usual:

16,2, 5] = 0, if § IFne Ra(z,s),
") sup(min(|p,z,s*z|+1:p D7) :7 D6,z €N) otherwise.

The next lemma follows immediately from Definition 4.5.
4.6. Lemma. Let 8, T be finite parts, 6§ C 7 and 6 Iy, Fa(z,s), then
7 lkpe Falz, s).
Let F; be the family of all subsets
Eszs:={p|pitne Faz,sx2) & |p,z,s % z| < |6, z,5|} of A.

4.7. Lemma. Letl f be an F1-generic enumeration, § C f and § |k Fo(z,s).
Then f Epe Fa(z, s).
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Proof.  Transfinite induction on |6,z,s|. Skipping the obvious case
[ Ene Ra(z,s), assume f F). R4(z,s). Fix a z € N and consider the element

E={p|plthe Falz,5%2) & |p,z,s% 2| < |6, z, 5|}

of F1. We shall show that E isdensein f. Let p C f. Takear C fsuchthat u C 7
and 6 C 7. Since f ¥4, Ra(z,s), by (R2), é ¥ Ro(z,s) and hence, by Definition
4.5, there exists a p O 7 which belongs to F.

From here, by genericity, there exists a p C f which belongs to E.

Now we have that |p,z,s* z| < |6, z,s| and p by, Fo(z,s* z). Hence, by the
induction hypothesis, f EF4(z, s * z).

So we have proved that Vz(f EF,(z,s* z)), and hence f Fp. Fo(z,s). =

Denote by F, the family containing all sets {7 | 3zVp D 7(p Wn. Fu(z,5%2))}.

4.8. Lemma. Let f be Fy-generic and f £y, Fu(x,s). Then there exisis a
8. C f such that § ity Fu(z,s).

Proof. Transfinite induction on |z, s|. Assume that V6§ C f(8 Wp. Fai(z,s)).
Then the set £ = {7 | 3zVp D 7(p Wne Fa(z,s % 2))} is dense in f. By genericity,
there exist 7 C f and z € N, such that Yp D 7(p ¥, Fo(z, 5% 2)).

On the other hand, f k), Fo(z,s) and f Ky, Rs(z,s). (Otherwise we could
find a § C f such that 6 [Fp, Ra(z,5).) Therefore f F,(z,s * 2), and hence, by
induction, there exists a p C f such that p |[FFy(z,s* z). By Lemma 4.6 we may
assume that 7 C p. A contradiction. =

Define 6 IF, PP(z) <= 6 IFpe Fa(z, ().

Let Ty, = 31 UF>. Combining the last three lemmas we obtain that Fj,. and
IFre satisfy the forcing conditions (F1) and (F2).

4.9. Proposition. Suppose that A has a he-normal form. Then A <p. I.
Proof. Let & and a be such that for all n & dom(6) and z

t€A < ArD(r(n) =z & 7 Ibre Fa(n,{))).

Consider the set P = {(7,n,s) | 7 Iy Fa(n,s)}. We are going to show that
P <. Z. For this purpose we shall give a game characterization of the forcing
“IFpe . Our game starts over a triple (7, n,s) and has two players — (V) and (3).
If 7 Ikpe Ro(n,s), then the game stops and (3) wins. Otherwise the first player (V)
chooses a natural number z and a finite part g O 7. Then the second player (3)
chooses a finite part v O p. The game continues over (v, n, s % z). Now our claim is
that 7 Ity Fa(n,s) iff there exists a strategy for (3) for winning every game over
(r,n,s). To formulate this claim precisely, we shall represent the possible moves
of (V) by two total functions g; and g3, where g,(7,n,s) will choose the natural
number z and go(7, n, s) will give the finite part u. We shall call the pair (g1, g2)
correct if V7VnVs(r C ga(T, 1, 5)).

4.10. Claim. 7 lrpe Fo(n,s) iff for every correct pair (gi,g2) there ezists a

finite nonempty sequence (vg,v1,...,v;) of finite parts such that if
Z; = gl(VOJ Tl,S),Zz = gl(Vl,n,S* zl)a sy 2k = gl(uk—llnls *Zp k.. % Zk—]):
then:
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a) T =wp;
b) (Vi< k)(ga(vi,n,sx21%...%2) Cvig);

¢) Vg lrhe Ra(n,s %z % ... % z;).

Proof. The proof of the left to right direction is by induction on |r,7,s|.
Suppose that 7 (r4. Fa(n,s). Let (g1,92) be a correct pair of functions. If
T lFhe fa(n, s), then the sequence (1) satisfies the conditions a)-c). Suppose now
that 7 ¢y, Re(n,s). Let z; = g1(r,n,s) and u = go(7,n,s). By the correctness
of (g1,92), 7 C u. By the definition of I,. there exists a v; D u such that
V1 IFhe Fa(n,s* z1) and |vq,n, s+ z1| < |1, n,s|. By induction there exists a finite
non-empty sequence (v1, ..., ;) of finite parts, satisfying the conditions a)-c) with
respect to (v1,7,s* z1). Now it is trivial to show that the sequence {r,v1,...,vx)
satisfies a)-c) with respect to (7, n, s).

Suppose now that 7 #. Fo(n,s). We shall show that there exists a correct pair
(91, 92) of functions for which there is no finiie sequence of finite parts satisfying
a)—c). Given finite part 6 and string ¢, check if there exist z and g D § such that
(Vv D p)(v ¥pe Fo(n,t + 2)). In case of a positive answer let g1(6,n,t) be one
of those z and g3(8,n,t) be one of those p. If the answer is negative, then let
g1(6,n,t) = 0 and go(é,n,t) = §. Clearly, the pair (g1, g2) is correct.

Now assume that (v, ..., ;) is a sequence of finite parts satisfying the condi-
tions a)-c). By a) we have vg = 7. Since vg Wi, Fo(n,s), vo Wre Ra(n,s), and

A23p D voVv D p(v Wi Fo(n, s * 2)).
By the definition of g; and go and b) we get vy Wpe Fu(n,s# z1). So, proceeding
as above, we have that
V) Whe Ra(n,s%21), vg Wpe Ra(n,s* 21 % 22), ..., Vi Wpe Ra(n,s %21 % .. % 2p).
The last contradicts ¢). &

Using the Claim and the fact that the set {(r,n,s) | 7 |Fhe Ra(n,s)} is enu-
meration reducible to X, we obtain immediately that P <. ¥ and hence that
A<p. L o m -

Now we are ready to prove the main results.

4.11. Theorem. Let C and A be total sets. There exists a total set B such
that C <1 B, B £y, C and for allo € {T,e, h,he} and all X CN

X<, AL X<, B=X<,C.

Proof. Let
_J0, ifzeC,
(e) = { 1 otherwise.
Since C is total, we have for all ¢ € {T, e, h,he} that C' <, Zand £ <, C, 1. e.
C=, %

Let A be a total set. Denote by Q,, o € {e, he}, the family of all sets which are
o-reducible to A. By Corollary 3.8 there exist denumerable families Fg_ of subsets
of A such that if f is Fg_-generic, X € @, and X is o-admissible in f, then X has
a o-normal form. Let f be an enumeration of s which is not he-reducible to £
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and generic with respect to Fg, UJFq,,.. Denote D(By) by B. Since the predicate
¥ is totally defined, the set B is total. By the stability of s, f <p. B and hence
B ﬁhe Y and ¥ <7 B.

By .Lemma 2.3 it is sufficient to show for o € {e, he}

X<o A& X<yB=X<,C.

Now suppose that X <, A and X <, B. Since f is partial recursive in B,
J7HX) <s B. So X € Q, and X is o-admissible in f. From here it follows that X
has a o-normal form and hence by Proposition 4.2 and Proposition 4.9, respectively,
X <4 X. Therefore X <, C. =

Notice that since 0 is total, Theorem 1.1 is a direct corollary of the above
theorem.

If we start by an arbitrary, not necessarily total set C, then we can prove a
similar result but only for the positive reducibilities <, and <j..

4.12. Theorem. Let C and A be subsets of N. There ezists a subseli B of N
such that C <. B, B £u. C and if o € {e, he}, then for all X CN

X<, A& X<, B=X<,C.

Proof. Let us define the partial predicate ¥ by
0, ifzeC,

E(z) = undefined otherwise.
Now we have for ¢ € {e, he} that & =, C. From here the theorem follows by
an almost literal repeating of the arguments used in the proof of the previous
theorem. =

The method used in the proofs of the theorems above allows further general-
izations and applications. We may add countably many satisfaction and forcing
relations to the so far considered F, and Ik, , o € {e, he}, relations. In this way,
considering the forcing for the ¥, hierarchy from [1] and [2], we can prove the next
generalization of Theorem 4.11.

If o is a constructive ordinal, X C N, then by X{®) we shall denote the a-th
jump of X, see [4].

4.13. Theorem. Let C and A be total sets. There ezists a total set B such
that C <1 B, B %p. C and for all X CN:

(1) For every constructive ordinal o, X <7 A & X <p Bl®) = X <p C(@),

(2) For every constructive ordinal a, if X isr. e. in A gnd X is r. e. in B(®),
then X ist. e. in C(®);

(3) X<h AL X < B=> X 50 G
(4) X <he A& X <pe B= X <4 C.

Other applications of the method will be presented in the forthcoming [7].
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1. Let R)(D) and R2(D) denote the classes of rational functions

A
f(z)=3 7= € Ry(D) (1)
k=1 L
and
1 "L zA
=f(=)= 2
o= (1) = 2 oy € o) )
respectively, where
S Ak=1, Ax>0, Ja<1, 1gk<n, n2l (3)
k=1

* Lecture presented at the Session, dedicated to the centenary of the birth of Nikola Obreshkoff.
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In [1, Lemma 2(a)] Rubinstein and Walsh prove that the functions (1) and (2) of
the classes R1(D) and Ra(D) can be represented in the corresponding forms

1) = = o
for |z| > 1, and
o) = =5 Ao =a(3), )

for |z| < 1, where a(z) and B(z) are analytic functions with |a(z)| £ 1 and |8(2)| £ 1
for |z| > 1 and |z] < 1, respectively. First we shall give a simple proof of this
theorem of Rubinstein and Walsh.

Proof. For convenience we shall examine the class Ry(D) only. From (2) and
(3) we obtain

elz) 1 l+arz — |laxz|?
Re = Q_QZA Re 7 —, = QZ Tap > Y lz] <1.  (6)

The inequality (6) shows that the function ¢(z)/z is subordinate to the function
1/(1—2)in |2|] < 1,1 e.
p(z) .1

e . |z} < 1. (7N
According to the subordination (7) there exists an analytic function A(2) in [z| < I
satisfying |8(z)| £ 1, for which the representation (5) holds. If in (5) we replace z
by 1/z, we obtain (4).

This completes the proof.

2. Let M; and M, denote the more general classes of meromorphic functions
with representations (4) and (5), respectively. In [2] we introduced the classes
S1(D) and S3(D) of analytic functions

)= [ esio), pi>1, (®
D
and
oer=1(2) = [[ 22D ey, p1<n, ©)
D

respectively, where D:= {¢ | |[{| £ 1} and g(¢) is a unit mass measure on D, i.e.

[[aso=1 azo (10)
D

If in (8) and (9) the unit mass is concentrated at n points of D, then, having in
mind (10), we obtain sets Ry(D) and Ra(D) of rational functions (1) and (2) with
the conditions (3), respectively. In the end of our paper [2] we put the problem
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whether the classes S;(D) and S3(D) are corresponding subclasses of the classes
M, and M3 or not. Now we shall solve affirmatively this problem.

Theorem. The classes S1(D) and S3(D) of functions (8) and (9) are corre-
sponding subclasses of the classes My and M, of functions (4) and (5).

Proof. For convenience we shall examine the class Sy(D) only. From (9) and

(10) we obtain analogously
|=¢1*
//Il Lo MO >0, lel <1 (11)

From (11) we obtain successively the subordination (7) and the representation (5)

for the functions (z) determined by (9) and (10). By replacing z by 1/z in (5

we obtain the representation (4) for the functions f(z) determined by (8) and (10
This completes the proof of the theorem.

Re

),
)-

Remark. If in (8) and (9) the unit mass is distributed on the circle C, |¢| = 1,
then, having in mind (10), we obtain the sets S1(C) and S3(C) of Schwarz analytic
functions

(2) :/Zdﬁ(t). € 5(C), |z2I>1,

e‘lt
0

and

wor=1 (1) = [289 csi0, i<
0

respectively, where p(2) is a probability measure on [0, 27].
If in (8) and (9) the unit mass is distributed on the segment [—1, 1], then, having
in mind (10), we obtain the sets N, and N; of Nevanlinna analytic functions

1
|z] > 1,

f(z) =

and

zdp(t)

1-— 2t

€N, Jzl< 1,

()-—f()

respectively, where u(t) is a probability measure on [-1, 1].
According to the proved theorem the separate classes S1,2(C) and Ny are
corresponding subclasses of the classes M 3 as well.

_.\,_.
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Some results of studying the work of one of the most productive Bulgarian math-
ematician by quantitative methods are presented. The study is based on the data from
the world-wide known review journals “Jahrbuch iliber die Fortschritte der Mathe-
matik”, “Zentralblatt fiir Mathematik und ihre Grenzgebiete” and others, representing
most accurately the world scientific information flow, structuring it by domains of sci-
ence and their areas. Graphically are shown: distribution of Obreshkofl's works over
domains of mathematics according to divisions of mentioned review journals, distribu-
tion of scientific activity over years, domains of mathematics and their areas, etc.

This study is based on the so-called Reference Database (RDB) allowing flexible
retrieving, systematizing, aggregation and generalizing data.

1. INTRODUCTION

Academician Nikola Obreshkoff is a Bulgarian scientist known not only to
the Bulgarian mathematicians. He is respected by the whole Bulgarian scientific
community for his over 40 years long scientific and publication activity. The goal
of the present paper is to estimate by quantitative means his interference with the
international scientific community.

Some results of using quantitative methods to explore his publication activity
are presented in the paper. The notions of relevance criterion and the so-called
Reference Database (RDB) are introduced. The data in the RDB on N. Obresh-
koff are compared to the known bibliographies of his works. These bibliographies
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are not used as sources to build a RDB, because they are lists of works, ordered
chronologically or alphabetically. They are not organized according to the domains
of scientific fields the scientist works in. No matter how complete they are, they
do not give an adequate image of the interaction between the scientist and the
international scientific community. This characteristic feature is the main reason
to study the publication activity by RDB organized according to some classification
of scientific domains.

2. WORLD-WIDE FLOW OF SCIENTIFIC INFORMATION
‘AND RELEVANCE CRITERION

The mentioned interaction between scientists gives the so-called world-wide
flow of scientific information built by an immense quantity of scientific works in
different fields of science, published in numerous scientific journals, proceedings
of conferences and workshops, monographs and so on. To manage that flow, the
scientific community created the powerful tool of auxiliary reference editions —
review (abstract) journals, bibliographies etc.

The consideration of the participation of a given scientific work in this infor-
mation flow provides a useful bibliometric criterion — whether the paper has been
or not reviewed in the world-widely known abstract journals. The use of that cri-
terion when exploring the scientific work mirrors the publishing activity of given
scientists and the dynamics of their scientific interests as the international scientific
community looks at them.

Thus the idea is arisen of using the Reference Databases with published scien-
tific works of one or more scientists — a computer database keeping data extracted
from scientific reviews published in the abstract journals. Such a database can be
explored by computer and quantitative tools from different points of view. This ap-
proach makes'it possible to find some interesting and sometimes unexpected points
in the entire work of a given scientist. The authors of the present paper are de-
veloping similar RDB, fulfilling the project “A quantitative study of the scientific
production of lecturers of the Sofia University from 1889 to 1950”!. This project
continues the research of the authors published in [5].

In this study the selection of sources is done following the above mentioned
criterion: published works are taken into consideration only if they are reviewed in
world-widely known abstract journals. These journals assign the reviews to sections
in accordance with the domains of different fields of science. This is a good reason
to use such journals for purposes of building RDB.

In the field of Mathematics the following journals were selected to build a RDB:
Jahrbuch iiber die Fortschritte der Mathematik (Fortsch. d. Math.), Zentralblatt
fir Mathematik und ihre Grenzgebiete (Zbl. Math.), Mathematical Reviews and
Referativny Zhurnal. The first one was founded in 1868 and was issued regularly
until 19382, the second was founded in 1931, the third — in 1940, and the last —
in 1953.

! Gontract No 97/1996 of the Sofia University Scientific Research Fund.

2 1t was stopped several years later.
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3. USING RDB TO PROCESS THE DATA ON N. OBRESHKOFF

The data in RDB concerning the works before 1939 are extracted from two
abstract ‘journals: Jahrbuch dber die Fortschritte der Mathematik and Zentralblatt
fiir Mathematik und ihre Grenzgebiete, and concerning the works after 1939 — from
three abstract journals: Zentralblait fir Mathematik und ihre Grenzgebiete, Math-
ematical Reviews and Referativny Zhournal. The search in the journals was con-
ducted for a period starting several years before 1920 (the year of N. Obreshkoff’s
entrance in the lecturer community of Sofia University) and continuing up to 1970,
Vol. 178 of Zbl. Math. The assignment of entries to the sections and subsections
before 1939 is made according to these of the Fortsch. d. Math., and concerning
the works after 1939 — according only to the sections and subsections of the Zbl.
Math. The way of assignment is changed because the issuing of the first journal
is suspended after 1939. Conforming all RDB to the classification before 1939 is
useless. Thus, there is a boundary dividing the entire work of N. Obreshkoff into
two periods: the first one from 1920 till 1939 (44% of the whole duration) and the
second one from 1940 till 1963. For this reason works, for instance, belonging to
the domain of Analysis, may have entries in section II (if the work is published
before 1939) or in section V (if the work is published after 1939) in the RDB.

The creation of the RDB on N. Obreshkoff’s work is based on a modification
of a first variant of RDB on lecturers in the Faculty of Mathematics and Physics,
built by the authors. This makes the investigation much easier.

4. RESULTS

A. A QUANTITATIVE INFORMATION ON SCIENTIFIC ACTIVITY
IN THE PERIOD 1920-1939 ’

The RDB has 99 entries for this period, assigned to the following domains
in the field of Mathematics: I. Arithmetics and Algebra (21 reviewed works);
II. Analysis (76 reviewed works); ITl. Geometry (2 reviewed works).

Fig. 1 shows the publication activity (the number of all works from 1920 to
1939) distributed over different domains. The domains I and III contain entries
assigned to one area in each domain. The most of entries are in the domain of
Analysis, assigned to several areas. Fig. 2 shows the distribution of the works
over areas. It allows ranking the activity of N. Obreshkoff in this period. Thus,
his scientific interests are oriented in the first place to the areas of Infinite Num-
ber Sequences Theory and General Theory of Real Functions (50% of all works).
Near 31% of them are in the areas of General Theory of Functions with Complez
Arquments and Functions of Complez Variables.

The scientific activity is often represented by the number of published works
per year. The distribution of works in different domains per year is given on Fig. 3
representing the dynamics of scientific interests. Being concentrated in the domain
of Analysis, the number of works varies — there is an alternation of decreasing and
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increasing in the activity in this domain; when the activity in the area of Analysis
decreases, this one in the area of Algebra increases (a contre-tendence).

B. A QUANTITATIVE INFORMATION ON SCIENTIFIC ACTIVITY
IN THE PERIOD 1940-1963

The RDB has 93 entries for this period assigned to the following domains in
the field of Mathematics: IV. Algebra and Number Theory (34 reviewed works);
V. Analysis (57 reviewed works); VI. Geometry (1 reviewed work), VII. Probability
Theory. Statistics. Applications (4 reviewed works).

Fig. 4 shows the publication activity distribution over domains of Mathemat-
ics. It confirms the conclusion about concentration of interests in the domains of
Algebra and Analysis.

Fig. 5 illustrates the activity over areas of analysis after 1939. In this period
the classification is different compared with that of the first period. Nevertheless,
Fig. 5 shows that the biggest part of published works is in the areas of Real Function
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Differentiation and Integration and Integral Equations, Integral Transformations.
There is a work not related to any area of Analysis, according to the subsections
of Zbl. Math., so the sum of the numbers in different areas is 56. '

On Fig. 6 “Distribution of works over domains of Mathematics per year (after
1939)” the dynamics of N. Obreshkoff’s works is shown. With concentration in the
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domains of Analysis and Algebra, similar to the first period, some equalising of
tendencies near 1963 is observed. The number of works in the domain of Analysis
prevails over the works in the area of Algebra near 1940. An interruption in the ac-
tivity between 1943-1945 can be explained by the difficulties in publishing because
of the World War II.

C. A GENERALIZED QUANTITATIVE INFORMATION ON THE ENTIRE
SCIENTIFIC WORK IN THE PERIOD 1920-1963

The distribution of published works over the age of the scientist is given on
Fig. 7. There is a period of extremely high activity starting in 1932 (when N.
Obreshkoff was 36 years old) to 1939. The end of this period coincides with the
beginning of the World War II. Here 67 published and reviewed works can be seen
or 36% of all published and reviewed works. During this 7 year long period there
are two absolutely maximal values of the activity (in 1934 and 1939). The second
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maximum hints a new period of increase in the work of N. Obreshkoff, stopped by
the beginning of the war.

It is interesting to compare our data with the known bibliographies of N. O-
breskoft’s works. The most complete one has 247 entries [6]. The bibliography in
[4] has 219 entries. The bibliography in [3] includes works from 1940 to 1963. All of
them were compiled after N. Obreshkoft’s death in 1963. Two previous bibliogra-
phies are given in the first Almanacs of Sofia University the first one in 1929 [1]
and the second one in 1940 [2]. They were compiled by Nikola Obreshkoff himself.
The bibliography of 1929 includes entries missing in the later bibliographies, the
one of 1940 is selective and its worth is Obreshkoff’s own classification of works into

_groups of “principal works”, “other works” and “diverse”. Fig. 8 shows the distri-
bution of published works over the years according to the biggest bibliographies [4,
6] which include not only reviewed works. The noticeable difference in 1930 can be
explained by the fact that the Annuaire of the Sofia University was not reviewed
before 1930. Another difference in 1949 can be explained by the difficulties in the
cultural relations in Europe in the end of the World War IT and after it.

Each domain of mathematics has two corresponding sections in this imple-
mentation of RDB. For this reason, in order to retrieve a quantitative information
relative to the entire period from 1920 to 1963, the data are grouped into four do-
mains: A. Algebra and Number Theory; B. Analysis; C. Geometry; D. Probability
Theory. Statistics. Applications. The distribution of works over these domains is
presented on Fig. 9.
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The reviewed works are published in nearly 50 journals, 3 monographs, 6 text-
books. Most of the papers are published in: Comptes Rendues Acad. Sci., Paris —
36 papers, Annuaire Univ. Sofia, Fac. Phys.-Math., Livre 1 — 25 papers, Comptes
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Rendues Acad. Sci. Bulgare — 24 papers, Izvestia MI BAN — 14 papers, Jahres-
bericht D.M.V. — 11 papers.

5. CONCLUSIONS

The results presented in the paper allow to make: (i) deductions about the
publication activity of N. Obreshkoff, and (ii) quantitative evaluation of dynamics
of his scientific interests. Specific features of the activity like the contra-tendencies
in its alternation are demonstrated.

The predominant orientation of interests to the Analysis and Algebra, shown
graphically, can be compared to Obreshkoff’s own view on his principal works [2].
There are 22 works, 15 in the area of Analysis (over 2/3) and only 7 in the area
of Algebra. Of these principal works 15 are reviewed: 3 on Algebra (20%) and 12
(80%) on Analysis.

The results obtained show that the application of RDB was useful in exploring
the work of the scientist. The data on scientific publication activity were consid-
ered according to different points of view. They were represented in different ways,
and numeric evaluation, dynamics and distributions were obtained. The method of
RDB is outlined as a necessary foundation in research on a scientist’s publi¢cation
and other activity, on its significance for evaluating the development of the corre-
sponding scientific domain in Bulgaria and comparing it with the general tendencies
in the development of the science in the world.

Last but not least, the RDB allows to explore the abstract journals themselves
-— their scope, degree of discordance in their classification schemes etc. This is an
important area in research, based on the use of abstract journals.
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A FIRST-ORDER IN THICKNESS MODEL FOR FLEXURAL
DEFORMATIONS OF GEOMETRICALLY NON-LINEAR SHELLS

CHRISTO 1. CHRISTOV

The shallow shells, characterized by deflections of the order of unity, small defor-
mations and still smaller curvatures, have most thoroughly been studied in the liter-
ature. However, the momentum terms, due to which the shell differs essentially from
a membrane, are not negligible only for the short-wave-length deformations, when the
deflections are small, the deformations — of the order of unity and the curvatures — of
the order of the inverse of the small parameter. In order to treat consistently the case
of momentum supporting shells, the formulas for covariant differentiation in the shell
space are revisited. It is shown that the geometrical non-linearity contributes terms of
the same order of magnitude as the momentum stresses. For the flexural deformations
an equation of Boussinesq type is derived containing fourth-order dispersion and cubic
non-linearity.

Keywords: shells, geometrical non-linearity, flexural deformations.
1991 Mathematics Subject Classification: 73K15.

1. INTRODUCTION

Since the turning of the century and especially in the late forties the theory of
thin shells attracted much attention and many papers were devoted to its mechan-
ical and mathematical aspects. Yet, it is far from completion. It goes beyond the
framework of the present paper to give the historical account and the perspective
of the numerous shell theories. We generally accept the attitudes of the compre-
hensive review [9] and the monographs [6, 8, 10] in assessing the vast body of the
existing literature.

The theoretical approaches for modelling shells fall generally into two main
groups. To the first belong the theories in which the governing equations are
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derived as averaged properties of a very thin curved 2D elastic layer in the 3D
space. The second approach originates in [14, 5] and consists in direct application
of the mechanical laws to the 2D continuum representing the middle surface of the
shell. The Cosserat concept was applied in {7]. For the problems arising in the
asymptotic analysis of thin shells we refer the reader to the works of P. Ciarlet,
E. Sanchez-Palencia and co-workers (see the recent works [4, 11] and the literature
cited there).

When deriving the shell equations from the 3D elasticity, the deflections are
assumed to be finite while the strains are small. This implies long wave length
of the deformations, resulting in even smaller curvatures. This is the so-called
“shallow shell” model. Strictly speaking, the shallow-shell approach is not generic
for shells but it is rather adequate for membranes, because the momentum stresses
that are supposed to make the difference between a shell and a membrane are
proportional to the curvature of the deflections. Hence, in a consistent small-
strains/smaller-curvatures approach, the moments are to be neglected to the first
order of thickness unless the stiffness coefficient is extremely large. However, large
values of the stiffness are very unlikely since the stiffness is proportional to bulk
Young modulus and the square of the thickness, the latter being very small. Hence,
the short length scale of the deformations is the case where the moment stresses
are really important.

The difference between shells and membranes becomes really important when
the strains are much larger than deflections, and curvatures — much larger than
strains. It is clear that such a structure must be geometrically highly non-linear.
We derive here a consistent first-order approximation in the shell thickness for the
said case.

The assumptions of the present work are:

1. The thickness h of the shell is much smaller in comparison with the length
scale L of the flexural deformations of the middle surface, i.e. h &« L or
€ = h/L € 1. No restrictions on L are imposed, e.g., L <« Lp is also an
admissible case, where Lp is the length scale of the structure itself.

2. The thickness of the shell is constant within the adopted asymptotic order.
Hence the derivatives of the thickness scaled by the thickness itself should
not be large values, i.e. |[h~'(Vh)|| = O(1). The latter means that the
length scale of changing the thickness is of order of magnitude larger than
the length-scale of the deformations.

3. The loads, e.g. the normal pressure and the tractions on the shell faces, are
compatible with the above assumptions, i.e. they possess the necessary asymp-
totic in order to secure 2D strain and stress states.

" 4. If the deformations created by the boundary conditions at the rim of the shell
structure (the contour-line of the middle surface) are not compatible with (1)
and (2), then only the portion of the shell is considered, which is far from the
rim, i.e. the 3D effects of the said boundary conditions can be neglected.

5. For the sake of simplicity, no tractions are exerted on the shell faces.

It should also be mentioned that when the thickness of a shell is very small,
then the contributions from the physical non-linearity of the material are negligible
and geometry is the only source of non-linearity. For this reason, in the present
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work we consider only the linear constitutive relations for elastic continuum (the
so-called St-Venan-Kirchhoff materials [3]).

2. GEOMETRY OF THE SHELL SPACE

In this section we develop further the derivations of [12] and [6] incorporating
the dependence on the transverse co-ordinate in the shell space. As it will turn
out, this is essential, because after averaging some of the terms, neglected in the
mentioned works, they become commensurable with those that had been left into
the considerations.

Consider an N-dimensional Euclidean space and a structure immersed in it,
defined as a thin layer of virtually constant thickness % (in the sense of require-
ment (1)). It is approximately equipartitioned (in the same sense) by the middle
hypersurface of dimension (N — 1).

Assume that the middle surface is parametenzed by the curvilinear co-ordinates
€%, a=1,...,N—1. The N-th co-ordinate £" is defined as the normal line to the
particular point of the middle surface. As far as the shell does not intersect itself,
the so defined set of curvilinear co-ordinates is not ambiguous. In addition, it is
orthogonal and, within the adopted asymptotic order, it coincides with the material
co-ordinates. When the shell thickness is not constant, then it is convenient to scale
the normal co-ordinate by it, in order to transform the mathematical problem into
one for which the shell faces are co-ordinate surfaces. Then the co-ordinate system
is not strictly orthogonal but only to the order O(e?), which is fully compatible
with the attempted here theory of approximation O(g). We resort here to the case
of equidistant surfaces of the shell and the words “equipartitioned by the middle
surface” mean that the middle surface is drawn inside the shell, so that the condition
hio(€, ..., EN"Y) = —hyp(€L, ..., 6N 1), and hence h = hyp — hio, always holds.

The curvilinear co-ordinates £*, & = 1,..., N — 1, are in fact material (La-
grangian) co-ordinates. They are connected to the geometrical Cartesian co-or-
dinates (originated somewhere in the ND-space) through the following functional
dependences: _ _

e =zi(el,...,eNt) for i=1,...,N, (2.1)

where t stands for the time. Here and henceforth the Greek indices range from 1
to N — 1 and serve to mark the variables in the shell. Italics are used for indices
when the space quantities are concerned.

Let us assume for definiteness that the initial state of the shell is physically
admissible (see, e.g., [13] for the definition). Then the initial state can be param-
eterized by the same transformation (2.1) but for the specific value of time ¢ = ;.
Without loss of generality we set o = 0.

The middle surface is characterized by the first and second fundamental forms

def oz Oz’ def on' on’
gap(€l, ... EN;1) E Zagaaeﬁ’ bag(El,... EN;0) Zagaagﬁ

In the last formula n’ denote the Cartesian co-ordinates of the normal to the middle
surface vector (say, n). The outward normal is defined arbitrarily. When the co-
ordinates are the lengths of the arcs, then the second fundamental form adopts the
specially simple form bqp = Vo Vg(.

131



The orts of the curvilinear co-ordinate system are expressed as follows

where e, are the orts of the Cartesian co-ordinate system. In order to avoid confu-
sion, we do not use throughout the present work the convention of summation with
respect to “dummy” indices when Cartesian co-ordinates are involved. In such a
case we put explicit sign X. For the sake of completeness we also add the relation

gNEn)

which is true by the definition of the normal co-ordinate. According to this defini-
tion the radius vector = of a point inside the N'D-space enclosed in the shell can be
expressed as

rT=74+sgyN, (2.2)

where 7 is the radius-vector of the normal projection of the said point on the shell
middle surface. Here we introduce the notation

s=eVh(E, ..., eV (2.3)

as a measure of the length alongside the normal co-ordinate.
From Eqgs. (2.2) and (2.3) one obtains for the fundamental tensor of the space
enclosed in the shell (see [12, 6])

or on or on’ or ont
G = (aea s sa) ' (asﬂ BE") 2_: (aea ) (aeﬁ “ﬁ)
= gap(€r, .. EN 7YY = 2sbap(€r, .. €V ) + s%cap(EL, .. EN L), (2.4)
Gnyv =1, Guan =0. (2.5)

Here cop = ba,sbg is the third fundamental form of the middle surface.

It is clear now that the fundamental tensor of the space filling the shell is defined
both by the fundamental tensor of the middle hyper-surface (the first fundamental
form) and by the tensor of curvature (the second fundamental form). For further
convenience we cite here the formulas for the contravariant components of the
fundamental tensor. Since our aim is a first order approximation with respect to
thickness, it fully suffices to retain here only the terms up to O(s?).

Within the adopted order of approximation o(s?) the contravariant components
of the fundamental tensor are given by

G = g (€}, €N 7Y) + 250 (€1, .. €N )

+3s52c*P(€L,.. ., M) 4+ o(s?), (2.6)
GMV =1, GV =y. (2.7)
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The proof of (2.7) is trivial and is a straightforward corollary of the definition
of the matrix of contravariant components as an inverse matrix of the matrix of
contravariant components. To prove (2.6), we simply multiply it by (2.4) to obtain

GapG™ = gapg™ +25(bapg™” — gapb™") +5*(capg®” —4bapb™ +3gapc™7) +0(s%)

= 8] + 25(b] — bj) + (¢} — 4} + 3cj) + O(s°) = 67 + O(s%) .

3. COVARIANT DIFFERENTIATION IN THE SHELL SPACE

This section uses extensively the results of [12] and [6], but it is not possible to
omit it because not all of the necessary formulas are presented there. In addition,
the terms proportional to s2, which are essential for our derivations, are absent
in the cited works. In order to make the present paper self-contained, on the one
hand, and to fulfill the gaps in the cited works, on the other, we compile here the
necessary formulas, deriving those that are not present in the literature.

The covariant derivatives of a vector and of a second-rank tensor are given by

0A™ gA™n
n || — m An nm — _ m pgkn n amk 3.

The covariant Christofell symbol in N dimensions is given by

1 (3Gj1 Gy 6Gij
Liji=5

E _ klp
AN ) o T =G L
The contravariant symbols are obtained from the covariant ones through the
procedure of “elevation” (“contraction”) of indices. It is easily shown now that a
Christofell symbol is trivially equal to zero if it contains the index N at least in
two positions, i.e.

FCannN =Tnna=Tnnn =0, FLVN=F?VN=F%N=0 for a=1,...,N—1.

Let us treat separately also the symbols containing the index N only in one
position, namely:

Faﬁ,N = _FﬁN,a === = baﬂ — 8Capg .

Due to the specific properties of the fundamental tensor, namely, that G/ = §V7,
one has N Vi
Lap =G Tapj =Tapn =bap — 5cap -

Respectively,

8Gpn

35 —(g%F + 250 + 35%c™~)(bpx — SCpx)

I\ﬂ aK
ﬁ ﬁ ﬁK.
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Note that the last term is obtained after the following fairly obvious manipu-
lation is applied ¢**bg, = 3c**bg, — 26~

Finally, for the Christofell symbols Wthh do not contain the index N, one
derives

2
Toy,e = [B7,0) —2s[87, o’ + S[B7,al", (3:2)

where

g def l 691301 69101 _ agﬁ‘y
[ﬁ‘yya] - (al_..' 613‘3 al_a 1

pdef 1 (Obgs  Obys  Obpy
[ﬁ‘)’,ﬂl] - 5 <8z'¥ + ar'g - axa ) (33)

e § (2 1 g0
' 2

oz OzP Oz

are the connections generated by the tensors gqp,bap and cqg, respectively. One
sees that due to the curvature of the middle surface the connections in the shell
space are more complicated making its restriction to the (¥ — 1)D-surface non-
Riemannian. Note that the first term of the connections, namely ¢[37, ai, is noth-
ing else but the Riemannian connection (N D-Christofell symbol) for the (N — 1)-
dimensional space of the middle surface.

The related contravariant Christofell symbol is expressed as usual

2
= G*Tpyx = (9% +25b°" + 352 “") ([Bv, k)® — 2s[B, K]® + %[ﬂ'r, K]°).

5= {5} va{g ) {8}

{8} =alnwy, { &) =b"187,517 - g[8y, 5P,

Then

{ﬂofy }c = g%~ (B, k]° — 49°*[B7, &]* + 3¢**[By, k]’.

Now we are equipped to derive the expressions for the N D-covariant derivatives
”i for the space inside the shell. By definition we have

m

A™ |L= aa—‘zi-+r;',;A". (3.4)

Let us also introduce the notation

a g?“ +{ } A’

which will be called “restriction of the covariant derivative.” For s = 0 it is nothing
else but the covariant derivative in the (N — 1)D-space of the middle surface of the
shell.

A+

(3.5)
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Since Eq. (8.5) is vaiid for the whole space inside the shell, it can only loosely
be called “restriction of the covariant derivative”. We shall return to this issue
later on. For the time being it is enough to be noted that the only variables (3.5)
that depend on the normal co-ordinate s are the components of the vector A¥.

Combining Eqs. (3.5) and (3.4) and using the formulas for the Christofell sym-

bols, one derives the following expressions for the covariant derivative Hi:

(QS{M} 's{ya})A” B sch 4 s2che by ) AN .

It is a generalization of the respective formula of Neuber because of the depen-
dence on s of the components of the differentiated vector. Further on we have

AI-‘

0AN
ot~

+ (bua - Scua)A” )

+(bya — s€ua)A” =

because as far as the subspace of the middle surface is concerned, the component
AN behaves as a scalar, which means that

AN | = dAN
a  Ofx
In the same manner we obtain
a ) BAN
A | N 3(;4 — (b3 — sc + 5°c®b,)A” and AN || .

Following the same line of reasoning, we obtain the formulas for the covariant
differentiation of tensors:

AP +(2s[vy, a]" + 52 [vy, a]C)A"ﬁ + (2s[vy, ,B]b + 32[1/7, BISYAY

— (b5 — 8¢y + s2c¥%b, YANP — (bg -l— s cﬁ‘b <)AN

+(25[vy, &]® + s%[vy, o) AYN

+ (byy — sCuy) A% — (b5 — sC5 + 52 by ) ANV

ANS | = A5 | (sl 10+ 57l A1) AV
¥ el

4 (byy — 5Cuy) AP — (b5 — scg + 526P%b, ) ANN |

ANN " — ANN

+(byy — 5€py) ANV £ (byy — 5Cuy ) AN
~
In the end we consider AV? and A*Y | which are in fact components of a vector

as far as differentiation in the middle surface of the shell is concerned:

AaN
S

4o | = — (b2 — scZ + s2c* b, ) A"V
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Let us note again that our derivations are not restricted (as it is the case with
[12] and [6]) to the middle surface but are valid for the entire shell space.

— (88 — scf + s2cP%b,, ) ANE | ANV ”

4. GOVERNING EQUATIONS IN CAUCHY FORM

We prefer to derive in the beginning the averaged Cauchy form and only after
that to turn to constitutive relations, because even when considering stress balance,
the role of geometrical non-linearity is conspicuous. The Cauchy form of the balance
laws for a continuous media reads

[ped! — P ||, —=F/]g; =0, 4j=1,...,N, (4.1)

where p, is the ND-density of the elastic medium filling the shell; g, are the

above defined orts of the curvilinear co-ordinate system; P are the components
of stress tensor; a’/ are the components of the acceleration vector and F/ — the
components of the N-dimensional body forces. Respectively, ||1 stands for the

covariant derivative in (N — 1)-dimensional space.

Upon substituting into Eq. (4.1) the above defined connection of |, to the
(N — 1)D-covariant derivatives |a, the Cauchy law (4.1) is recast into a system for
the “surface” (laminar) components and a scalar equation for the N-th component,

namely
opNe

g Os

b : c L
_9(b% — s + 52 b, )PNY 4 2 (25{ st +e{g} > PP 4 o(s%), (4.2)

p.a® — PP (bﬁ—scﬁ+s cPrbg.) PN

N
=+ (bp,, - SCp,,)P’B”

_(bg—scg+szcﬂ”bﬁn)PNN+ <23{ﬁu} +sz{ﬂgu}c) PN+ FN +o(s?). (4.3)

We simplify the above system by taking into account the main assumptions of
the present derivations, namely that the shell is a thin layer ~ <« 1 and that the
length-scale of the deformations in the middle surface is L 3> h, then we have the
small parameter ¢ = h/L. Dimensionless variables are introduced as follows:

pea PﬂN|_

s=hs', Ja=L™', bap=L""b,5, cap=L s, Pij=pP,

{aﬁu biL_l{o'zBU}b' {aﬁl/ C=L_2{aﬂu c’
——-t' c= L a°:602 le Nzéia'N

= - = —a a
Vs P L ’

here p is the shear elastic modulus and c is the speed of shear waves. Note the

special scaling for the time involving the square root of the parameter §, which will

; (4.9)
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be identified later on. In a sense we consider motions of the shell that are of certain
characteristic time. Omitting the primes without fear of confusion, the governing
equations (4.2) and (4.3) read

»

1 opN«

§a™ — phe
¢ ﬁ € 0s

(blj secg + szszcﬁ“bp,;)PN“

—9(b% — sect +s2e2c% b, ) PNY 42 (235{[3 } + 5% {ﬁy} )P"ﬁ+o(s ), (4.5)

NN
saN — pPN ] _1oP
g € Os

+ (bpy — ESCpu)PﬂU

—(bﬁ—SEC +S € Cﬁnbg )PNN (255{,3[3‘/ }b—{—szgz{ﬁf[i}c) PuN-i-O(62). (46)

It is too early to make here assumptions about the relative asymptotic order of
the different stress components. Yet one can compare the terms containing the same
stress component and to neglect those which are of higher asymptotic order. Since
we only consider here the flexural deformations, we can neglect the acceleration
terms in the equations for the laminar components of motion. Thus we obtain

.| _18pVa
—pFe I (4.7)
NN
ba¥ — PPN | = é 3’;3 + (bpy — £505, )PP | (4.8)

The essential component of derivation of any kind of shell theory is the intro-
duction of averaged across the shell variables, namely

o d:ef/Paﬁ ds, m*f d:er/sPaﬂ' ds, ¢° c!g‘/PNC' ds. (4.9)
Integrating the asymptoticélly reduced equation (4.7), we get

=0, (4.10)

where it is acknowledged that there are no tractions on the shell faces. The last
equation has an obvious solution

0P = Kkog®* (4.11)

which, depending on the sign of kg, corresponds to the case of uniform compres-
sion/dilation of the middle surface of the shell. Such a stress state is possible
without motion in the middle surface. Henceforth we shall consider only the flex-
ural deformations and the most complicated stress state in the middle surface will
be given by Eq. (4.11).
Multiplying Eq. (4.7) by s, integrating and discarding the tractions on the
faces.we get
em®P .= q%. (4.12)
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Let us assume now that on the shell faces different normal pressures act with
difference of order of O(g). Then

pN =0, PV | =ev,,

s:—% s:%
where £V, stands for the pressure difference. Here it becomes clear that one can
have effectively 2D stress and strain fields only when the normal pressure is of the
above adopted order in the small parameter.

Integrating Eq. (4.8) with respect to s, taking into account the boundary con-
ditions for P¥VN and using Eq. (4.12), yields

6 N Ko v 1
E/a ds = m°8 |ﬁla +?bﬂ,,gﬂ —cﬂ,,mﬁ"-}-ivg. (4.13)

Obtaining the last equation has been the primary objective of the present-
paper, because it gives the opportunity to identify the geometrical non-linearity,
namely the terms of type cs,m?” containing the third fundamental form of the
middle surface. Now it becomes clear that the spatial derivatives of the moment
stresses are of the same order as the geometrical non-linearity. This is a new result

and it is obtained due to the more consistent treatment of the covariant derivatives
in the shell space in comparison with [12, 6].

5. CONSTITUTIVE RELATIONS. St-VENAN-KIRCHHOFF MATERIALS

We shall not dwell much on the constitutive relations for the shell. The main
assumption is that for the very thin shells under consideration the material non-
linearity is negligible and that the hypothesis of Kirchhoff-Love holds true. Ac-
cording to the latter, the laminar displacements u, in the shell space are related
to the (N — 1)D-displacements @, in the shell middle surface as follows:

u® = 4% —esVIC. (5.1)

Being consistent with the limiting case of flexural deformation, we neglect in
what follows the lamin:- components @,p of the displacement vector. Respectively,
the transverse (flexura: displacement and the acceleration, due to the latter, are
given by

52
WW=¢ = /aNdszs—C.

We consider an elastic material (called St-Venan—Kirchhoff material) whose
constitutive relations are linear regardless to the presence or absence of geometrical
non-linearity (see the thorough treatment of these materials in [2]). Without going
into much detail one can derive the following linear constitutive relations for the
averaged stresses and momenta in the middle surface:

m®? = —Db*f = -DVVPC, (5.2)

where D
D=—
plL?
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is the dimensionless stiffness coefficient, while D is the stiffness of shell. Alterna-

tively, under the same assumptions the constitutive relation for the moment stresses

can be postulated (see, [7]) and then the hypothesis of Kirchhoff-Love (5.1) is not

necessary. Furthermore, the overbar will be omitted without fear of confusion.
Introducing Eq. (5.2) into Cauchy equations we get

§ 6%
e Ot?
where A =V, VY, AA=V,V¥(V.V").

Now it is time to assess the length and time scales for which the momentum
stresses are important, i.e. when the shell is not essentially a membrane. These
scales are the ones for which the different coefficients in Eq. (5.3) are of the same
order. For the sake of brevity, let us consider the case V; = 0 when the normal load
is absent. In fact, one can think that either the shell 1s a vast sheet, compressed
at its rims, or a sphere subjected to normal pressure. In the second case, part of
the membrane stress is balanced by V, and one can subtract V,gq s from the term
kobap. As aresult the normal pressure drops off from the equation and its sole role
is to create the uniform compression.

Thus the uniform membrane tension must be of order

Dh?
pL?

= D[=AACH (VaVsO) VPV VI)] + 2 AC+Y,,  (53)

(5.4)

|&o| =

and the dimensionless time scale § = |kqg|. Conversely, for a shell of given stiffness
and shear modulus Eq. (5.4) defines the length scale of the “shell-type” deforma-
tions when the uniform compression/dilation &g is selected. The governing equation
then reads

o? .
aTg = [~AAC+ (VaVsC)(VPVLO)(VHVE)] + sign(ko)AC. (5.5)

One sees that Eq. (5.5) contains a very strong non-linearity — the cubic power
of the curvature of the deformation. In this way it looks very much like the Boussi-
nesq equation [1], being in fact a Boussinesq equation for the curvature A(, if the
middle surface is subjected to uniform dilation kg > 0. For the opposite case k9 < 0,
when there is a uniform compression, it is more proper to be called anti-Boussinesq
equation.

6. CONCLUSIONS

In the present paper a consistent asymptotic treatment of a 3D thin elastic
layer is attempted for the purposes of derivation of shell theory. The main small
parameter is the ratio between the thickness of the shell and the length scale of
the deformation of the middle surface. No additional assumptions, such as “shal-
lowness” of the flexural deformation, are implied. For the “steeper” deflections the
geometrical non-linearity is identified and shown to be proportional to the cubic
power of the curvature of the middle surface. The equation for flexural deformations
turns out to be a Boussinesg-like equation.
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PERTURBATIONS IN A CHAMPAGNE BOTTLE

GEORGY GEORGIEV

The system describing the motion of a particle in a potential field shaped like
the bottom of a champagne bottle (more precisely, an S! symmetric double well) for
the KAM-theory conditions is studied. We show that the Kolmogorov's condition is
fulfilled everywhere out of the bifurcation diagram of the energy-momentum map and
we make researches for the condition of isoenergetical non-degeneracy.

Keywords: KAM-theory, Abelian Integrals, Kolmogorov's condition, Isoenergetical
non-degeneracy.
Mathematics Subject Classification: 34D10, 58F07, 58F30, 70H05.

1. INTRODUCTION

The question of the integrﬁrbility of Hamiltonian systems is one of most impor-
tant problems of the classical mechanics (see [1]). Since the end of the last century
it has been known that most of the Hamiltonian systems are not integrable. The
main problem after this result is to study Hamiltonian systems which are close to
integrable ones. The most powerful approach to non-integrable systems is the per-
turbation theory and especially the KAM-theory. Important for the KAM-theory
are the conditions of non-degeneracy and isoenergetical non-degeneracy.

Before giving a brief account of KAM-theory, let us display the structure of
the integrable Hamiltonian system (see Ch. 2 and [1] for details). The phase
space of a general integrable Hamiltonian system with n degrees of freedom is
foliated into invariant manifolds, the typical fiber being an n-dimensional torus on
which the motion is quasiperiodic. As most of the motions of generic integrable
systems are quasiperiodic, it is a logical question whether small perturbations can
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destroy them. KAM-theory [1, 3] gives conditions for the integrable systems which
ensure the survival of most of the invariant tori. One typical condition is that the
frequency map should be a local diffeomorphism. For any integrable Hamiltonian
system defined by a Hamiltonian Hj one can introduce at least locally near a fixed
torus canonical co-ordinates Iy,..., In, ¢1,...,9n such that I = (I,..., I,) maps
a neighbourhood of the fixed torus into an open subset of R™ and ¢ = (¢1,...,9¢x)
are co-ordinates on any of the nearby tori. Moreover, the first integrals become
functions only of I, . .., I,. The theorem stated by Kolmogorov [3] maintains that
in the perturbed system

H(I,9) = Ho(I) + eHy(1,9) ,

defined by a small Hamiltonian perturbation of Hg, most of the tori sustain the
perturbation, provided that the Hesseian

2
det (%) (1.1)

is not identically zero. The measure of the surviving tori decreases with the increase
of both the perturbation and the measure of the set, where the above Hesseian is
sufficiently close to zero.

In this paper we study the frequency map

1 __,‘(wl(f),...,wn(f)))

where e

wi(I):B_Iio’ i=1,...,n,
for the studied model and prove for it a stronger result. We prove that it is regular
for all points out of the bifurcation diagram, i. e. for all non-critical values of the
energy-momentum map.

Another condition of this type stated by V. Arnold and J. Moser (see [1,
App. 8]) is that of the isoenergetical non-degeneracy which we explain further. Let
us fix an energy level Hyo = hg. If we get the Hamiltonian Hp in action variables,
then we can define the following map Fj, from the (n — 1)-dimensional variety

Hy'(ho) into the projective space P™~1:
Fry o I — (wi(d) 1 ... wa()).

If the map Fj, is a local diffeomorphism, we call this condition an isoener-
getical non-degeneracy. Analytically, the isoenergetical non-degeneracy conditions
are

0?Hy 0OHq
or ol
det 0. 1.2
“om O |7 (1.2
oI
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Some years ago the potentials of the form of an S! symmetric double well were
of interest to field theorists studying the Higgs field. In the present paper we study
this condition for a model of a particle moving in a potential field shaped like the
bottom, of a bottle and determine thoroughly the set where it is violated for any
energy level. It turns out to be either empty or consisting of two points. Of course,
again the measure of the surviving tori depends on the measure of the set, where
the above determinant is too close to zero.

Usually, it is difficult to check the conditions (1.1) and (1.2).

As far as I know, it has only been established for the spherical pendulum (see [4,
5]), Neumann’s system, the geodesic flow on the ellipsoid (see [6]). The Kolmogorov
condition for the Kirchhoff Top was proved in [9]. The condition of isoenergetical
non-degeneracy for the problem of two centres of gravitation was checked in the
paper [8]. We shall give the conditions (1.1) and (1.2) in terms of Abelian integrals
and reduce the problem (as in [4, 5]) to analysis of these reminiscent and the study
of limit cycles problems (see [7]).

2. THE ACTION VARIABLES

In this chapter we introduce some notations which we need in order to state
the problem. We follow [2] and [4].

Let (M,w) be a symplectic manifold of dimension 2n, i.e. M is a smooth
manifold and w is a closed differential form of rank n. Let H be a smooth function on
M. Denote by Xy the Hamiltonian vector field corresponding to the Hamiltonian
H. Let also fi ... fn be n functions in involution, i. e.

{f]! f,-}:XfJ.fi:O, j)i:]-a"-)n'
Define the level set
M.={m : fi(m)=¢;, j=1,...,n},

and suppose that the differentials are linearly independent on M.. The following
theorem gives complete description of the manifolds M. together with the natural
co-ordinates near them.

Theorem 2.1 (Liouville — Arnold). Suppose M, is a compact component of
M.. Then:

a) M, is invariant under the flows generated by X;,, j=1,...,n;

b) there are a neighbourhood U of M, and a diffeomorphism J : f(U) — V, so
that we have I = J o f, and the symplectic form w in the co-ordinates (I,p) takes
a Darbouz canonical form:

w=Y dpAdl (2.1)

(See [1] for the proof.) Recall that I, ¢ are called action-angle co-ordinates.

Following [2] and [4], one can construct the action co-ordinates. Let (p,g) be
local Darboux co-ordinates such that the level surfaces ¢; = const meet transver-
sally M.. We suppose that the two-formw is exact, w = do, where o is an one-form.
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Define a basis of cycles v;(¢), j = 1,...,n, in the homology group H(M,,Z). Then
the action variables are given by

I, = }{ o, k=1,...,n. (2.2)

Tk (e)

We define a model using a potential in the plane by
V(r)=r*-r? (2.3)

where 72 = 22+ y? and z and y are the Cartesian co-ordinates in R2. The Hamil-
tonian of a particle moving in the plane under the influence of this potential is

1 2
H= 3 (p2 +p!2,) +(z2+9)" = (22 + %) (2.4)
in the usual canonical co-ordinates (z,y,ps,py). We change (2.4) into polar co-
ordinates

z =rcosf, y=rsinb.

Introducing the corresponding momenta p, = p; and ps = p,/r?, we obtain the
Hamiltonian in the form

H= % <pf + %p?) +rt - 72 (2.5)
Now dpg/dt = {ps, H} = 0, since 8 is cyclic. Hence G = py is the conserved angular
momentum. This means that the Hamiltonian system is completely integrable,
because we have the two conserved quantities G and H, whose Poisson brackets
vanish.

We want to understand the geometry of the map J from P = R* (the phase
space) to R?, which is given by

J:.P—’R.2 s (I,y,Pz,Py)—’(g:h):

where H = h.
The critical values of the map J are (0, 0) and the curve is parameterized by

(g,h) = (:l:\/llrﬁ “9rd, 31— 21‘2) . r>07l?

(see [2] for proofs). Denote by U, the set of regular points of the map J (Fig. 1).
For points (g, k) € U, the level surface determined by the equations H = h, G =g
is a torus T} 5. Choose a basis 1, 72 of the homology group Hi(Ty r,Z) with the
following representations: for 7, take the curve on Ty s, defined by fixing r and p;
and letting @ run through [0,2#]; for ¥, fix 6 and p, and let r and ps make one
circle on the curve by the equation

1 1 :
h= 3 (pf + T—ng) +ri—r2 (2.6)
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Tig. 1. Image of the map J

Now we can define the action co-ordinates I, I; by the formula (2.2), where

o =py ANdf + p,. Adr, w =do = dpg A dé + dp, A dr. (2.7)
We have
L= fpe df = 2mg, (2.8)
™
72 g2
Ig:fp,-df‘:?/rl \/2(h+7‘2—7"4"2r3>dr, (2.9)
T2
where r; < 7y are the roots of the equation p, = 0 (see [2] and [4]). Put
z=r% y=pr, ¥ =2hz+22-2%) g% (2.10)
Denote the oval of the curve
T={(y,2) : ¥ =2(hz+ 2% -2 g%} (2.11)
(which exists for all (g, k) € U) by 7. Then we have
Y(hg) =1 = /gdz. (2.12)
¥
Let us show what is the meaning of r, and ry. If the polynomial P(z) = -2z +

322 + 2hz — g2 has three real roots z; < z3 < z3, then to ry corresponds z;, and to

ro corresponds 23 (Fig. 2) in the proimage transformation (2.10).

z /_\22 23

SN

Fig. 2. Image of P(z)

145



Lemma 2.2. The polynomial
P(z) = —22° + 32% 4 2hz — ¢*

has three real different roots for all (g, h) € U,.

3. STATEMENT OF THE MAIN RESULT

Denote by fI(Il, I5) the Hamiltonian of our model in action co-ordinates. Our
primary aim is to state the next theorem.

Theorem 3.1. For (g,h) € U, the determinant

9*H  8°H
812 L0l
det 2 8 (3.1)

01,0, OIZ

does not vanish.

The condition (3.1) introduced by Kolmogorov [3] is crutial in KAM-theory
[1, 3], dealing with the existence of invariant tori for perturbations of integrable
systems. The procedure by which the invariant tori are constructed excludes the
points, where the determinant (3.1) is violated, together with their neighbourhoods,
whose measure is proportional to the perturbation (see [1]).

We shall give the condition (3.1) an explicite form in terms of Abelian integrals
of the se¢ond kind. Using expression for Iy, I, we can determine G H implicitly
from the equations

L =2xG, I,=%(G,H). (3.2)

Lemma 3.2. The following formula holds true:

H  *H % 9%
op\* 017 8L 0I 92k Ohdyg
2 [ O¥ i _ .
(2) (ah) det| o5 a2 det oy o (3.3)
8[26[1 6[22 696h 692
(For the proof see [4].)
Using [7], we have
oy dz
-] = 3.4
=2 #0 (3.4)

in Us.
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Lemma 3.3. For all (g, h) € U, the determinant

oy oy
0%h  B8hdg
D = det
e 8%y 32_11) #0
dgbh  Og2

This condition is equivalent to Theorem 1.

We formulate the condition of isoenergetical non-degeneracy in the next the-
orem.

Theorem 3.4. 1) For h € (—1/4,0) U ((7v/249 — 1) /600, +oco) the map
Fo:H ' (W) NU, = P!, Fu(h, L) = (Hy, : Hp,)

15 regular everywhere;
2) For h € (0, (7v/249 — 1)/600| the map Fy has ezactly two critical points.

Next we would like to show that the entries of D can be represented as elliptic
integrals. If we differentiate 9(h, g) twice formally, we get the following expressions:

8%y zdz
5;?2:_/3,_3’ (3.5)
2
0%y dz :
m—g/’yi) (3.6)
2
o [ dz
'a_:_g ™
g 2
¥
821,0_ dz gdz_ (y2+g2) _ h+z+4 22
e e [ [ e e
v 2 v v

The differential forms containing v~ have poles along 7. There is a standard way
to get rid of the poles on the integration path and we remind it below. Consider
F;.:h as an elliptic curve in C defined by the equation for T'y . Topologically, it is a

torus, whase one point is removed (see [4]). Now we deform the cycle 7 on I‘Eh into
a new cycle ¥’ (Fig. 3) on which the function y has no zeroes. Of course, during the
deformation the differential form yz~! dz must have no poles. Then by Cauchy’s
theorem  the function (g, ) can be defined by the integral (2.12), taken on the
path of integration 7’ instead y. With this definition of (g, h) the derivatives are
well defined. We denote again 7' by 7.
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Fig. 3. The deformation of the cycle ¥

Let
P2 )
wi(g, h) = / y—adz, 7=01. (3.8)
Y

The next lemma gives a representation of D as a quadratic form in wq, ws,
which we shall need throughout this paper.

Lemma 3.5. The determinant D has the representation

2 2
D= §w1(2hwo +wy) — g2wi. (3.9)
Proof. We have
Y
orz — 1
(see (3.5)),
%y 0y w
9hdg ~ dgon "
(see (3.6)),
9?4

22
——:—Qhwo—w1+2/§§dz
Y
(see (3.7)). We need an expression for

!/

2
dz.

<l
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Let transform this integral in the following way: we have

223 = 2hz + zz) — g% -y,

2 3 2y _ 2 _ .2
/&—dz = 1/2—z-dz=l/d(2(h2+2) 9> - )
y? 3J ¥ 3 y?
v ¥ ¥
1 [2h
= §/E3—dz+ / /id :—w0+3w1,
bt
because d
oo
Yy
b
Then 6%y 2h 4 4h 2
a—ga— = —~2hwgy — 2wy + ?’U)g = 51.1)1 = —-3—11}0 - g‘wl,

this gives the representation (3.9).
We see that D does not depend on the sign of g. That is why it is enough to
prove Lemma 3.3 only for g > 0.

4. PICARD-FUCHS EQUATIONS

Lemma 4.1. Let ¢ = 0. Then the functions wo and wy satisfy the following
system of Picard-Fuchs equations:

d
2h(4h + 1) d‘;’l" = —2(Th + 2)wg + 5wy, (4.1)
dw1
2(4h + 1)—~ = wp — 10w;. (4.2)
dh
Proof. Differentiating the expression (3.8) with respect to h, we obtain
dwk _ ZIH'1 _
W——:;/ y5 dZ, k—O,l (43)

v

Put ¢ = 0. Then we transform wq in the following way:

wy = dz —d —9 (hz + 22 -—z)dz
v
b4

_ thiw_zdn 2/
- 3 dh 3 dh
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23 1 1 z 9 9
Y Y
2h z 2 z
= = i A
3/ 5 / 3/y4 Y
i

_ 2h dwyg 4dw1 2 5 du=3
=~ T9dr 94 y

9J
_ 2hdwy 4dw; 2 / dz _ 2hdwy 4dw; 2
T T9dh 9dh 9) BT "9 dh 9dh 9™

5
Then
_ %dwu 2dw1+2hdwo+4a’w1+g
WOST3 4R T3dh "9 dr T9dR 3"
This gives
4h a’wo 2 dwl
W= T G "7 dh (44)
In the same manner we transform w; and obtain
2h d h d
wy = _2hdwo _ 28h+8 dwy (4.5)

! 35 dh 35  dh

d
Now solving (4.4) and (4.5), for % and % we get the system (4.1) and (4.2).

We also need the function

wi (h,0)
h) = . 4.
Lemma 4.2. The function o(h) satisfies the Riccali’s equation
%Mh+Ujh——&2+Mh+Ua+h. (4.7)
Proof. Obviously,
do 1 dw, dwg 1 2
== — —w— | = —(— 4(h+1 h).
& = 0l (““dh Y1 3h ) Thah 0 HAh Lo +h)
When g = 0, the expression for D factors is
2 9
D = -wjoa, (4.8)

3
where o, = o + 2h.
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From o, we obtain the Riccati’s equation

d
2(4h + 1)% = _5‘7% +4(6h + 1)o; + 8h% — 3. (4.9)

We need also some other functions both for the study of ¢ and o, and for the
case g # 0. In order to introduce them, we put the family of curves I,‘

,h Into the
normal form 9

Tp={(z,v) €C: v* =2(v*-3u+p), pe (-2,2))

. 1
by the transformation z = —t + =, y = av, 1 = Bu, a = B%/2 where

3
1
8= §v3h+1, (4.10)
1 (h N 2 g2 \
p € (—2,2) (see [7]). In these variables the integrals wo(g, h), w1(g, k) become
B du
Wo=—"3 23 (4.12)
¥(p)
B[ —Put(1/3)
w=-g [ (4.13)
v(p)
We introduce the new functions
du udu
fo(p) = / e 01(p) = >3 (4.14)
7(p) 7(p)
and their ratio 02(0)
1\P
o(p) = ) 4.15
0= 55 (4.15)

In these notations we have
: 1
o(k) = ~Be(p(0,h)) + 5
Lemma 4.3. 1) The functions 0o(p), 61(p) satisfy the Picard-Fuchs system

do

6(4 - pz)d_: = Tpfo + 106;, (4.16)
do

64— "), = 1400 + 5pfi. (4.17)
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2) The function o(p) satisfies the Riccati’s equalion

that

do
3(4—p¥)—= =7 - po — 50°. 4.18
( P)dp po — 5S¢ (4.18)

The proof is the same as the one of Lemma 4.1 (see [4]).

5. ASYMPTOTIC BEHAVIOUR

Lemma 5.1. The following formulas hold irue:

lim o(p) = 1, (5.1)
p—2
lim_o(p) = » (5.2)
Jim_o(p) = £, :
lim o(h) = — (5.3)
h—m1 10 '
’111_1.1}) a(h) =0, (5.4)
h_l}&]@ o(h) = —o0, (5.5)
. a(h) _
hBToo =0 (56)

Proof. The proof of (5.1) and (5.2) is given in [4]. To prove (5.3)-(5.6), note

lim p(0,h) = =2, }lin})p(O, h) =2

h—— %

Then we obtain

1 1

: o . 1_1

pim, o(h) = — lim, § lim, o(p) + 3= 33

Next we have L1
e =-g+3=0

. o(h) . g . 1 . 7

S - =1 =0.-+0=0.
A T plim F imoe(p) + 3 lim =0.5+

And
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6. KOLMOGOROV’S CONDITION

Let us first consider the case g = 0.

Le:mma 6.1. The functions o(h), o1(h) salisfy the following inequalities:
1) in the region 1< h <0, 0(h) > 0 and oy(h) < 0;

2) in the region 0 < h < 400, o(h) < 0 and o;(h) > 0.

Proof. First we prove that o(h) is positive in the interval (—% ) 0) and nega-

1
tive in (0, +00). Let h € <_Z’ 0) and suppose that h; is the first zero of o(h) in
this region. Then, using the Riccati’s equation(4.7), we have

1

/ —

The function o’(h) is continuous. That is why we obtain that a neighbourhood
of point h; exists, where ¢/(h) > 0. Then the function o(h) is strictly increasing
in this neighbourhood. Using(5.3), we obtain that a point kg < h; exists, where
o(hg) = 0: an obvious contradiction. In the same manner we obtain that o(h) can
have no zero in the interval (0, +00). Using Lemma 5.1, we obtain that a(h) > 0

for h € <—%, 0) and o(h) < 0 for h € (0,+00) (see Fig. 4). In the same way we

. . . 1
obtain that the function o (h) is negative in the interval (—Z, 0).

g

-—--

Fig. 4. Image of (k)

In order to proof that ¢;(h) > 0, we need the next proposition.

Lemma 6.2. The function o(p) is decreasing on the interval (—2,2) and
7
1< o(p) < 5 (6.1)
(For proof see [4].)
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We have

a1(h) = —Be(p(0, B)) + % +2h> —f+ % +2h. (6.2)

Using(4.10) and the substitution v/3h + 1 = t, where t € (1, +00) for h € (0, +c0),
for the right hand side of (6.2) we obtain the new function

n(t) =22 -t — 1.
We shall prove that n(t) > 0 for ¢t € (1,+00). Indeed,
n(t)=4t-1,

that is why the function () is strictly increasing on the interval (1, +00). Now we
have

n(t) > (1) = 0.

We obtain that o1(h) > 0 for h € (0, +00). This completes the proof of Lemma 6.1
(see Fig. 5).

251

—1/4 0

h

- - -

Fig. 5. Image of a1(h)

Corollary 6.3. I !5 negative for g = 0.
We turn to the general case g > 0.

Lemma 6.4. 1) For h € (—%,0) U (0, +o0) and g > 0 we have the represen-

tation 0
D= gwgﬁz.F(p,ﬂ),

where

F(p,B) = 0* — 680+ 30p —2. (6.3)
2) The functions B(h) and p(h,g) map the sel

U, ﬂ{(g,h) . he (—%,0) u(0,+oo)}'
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diffeomorphically on the sel

v={om: oe (L)L =), pean)

Proof. For D we have (using (3.9), (4.10) and (4.11))

2 1 1 1
D = §w1 (2hwy + wy) — gzwg = §w§ (2 (—ﬁg + §> (2h — Po+ §) — 3g2)

= %m(ﬁf—mmmmﬁ—g—w)
1 2 2 2 3 2 2 2
= gwp (207¢" — 1267~ 3(3h + 1) + 26+ 6/°p
1 2
= qwi (26%" - 126% — 46 + 66°) = Swif® (¢* — 6+ 36p—2).

Lemma 6.5. For all (p,b) € V; the funclion F is negative.
Proof. We have -

6_F—_6 +3 EZ_F_—
88 = e Ggap T

because g’ < 0 (see Lemma 6.2).

—60'+3>0,

. . . OF . . . . .
That is why we obtain that the function % is a strictly increasing function
of p € (-2, 2). Now we have

S 0.8) < G2 (2.0) = ~66D) +32 =0,

then F(p, ) is a strictly decreasing function of 3 (f > —). We obtain

L=l

but -1 < g < 1and —% < —p < —1. So now we obtain
P 49 1

—o+E2<o0 = —9
etg <0 d<g, £-2<-g,

hence F(p, ) < 0. This completes the proof of Lemma 6.5 and together with that
the proof of Theorem 3.1.
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7. ISOENERGETICAL NON-DEGENERACY

Our aim is the proof of Theorem 3.4. Here we find an expression for the
function Fj in the terms of elliptic integrals. We have Fj, = Fi,(g), h = const.

Lemma 7.1. Let (g9,h) € U.. Then F), has the representation
dz

hil = —. A
27 Og 2y (7.1)
The proof is straightforward.

Lemma 7.1 shows that we have to determine the zeroes of the function

8%y 5]
7 2(9, h) = —26—g-Fh(g)

2
for a fixed h. We shall study the curve of zeroes of the function ng(g,h) for

(g, 1) € U,. The statement of the theorem easily follows from the properties of this
curve. Because of the symmetry of the set U, with respect to the line g = 0, we
concentrate our attention on the set Ut = U, U {g > 0}.

52

Lemma 7.2. For g =0 and (0,~) € U, the function 3—1'5 does notl vanish.
g

The proof is a simple application of Lemma 6.1 and (3.4).

Now let ¢ # 0. It is clear that we study only the case g > 0. We have

Sy 2 w) 2 |
g = v (104 1) = Jus (o= 00+ 55).

We know that 8 # 0, that is why we obtain the equation

1 1 1 1

7
e=63— l<eo< -

1
3p’ 5

1 7+249
e (5’ TJ

Then we get

1 V249+ 7/
360
exactly one solution p(f) € {—2, 2}, as Lemma 6.2 implies. This defines a function

11

-Proof of Theorem 3.4. Let f € . Then the equation(7.2) has

) ( ,+00 |, which is strictly increasing. Our aim is to
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2
prove that the curve in U7, defined as the zero-locus of the function 6—¢ has

9g2’
7+\/24}

- exactly, one point of intersection with the line h = hg for hg € ( 600

1 74249

f the interval
image of the interva ﬂe(3 60

] by (4.10)). Suppose there are two points

g1 and g, for which
82 E
¢(9J,ho)_0 ji=1,2.

Then the images of these pomts (g5, ho) by the transformation (4.10), (4.11), which
1 v249+7
3 60

Because of g(p) being strictly increasing, we obtain p; = p3. But ¢ > 0 and using
(4.10) we have g = g. This finishes the proof of Theorem 3.4.

we denote by (p;,bo), j = 1,2, satisfy the equation (7.2) for fp €
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ON THE “TRIANGULAR” INEQUALITY IN THE THEORY
OF TWO-PHASE RANDOM MEDIA

KONSTANTIN Z. MARKOV

A necessary condition on the two-point correlation function of binary random
media, noticed by Matheron [1] and called by him “triangular” inequality, is studied
in this note. An appropriate result, due to Achiezer and Glazman [2], is first recalled.
Simple consequences of this inequality are given, as well as a necessary condition for its
validity in a statistically isotropic medium. It is shown that it represents a requirement,
independent of that of the familiar positive definiteness, that should be additionally
imposed on the two-point correlation function of any realistic binary medium.

Key words: random materials, two-phase media, correlation functions.
1991/95 Mathematics Subject Classification: 60G60, 73B35s.

Consider a random and statistically uniform medium that occupies d-dimen-

sional space R%. The medium is “binary”, i.e., it consists of two phaées labelled 1
and 2. Phase 1 (which needs not to be connected) occupies €2, and phase 2 occupies
its complement 2. The characteristic function of €2, is f;. Thus,

1, if zef,
fi(z) =

0, otherwise.

As it is well-known, the statistical properties of the medium follow from the set of
multipoint probabilities or moments of f;: '

m = (f1(0)), (f1(0)fr(z1)), .-, (1)

where each z; € R?, see for instance [3]. The angled brackets signify ensemble

159



averaging. Such multipoint probabilities are symmetric in their arguments. One
point could be taken at the origin, because of the assumed statistical uniformity.
It is, in fact, convenient to work with 7; and the multipoint moments

Mp(z1,22,. .., 2p-1) = (f1(0) fi(z21) f1(2z2) .. . f1(zp=1)), P=2,3,..., (2)
where
fi(z) = fi(2) = m (3)
is the fluctuating part of the field fl(zj.

Of course, not any infinite hierarchy of functions M, can represent moments
derived from a random medium and, moreover, from a two-phase one. The reason,
well recognized and very clearly explained by Frisch [4], is that the function M,
should satisfy, in particular, certain compatibility conditions. The real problem in
this connection arises when modelling a random constitution of practical interest.
In such cases the first few moments (as a rule the two-point and, more rarely, the
three-point ones) are prescribed using certain, very often heuristic and not very
rigorous arguments. Though the form of the prescribed moments can, in principle,
be checked experimentally, the question remains as to whether these moments can
be inserted into the infinite hierarchy of multipoint moments (2), i.e. whether they
pertain to a rea! random medium. The problem is even tougher when the two-phase
media are dealt with, having in mind that the latter very often appear in applica-
tion. Frisch [4], for example, presented examples of two-point probability densities
that look plausible but cannot belong to any real random medium. Another more
recent example is connected with the often used “well-stirred” approximation for
random dispersion of spheres, for which, as far as the two-point moment is only
concerned, overlapping is forbidden and the sphere location is not statistically in-
terconnected otherwise. This approximation turns out to be realistic only at sphere
fraction n; < 1/8 in 3D, as shown in [5, 6].

For any statistically homogeneous medium one restriction that is generally
known is that its two-point correlation function should be positive definite, so that
its Fourier transform must be positive. The converse is also true, namely, for any
positive-definite function there exists a random medium for which this function
represents its two-point correlation (the Bochner or Bochner-Khinchine theorem,
see, e.g., [3]). Further restrictions are known if the medium is also statistically
isotropic [3]. For two-phase media, as introduced above, it ought to be possible to
find more restrictions but none are known; a conjecture on how to recognize realistic
two-point correlation functions for such media was recently made by Matheron [1].
As a matter of fact, a method for deriving relations of such a type has been proposed
in the recent work [6] on the basis of a certain variational reasoning.

Here we shall study in more detail a requirement, specific for the correlation of
a two-phase medium. This is an inequality first noticed, to the best of the author’s
knowledge, by Matheron [1] and called by him “triangular” due to obvious geomet-
rical reasons. It appears that this inequality closely resembles a certain property
of the positive definite functions, first pointed out by Achiezer and Glazman [2]
almost forty years ago. That is why we shall first recall the appropriate result of
Achiezer and Glazman.
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Followmg these authors, introduce the class G of real and even functions g(z),
z € R?, for which the kernel

I(z,y) = g(z) + 9(y) —9(z — ) (4)

is positive definite, i.e.

E
Z [ (z:) + 9(z;) — g(zi — zj)|a;a; >0, Vz; € R? a; € R. (5)

Proposition 1. Let v5(z) be a real positive definite and even function on RE.
Then 1 — y2(z) € G (end thus A(1 — y2(z)) € G as well, YA > 0).

Proof. Due to the definition (5), 1 — y2(z) € G if the kernel
T(z,y) = 1 + 72(z — ) — 72(2) — 72(¥) (6)

is positive definite. To prove this, consider the identity

2k

Z Y2(% = yi)bibj = D ya(yai — v2j—1)baibaj

ij=1 i,j=1

2k 2k _
+ ) oy — voj)basbaj + D v2(yaio1 — y2j—1)baic1baj1
ij=1 ij=1
2k
+ Z Y2(y2i—1 — Y2 )b2i—1b2;.

i,j=1

Choose now yy; = 0, y9i-1 = z4, boy = —a;, boj_1 =a;,i=1,...,k. Then

k
0< ) vy —yi)bidj = Y [1 +72(3i — 25) — 12(2i) — 72(2)) | 2i0;.
i,j=1

ij=1

Hence the kernel T(z,y), see (6), is indeed positive definite, which proves the
proposition.

Remark 1. The Proposition 1 and its simple proof, given here for the sake of
completeness, belong to Achiezer and Glazman [2], see also {7, p. 265].

Let the medium be two-phase and let

y(&,2") = 2@ = 2" = 2 (1Ai() ~ Fil=")7) ™)

denote the so-called variogramme of the field fi(z). Using the definition of the
two-point correlation, it is easily seen that

7{z) = mna(1 — 72(2)), (8)
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where

n) = i = f((‘?{égf” , M(0) = (£2(0)) = mums,

so that y;(z) is the most often used two-point correlation for which v,(0) = 1.
According to Proposition 1, ¥ € G, since vy2(z) is positive definite. Hence

the field I'(z,y), generated by v(z), see (4), is positive definite. The following

proposition shows, however, that for a two-phase medium an additional fact holds.

Proposition 2. The variogramme of any two-phase random medium generates
a field T(z,y) which is not only posttive definite, but which is nonnegative itself. In
other words, the so-called triangular inequality of Matheron [1] holds:

1z —y) < v(z) +7(y), Vz,yeR’ (9)

Proof. Obviously,

1e,9) = 5{1A1@) ~ AEP) = 2{(1AE) - £0)+ O+ L)

= %(m(m) — HO)F) + %(Ifl(o)'— AGI) - alz,9)

=7(z) + 7(y) — oz, y),
where

a(z,y) = {(£1(0) = i@)(A(0) - A)))-

To prove (9) it suffices to show that e(z,y) > 0. But, if the origin 0 lies in the

constituent ‘2’, then f1(0) = 0 and a(z,y) = (fi(z)f1(y)) > 0. Similarly, if 0 lies in

the constituent ‘1’, then f1(0) = 1 and again a(z,y) = ((1 — fi(z))(1 - fi(y))) > 0.
Combining (8) and (9) yields

12(2) + 12(3) = 72(z —y) < 1 (10)
1 + 72(7" + GTH) Z 72(T') + 72(7'”)) A € [_11 1]—1 (11)

having chosen [z| = r/, " = |y|. This inequality should thus be satisfied by the two-
point correlation of any realistic statistically homogeneous and two-phase random
medium.

Corollary 1. Let the medium be statistically isotropic as well, so that yo(z) =
v2(r), 7 = |z|. Then
12(0) <.£73(r),  Vr € (0,00). (12)

Indeed, choose the vectors z, y colinear, once with the same directions and
then with the opposite directions; |y| = Ar, |z| =r, r > Ar > 0. Then

Y2(Ar) + 72(r) < L+ 72(r £ Ar)
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which, at Ar < 1, implies (12).
Since 72(0) = 1 and 72(r) < 1, we have obviously 75(0) < 0. The inequality
(12) is then equivalent to

[73(r)] < 172(0)l,  Vr € (0, 00), (13)

which means, in particular, that the steepest decrease of the two-point correlation
function 72(r) of an isotropic two-phase medium is at the origin r = 0.

Corollary 2. A positive definite function yy(r) may serve as a two-point
correlation of a two-phase statistically homogeneous and isotropic medium, only if
712(0) < 0.

Indeed, (13) immediately shows that v5(0) = 0 yields v4(r) = 0, ¥r € (0, 00),
i.e. v2(r) = 1, which is impossible.

The inequality v5(0) < 0 for a two-phase medium follows also from the fact
that —v5(0) is proportional to S/V, where S is the specific surface (i.e. phase
boundary) within the small volume V, see [8] and especially [9, p. 177] for details
and a proof. More precisely, S/V = —4n;(1 — 11)v4(0), which obviously implies
75(0) < 0 for such media.

Remark 2. As it is well-known, not every real and positive function is positive
definite and vice versa. Hence the triangular inequality represents a necessary
condition that should be imposed on the two-point correlations of random media
in aeddition to their positive definiteness,; if the modelled medium is two-phase. To
illustrate this consider as an example first the function

_ 1
(1) = A eEne

It is positive definite (since its Fourier transform is positive) and hence it rep-
resents, according to the Bochner-Khinchine theorem, a two-point correlation of
a certain statistically homogeneous and isotropic random medium. On the other
hand, ¥5(0) = 0, so that the triangular inequality fails for this medium and the
latter therefore cannot be two-phase.

Conversely, consider again the above mentioned “well-stirred” dispersion of
spheres. Its two-point correlation satisfies the triangular inequality for all values of
the sphere fraction n; € (0, 1) (since the field fi(z) is binary). On the other hand,
the Fourier transform of this correlation is positive definite only at 7; < 1/8, as
it can be directly shown. Hence the positive definiteness and triangular inequality
are indeed two mutually independent necessary conditions that should be satisfied
by the two-point correlation of binary random media.

In general, it seems hard to give a complete description of the functions that
.satisfy the triangular inequality (10). (The variogrammes under study cannot ob-
viously be homogeneous of degree 1, i.e. y(Az) # Ay(z), and thus they are not
semi-norms on R?.) A simple -and rich class of such function can be easily de-
scribed though. To this end note that (11) implies v4'(0) > 0 for such a function
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and thus 7,(r) is convex and monotonically increasing in a certain vicinity of the
origin. If the latter properties hold for all r € [0, 00), it suffices to claim that the re-
spective function is an admissible two-point correlation. More precisely, recall that
in 1D a bounded even function which is convex on the right half-axis is positive
definite [10, p. 187]. A radially symmetric function y2(r) in 3D with these proper-
ties is not obliged to be of that kind.! However, for such functions the following
result holds:

Proposition 3. If y2(r) is menotonically decreasing, nonnegdtive and conver,
then it satisfies the triangular inequality (10).

Proof. Since y3(r) is monotonically decreasing, in order to prove (10) it suffices
to show that

14 72(r' +7") 2 72(r') + 72(r"),

having taken the vectors z, y colinear, with the same direction; r' = |z|, " = |y|.
Let ' > r” for definiteness. Then

1 - 72(1‘11) — 72(0) _ 72(7'//) — _7;(61)1,11’ EI e (0,7‘”),

72(1'[) _ 72(7‘1 +rll) = —7;(6”)7'”, E” e (TI,TI + T”).

The convexity of v2(r) means that v5(r) > 0, so that v5(€") > v5(£'), because
& > ¢'. Hence

1 - 7(r") 2 72(r') = y2(r’ + "),
which proves the proposition.

A simple example of an admissible and physically reasonable two-point corre-

lation is
To(r) = e7H7, (14)

proposed by Debye et al. [8]. This is the so-called exponential correlation, dis-
cussed, for instance, in the book of Stoyan et al. [9] (where a planar random set
with this correlation is explicitly constructed in Sec. 10.5.1). Being convex, positive
and monotonically decreasing, the function (14) satisfies the triangular inequality
(10), as it follows from Proposition 3. Its Fourier transform is positive. Hence this
function may represent a two-point correlation for a two-phase statistically homo-
geneous and isotropic medium in R? for any d. A more general class of similarly
admissible correlations is obviously given by

¥a(r) =/e_" do(t); (15)

1The function in 3D

_fl-v/e, fr<e,
n(r)= {0, ifr>a,

7 = |z|, is bounded and convex, but its Fourier transform %, (k) is proportional to 2(1 — cosak) —
aksinak and hence it is not positive everywhere.
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here o(t) is an arbitrary bounded and non-increasing function on (0, oo) such that
[ do(t) = 1. (If o(t) = H(t — p), Debye’s function (14) is recovered from (16),
H(t) being the Heaviside function.) In other words, the class (16) gathers the
Laplace transforms of all nonnegative functions on (0,oo) (more precisely, of all
bounded measures there).

Note finally that the class (15) coincides with the class of the so-called com-
pletely monotonic functions, according to the well-known Bernstein theorem, see,
for instance, [11] or [7]. It is curious, however, that such completely monotonic
functions (15) may represent correlations only for dispersions of overlapping or
touching particles. The reason is that non-overlapping always implies the condi-
tion v5'(0) = 0, as it follows from the results of Kirste and Porod [12], see also [13]
and [5]. This condition, however, never holds for the functions (15).

Another example of an admissible two-point correlation is the function

31' rd .
1a(r) = 1 + T6a3" if r < 2a, (16)
0, if r > 2a,

since it is obviously positive definite, nonnegative and convex. Hence it satisfies:
the triangular inequality (10) as well. Note that (16) is the two-point correlation
of the so-called Miller’s cell material [14] in the simplest case when the cells are
spherical, see also [15].
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The paper presents the numerical implementation in 2D of a Fourier-Galerkin
expansion with complete orthonormal basis system of localized functions. The bilinear
Laplace equation is considered as a featuring example. Coordinate splitting is used to
reduce the cost of inversion of the linear matrices for the coeflicients. The axisymmetric
soliton is calculated as a 2D problem and compared to a numerical solution, found by
means of a difference scheme.
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1. INTRODUCTION

Calculating the shapes of localized waves, e.g. solitons, is of importance for
the modern theory of non-linear waves. The difficulties are connected with the
unboundness of the integration domain. For example, in numerical treatment,
when using finite-difference or finite-element schemes, one has to consider large
enough domains in order to reduce the infiuence of the truncation (the so-called
“actual infinity”). In 1D the problems of domain size and mesh resolution can still
be tackled, although sometimes up to 20000 grid points (see, e.g. [12]) have to be
used. Clearly, in 2D, when the mesh size is at least the square of the 1D mesh-size,
it is a very hard problem.

One of the ways to circumvent the said difficulty is to employ a complete
orthonormal (CON) system of functions on the infinite interval and to devise an
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algorithm for implementation of one of the spectral techniques: Galerkin’s; pseu-
dospectral, tau-method (see [5, 3]). The successful application of the Galerkin
method requires, however, that the product of two members of the system can be
conveniently represented by means of the functions of the system. CON system
with the required properties was introduced first in [6] and applied for finding a lo-
calized solution to the Burgers equation. Later on, the numerical Fourier-Galerkin
technique was extended to Korteweg-de Vries (KdV) and Kuramoto-Sivashinsky
(KS) equations [11] and the fifth order KdV [1]. Boyd [2, 4] showed that the new
CON system can be obtained by an algebraic mapping of the Tchebishev polynomi-
als on an infinite interval, see also [3]. In this way he derived a variety of properties
of the expansion.

Employing a spectral expansion with a specialized CON basis system dras-
tically reduces the required computational resources. They can be even further
reduced if the resulting algebraic system is treated in the appropriate manner by
means of a splitting method. The aim of the present paper is the creation of an
algorithm for implementing the Fourier-Galerkin technique in 2D.

2. POSING THE PROBLEM

Consider the following generic equation (the non-linear Klein-Gordon equation)

= —u+3u’+ &+62—”
e 8z? ' Oy?

O%u

S (2.1)

which, as is well-known, possesses localized solutions that propagate stationary. In
the co-ordinate system connected with the center of the localized structure (the
so-called “moving frame”) one can introduce new independent variables £z — ct,
7 = y — caot, where ¢y, ¢y are the components of the phase speed of the center of the
localized structure. Then for the stationary localized solution one arrives at the
equation

O%u 0%u

2 + B2 3772) =0, (2.2)

where §; = 1—c?. Here we consider only “subsonic” solitons for which g; > 0. The
boundary conditions stem from the vanishing of the solution at infinity:

—u+3u 4 (,81

u—0 for & n— *foo. (2.3)

Clearly, the problem (2.2), (2.3) is a bifurcation one, since the trivial solution

u = 0 always persists. A similar problem was treated in [14] for the classical spec-

tral method with harmonic functions in application to the sixth order Boussinesq

equation. To avoid the trivial solution, one can impose a condition at the origin of
the co-ordinate system, say,

u(0,0) = const. (2.4)
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Strictly speaking, (2.4) will overpose the problem unless some additional degree of
freedom is introduced, say, through an additional coefficient of the non-linear term

9u 0%u

2 _

—u+ 3ou’ + (ﬁ1@ +ﬁ23_1)2) =0, (2.5)
which is to be calculated so as to fit the imposed boundary conditions at the origin
of the co-ordinate system. The definitive relation for the new unknown is the

equation taken in the origin:

2

1 u %u
a= —?m [U(0,0) - (ﬂlgéi + 5 W) Izo,yzo] . (2.6)

The last relation does not overpose the problem, since the equation in the
origin is not used in the scheme for u, but rather it is replaced by the prescribed
boundary condition (2.4). Thus we arrive to a boundary value problem (b.v.p.)
which does not possess a trivial solution. In addition, for the unknowns (u,a)
explicit relations are available. Then the construction of an iterative procedure is
straightforward. In some cases, however, the convergence is achieved only when a
relaxation for a is performed.

Note that the above procedure is valid only when the expected solution has
non-zero amplitude in the origin of the co-ordinate system. When this is not the
case (say, for solutions that are odd functions), one can impose a similar condition
on one of the partial derivatives of u in the origin. In order not to overload the
presentation, we skip the details of such a case and consider here only the case of
even functions.

' .
3. FOURIER-GALERKIN EXPANSION

3.1. THE BASIS SYSTEM OF FUNCTION IN L?[—o00, 00]

The first CON system in L?(—o0, c0) suited for non-linear problems was pro-
posed in [6]. The different formulas were compiled and verified in [7]. Here we cite
the necessary formulas in order to make the paper self-content.

The products of members of series are expanded in series of the system

1 o0
CnC = Cn _Cn —Cn— +Cn—-— = nk C, 3.1
k 2\/2_1r[ k41 n k k-1 HX::Oﬂ kG (3.1)

1 [ e}
SnSr = —— Cn —Cn Cnok — Cpp-1] = n C: 3.2
k 2\/5;[ +E+1 +k +Cnk k—1] nX:%a kaCi (3.2)

1 [ o)
S5nCr = ——[—Sn4k+1 + Sn+k + Sn—k — Sn—k-1] = Z’}’nk,IS]‘ (3.3)

2 v 27 n=0
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The first derivatives of the functions of the system are expressed as

dSy, 1
E = 5 [TlCn_l + (277- + I)Cn + (n + I)Cn+1] )
dC, 1
E— = —5 [TlSn_l =+ (271 + 1)Sn + (Tl + ]-)Sn+1] .

Respectively, for the second derivatives one has

d’C, 1
=3 {n(n = 1)Cnoz—4n®Croy + [2 + (n + 1)2 + (20 + 1)%] C,
—4(n +1)2Cpyr + (n + 1)(n + 2)Cry2}, (3.4)
d’Sn 1 2 2 2 2
—={n(n = 1)Snca —4n2Sn_ 1+ [P* + (n + 1)? + (20 + 1)?] S,

dz? ~ 14
) —4(n+1)2Snt1 + (n+ 1)(n + 2)Sata} - (3.5)

3.2. THE GALERKIN EXPANSION

The simplest and oldest spectral technique is the Galerkin one in which the
sets of test and trial functions coincide. The main purpose of the present work is
to provide an efficient iterative algorithm for treating the linear part of the system.
For this reason we select a system with a quadratic non-linearity, for which the
Galerkin method is the most efficient. When a more complicated non-linearity is
present, then one of the pseudo-spectral techniques should be used. In addition, our
equation admits even solution. That is why, for the sake of simplicity, we consider

the following series:
n=N

u = Z amnCm(x)Cn(y)' (36)

n=0

3.3. THE CONDITIONS FOR COUPLING THE SYSTEM

Introducing the expressions for the derivatives in the differential equation, one
gets a five-diagonal system for each subsystem of coefficients Cp,, S,. The system
has to be truncated at n = 0 (no terms of negative order show up, since they
are expressed by the functions of positive order) and for certain sufficiently large
n = N. Then the problem of toupling conditions arises. Here we resort to even
functions only and the formulas are similar for the odd functions. The condition
for coupling the system for n = 0 and n = 1 comes from the very formulae of the
second derivatives (3.4)

d*Cy

1 1
12 = '—EC(] +C; - 502, (37)
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d*C,

“dz?

In the framework of the Galerkin method, the truncation of the system at

n = N-requires to assume that C, = 0 and Cy; = 0. Then, for the last two
members of the series one gets the following expressions for their second derivatives:

#Cos (== 120,

7 3
=Co— §C1 +4C3 — 501- (3.8)

dz? 4
3n2-3 1
- %Crz—l + nzcna (39)
d*C, n(n—1) 2 n?2+3n+1
e R Cpn2+n°Cph_y — an. (3.10)

Thus the second z-derivative in the governing equation (2.2) is approximated
by 5-point finite difference in the system. Denote by A,, and Ay, the respective
five-diagonal matrices which. are obtained after half of the identity operator, %, is
subtracted from each of the second-derivative operators. Then the original equation
is approximated by the algebraic system

n=Nma=Mn,=Nm,=M

T
3“ E : E : E : E : ﬂnlml,nﬂnzmz mamlﬂxamzﬂz

n;=0 m;=0 n=0 ma=0

+ (A:z:z: + Ayy)amn =0, (311)

where §” and (Y are the matrices of coefficients from (3.1) for z and y, respectively.
The system (3.11) is taken for all » # 0 and m # 0. In the origin the boundary
condition

ag =1
is imposed. Respectively, the system (3.11), taken at n = 0,m = 0, gives the
definitive relation for «, namely

—By (—%aoo0 + a10 — 3a20) — B2 (—3a00 + ao1 — 3a02)

By VAo y oy oy ¥ ' (3.12)

T Y
3 Z Z E ﬂn;m,,o ngmg,Oamlﬂxamzﬂz
ny=0 m;=0 n,=0 my=0

where the unknowns a,,, are from the new iteration (fictitious-time stage) k + 1.
The relaxation for « is performed as follows:

okt a*(1 — w) + éw.

4. THE SPLITTING SCHEME
In previous works on 1D problems ([11, 1]) we used the Brent’s routine for

solving the non-linear system for the coefficients. Despite of the rather simple
expressions for the products of members of system into series in the system (see
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(3.1) — (3.3)), using a pseudo-Newton algorithm like the Brent’s one becomes too
expensive in 2D because of the large size of the Jacobian. This justifies the search
for alternative algorithms. Here we use a simple iteration for the non-linear term.
The appropriate series representation of the products of the terms in the system
is rather “sparse,” so a lot of iterations can be easily performed. It is desirable,
however, to have the linear part approximated implicitly. We split it to reduce the
calculations. Thus we use the following scheme corresponding to the so-called (see
[15]) scheme of stabilizing correction:

&z-j —al

L = Asoiij + Ayyaly + Flak) (4.1)

= Ayylaff' —afj]. (4.2)

T

afj+1 — @ij
T

Here 7 is the time increment with respect to the fictitious time and it plays the role

of an iteration parameter. Respectively, F[a"] is the expression for the non-linear

term when evaluated with the values for a;; from the “old” iteration

TL: =
k) — § : k
F[a ] - Z nlml,n ﬂzmz m%mn
n: =

After excluding the half-time-step variable @, one gets

k

a*tl —a E+1 k
) = (Aez + Agy)at+! + Fla*] (4.3)

(E + 72 Agshyy

which converges to (3.11) in the limit ¥ — oo, when a**! — a¥. The important
feature of the system (4.1), (4.2) is that it requires inversion of ﬁve—dlagonal matri-
ces for which special very fast elimination algorithms are available. We make use
here of the algorithm from [9].

The iterations are terminated when the following criterion is satisfied

|a¥*! - a*| < 10710

5. RESULTS AND DISCUSSION
5.1. THE AXISYMMETRIC LOCALIZED SOLUTION
2D calculations of solitons are rarely found. That is why there are no available
cases for comparison. However, for f; = B2 one can compare a cross-section of

the solution obtained by the 2D algorithm of the present work to 1D solution of
the equation when the axial symmetry is acknowledged. Hence we consider the

equation
_ 9.2 _ :31 —
u—du r or ( 67‘) 0 (5.1)
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Fig. 1. The axisymmetric soliton for §; = @ = 1 as obtained with N + 1 = 20 functions
in the spectral expansion

for which a localized solution is sought in —oc0, 00. To this end we employ the so-
called Method of Variational Imbedding (MVT), proposed in [8] for the homoclinic
solution of the Lorenz system. To an equation of the type of (5.1), but with a cubic
non-linearity, the MVI was applied in [10]. The algorithmic problems of application
of MVI are elucidated in detail in [13] in application to the solitary-wave solution
of the Kuramoto-Sivashinsky equation. For this reason we present here only the
result for the axisymmetric soliton. Fig. 1 shows the shape of this solution alongside
with the well-known sech-solution of the 1D case. It is seen that the axisymmetric
soliton is taller (maximum height equal to 0.79735, while in 1D the maximum equals
exactly 0.5) and of slightly smaller support. The solution presented in the figure
is taken as a reference when assessing the approximation of the spectral scheme in
the next subsection.

5.2. VERIFICATION OF ALGORITHM

The practical convergence of the method can be assessed if a cross section of
the 2D solution is taken as function of the radial co-ordinate. Fig. 2 shows the
result for different number of terms in the spectral series. Being reminded that the
maximum of solution is approximately 0.8, one sees that even 8 functions are able
to provide approximation closer to the solution than 0.3%, and 20 terms in the
series give approximation better than 0.006%. It is to be mentioned here that no
special care for optimization of the method has been taken in the present work. As
shown in [11, 1], one can further improve the approximation with fewer number of
terms by means of scaling the independent variable(s) in order to bring it closer to
the characteristic measures (length of support) of the basis functions C,,, Sy, -
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Fig. 2. The difference between the spectral solution with different number of functions
and the finite difference solution with 401 points in the interval [0, 9.9875]

In two dimensions the shape of soliton is presented in Fig. 3 as obtained by the
2D algorithm developed here. Note that a cross-section of this solution is compared
in Fig. 2 to the solution with radial symmetry from Fig. 1.

5.3. THE NON-AXISYMMETRIC SOLUTION

As mentioned in the precedence, the convergence of the spectral series can be
improved ([11]) if one succeeds to select the optimal scaling for the independent
variable. This is especially important when in two dimensions the coefficients before
the different highest-order derivatives differ significantly. In our case these are the
coefficients 3; and 3. The optimization needs a special attention together with
an extensive set of numerical experiments and goes beyond the framework of the
present paper. Here we have only demonstrated the effectiveness of the splitting
scheme for solving the algebraic system for the coefficients. For this reason we do
not scale the independent variables even for the case shown in Fig. 4, where there
is a considerable difference between the two coefficients §; =1 = 108;, 8; = 0.1.

In this case a solution obtained by an independent numerical technique is not
available and the convergence test is performed by the standard increase of the
number of terms in the expansion and by assessing the contribution of the last
term. Once again, employing 15 terms gives accuracy of 0.1% and 20 terms bring
the difference down to 0.01%. This means that even for one order of magnitude
difference between the coefficients of the second derivatives, 20 terms in the expan-
sion is fully enough for securing a very good accuracy. When the ratio between the
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Fig. 3. The axisymmetric soliton for 8; = 3 = 1 as obtained with M + 1 =N +1 =20
functions in the spectral expansion

Fig_. 4. The soliton for 81 = 0.1, 82 = 1 as obtained with M + 1 = N + 1 = 20 functions
in the spectral expansion

coefficients (; is still larger, one can attempt optimization of the algorithm through
different scaling of the independent variables (see [11] for the details in 1D).

6. CONCLUSION

In the present paper a Fourier-Galerkin algorithm for numerical treatment of
the bifurcation problem for localized solutions of 2D non-linear PDE is developed.
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To avoid the always present trivial solution, an additional boundary condition is
imposed in the origin of the co-ordinate system and a coefficient is added before
the non-linear term. The equation itself taken in the origin serves as an explicit
definitive relation for the new coefficient. The iterative procedure involves artificial
time and co-ordinate splitting of the linear operator corresponding to the partial
derivatives. The convergence is secured through selecting the values of the artificial-
time increment and the relaxation parameter for the sought coefficient of the non-
linear term. In 2D the splitting-type procedure has a significant advantage over the
direct Newton-type quasi-linearization algorithms for solving the algebraic system
for the coefficients of the Galerkin expansion.

Results. are obtained for a generic equation of Klein-Gordon’s type with a
quadratic non-linearity. The 1D an axisymmetric soliton of the equation in the
moving frame is obtained by means of two different techniques and the comparisons
give the quantitative assessment of the truncation errors of the spectral expansion.
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MOUVEMENT D’UNE SPHERE HOMOGENE
DANS UN CYLINDRE HORIZONTAL
AVEC UN MOMENT RESISTANT DE FROTTEMENT

SONIA DENEVA

In this paper some aspects of the classical problem concerning rolling sphere on
a homogeneous horizontal cylinder are considered.

Keywords: motion of a rigid sphere, friction.
1991/95 Mathematics Subject Classification: 70E15.

Soit donné un cylindere droit circulaire de rayon R posé en une position hori-
zontale immobile. Avec le cylindre est lié un systéme de coordonnées Ozxyz; pour
Oy nous choisissons ’axe du cylindre et Oz a une direction verticale en bas. La
sphére homogeéne de centre C, de masse m et de rayon r se roule sur la part inférieur
du cylindre ou elle a un point de contacte P. Nous supposons que le mouvement
devient avec frottement entre deux corps mais si le coefficient du frottement est
grand il n’est pas possible un mouvement avec glissement. Voila pourquoi nous
supposons que le mouvement de la sphére est un roulement propre sans glissement
mais nous prenons en considération qu’il y a un moment résistant de frottement
contre roulement d’aprés Painlevé. Nous supposons encore que le plan équatorial
de la sphére reste toujours sur le plan vertical Ozz du cylindre. La position de la
sphére sur le cylindre est donnée au dessin 1. D’isi nous avons

§=R—-r=0C. €))]

Designons par § 'angle (O;,\O]’) qui détermine la position du point P. Le vecteur
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Dess. 1

unique 7 qui est normal & deux surfaces s’exprime par la formule
n=sinf¢ 4+ cosf k. (2)
Selon (1) et (2) nous obtenons

OC = 6sinfi + 6cosf k,

. ' (3)
ve = 60(cosfi —sin b k),

ou %, §, k sont orts du systéme Ozyz. .
Puisque le plan équatorial de la sphére reste verticale, la vitesse angulaire w
de la sphére a la forme
w=wj, w>0. (4)
Le mouvement est un roulement sans glissement et voila pourquoi nous avons la
relation pour le point de contacte

vp=vec+wxCP=0. (5)
Ayant vu (2), (3) et (4), nous obtenons de (5)
6 .

(la grandeur §<0 parce que @ est une fonction de croissante du temps).

Nous montrons que tous les grandeurs de la cinématique et de la dynamique
de la sphére peuvent s’exprimer comme des fonctions de 8.

Le théoréme de la resultante cinétique et la théoréme du moment cinétique
appliqué au point C se traduisent par les équations

d
d—t(mvc) =mg + R, )
2 ydw =3
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Ici R est la force de la résistance appliquée au point P; I est le moment résistant
du frottement qui d’aprés Painlevé se donne par la formule

I'=—f'R.j= —f”Rn%- (9)

Le signe moins montre que le vecteur I" a une direction inverse au vecteur w, c’est-
a-dire le vecteur I' se résiste au roulement de la sphére déterminé par le vecteur w.
Ry, est la grandeur de la projection de la force R sur le vecteur n. Le coefficient
f" du frottement est ordinairement une petite grandeur. Puisque tous les vecteurs
dans (6) se trouvent dans le plan Ozz, la force R a la forme

R=R;i+ R:k. (10)
De I’équation (7) selon (10) on obtient

R, =mé (égcosﬂ—ﬂsinG),

. . (11)
R, = —mg — méb (05in0 + 02 cosé’) .

De I’équation (11) selon (2) on obtient

R, = mg cos § 4+ mé§?. (12)
De I’équations (8) et (9) on obtient
%mrQ(fi—L: = —rsinfR, + rcos0R; — f'Rn. (13)
Remplagons dans (13) les relations (6), (11) et (12) et aprés quelques calculations
on obtient 5 . 5 o
9:—7%Sin0—Lé2+7—%§cosﬂ. (14)
L’équation (14) nous pouvons ecrire 4 la forme
du 10 f" 10g . 10f"yg i
. 4= -——<Lsind 9 = f°. 15
R e N v Lo (15)
Ayant vu que le coefficient f” est une grandeur petite, nous obtenons de (15)
: 10 f 10¢ 170 f" ¢
—§2 = =4 —Zcosf 6 16
u=19¢ C’<1+7 )+75 +496rsm, (16)

ou C est une constante qui dépend des conditions initiables. Puisque § < 0on
obtient de (16)

1
9:_¢c(1+$f_9)+g% PECTE, an

49 6 r
En fin nous obtenons de (6) et (17)

6 10 f 10g 170 :
= - —— ——Zsinf
w(f) r\/C <1+ 7 6> =3¢ osf + T rsm
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Les grandeurs Ry, Rz, R. s’expriment aussi par I’angle 6 des formules (10) et (11).
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‘COOPERATION OF CLIENT ROUTINES IN CLIENT-SERVER
NETWORK ARCHITECTURE WITHOUT USING OF SPECIAL
MONITOR ROUTINE ON SERVER

PETER DIMOV

A method for communication between client routines without monitoring by a
special routine, working on a server, is proposed. The base of the method is a message
transferring engine, but not in the classical form. The method is oriented to data
sharing between computers in a client-server architecture network. All data are stored
on a PC disk space and there is no need to store data on the server. The server
is used only for files lock and unlock purposes and its disk capacity is used only as
an intermediate storage. The method ensures higher information security level than
the traditionally used methods. Communication between computers allows to develop
applications for cooperative work and documents routing. In a more global aspect the
described engine is applicable in both single and multiprogram environments.

Keywords: message transferring engine, network architecture, communicating rou-
tines.
1991/95 Mathematics Subject Classification: 94-99.

1. INTRODUCTION

Let us use the term “server” to denote the main node of the network, respon-
sible for sharing resources between users. Let us use the term “client” to denote
workstations on the computer network. Then we would use the terms “client rou-
tine” and “server rouline” to denote routines, working on user workstations and
server platform. In this way we will describe the typical features of the client-server
architecture computer network.
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“Monitor” denotes a user-written routine, which must take control over user
routines (client routines) and is used on client-server architecture network. The
method proposed does not use any monitor.

The method requires the server routine to be able to:

— share resources — lock/unlock files or part of their contents;
— store temporary data on server disk storage as intermediate storage.

The operations of sharing the resources are non-interruptible and the server
routine cannot affect logically the cross-user communications. Then we will have
to discuss only client-routine relationships.

To describe the method, we will use the term “protocol” to denote the sequen-
tial actions, undertaken by the client routines, and the corresponding states the
client routines may reach during the process of message transfer.

The method serves the following “protocol” (the states are shown after the
description of every action):

(i) the “sender” sends a message to the “receiver” (“W”);

(ii) the “receiver” accepts the message sent by the “sender”, takes some actions
and sends an answer back to the “sender” (“C");

(iii) the “sender” accepts the answer sent by the “receiver” (“M”).

It is possible anyone of the two communicating user routines (each of both
users) to take the role of the “sender” and consequently the other user routine
must take the role of the “receiver”.

Because the answer does not have only the role of an acknowledgment, this
protocol is provided to realize the interchange of a wide range of information —
every transferred portion of information (message) can have the form of a request,
query, command. The type of the message depends on its form. The answer from
the receiver can be a request, query, command as a nearer result or a complete
document.

The protocol described above facilitates the transfer of any message from the
side of the sender and the reply on the side of the receiver after some processing (if
needed). Because each of the communicating user routines can take the role of the
sender, the protocol i¢ ihe base for creating channels between the user routines in
both the simple and ti:- duplex modes.

2. A METHOD FOR MESSAGE INTERCHANGE

To transfer messages between two users (client routines) it is necessary to:

— establish a connection between the client routines;
— provide resources for the message transfer and sharing.

We will use, whenever it is possible, the term “user” instead of “client routine”,
because users communicate through client routines. Every user must identify itself
by a user identifier and must place a request for communication in the form of CSB
(Communication Sign-on Block), labelled by the same user identifier. Every record
in this block must point to the identifier of the other user, with which the CSB
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owner wants to communicate. Each client routine must also check the existence of
a CSB for each user, marked by a record in its own CSB. A connection between
two client routines is considered established when:

(1)"CSBs labelled by two user identifiers exist at the same time;
(i) a record of one CSB points to the corresponding CSB and vice versa.

When (ii) is not satisfied, it means that the CSB points to different (maybe
already connected) users.

All resources may be realized as files. In this case the network server must only
lock and unlock files (or parts of the files’ content) in response to client routines
requests.

To provide synchronization between two communicating client routines, a “post-
boz” must be created. In this “post-box”, realized as a file too, the information
must be recorded as follows:

(1) field “State” contains the code of the current state, which the client routines
can reach (“W”, “C” or “M”);

(i1) field “Identzﬁer must point to the identifier of the user, that must receive
a Imessage OI an answer;

(iii) field “Message/answef”.

The states shown above are common of the two communicating client routines.
It is enough to store only the codes “W”, “C” and “M” about the three states,
which the user routines can reach. Field “Identifier” points (except when field
“State” contains “W”) to the user (the client routine), which must be activated by
the message/answer transfer initiator to receive a message or an answer. To cause
changes in the other client-routine state (the client routine to be activated to receive
a message or an answer), the client routine, which wants to send a message/answer
must:

(i) store into the field “State” a new state code;
(ii) store into the field “Identifier” the user identifier of the corresponding client
routine to be activated.

Each client routine must check the “post-box” to determine the state (the
states are common of both client routines, as described above).

All read/write operations with a “post-box” information are possible only after
the post-box file has been locked. When one of the client routines locks the “post-
box” file, the other client routine at this time must wait (or take actions, which must
not affect the “post-box” content) until the “post-box” can be locked again. When
one of the communicating client routines cannot find its own user identifier stored
in the field “Identifier”, that routine must immediately unlock the file (except when
the file “State” contains the code “W” and the routine wants to send a message).
This is possible when there are differences in the speed of the two client routines’
execution. In this case immediate unlocking resolves the problem and makes the
method independent of the relative speed of the communicating routines’ execution.

Now we can describe the protocol used as follows:

(i) the “sender” writes a message to the “receiver” into the field ” Message/ans-
wer”, stores thé identifier of the “receiver” in the field *Identifier” and changes the
state to “C”;
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(ii) “receiver” accepts the message sent by the “sender”, takes some actions,
writes an answer in the field “Message/answer” back to the ”sender”, stores the
identifier of the “sender” in the field ”Identifier” and changes the state to “M”;

(iii) the “sender” accepts the answer sent by the “receiver” and changes the
state to “W?”.

A client routine must create resources (excluding CSB), e.g. a client routine,
executing on the computer of the user with a higher identifier (in lexicographical
order). On disconnection, resources must be released in the order of:

(1) disconnection-initiator acting as a “sender” sends the message “quit” to the
other client routine (the “receiver”);

(i1) the “receiver” releases the corresponding record in its own CSB and returns
an answer back to the “sender”;

(iil) the “sender” accepts the answer sent by the “receiver” and makes sure
that the “receiver” will no more use the shared resources, then the latter releases,
in his own CSB, the corresponding record.

Every user (client) routine control flow can be proposed as a graph. The
nodes correspond to the states a routine can involve. The arrows are used for
signals, which cause changes in the routine state. I'ig. 1 displays a graph of two
client routines presented by their states and corresponding signals according to

Fig. 1. Graph of communicating user routines
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the described method. States “W”, “C” and “M” are common to both routines
(processes).
Denotifications:
s%f’ the “sender” sends a message to the “receiver” and changes the state
to “C”,
s%: the “receiver” changes the state to “M”;

s%: the “sender” changes the state to “W”;
ri: the “sender” changes the state to “C”;

r%: the “receiver” sends an answer to the “sender” and changes the state
to (LM’);

r3: the “sender” changes the state to “W”;

mjj: a message from the sender;

ajj : an answer from the “receiver”.

3. APPLICATION OF THE METHOD

The method is applied by the author for work with MSDQOS — for providing an
environment as a remote service facility in the client-server architecture network.
To execute MSDOS — a command or a file on a remofe computer, the conmand
must be transferred to the other client routine, working on the remote computer,
as a message. To return the messages, produced at the execution time, a file for
the messages is used as a temporary disk space on the server. The steps are listed
below:

— sending the command, entered by the user, to the client routine, working
on the remote computer;

— receiving the message by the remote client routine, executing a command
on the remote computer, recording the messages produced in the file for messages
and returning an answer to the command initiator via the “post-box”;

— receiving the answer, sent by the remote client routine, and typing on the
screen the messages, stored into the file for messages.

File-transfer commands are realized as multipartitioned commands, which run
on both computers sequentially. Synchronization is provided by the message-
transfer method, described above. The steps are listed below:

— To get files from the remote PC disk space:

e in state “W” the command is to be sent to the remote client routine (remote
computer);

e in state “C” the remote client routine copies the files into a temporary direc-
tory on the server and transfers the answer to the file-transfer initiator;

e in state “M” the initiator receives the answer, displays the messages from the
file for messages, and copies the files from the temporary directory on the
server into his own disk space.
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— To put files into the remote computer disk space:

e in state “W” the initiator copies the files into a temporary directory on the
server and transfers the command to the remote client routine;

e in state “C” the remote client routine copies the files from the temporary
directory on the server into his own disk space, then sends an answer to the
file-transfer initiator;

e in state “M” the initiator receives an answer from the remote client routine
and displays the messages from the file for messages.

It is possible for each user to take the initiative for a command execution or
file transfer.

4. ADVANTAGES OF THE METHOD

Data security. There is no need to store data for permanent use on the server
disk space. Documents can be stored partially on the user’s disk space. Each side
can access only the part of the information, provided for his (her) own use. High
security level is reached when the messages, transferred between the users (the user
routines) are encoded. The resource identifiers can be generated as words and/or
numbers and they are accessible in the communicating routines at the time of the
connection established by them and put in the corresponding GSB records.

Unauthorized access prevention. The user access is protected by a password.
Passwords are not registered in the file of common access. The user can change his
(her) password. The user must provide secured access to his (her) own data.

Groupwork. The method can be used for transferring data between people,
working in a group. In this case the method provides fast access to the information,
supported by each of the members of the group.

Coordination. The method provides coordination both between the client rou-
tines and the people working in the group.

Documents routing. Documents routing depends on the needs of the organiza-
tion.

FElectronic mail. It is easy to send a message or a document to any group
member. )

Establishing connections. It is possible to establish connections between every
two users. In this way every user can communicate at every time with somebody
else. The method provides oppertunities for simultaneous connections between the
users.

Server machinery requirements. The server can have enough disk space in-
stalled, but the latter can be smaller than the space used when the data is stored
entirely on the server. There are no special requirements to the server processors.

Workstations requirements. Workstations have usually enough disk space in-
stalled. Software can be stored on the server when needed. More space is needed
to complete entire documents.
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Relationships between applications, based on this method and traditionally writ-
ten applications. The method, described in this paper, does not exclude the sharing
of data files and the application of software on the network server.

B}

5. CONCLUSION

The applications of the method and any further developments are independent
of the network and the server types. There is no need to create or use any server
monitor routines. All the changes in one application do not affect the other appli-
cations. It is not necessary to reconfigure and recompile the server and network
software.

The method developed by the author is applicable in cooperative work on
computer network, designed on the base of a client-server architecture.
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ON THE BRITTLE FRACTURE OF A PIN-JOINTED FRAME

GALJA M. DRAGANOVA, KONSTANTIN Z. MARKOV

The aim of the paper is to report some preliminary results concerning rupture
through damage accumulation of a simple pin-jointed frame under tension. Under the
elastic and stationary creep conditions (at small strains) this is a well-known problem
of strength of material and mathematical theory of creep. Here we assume additionally
that damage also evolves in the rods, obeying the classical Kachanov's law, which es-
sentially complicates the problem. In the brittle case, the only one, considered in detail
in this paper, the problem is formulated eventually as a coupled nonlinear system of dif-
ferential equations for the damage variables in the rods. This system, in general, does
not admit a close form analytical solution unlike the classical examples of continuum
damage mechanics, so that numerical treatment is needed. That is why the special,
but realistic case of a common “damage exponent” of the rods is only considered and a
simple explicit solution for the damage evolution is found and discussed in more detail.

Keywords: brittle fracture, damage mechanics, pin-jointed frames.
1991 Mathematics Subject Classification: 73M25, 73K05.

1. INTRODUCTION

Consider the pin-jointed frame, shown in Fig. 1. The tensile force F is applied
in the direction of the rod BD. Finding the stresses in such a frame is a well-known
exercise in strength of materials, provided the rods behave elastically, see, e.g., [1]
and many other textbooks on the subject. If the rods’ behaviour is governed by
stationary creep law equations, the stresses in the system and, in particular, the
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creep rate of the loaded node D, are first found by Kachanov [2], provided the creep
deformation is small (so that the so-called elastic analogy applies), see also [3].

Our aim here will be a more detailed investigation of the strain and failure of
the frame when damage in the rods appear and evolve following some of the classical
schemes of continuum damage mechanics initiated and developed by Kachanov [4,
5], see also [6] for further results and generalizations. Since the rods undergo
different stresses, damage within them will reach different levels and will thus lead
to a more complicated picture of stress and damage distribution than the ones
treated in the classical examples of damage mechanics. In this preliminary stage
of our investigation, only the purely brittle case will be dealt with. The problem is
rigorously posed in Section 2. But even in this simpler case, unlike the examples of
damage mechanics, no simple analytical solution will be possible, since the problem
under study will be eventually formulated as a system of two coupled nonlinear
differential equations governing the damage evolution in the rods which admits, in
general, only numerical treatment. That is why the particular, but realistic case
of a common “damage exponent” v of the rods is only considered in Section 3. In
this case it appears that the damage parameters of the rods are proportional and
a simple explicit solution for the damage accumulation is found in Section 4. This
solution is discussed in more detail in the final Section 5.

Yr

Fig. 1. The pin-jointed frame under study

2. POSING THE PROBLEM

Let all the rods possess in their undamaged state one and the same cross-section
Sp and Young’s modulus EY. Denote as usual by v the continuity parameter, so
that w = 1 — ¢ is the damage variable. In the brittle regime under discussion the
damage accumulation in a single rod (under uniaxial tension) is governed by the

well-known Kachanov’s law )
. [}
w=Cl—] , 2.1
( v ) 1)
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where o9 = F//Sp is the applied stress, C and v are material constants [4, 5]. The
brittle time-to-rupture, ¢}, of such a single rod is given then by the known relation

1
P
b C(l+v)oy' (2.2)
see again [4, 5]. Hereafter the dimensionless time-scale
T =1t/t} (2.3)

will be used, since t; is a natural time-unit for the problem under study.
To derive the damage evolution equations in the rods, let us write down first
the only non-trivial statics equation for the problem, namely,

2l cosa+T=F, (2.4)
as well as the equation of the compatibility of the strains in the nod D, namely,
£1 = €cos’ . (2.5)

Hereafter all quantities with the subscript ‘1’ refer to the rods A’D or A”D, and
those without a subscript — to the central rod BD. Hence, in particular,

0'1-_—T1/So, O':T/So, O'o:F/So (26)

are the stresses in the rods, 77 and T being the respective magnitudes of the tensile
forces in them, see Fig. 1; oo would be the stress in any of the rods if they were
single and subjected to the same force Fyp. Note also that dealing with brittle
fracture solely implies that strains are small, so that the angle a in Eqgs. (2.4) and
(2.5) remains constant — something that does simplify the study (in the ductile
and mixed brittle-ductile failure this angle changes considerably during loading and
hence an additional non-linear equation involving this angle should be added to the
basic equations).

Assume next that the rods A’D and A”D have the same “damage exponent”
v but different material parameter C; in the Kachanov’s law (2.1) than the central
one BD.! This means that Eq. (2.1) applies for the central rod BD, but in the two
“side” rods A’D and A”D damage accumulates according to the law

where C # Ci. The reason to take different material parameters C and C; is that

the well-known elementary elastic solution for the frame under study suggests that
the central rod is obviously more stressed than the two “side” ones, i.e. o > 0.

INote that the more general case when the exponents v of the rods differ as well can also
be treated without much effort, though no closed form solution is possible. This case will be
considered elsewhere.
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This means that the central rod will fail faster. That is why, to make the frame
more “damage-resistant”, one should accordingly choose for the central rod CD a
more “damage-resistant” material which accumulates damage slower, i.e. C < C;
at one and the same fixed damage exponent v. Hence for a given v and C), the
dimensionless time-to-rupture of the frame

7 = 83/t; = T(C/Cy) (2.8)

will be a function of the dimensionless parameter C/C', as we shall see below. As
a matter of fact, the function 7 will be of central importance in our study, since
its behaviour (local extrema if any, monotonic decrease and/or increase, etc.) will
allow us to draw non-trivial conclusions, concerning optimal “damage-resistant”
design of the frame under study, i.e. to get its time-to-rupture 7} as big as possible
through an optimal choice of the damage material constants of the rods.

3. BASIC EQUATIONS

Let us now write down the above formulated basic equations in a dimensionless
and more convenient form.
First, the equation of statics (2.4) in such a form reads

2spcosa+s5=1, (3.1)

where
sy =o1/o0, s=o/oo, (3.2)

with o) and o defined in Eq. (2.6).
Next, the damage law (2.1) can be recast as

dw 1 s\

— = — 3.3

dr 14w (1/)) ' (3.3)
see Eqgs. (2.2), (2.3) and (3.2). In turn, the appropriate damage law for the side-rods

becomes J ) Y
Wy _ a
dr ~£(1+v) (m) ' G4

where the dimensionless quantity

£=C/C (3.5)

determines, so to say, the relative “damage-resistance” of the central rod as com-
pared to that of the side ones (at a fixed “damage exponent” v for all rods, let us
recall).

To find the stresses in the rods and thus the damage accumulation rates by
means of Egs. (3.3) and (3.4), use is to be made now of the strain compatibility
condition (2.5). Recall to this end that the rods are assumed to possess, in the virgin
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state (¢ = 13 = 1), one and the same Young’s modulus E¥. Two possibilities are
open now.

First, as the simplest and rough approximation, one can assume that the
Young’s modulus is not influenced by damage. Then, from Eq. (2.5) (dividing
both its sides by EV0q), one gets

s1=scos’a. (3.6)
Together with Eq. (3.1), the latter relation yields the well-known elastic stresses in
the rods, namely,

o 1 o1 cos? o

;(_)_z 14+ 2cos3a’ 31:0'_02 14+ 2cos3a’

= (3.7)
which therefore are not effected by the damage process taking place in the rods.
In this way damage accumulation in them is not coupled in the case under study,
cf. Eqs. (3.3) and (3.4), and hence they can be solved separately. The failure will
have two distinct stages: in the first one all rods will sustain load (¢, %; > 0); in
the second stage either the central or the two side rods will already have failed,
depending on the ratio £, see (3.5), so that the eventual failure will happen when
the last of the rods will fail as well. Of course, these two stages will appear in
the general case as well, but here, when damage accumulation in the rods is not
coupled, the investigation and the appropriate formulae for the time-to-rupture are
not difficult to be derived; that is why they will be skipped here.

Instead, let us treat in more detail the more realistic assumption when the cur-
rent Young’s modulus iés influenced by damage, i.e. E = E(%). (This assumption,
as well as the idea to measure damage through the observed change in the elastic
moduli of a damaging solid, is discussed in detail in [6], where the appropriate
references are given as well.) The simplest approximation is to assume that

E(y) = E'Y = E*(1 —w) (3.8a)
for the central rod and, accordingly,
E($1) = E"¢1 = E"(1 —w1) (3.8b)

for the two side-rods, EV denoting the Young’s modulus for the virgin rods. It
is noted that such an assumption is natural enough if one recalls the original
Kachanov’s interpretation of the continuity parameter i as the fraction of the
undamaged rod cross-section area that only sustains load. Also, this assumption,
roughly speaking, reflects the well-known Voigt approximation in mechanics of com-
posite media, if the damage parameter w is treated, somewhat loosely of course, as
the void volume fraction in a porous solid. In this case, noting that

o1 = Euwlsl y 0= EU¢E
in virtue of Eqgs. (3.8), one finds from Eq. (2.5)

1 =7 cos?a (3.9)

TR
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which, when coupled with Eq. (3.1), yields

P _ cos? a

s§=—7 = __rt= =
51 1 + 21 cos® a

¥ + 211 cos® a (3.10)

Not surprisingly, for undamaged rods (¥ = ¢; = 1) the purely elastic solution,
Eq. (3.7), is recovered once again from Eq. (3.10).

When inserted into Egs. (3.3) and (3.4), the stresses from Eq. (3.10) now lead
to the basic system of coupled differential equations that describes the damage
accumulation of the rods, namely,

@y _
—f(¥,¢
dr W.¥1), (3.11a)

dg, 1
F‘—‘Zf(’/)ﬂ.bl),

with the notations

f,1) = 1 (¢+21/)1cos a)”", A= ¢ : (3.11b)

cos?? o

since w = 1 —1, wy = 1—1;. The system (3 11) should be solved under the natural
initial conditions
=1, ¢¥=1, at 7=0, (3.12)

reflecting the fact that the rods are undamaged at the moment ¢ = 0 when loading
is applied.

4. SOLUTION OF THE BASIC SYSTEM OF EQUATIONS (3.11)

The solution of the basic initially-value problem (3.11) — (3.12) is elementary.
First, dividing equations (3.11a) gives

dy . B _
d—wl—A, 1.e. ¢—A(¢1 ]-)+].
or
w:_l—zj):Awl, w1=1—¢1. (41)

Hence an important consequence of the assumption of common damage expo-
nent v of the rods is the fact that their damage parameters are proportional, with
the proportionality factor A, given in Eq. (3.11b). In this way it turns out that the
value of the factor A, i.e. of the dimensionless ratio ¢ = C/Cy, determines which
of the rods will fail first. More precisely:

c/C,

cos?¥ o

a) if A<, ie. A= <1 or C<Cicos*a, (4.2a)
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then the two side-rods fail simultaneously first;

c/Ci

b) if A=1, ie. A=—5—=1 or C=Cicos™a, (4.2b)
g : cos<¥ o
then all rods fail simultaneously;
. . c/C
c) ifA>1, ie. A= /Zyl >1 or C>Cicos® a, (4.2¢)
cos?

then the central rod fails first.

It is noted that these results are natural enough since, e.g., the inequality
(4.2a) means that the “damage-resistance” of the central rod is considerably higher
than that of the side ones because the constant C of the former is considerably less
than that of the latter. The central rod accumulates thus damage slower than the
other two and, not surprisingly, it ruptures last.

Now, introducing Eq. (4.1) into the second of Egs. (3.11a) gives

dy, 1

-V

= (A + 4 :
dr A(l 4 I/) ( + 17b1) (4 3)
with the constants
A=1-A, A"=A+2cos’a. (4.4)
The integration of Eq. (4.3) gives
_ A 3 _\v+l ’ 7 v+l
"= A2 a [(1+2cos @) (A" + A"y) ] (4.5)

y :
Solving Eq. (4.5) with respect to 91 and using Eq. (4.1) lead to the needed explicit
time-dependence of the rods’ damage parameters during the loading in the frame
under study.

5. DISCUSSION AND CONCLUDING REMARKS

Consider now in more detail the above mentioned three particular cases a)
— c), see Egs. (4.2), in order to determine the eventual time-to-rupture 7; of the
frame. :

Let first A < 1, i.e. the case a) takes place. Then, at the end of the first stage
of failure of the frame, when ¥; = 0 and the side-rods fail, the damage parameter
of the central rod has the value wy = A < 1, see Eq. (4.1). As it follows from Eq.
(4.5), this happens at the moment

) A

— 3 v+1 _ _ v+1
1= A 2o [(1 +2cos’ a) (1-4) ] (A<1). (5.1a)

In the second failure stage, when 7 > 77, only the central rod “works”, so that
one should solve Eq. (2.3) with the initial condition w = w; at 7 = 77 in order to
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find the final time-to-rupture, ut of the whole frame, corresponding to the moment
when w = 1. Elementary calculations give

7= T@E) =17 + (1 - A)**! (5.1b)

with 77 given in Eq. (5.1a). (Note that in this second failure stage T = F', so that
s=1.) .
Let us point out that 77 = 0 at A =0, ie. 77 =1 at A = 0 as it should
be. The reason is that A = 0 means that C; = oo, so that the two side-rods
fail instantaneously and from the very beginning only the central rod sustains
load. Moreover, the time-to-rupture 7} as a function of A should be increasing
in the interval A € [0, 1], since increasing A at fixed C' and v (and thus at fixed
;) implies that the parameter C; decreases; hence the side-rods become more
“damage-resistant” which increases, naturally enough, the life-time of the frame.

Next, from Egs. (5.1) one immediately finds the time-to rupture 77 in the case
b) when all the rods fail simultaneously, just putting A =1 in them:

7 =TOE) = (1+2c0s’a)” (A=1). (5.2)

Let now A > 1, i.e. the case c) takes place. Then, at the end of the first stage
of failure of the frame, when 1 = 0 and the central rod fails, the damage parameter
of the side-rods has the value w; = 1/A < 1, see Eq. (4.1). This happens at the
moment

_ A
T A+ 2cos3a

*

TI

3 v+1 3 A‘—‘l vl
(1+2cosa)”™ —(2cos’a Yl (A>1), (5.32)

as it again follows from Eq. (4.5). In the second failure stage, when 7 > 7, only
the side-rods “work”, so that one should solve Eq. (3.4) with the initial condition
w =wy at 7 = 77 in order to find the final time-to-rupture, 77, of the whole frame,
corresponding to the moment when w; = 1. Elementary calculations give

7 =T =1 +2(1 - A)* ' cos™ a (5.3b)

with 7} given this time by Eq. (5.3a). (Note that in this second failure stage
2T cosa = F, so that s; = 1/2cosa.)

It is noted that r; — oo at A — oo, which again is natural. Indeed, at fixed
C > 0 (in order that the basic time-unit t; makes sense, cf. Eq. (2.2)) A — oo only
if C; — 0, so that in the limit A = oo the side-rods do not accurnulate damage.
The only damage phenomenon will be in this case the failure of the central rod
which will happen at the moment

lim 'rf* =01+ 9 cos® Q)H—l — gl ogBrHl)
A—o0

as it follows from Eq. (5.3a).
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Combining now the formulae (5.1) to (5.3) gives

T(“)(E), if £ < cos? a,
7 =T(€) =< TO(E), if€=cos? a, (5.4)
TEN(E), if€> cos? o,

which accomplishes our aim — analytic evaluation of the function T(£), see
Eq. (2.8), that gives the time-to-rupture 77 of the whole frame for a given di-
mensionless ratio { = C/C; of Kachanov’s material parameters of the rods (with
a fixed and common “damage exponent” v). The superscripts in Eq. (5.4) corre-
spond obviously to the three different situations a) — c) of frame failure, discussed
in Section 4, see Eq. (4.2).

For illustration the plot of the function T = T(€) for a typical angle o = 7/4
and v = 3 is shown in Fig. 2.

A T}'

i L i A 1 >

0 2 4 6 8 10 "4

Fig. 2. Dimensionless time-to-rupture ‘rf' of the frame as a function of the parameter
A=(C/C1)/cos*’ xata=nfdand v =3

A more detailed numerical investigation shows that 77 is always a monotoni-
cally increasing function of the ratio C/C;. This means in the damage mechanics
context that for a given central rod one should add side-rods for which C; is as
small as possible, i.e. their “damage-resistance” is as high as possible. Of course,
this result should have been expected qualitatively. The above analysis allows us,
however, to draw quantitative conclusions as well, i.e.- to evaluate simply the rela-
tive time-to-rupture increase of the frame as compared to that of the central rod if
it were a single one and subjected to the same tensile force F.
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SOME EXAMPLES OF LEXICOGRAPHIC ORDER
ALGORITHMS AND SOME OPEN COMBINATORIAL
PROBLEMS

DIMITAR L. VANDEV

A general reasoning based on the lexicographic order is studied. It helps to create
algorithms for generation of sets of words having certain natural and good properties.
Several examples are considered and the performance of the proposed algorithms is

"calculated. An open combinatorial problem regarding the set of partitions arises.

Keywords: enumerating algorithms, lexicographic order functions.
1991/95 Mathematics Subject Classification: 68E05, 65C20.

1. INTRODUCTION

There are numerous examples of sets of words — vectors of natural numbers,
which as one set of entities may be used for some computational purposes: sets of
all permutations, combinations and many others. In many cases one needs to go
across such a set and perform some computations for each member. (See [3] for
many examples in combinatorial calculations.)

The problem of the efficient generation of all elements of a class of combinatorial
configurations with given properties is considered as an important problem in the
theory of algorithms. The generation in a prescribed lexicographical order is one
of the most investigated cases, see [5, 4].

In the present paper an attempt is made to use the lexicographic order of
these words as a tool for creating enumerating (or generating) algorithms. It turns
out that the proposed scheme is useful also for calculating the performance of the
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algorithms. In some cases it is possible to calculate it easily, while in others an
open problem arises.

A part of these examples were presented as a short communication at the
Seminar of Statistical Data Analysis in Varna, Bulgaria, see [7].

2. DEFINITIONS AND NOTATIONS

Let N be the set of natural numbers {0,1,...,n}. Call N alphabet. Denote
by S = S(m,n) the m-times Cartesian product of the set N. The elements of the
set S are called words with a fixed length m and a common alphabet N. It is clear
what a lexicographic order in this set means. One word is called “larger” than
another if its first (after the common beginning of the two words) letter is larger
than the corresponding letter of the second word. Note that the set of numbers
(with leading zeroes) with digits from N is ordered in the same manner.

For any subset W of the set .S this order induces the same order for the elements
of W. To make things more formal, we shall call the word formed by the first &
letters of the word w prefix and denote it by w(k). The notation w(!, k), { < k, will
be used to denote the set of letters in the places from [ to k. For prefixes with fixed
length we have the same induced from S linear order. Formally, the empty word
w(0) is the unique element of the set S(0,n). We introduce two sets of mappings
(projections preserving the order) from S onto W. If the word belongs to W, these
mappings will preserve its prefix. In the following we shall consider the set W fixed.

Definition 1. For s € S, z = First(k, s) is the first member z € W, such that
z(k) > s(k), if it exists. In any other case it is the first member of W.

Definition 2. For s € S, z = Last(k, s) is the last member z € W, such that
z(k) < s(k), if it exists. In any other case it is the last member of W. '

If we W, z = First(k,w) is the first member of W and z = Last(k,w) is
the last member of W with the same prefix z(k) = w(k). So the element wy =
First(0, w) is the very first in W and /o = Last(0, w) — the very last in the global
linear order.

We shall introduce also a mapping Increase(k, w), which will be used to in-
crease only the k-th letter of the word w. This mapping is not defined for all
elements of W or S. Moreover, its result (when defined) is not obliged to belong
to the set W.

Definition 3. We say that Increase(k, w) equals the smallest word z € S,
such that w(k) < z(k), if this word exists. In any other case it is not defined.

Obviously, not for all elements of W this definition will lead to increasing of
only and exactly the k-th letter.

3. MAIN RESULTS

First we shall prove some simple consequences of these natural definitions.
Then an algorithm will be presented and a theorem about its completeness will
be proved. Therr a simple theorem which helps to estimate the effectivity of the
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algorithm will be stated. It will concern the mean number of steps needed to
produce the next to w word in W.

Lemma 1. Both mappings First and Last are well defined and idempotent
with fized k: First(k, First(k, s)) = First(k, s), Vs € S.

Proof. Denote by ly = Last(0, s). Then the set S may be split into two subsets:
S=514 83 ={s:s(k) <lo(k)} + {s: s(k) > lo(k)}.

When 5 € Si, the image z = First(k, s) exists, because it may be represented
as intersection of non-empty subsets of W. It is unique because of the linear order.
When s € Sy, we have wy = First(k,s) according to the definition. The second
statement is obvious because of the definition too. The same argument works for
the mapping Last. '

Lemma 2. If z = Last(k,w), then for each i > k, z = Last(i,2). If z =
First(k, w), then for each i > k, z = First(%, z).

Proof. Suppose that z = Last(k,w), but z < Last(i, z) for ¢ > k. We have
w < z = Last(k,2). Then Last(k, z) < Last(7, z). However, the first k letters of
these two words coincide — which is a contradiction. The same reasoning works
for the dual statement. O

Let fix w € W and consider the set of equations w = Last(k,w). Note that
w = Last(m, w) is true for each w. According to Lemma 2, there exists a minimal
k for which this equality holds. For the last word in W we shall have £ = 0. Again
the same is true for the first word in W (in this case the mapping First should .
take place in the equations).

These considerations give us the possibility to construct the following algorithm
for consecutive computing of the ‘next’ to w word in the set W:

function nezt(word)

1 k=n;

2 while word = Last(k, word);
3 k=k—-1;

4 end_while;

5 if £ = 0 stop;

6 word := Increase(k, word);
7 word := First(k, word);

This algorithm needs some explanations. Lines 1-4 perform the search for the
largest k for which w # Last(k, w). As the purpose of these lines is to find the inte-
ger k, it seems natural to combine them into a function: & = Last Not_Last(w).
Another reason to make this will be seen in the examples — in most cases it is easier
to calculate the function Last_Not Last than the mapping Last. The number &
may be easily interpreted as the position of the first letter changing when moving
from the given word to the next one in a lexicographically ordered set W. Line
5 prevents the use of the program after the last word Iy = Last(0,w) has been
reached. Line 6 increases the k-th letter of the word to the next letter -allowed

205



(given the prefix w(k — 1)). Line 7 simply uses the mapping First, but the prefix
is now one letter longer — w(k).
Usage of the function Last_Not_Last simplifies the algorithm:

function next(word)
k = Last_Not_Last(word);
If k£ = 0 stop;
word := Increase(k, word));
word := First(k, word);
end

Theorem 1. Starting with wg = First(0, w), the above algorithm ezhausts all
elements of the set W, i.e. lo = Last(0, w) is reached.

Proof. The first thing is to check the possibility to define and use the mapping
Increase properly. Let £ > 0. As the element w is not equal to Last(k, w), there
exists a word z € W, such that z(k) = w(k) and w < z. Let us choose the next
to w element z € W. Suppose now that the k-th elements of z and w are equal.
This means that z(k) = w(k) and we have w < z, but Last(k,w) = w. Thisis a
contradiction. Thus, there exists a word z € W C S with greater k-th letter. Such
a word exists in S. So in our algorithm we may use the function Increase when
the proper k£ > 0 is found.

Now we shall show that no word z € W may be skipped by the algorithm.
If m = 1, the statement follows from the definitions of Increase and First. If
Increase does not produce a word from W, then this will be done by First.

The induction on m uses the fact that each part of the set W with a fixed
prefix uses the same definitions of the functions First, Last, Increase. If for any
fixed first letter the algorithm is exhaustive, it will be exhaustive for the whole
set. [

Comment 1. The study of this simple proof shows that the definition of
Increase may be made more complicated — not simply to increase the correspond-
ing letter, but to choose it in such a way that the corresponding prefix “belongs”
to W. The function First does not need to be defined for any word in S. For the
index k achieved at the first step, there always exists a number in the alphabet put
at the k-th place in the word, so that First(k, w) := First(z, w) is well defined.
This situation is effectively explored in some of the examples below.

Comment 2. It is easy to see that if one defines the mapping Increase to do
nothing when k& = 0, the proposed algorithm will loop infinitely across the set W
starting from the beginning again and again.

Comment 3. The same argument may be used for the statement concerning
the reverse order. The mapping First may be replaced by Last, the mapping
Increase — by the correspondingly defined mapping Decrease. All the statements
above will remain true except for the order — it will become the inverse order.
There is one more formal duality in the lexicographical order - the interchanging
of the letters. The most natural interchanging is to read the word backward. Then
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the first letters of the word are changed while the last are kept fixed. We shall
call such an order dual. With any set four different orderings into the set S can
be defined. The definitions above are to be changed correspondingly for any such
order. Any of these orderings may be useful to consider when an enumeration is
performed.

Theorem 2. Denote by Wy the set of all different prefizes w(k) of words
in W. We shall assume that |Wy| = 1 and W, = W. Suppose thal for each
k=0,1,2,...,n—1, we have |Wi|/|Wi41| < ¢ < 1. Then according to the uniform
distribution on W the expected number of steps to reach the address of change
E(n — k) fulfills the inequality

2
E(rn—k) < T

Proof. The set W may be represented as a graph — a tree with totally N +1
vertices and N edges. Each vertex corresponds to a fixed prefix. Then the total
way of our algorithm to generate all the members of the set is proportional to 2N.
Denote r = |W|. The expected number E(n — k) may be represented in the form

2N

E(n— k)< — IWI

(ro+r1+r2+ c+ 7))

:2(T07‘1...7’n—1 +T‘IT‘2.--7'n—-l ++1> <2;
TITy...Tp T2T3...Tn l-q

Comment 4. It is clear that the assumption of the theorem may be weakened
in anumber of ways. For example, it is enough for k£ to run over theset 0,1,...,n—j.
Then the expectation will be limited by j + 1/(1 — g).

As we shall see in the next section, despite that the assumption is not fulfilled
in many cases, the average number of steps remains finite. On the other hand, the
set consisting of two words {1,1,1,...,1} and {2,1,1,...,1} will need an expected
number of steps proportional to n. It is an open question, what, in general, happens
to the expected number of steps when all the dualities mentioned in Comment 3
are explored.

4. EXAMPLES

In the next examples we shall construct the mappings First, Last, Increase
and the function Last_Not_Last for different subsets of 5. We shall try also to
calculate the computational complexity of the algorithms. In fact, one needs only
the distribution of & — “the place of first change” in lexicographically ordered
words. It is clear that the proposed algorithm will be as effective as closer to n the
expectation of this place is situated. For that purpose one has to calculate also the
size of the corresponding data set and assume uniform probability on it. So, the
mean effort for constructing the next element should represent the complexity of
the embedding of the data set in the given order. It will be seen that the use of
different embeddings is of primary interest.
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The first two examples have been extensively studied in [4, 5]. Here they
are mentioned only to show that the idea we use leads to natural and well-known
algorithms.

4.1. PERMUTATIONS OF N ELEMENTS

In Table 1 a part of the set of all permutations of 5 elements is shown in a
lexicographic order.

TABLE 1. Part of permutations of 5 elements

12345 113245114235
1235413254 (14253
12435(13425(14325
12453 (1345214352
12534113524 (14523
12543 (1354214532

It is clear that the mapping Last simply orders all the elements of w after
(and including) the k-th one in a decreasing order, while for the mapping First
this order is increasing.

The function Last_Not_Last finds the smallest & such that after it all elements
are in a decreasing order. Denote j = n — k. Then it is clear that j runs from 1 to
n. For a given k, this function needs j subtractions and comparisons.

The mapping Increase is more complicated. It takes the next larger than
w(k, k) integer from the set of integers w(k,n) and should replace it with w(k, k).
The last step First is equivalent to inversion of the sequence of the last j integers.

Theorem 2 can be applied to the set of permutations with k running up to n—j
and ¢ = 1/j!. However, it might be interesting to calculate exactly the expected
number of steps of the algorithm. This is done in [5, Section 5.1}, in the terms of
transpositions and comparisons. The expected number of integer calculations then
is proportional to (e — 1) and remains finite as n — co.

4.2. SUBSETS OF M ELEMENTS OUT OF SET OF N

In Table 2 the set of all subsets of 4 elements, taken from the set of 6 elements,
is shown in a lexicographic order. One calls the objects combinations of n elements
of class 4. Here the letters are kept in an increasing order inside the word — they
should not coincide.

TABLE 2. Subsets of 4 elements out of 6

1234(1345|2346
123511346 (2356
1236113562456
124514563456
124612345
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The mapping Last changes the last m — k elements of w into the largest
elements of N, while First sets these elements to the smaller ones following the
k-th element of w. The function Last_Not_Last finds the largest k such that
w(k, k) is hot equal to n — (m — k). The mapping Increase simply adds 1 to the
corresponding element of w. This is also well-known algorithm [5, Section 5.2.2].

The number of combinations of n elements class m is (:1) In a similar way, as
in permutations, we find the number of calculations as a function of j = m — k to
be about 4j. The distribution of j is also easy to construct:

n—-m-—1-—j
pj= ( (i) )
m
So, we come to even stronger result, namely, that with the growth of n — m the
expected number of calculations decreases.
Here the application of Theorem 2 is also possible, which yields |W;|= ("_(T_k))

4.3.. PARTITIONS OF AN INTEGER I

To generate the set W of all partitions of a given integer n into a sum of number
integers is an easy problem for this algorithm. In Table 3 all partitions of 10 into
the sum of up to 4 numbers are given (except the trivial 000 10). This presentation
allows to split easily W into partitions of exactly 2, 3 and 4 non-zero numbers.
These subsets follow consecutively. In the next examples other representations will
be used.

TABLE 3. Partitions of 10 into up to 4 members

0019013611126
002801451135
003702261144
004602351225
0055|0244 )1233
0118(0334;2224
0127)11117(2233

The mapping Last distributes the remaining portion of n into maximum equal
portions among the remaining numbers after the k-th one. The mapping First
states all these numbers to w(k, k) and the remainder from m is added to the last
number. The function Last_ Not_Last finds the largest k such that w(m,m) —
w(k, k) > 2. The mapping Increase simply increases by 1 the corresponding
element of w. This algorithm is due to Hindenburg (see {1, Section 14.3]).

In order to apply the theorem, we have to calculate wy = |W|. This is not an
easy problem, however. Consider the unlimited case — all partitions of n will be
fixed as words of length n with non decreasing elements.
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One sees that the number wy, is a sum of partition numbers, subjected to two
kinds of restrictions — concerning the maximum number of elements and the size
of the largest element.

We have wp = 1 and wy = |wg—1| + 1 until n — & > [n/2]. Starting from
[n/2] + 1 until n — k = [n/3], we have wy = wg_1 + 2 or wy = wi—_1 + 3. Here the
choice depends on the remainder of the division on 3.

~ This example shows that in this case Theorem 2 is not applicable. Indeed,
Win/2)+1/Wn/2) = 1 +1/n and it tends to one as n increases. Nevertheless, we hope
that the average number of steps is finite in this representation also. The exact
statement remains an open problem.

4.4. PARTITIONS OF AN INTEGER II

Here we use the representation which follows from the formula

Here the numbers n; represent the number of members of size : in a particular
partition. The number of members in each partition is ) .., n;. It is clear how to
convert one representation into another. Table 4 contains the set of all partitions
of 10 into members less than 8, but in another lexicographical order according to
the new presentation. Instead of the restriction on the number of members, we now
pose a restriction on the maximal member of the partition.

Here we shall exploit the dual order and present the same partitions in an order
with a fixed suffix. In this order it is easy to add the additional restriction on the
maximum member of the partition, say, it is equal to 7: starting with ¢; = N this
new algorithm produces all partitions of 10 to members not bigger than 7.

TABLE 4. All partitions of 10 into numbers up to 7

The function Last_Not_Last finds first £ from the beginning such that & <
First nullifies all elements in the

=3

4020000

10000000 002100074000010
8100000 12120000)2002000}2100010
6200000 {0220000(010200010200010
4300000 {1030000(500010011010010
2400000 (6001000 (3100100(00010190
0500000 |4101000]1200100]3000001
7010000 | 22010002010100|1100001
5110000 j0301000)0110100|0010001
3210000 j3011000)1001100

1310000 {1111000(0000200

k-1

;=1 ©-@;. Then aj is increased by one.

beginning and makes a; = — k.

210




Let us try to estimate the performance of the algorithm. As usual P(n) = W]
is the number of partitions of n. Denote by r; the number of different suffixes in
the words of the set W. It is clear that r,_; = P(n),7o = 1,7, =2.

Consider now the case: 3 < k < n — 1. It is clear that the set R; may be
mapped into the set i1, so that the additional element (at place m =n — k) is
zero. However, it is possible to make one more mapping of the same set Rj into
elements of Ry4; with non-zero elements at the same place m. This can be done
if every suffix is shifted left until the first non-zero element occupies the place m.
The remaining portion of the suffix is filled with zeros. The only exception for this
secorid mapping is the suffix consisting of zeros only. So we have the inequality

re/Te1 < 1/2+ 1/req1 < 5/6.

According to Theorem 2 this means that the mean number of steps is finite
and does not increase as n — oco. The exact value of this mean, as well as the exact
distribution of the number of steps remain an open problem in this presentation
also.

4.5. BELL POLYNOMIALS

For exact definitions see [3, Ch. I, p. 10]. This example is in¢luded merely to
illustrate the use of the algorithm working in the reverse order. Consider the set of
all vectors of natural numbers satisfying the following two equalities:

iki:m, iiki:n.
=1 i=1

The summation above is assumed to be infinite for simplicity. [t is clear that
only the first n — k + 1 elements may be non-zero. This set is of some interest
in many applications. In addition to computing Bell polynomials, it is used in
the distributions of order k. Again we have partitions and the problem could be
solved using the first representation of partitions in Section 4.3 and then screening
partitions with number of members less than m. However, we shall give here an
explicit solution.

In Table 5 the solutions for n = 13 and m = 6 are shown in reverse order. The
reverse order is chosen because of the simplicity of the mapping Last in this case.

TABLE 5. Bell Polynomials n = 13 and m = 6
«

50000001|130210000
41000010(23001000
40100100(122110000
40011000(21300000
32000100;14010000
31101000;13206000
31020000(05100000

The reverse algorithm will be used. The mapping Decrease decreases by 1
the corresponding element of w. The mapping Last sets all elements with indexes
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greater than k to zero, then w(k + 1,k + 1) = m; — 1, and finally adds 1 to the
number in position k+nx—(k+1)*my. Here m; and n; are the values of the sums in
the definition of Bell polynomials, taken over indexes greater than £. The function
First_Not_First finds the largest £ such that w(k, &) > 0 and w(k, k) < maz — 2.
Here maxz is the index of rightmost non-zero element.

In order to estimate the performance of the algorithm in this situation, we
shall point out that the representation of partitions given in Section 4.3 is much
more economical. Moreover, the additional restriction m = Zzl k; in this case is
in concordance with the presentation. It means that it makes no sense to use this
second representation if one needs effectivity.

4.6. PARTITIONS WITH AN ADDITIONAL RESTRICTICN !

Let us consider the algorithm for the following partition problem with the
additional restriction:

{
Zk‘i:Tn, Zk,"l:n.
=1 )

By using the algorithm described in Section 4.3 and simply screening the second
equation, an easy solution could be given of this problem. As an example, the results
are presented in Table 6 for words of length 15, m = 16 and several values of n.

TABLE 6. 510 ki =163 10 kZ=n

n
18/111111111111112
20(011111111111122
221001111111111222
011111111111113
241000111111112222
001111111111123
26(000011111122222
000111111111223
281000001111222222
000011111112223
000111111111133
001111111111114

It would be interesting to investigate the combinatorial properties of this set
and to study the properties of the algorithm in this case.

!The author is grateful to Prof. G. Zbaganu who mentioned this problem at the 8-th Seminar
on Statistical Data Analysis, Varna, 1992, and then helped to reformulate the algorithm.
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4.7. GENERALIZED FIBONACCI NUMBERS OF ORDER M

Consider the set F( ™) of words of fixed length n, consisting of zeroes and ones,
and having the property that they do not contain m or more than m consecutive
ones. (This example was proposed by P. Mateev.)

It may be easily proved that the cardinalities f(m) of F,Sm)
recurrent relation:

satisfy the following

fr(1m) — Zf(m)

i=1

(4.1)

For
arbitrary m and starting conditions f{™ = 0 and f™ = 1, Gabai [2] called
them Fibonacci numbers of order M. Philippou [6] calculated them as sums of
multinomial coefficients. For the words of zeroes and ones, however, the starting

When m = 2, these numbers form the well-known Fibonacci sequence.

=1 f(m) = 1 as with the original Fibonacci numbers. For the
particular case m = 3 we have fn =1,1,2,4,7,13,24,...;n=0,1,2,... In Table
7 all the j "( ) zero-one words are presented.

conditions are fém)

TABLE 7. Fibonacci words forn = 5 and m = 3

00000|01001)10011
00001|01010]10100
00010|01011(10101
00011)01100|10110
00100|01101§11000
00101710000(11001
00110(10001{11010
01000|10010]11011

The algorithm for generating such n-tuples is extremely simple. The function
Last_Not _Last has to find the first zero preceded by less than m—1 ones, Increase
puts one at this place and First nullifies all elements with greater indexes.

Here the mean value of the needed calculations is obviously proportional to
the place j = n — k of the zero to change. Denote this mean value by j,. The
above recurrence relation then leads to a new relation for the mean values. In order
to obtain this relation, we shall use the proof of the recurrence formula (4.1). All
n-words may be divided into M disjoint subsets S1,S2,. .., S (we suppose that n
is large enough). The [-th subset S; has an arbitrary prefix and last numbers are
fixed:

={we F™ : (w,ws,...,wa_y,0,1,1,1,...,1)}.

These subsets cover the whole set F{™ . The cardinalities of the sets are clearly

f(m) In each subset the algorithm stops at the first 0, performing exactly [ steps,
or enters the prefix looking for the next available zero. In the first case the prefix
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'should end with exactly m numbers — a zero and m—1 ones. Its cardinality equals
(m)
o fn_ . So we come to the formula

Y (Ui + D = £ Y+ )

ST Fa)

jn:

m

m
= Zwi(jﬂ—i —Jn-m-i) + Zi‘wi.

i=1 i=1

The proportions w; = f(m)/f(m) 1 =1,2,...,m, are fixed as n — oo. The
sequence jn then obviously converges to the finite number Y7 | tw;*lim(faqym/fn)-

5. PERFORMANCE AND CONCLUSION

Both forms of the algorithm have quite different performances. For the first it
is quadratic in j. One hardly expects a comparison of two words of length j to be
made for shorter time. It may be expected a good performance from the second
form when the function Last Not._Last, as well as the mapping First depend
linearly of 7. In all examples above this was made possible.

In the case when the distribution of j has a finite mean, not depending of n,
the asymptotic properties of the algorithm are extremely nice.

We do not know the distribution of j in the case of Bell polynomials and the
performance of the presented algorithms in this case remains an open problem
which would be interesting to be solved.

It is clear that building up programs in such a way, one can hardly expect that
they will be fast without some additional efforts. However, in all cases above it
turned out that only slight modifications were needed to make the programs work
quite satisfactorily.

Another useful hint may be to try the other orders to change the mappings
First, Last and Increase, correspondingly, and to see what will happen to the
program. It may became shorter and faster.

Acknowledgements. The author is grateful to K. Manev, whose useful com-
ments have improved the presentation. The work was partially supported by
the Bulgarian Ministry of Education, Science and Technology under Grant No
MM440/94.
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ON THE EFFECTIVE CONDUCTIVITY OF A CLASS
OF RANDOM DISPERSIONS

KRASSIMIR D. ZVYATKOV

A new class of random dispersions is considered in which not only the location
of the spheres is random, but their conductivity is random as well. The classical
variational principles are employed in which classes of trial fields in the form of suitably
truncated functional series are introduced. In this way three-point variational bounds
on the effective conductivity of the dispersion are derived and discussed in more detail
for some particular statistical distributions of sphere conductivity. A rigorous formula
for the effective conductivity, correct to the order square of sphere fraction, is finally
obtained which contains only absolutely convergent integrals.

Keywords: random media, eflective properties, polydisperse structure.
1991 Mathermatics Subject Classification: 73B35, 73510.

1. INTRODUCTION

Consider a dispersion of homogeneous non-overlapping spheres of random con-
ductivity K¢, immersed at random into an unbounded matrix of conductivity &,.
For convenience of notations hereafter we represent the conductivity ¥y in the form
K; = K;5, where K; = (K;) is the mean conductivity of the sphere, embedded
into the matrix. Then 5 represents their “non-dimensional conductivity” for which
(5)=1. '

Let {x;} be the random system of sphere’s centers and at the position x; a
sphere with conductivity s;j, random as well, is centered. Thus a set of marked
random points {x;,s;} is defined whose statistical description suffices for the dis-
persion. A similar marked random system was considered by Christov and Markov
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(1, 2] in the study of dispersions of spheres with random radii @. (For the general
definition of sets of marked random points see [3].) We assume henceforth, for the
sake of simplicity solely, that the spheres possess a fixed and non-random radius a.
Then the random conductivity field k(x) of the dispersion has the form

K(X) = K +Z(Kfsj —nm)h(x—;j), (1.1)

where h(x) is the characteristic function for a single sphere located at the origin.
In Sec. 2.1 we briefly discuss the statistical description of the system of marked
random points {x;,s;}, similar to that used in [1, 2].

For definiteness we shall deal with the problem of heat conduction through
the random dispersion as a simple representative of a wide class of similar trans-
port phenomena. The governing equations of the problem, in the absence of body
sources, are

V.a(x) =0, q(x)=x(x)Vi(x), (Vo(x))=G, (1.2)

where (x) is the random temperature field, q(x) — the heat flux vector, G is the
prescribed macroscopic value of the temperature gradient, the brackets (-) denote
statistical averaging. Hereafter the media are assumed statistically homogeneous
and isotropic. The solution of Egs. (1.2) is understood in a statistical sense, so that
one is to evaluate all multipoint moments (correlation functions) of #(x) and the
joint moments of x(x) and 8(x), see, e.g., [4]. Among the latter is the one-point
moment

(r(x)Vi(x)) = &* (VO(x)) = k"G, (1.3)

where k* is the effective conductivity of the medium.

As argued by Christov and Markov [5], the solution #(x) of the random problem
(1.2) can be expanded as a functional (Volterra-Wiener) series, generated by the
conductivity field «{x), namely,

9(x) =G x +/K1(x - y)&'(y) Py

+/ FKa(x = y1,x — y2) [£'(y1)&'(y2) — M5 (y1 - y2)] Py1dPy2 + -, (1.4)

with certain non-random kernels T;, 7 = 1,2,... They also proposed to truncate
this series afterwards. In Eq. (1.4) &'(x) = s(x) — (k), M5 (x —y) = (&'(x)&'(¥)).
(Hereafter the integrals with respect to spatial variables are over the whole R® if
the integration domain is not explicitly indicated.) Two types of applications for
such truncated series could be envisaged. The first is to use them as approximate,
in a certain sense, solutions of the problem (1.2). This possibility was discussed
in more detail and worked out in the case of random dispersions of spheres by
Markov [6, 7] and Markov and Christov [2]. For the dispersion under study this
kind of application will be explained and worked out in Sec. 2.2. The second is
to use such truncated series as classes of trial fields for the variational principles
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[8, 12]. This idea was developed by Markov [8] on the base of the classical principle,
corresponding to the problem (1.2), namely,

Walb()] = <n(x)|V€(x)|2> — min, (Vé(x)) = G, (1.5)

minWa = &*G? | see, eg., [4. For example, the simplest non-trivial class is
obtained when the functional series (1.4) is truncated afier the single integral term,
le.

K = {H(x) | 6(x) = G -x+/K1(x - ¥)&'(y) day} , (1.6)

where K;(x) is an adjustable kernel. This class was introduced and discussed in
detail by Markov [8], where it was shown that minimizing W [0(-)] over the class
}C(;ll) gives the best three-point upper bound x(®) on the effective conductivity «*,
i.e. the most restrictive one which uses three-point statistical information for the
medium. In order to obtain the appropriate three-point lower bound on &, it is
necessary to consider the classical dual variational principle for the problem (1.2)
formulated with respect to the heat flux q(x) = V x ®(x),

" wWle()] = (bOIV x B(x)f) —min, (a@x)=Q,  (7)

min Wg = k*Q? (here k(x) = 1/&(x) and k* = 1/£"), over a class of the kind (1.6).
In Sec. 3.1 we shall derive the optimal three-point bounds for the dispersion making
use of an alternative variational procedure successfully applied in the monodisperse
case, see [8, 9, 12].

Moreover, Markov [8] showed how the earlier proposed variational techniques
could be put into this general frame. For example, the Beran method [13] is a Ritz
type procedure in which the kernel Ky in (1.6) is chosen to be proportional to the
fixed (Beran’s) kernel Kp:

K (x) = MRp(x), Kp(x)=G- V4%lx|, (1.8)
where X € R is an adjustable parameter. The question of the optimality of Beran’s
procedure for the dispersion under study will be discussed in Sec. 3.2. It will be
shown that it is not optimal even to the order ¢, where ¢ is the volume fraction of
the spheres. Finally, in Sec. 4, using some of the author’s ideas of his recent work
[14], an exact c*-formula for the effective conductivity x* of the dispersion under
study will be found in a variational way.

2. STATISTICAL DESCRIPTION OF THE DISPERSION AND FACTORIAL
FUNCTIONAL EXPANSION

2.1. STATISTICAL DESCRIPTION OF THE DISPERSION

The system of marked random points {x;,s;} can be considered as a set
of points randomly distributed in the four-dimensional domain B’? x U, where
U = (0,+co). Similarly to the monodisperse case, this system is fully described
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by the multipoint probability densities Fr(y1,...,¥n;51,.-.,5n), see, e.g., [1, 2, 8].
The latter define the probability

dP = Fy(y1, ...,yn;sl,...,sn)d3y1...dayn dsy...ds, (2.1)

to find simultaneously a center of sphere within the infinitesimal volumes

yi Sy <yi+dy; (2.2a)
of the spatial positions y; with conductivities 51, ..., 3, in the vicinities
5; <5< 5 +ds; (2.2b)
of the values sy, ..., sy, respectively, i=1,..., n.
The functions Fy(y1,...,¥a;81,-..,5n) define too rich a class of dispersions

whose study seems very complicated in general. That is why, if our aim is to
reach certain tangible results, one must narrow this class. The following arguments
lead in a natural way to such a simplification. Let dPy be the probability to find
simultaneously a center of sphere in each of the volumes (2.2a), regardless to the
conductivity of the latter. Obviously, dP < dPy and

dPy :fn(Yh---xYn)dSYI---ds}'n» (23)

where the functions f,(y1,...,¥s) are the multipoint probability densities for the
system of non-marked random points x;, i.e. they are the same that appear in the
monodisperse case, see, e.g., [8]. Then dP = dPydP*, where dP* is the conditional
probability, namely, the probability to find simultaneously a center of sphere in
the volumes (2.2a) with conductivities 51, ...,3, in the regions (2.2b) respectively,
provided a center of sphere is found in the volumes (2.2a). Hence

dP* = n,(s1,..., 5n | Yi,---:¥a)ds1...dsqy,
where

Fn(}’l:---;}’nislw--,sn):fn(YI;-":Yn)Tln(Sl,---,Sn YIx-u;Yn): (24)

n =1,2... Obviously, the dependence of functions 7, upon yi, ...,y reflects the
“selectivity” of these sphere’s locations toward spheres of certain conductivities.
The consideration of dispersions in the general case, when such a “selectivity” is
arbitrary, seems a hopeless problem. That is why we adopt now the following
simplifying assumption concerning the structure of the dispersions: There exist
no locations in the space R® which possess selectivity toward spheres of certain
conductivities. Hence we assume that

Tln(Sl,-~-,5n |y1,---|yn‘):Pn(y1x"':Yn)
or, according to (2.4),

Fra(¥1,- 2 ¥n: 81y 18n) = fa(¥1,- -, ¥n) Pa(s1,. .., 80), (2.5)
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which means, as a matter of fact, that there is no correlation between location and
conductivity of the spheres. The functions P, (s, ..., s,) are the multivariate prob-
ability densities of conductivities of spheres, regardless to the spatial positions of the
latter; théy give the probability d P3 of n arbitrarily chosen spheres of the dispersion,
having conductivities in the vicinities (2.2b), to be dPg = P, (s1,...,sn)ds; ...dsp.

Since the dispersions under study are assumed statistically homogeneous and
isotropic, the system {x;} has the same properties. Hence, in particular, f = n
and fr = fi(y2,1,-..,¥%,1), where y; ; = y; —y: and n denotes the number density,
i.e. the mean number of points x; per unit volume. Obviously, n = ¢/V;,, where
Ve = %wa3 is the volume of a single sphere. Moreover, we shall assume, as usual,
that fi ~ nf, i.e. f; has the asymptotic order n* at n — 0, k = 1,2,..., see [8].
We shall note also that the assumption of non-overlapping of spheres yields

fey1,..,¥5) =0, if |y;—y;l<2a forapair i#j.

Taking into account this assumption and (2.5) for the first pair of probability den-
sities F; and Fy we have

Fi(y;s) =nP(s), Fa(y1,¥2;51,52) = n’go(r)Pa(s1, 52), (2.6)

where P(s) = Pi(s), r = |y2—y1| and go is the zero-density limit of the well-known
radial distribution function g(r) = fa(r)/n?, i.e. g(r) = go(r) + O(n).
Let
Y(x;8) = Y 8(x —x;)8(s — 5;) (2.7)
i

be the Stratonovich random density field generated by the system of marked random
points {x;j,s;} (see [15, 2]). According to Eq. (1.1) the field x(x) can be written
then as

k(x) = (k) +//(Kfs — km)h(x — y)¥'(y; 5) d3y ds, (2.8)

where 1'(y;s) is the fluctuating part of the field ¥(y;s). (Hereafter the integrals
with respect to the mark s are over the semiaxis (0, +c0).) The random field ¥(x; s)
is uniquely defined by the random set {x;,s;} and vice versa. In particular, the
multipoint moments of ¥(x;s) can easily be expressed by means of the probability
densities Fy:

(¥(y;8)) = Fi(y; s) = nP(s),
(¥(y1;51)¥(y2; 52)) = Fi(y1;51)8(y1,2)8(s1,2) + Fa(y1,¥2; 81, 52), (2.9)
((y1;51)¥(y2; s2)¥(yaisa)) = Fi(y1;61)0(y1,2)6(51,2)6(y1,3)6(51,3)

+~3{5(Y1,3)5(31,3)Fz(}’1 VY25 81,52)}s + Fa(y1,¥2,¥3; 51, 52, 53),

etc., see [1, 2], where {-}, denotes symmetrization with respect to all different
combinations of indices in the brackets, s; ; = s; — s;.
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2.2. ON THE ¢?-VIRIAL SOLUTION OF THE PROBLEM (1.2) FOR THE DISPERSION

Similarly to the considerations in [6, 7] (for monodisperse case) and [2] (for the
dispersion of spheres with random radii), it is reasonable to develop the random
temperature field #(x) in the following functional series

f(x) = To(x) +//T1(x -y, s)AEbl)(y; s)d’yds

+////T2(X_YIIX"YZ;51;SE)A(Z)(YIyYZ;51132)d3x1 d®yadsidsy+- -+, (2.10)

where

AP =1, AP(y;s) = 4(y;s),

A1, - kst sk) = YY1 1) [$(ya; s2) — 6(ya,1)6(s2,1)]  (2.11)
e [¢(yk; Sk) — 6(yk,1)6(sk’1) — s — 6(yk'k_1)5(sklk_1)], k = 2, 3, ceey

are the random fields, generated by the random density field ¥(x; s), and called in
(7] factorial fields. The kernel 7} in (2.10) can be easily expressed by means of the
first k kernels of the series (1.3). According to a basic result of [7], the series (2.10)
is virial in the sense that the truncation after the p-tuple term of its gives results
for all multipoint moments of the solution §(x) to the random problem (1.2}, which

are correct to the order ¢? provided the first kernels 7;, ¢ = 0, ..., p, are properly
identified. A general procedure for the identification of the kernels 7; is described
in [2, 6, 7].

Since our aim is the evaluation of the effective conductivity «* to the order
c?, we are interested in the solution of the problem (1.2) to the same order. To
simplify the analysis, after [2, 6, 7] we render the series (2.10) n?-orthogonal in the
sense that the averaged value of the product of any pair of its different terms has
the order o(n?). To this end we introduce the following linear combinations of the
factorial fields (2.11):

D =1, DP(yis)= a3 (yis) = nP(s) = ¥/ (v; ),
bez)(}’h)’z;sh 52) = Afpz)()’hh;sll s2) — n?go(y2,1)Pa(s1, 52)
—n?go(y2,1)P2(s1, 52)[D$)(}’1;51)/P(51) + D,(ﬁl)(}’z; 53)/ P(s2)],

Dfpk)(yl, ce Y81,y Sk) = A'(pk)(yl, o YE STy Sk, (2.12)
k=3,4,... As a consequence of Egs. (2.9) and (2.11) it can be easily verified that

<D1(pl)(y; 3)> =0, <D$)(Y1,YZ;51,82)> = O(nz), (2.13a)
\ <D$)(Y1§51)D§,2)(Y2,Ya;52,83)> = o(n?). (2.13b)
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Since the serles (2.10) is virial, these relations suffice to claim that the fields (2.12)
form an n?-orthogonal system. Then let us truncate the series (2.10) after the
four-tuple integral term. Thus we obtain the kind of the ¢?-solution of the random
problem (1.2) for the dispersion. In the truncated series we rearrange the terms in

such a manner that only the n?-orthogonal fields bel) and Dl(f) enter:
Ix)=G -x +//T1(.x -y, s)Dsbl)(y; s)d?yds

+////T2(X—yl,x—Y2151,82)D,(p2)(}’1,}’2;81,Sz)dahdsh dsidsy.  (2.14)

The new kernels 77 and T here (no new notations are used for them) are linear
combinations of the kernels Tp, 71 and T3 of the series (2.10). The zeroth-order
term in (2.14) is indeed G - x, since D,(’bl) and DEDZ) are centered and (VO(x)) = G,
see Eqgs. (2.13) and (1.2).

The identification of the kernels 77 and T3 can be performed by a procedure,
proposed originally by Christov and Markov [5], see also [2, 6, 7]. It consists in
inserting the truncated series (2.14) into the random equation (1.2), multiplying the
result by the fields Dfpp), p=20,1,2, and averaging the results. In this way a certain
system of integral-differential equations for the needed kernels of the truncated
series can be straightforwardly derived. Here we employ an alternative method,
recently proposed in [14] for the monodisperse case. Namely, the truncated series
(2.14) will be inserted into the classical variational principle (1.5) as a class of trial
fields, varying the kernels. Since this class contains the actual temperature field
to the order ¢?, the obtained equations for the optimal kernels 77 and T3 are the
same as those for the needed kernels in (2.14). In particular, this procedure leads
in passing to the exact determination of the effective conductivity to the order c?.

In what follows we shall need also the following formulae for the moments of
the field (2.12):

<Dt(bl)(YI;51)D1(pl)(Y2; 52)> = nP(51)8(y1,2)6(s1,2) — n°Ro(y1,2;51,52), (2.15a)

<D‘(pl)(}’1;81)D$)(Y2; Sz)D.(pl)(Y:a; 33)> =nP(s1)6(y1,2)6(51,2)6(y1,3)6(51,3)
—"23{5()’1,2)5(51,2)R0(YZ,3;52.53)}5, (2.15b)
<D1(pZ)(YIyYZ;51,SZ)D,(;)(YS;53)D5,1)(Y4;S4)>
= <D$)(Y1,Y2; 81,82)D&2)(Y3,Y4;53,54)> = n?go(y2,1)P2(51, 52) (2.15¢)
X [6(y2,1)6(53,1)6(y4,2)8(54,2) + 6(¥4,1)6(54,1)8(y3,2)6(s3,2)],
<D£2)(YI,}’2;51,SZ)D,(JIZ)(ya,y‘;;53,34)D$)(y5; s5)>

= n?go(y2,1)Pa(s1,52)[6(¥s,1)6(ss5,1) + 6(¥5,2)6(s5,2)] (2.15d)
x[6(y3,1)6(s3,1)6(y4,2)8(s4,2) + 5()’4,1)5(84,1)5(}’3,2)(5(53,2)],
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where
Ro(y2,1;51,52) = P(s1)P(s2) — go(]y2,1]) Pa(s1, 52) (2.16)

they are correct to the order n? and represent straightforward consequences of
Egs. (2.9), (2.11) and (2.12).

3. VARTIATIONAL THREE-POINT BOUNDS

3.1. THE OPTIMAL THREE-POINT BOUNDS FOR THE DISPERSION

It is natural to begin the consideration of the classical variational principle
(1.5) on the simpler class of trial fields that it yields when the factorial series (2.14)
1s truncated after the one-tuple integral term. Namely, we introduce the class

le) = {0(1{) | 6(x) =G -x +//Tl(x - y,s)Dfpl)(y;s) d’y ds} , (3.1)

where T1(x,s) is an adjustable kernel. Obviously, this class contains the actual
temperature field to'the order ¢ only. That is why one can obtain the exact value
of effective conductivity «* to the same order only, together with certain bounds
on &* for the higher order of c.

This class is the counterpart of the class (1.6). Due to Eq. (2.8), the classes
(1.6) and (3.1) coincide: if a transition from &'(x) to 3’(x) is performed according
to Eq. (2.8), the kernel A(x) is transformed into the kernel T3 (x, s) by means of
the convolution with the characteristic function h(x):

Ti(x,8) = (Kys — £m) (h* K1) (x) = (Kjs — nm)/h(x —-y)EKi(y)dPy. (3.2)

Consequently, the upper bound on &*, obtained from the restriction of the func-
tional W4 over the class le) coincides with the optimal third-order bound «(®)| see
Sec. 1. Moreover, due to Egs. (2.8) and (2.9), we can claim that the bound «®) is
the best one for the dispersion which employs the statistical information provided
by the two- and three-point probability densities 3 and Fj.

Making use of Eq. (2.8) and the formulae (2.15) for the moments of the fields

Df;), the restriction W/gl)[Tl(-)] of the functional W4 over the class (3.1) becomes

WOl = Wa |, = () G+ n(x) { / VT (2, s)|2P(s) d°z ds

A

—n//\/ 'Ro(21 - ZQ;Sl,Sg)VTl(Zl,Sl) . VTl(z3,52)d3z1 d3Z2 d51 ng}
+2nG-{//(Ii'js—fcm)h(z)VTl(z,s)P(s) d*z ds
—n///(Kfsl —Km)]:o(z;sl,Sz)VTl(Z,Sz)dSZ d31 dsz}
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+n{/(1&’js—nm Yh(2)|VTi(z,5)* P(s) d®z ds

—-n [2////(1{;51 — £m)h(21)Ro(22,1, 51, 52)VTi (21, 51)

. VTl (Zz, Sg) d3Z1d322 d51d52

+ / / Folai1,52)|VTi(2, 52)[2 d2 dsy dSz]}+o(n2)= (33)

where

Fo(z; s1, 52) :/h(y)Ro(z —Y¥;$1,52)dy. (3.4)

Hereafter the differentiation is with respect to the appropriate spatial variable.
The optimal kernel T1(x, s), i.e. the solution of the Euler-Lagrange equation

for the functional W}(‘l), is looked for in the virial form
Ti(x,5) = Ti(x, s;n) = Ty 0(x,8) + T1,1(x,8)n+ - - - (3.5)

This representation of 71(x, s) induces the appropriate virial expansion of the func-
tional (3.3):

WOITI ()] = (&) G2+ W VT o()n + WEPT0(), Tia Ol +--- (3.6)

The functionals Wl(ll’l) and W‘gl'z) depend on the indicated virial coefficients as
follows:

WD ()] = ki / VT1,0(x,5)|" P(s) dx ds
+ //(I{fs = &m)h(X)[VT10(x,s) + 2G] - VT 0(x, s)P(s) d’x ds, (3.7)
W“(11,2)[T1’0(.), Tia()] = W&l’z)[Tl,D(.)] + Q/P(S) ds

% /v (kY TL0(%, 5) + (K15 — km)AG[ G + VTi o(x, 8) ]} Th1(x, 5) dx,
(3.8a)

(12)[T1o ()] = (K = &m)Va //|VT10x §)2P(s) d*x ds
_////(R’f-ﬂ — & )h(31)|VT10(x2, 52)2Ro(x1 — X2; 51, 82) d2xy d°x5 dsy dsg
+nm/// VT 0(x1,51) - VT1,0(%2, s2)Ro(X1 — Xa; 51, 52) d°x; d°x; dsy dsp

_2/ {km VT 0(x1,51) + (Ks51 — &m)h(x1)[ G + VT1,0(x1, 51)]} d°x; ds
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. / VTIIO(XZ, 52)R0(x1 — Xa, 81, Sz) d3x2 ng. (38b)

The optimal kernel T}(x, s) satisfies the equation 6Wj(‘1) = 0, so that we have,
in particular,

W VITLo()] =0, W DITy0(), Tra()] = 0. (3.9)
The first of these equations yields straightforwardly
P(S)V AkmVT1,0(x,8) + (Ks — &m)h(x)[G + VT10(x,5)]} =0, (3.10)

which is just the equation for the disturbance, T(l)(x, s), to the temperature field
G - x in an unbounded matrix, introduced by a single spherical inhomogeneity of
conductivity Kys, located at the origin. The analytic form of this disturbance is
well-known:

Tio(x,5) = TO(x, s) = 38(s) G - Voo(x), B(s) = %f:;# (3.11)
here . hy)
= ; - y 3
p(x) = h=* prmt le. p(x) _/md y

is the Newtonian potential for a single sphere of radius a, located at the origin.
(We assume, obviously enough, that P(s) # 0.)

With T3 o(x, s) already found, one should vary only T1 1(x, s) in the functional
(3.8) in order to derive the Euler-Lagrange equation for the latter. However, this
is not possible, because Eq. (3.10) yields

W IT (), Tua()] = Wy P To(): (3.12)

Hence, according to Eq. (3.6) for the optimal upper three-point bound £(3) we have
k*G? < kG2 = (k) G2+ W(1 DTy of- Ne+ - W(l Ny 0()]c? + o(c?). (3.13)

The foregoing reasoning has two implications. First, we can conclude that the
optimal upper bound x®) to the order ¢? depends only on the field T¢!)(x, 5); the
explicit form of T} 1(x, s) is not required at all, see Eq. (3.13). Second, the kernel
Ti(x, s) is optimal to the order c¢? if its leading coefficient T}(x,s) in the virial
expansion (3.5) is proportional to the single-sphere disturbance field TM)(x, 5). In
this connection it is to be noted that the known Ritz type procedure of Torquato [16]
leads to the optimal bound to the order c?. (For the latter the kernel T (x, s) in (3.1)
should be chosen as T} (x,s) = AT(M(x, s) where A is an adjustable parameter.)
This fact holds also for dispersions of radial inhomogeneous spheres with random
radii, see [17]. To the order ¢? at p > 2, however, the cluster bounds of Torquato
are not optimal even for the monodisperse case, see [9, 12].
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Repeating the above arguments with respect to the dual principle (1.7) leads to
a fully similar conclusion for the optimal lower bound, namely, that to the order ¢2
the latter, is fully determined by the disturbance q(l)(x, s) to the heat flux Q in an
unbounded matrix, introduced by a single spherical inhomogeneity of conductivity
K¢s, located at the origin.

Let

I‘C*

=1+aicc+agec® +- - (3.14)

Km
be the virial expansion for the effective conductivity of the dispersion. Making use of
Egs. (3.10) and (3.11), the connection of the disturbances T(!)(x, s) and q(")(x, s),
and the relation h(x)VT()(x, s) = —A(s)h(x)G, we easily get as a consequence of
(3.7), (3.13) and their counterparts for the dual variational principle (1.7), that

a1e = 3N, N = N[P()]=(6(3) = / B(s)P(s) ds, (3.15)

so that the upper and lower bounds coincide to the order ¢, as it should have
‘been expected. After simple algebra, based on Egs. (3.8), (3.10), (3.11), (3.13) and
their counterparts for the lower bound, we get the following inequalities for the
c2-coefficient azy:

ah, < ase < @, (3.16a)
agx =3 {N2 + / Md-‘il/ﬂQ(sZ)M2(shs2)d§2} ) (3.16b)
I\fsl
0 0
[o o] ]‘,’ _ . o0 )
0y =3 {m + / —L s, / ﬁ“(sz)Mz(Sl,Sz)dsz} , (3.16¢)
0 ™ 0
where -
1 1 4
M2(6‘1,32) = —ﬂ 7-3 57'-.7:0(1';6‘1,52) dr (317)

0

is a statistical parameter for the dispersion; the function Fo(r; s, s2) is defined in
Eq. (3.4), r = |z|.

The formula (3.15) clearly indicates that the effective conductivity ™ depends
on the statistical distribution of conductivity of spheres even to the order ¢. (Let
us recall that the c-coefficient ai. is independent of the size distribution for a
dispersion of spheres of random radii, see [1, 17, 18].) Moreover, it is to be noted
that in general (B(3)) # B((5)) = B(1) = (K; — km)/(K; + 2km), so that the
dispersion is not equivalen! to a monodisperse dispersion of sphere (with the same
sphere fraction ¢) of the mean conductivity Ky even to the order ¢, see Eq. (3.15).
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3.2. ON THE BERAN’S BOUNDS FOR THE DISPERSION

According to (3.2), the Beran’s kernel Kg(x), see (1.8), is transformed into
the kernel
Te(x,s) = (Kfs - £m) G - Vo(x) (3.18)

at the transition from &’(x) to ¥’(x;s). Due to Eq. (3.11), the kernel K(x)
= AKp(x), A € R, will be optimal to the order ¢ and consequently to the or-
der ¢? also (see (3.12)), if and only if T()(x,s) = ATg(x,s) for a certain A € R
and for all s such that P(s) # 0. It is shown, however, that it is possible only if
P(s) = 6(s — s0), l.e., if the probability to find a sphere of conductivity different
of Kysg is equal to zero; in other words, for the usually considered dispersions of
spheres possessing one and the same conductivity. Hence, we can conclude that the
Beran’s bounds are not optimal even to the order ¢ for the considered dispersions.

The above arguments imply the following simple way for a generalization of
the Beran’s procedure. Namely, if we choose the kernel K;(x) in the form K (x)
= A(s)Kp(x), see (1.8), where now A(s) is an adjustable function, then the optimal
bounds to the order ¢? will be obtained.

Let us note that the Beran’s bounds are more complicated for the dispersion
under study. For example, the minimization of the functional (3.7) at T o(x, s) =
ATg(x, s) with respect to A € R leads to the following upper bound all‘n(B) on the
c-coefficient a;,:

- 2

K; ((Kfs— Klm)2>
< gt u 2 _1_ .
R L C ! km (Kf5— km)?(Ry5 + 26m))

(3.19)

the equality sign, a;, = a‘l‘R(B), being achieved at P(s) = (s — sg) only, i.e. if the
spheres have one and the same conductivity.

3.3. EXAMPLES

We shall illustrate the influence of the statistical distribution of conductivities
of spheres on the obtained ¢2-bounds (3.15), (3.16). First, we note that if we adopt
the assumption of statistical independence of the conductivities of each two spheres,
le.

Pg(sl,s')) = P(Sl)P(SQ), (320)

which sounds reasonable enough (at least in the dilute case under study), then the
form of the bounds (3.16) becomes more or less similar to that in the monodisperse
case. Namely, in the frame of this assumption

Ro(x12; 51,52) = P(s1)P(s2)R(x12), Fo(y;s1,82) = P(s1)P(s2)Fo(y),

where

R(xiz) = 1 - go(xiz), Foly) = j h(x)R(x - y) dx
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are the same functions that appeared in [8] when dealing with the monodisperse
case. Then the formulae (3.16) simplify:

b+ 90 (=)}

a3, =3 {Nz +(°(3) —= ]\f mz} ) (3.21)
where -
1 F r A2
0 2

is the same statistical parameter as in the monodisperse case, see [8]. In particular,
if the spheres have non-random conductivity x; = Ky, then

aIZE:3I32{1+Mm2}, agn:3ﬂ2{l+ﬂm2}, (3.23)
Ky Km

where [&] = &7 — km, B = B(1) = [£]/(ks + 2£m), see [8] again, which coincides
with the monodisperse result of Markov [8]. Under the assumption (3.20) we shall
consider the following two examples.

3.3.1. “Triangular” distribution. Since the conductivity k; = Ky5 > 0, it is
impossible to adopt the popular Gaussian distribution. That is way we consider
the “triangular” (Simpson) distribution of K in the interval [K, K3] as a certain
counterpart of the Gaussian one. Then

2Ii'f 1— II\’I + Ky — 2[i’f5|
P(S) — Ky — K, ’ Ky — 1{1

] at Kjyse [1{1,1{2],
(3.24)

0 otherwise,

where Ky = (K1 + K2)/2. After simple algebra, based of Egs. (3.15) and (3.24),
we get

ax=3N, N=1+ 72% [4(7 +2)In(2y + 4)
—(12-w)+4)In(y(2-w)+4)— (V2 +w) +4)In(v(2+w) +4), (3.25)

where v = K;/km and w = (K3 — K})/K; is, so to say, the “divergence” of
the non- dlmensmnal sphere conductivity. Since K3 > K; > 0, then v > 0 and
0<w<2

Similarly, with Eq. (3.20) taken into account, the bounds (3.16) read

b, = 3{N? +Y(7,w)A(y,w)ma}, a4, =3{N’+ (7 —1)A(y,w)mz}, (3.262)
where

T(yw)=1- :r% [(2-w)n@ - w) + 2 +w) @2 +w) —4in2],  (3.26))
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Aly,w)=1+ 7—;3}—2 2(2y + 7)In(2y + 4)
—(v2-w)+ Nn(y2 - w) +4) - (v(2+w) + ) In(v(2 + w) +4)|.  (3.26¢)

The quantities a;, a’l‘n(B), ab, and aj, as functions of the parameter w are
shown in Fig. 1 and 2 for ¥ = 5. The “well-stirred” case go(r) = 1 at r > 2a
is considered, when mqy = 15—8 - %ln? = 0.14045, see [8). In Fig. 1 the value of
approximation @y = 3(y — 1)/(y + 2) for a1, is also given, which corresponds to
the rough assumption that the dispersion is replaced with a monodisperse one of

alh‘,
1.7¢
1651 “11‘5(3)
N
1.6 ¢ d1x
w
0 0.5 1 1.5 2

Fig. 1. The variations of the c-coeflicient a; . of the effective conductivity of the dispersion with
“divergence” w in the “triangular” case (v = Ky/xm = 5); e1x — the exact value (3.15); o

1x(B)
— the Beran's upper bound, see (3.27); a1, — the “monodisperse” approximation

157

u
ay,

1.25

Fig. 2. The variations of the c2-bounds 1:1.12K and aj, of the effective conductivity of the

dispersion with “divergence” w in the “triangular” case (y = K /xm = 5)
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sphere’s conductivity that equals the mean value Ky (the “monodisperse” approx-
imation). It is seen that this approximation is non-realistic; it is only justified at
the limit case w — 0. The dependence on w of the upper Beran’s bound a‘l‘K(B),
which riow has the form

g L (w424 — 1))
1x(B) =7 7273w £ 8(y — 1)2(7 + 2’

(3.27)

is plotted as well in Fig. 1.

3.3.2. A Dispersion Containing Two Kinds of Spheres. Consider the case when
there exist only two kinds of spheres in the dispersion, having the conductivities
(1) .(2) . . _

K’y Ky and volume fractions c;, cg, respectively, ¢ = ¢; + ¢2. Then

P(s) = p16(s — s() + pab(s — 52),

where s(*) = K.Sj)/Kf, pi =cife,i=1,2 Ky = plfcs,l) + leC(QZ). In this case the
c-coefficient a;. becomes

a1, = 3(p1P1 + p202),

where @) @
. Kz —ICm ai——]_ .‘CI .
B = B(s) = =5 =—— a=-L, i=12
Ky + 265 a; + Km

Similarly, the bounds (3.16) on the c®-coefficient ay, read

2
- 5; PR P2 gz, )
agﬂ—3§(Pzﬂz+<1 - 02>ﬁ1m2>,

1

2
agn = 3Z(piﬁi + (p1a1 + prag — l)ﬁfmz)
i=1

Let us note that the dispersion under study represents a three-phase medium:
in the matrix two types of spherical particles of different conductivities are dis-
tributed. The generation of the above formulae for n-phase media of this kind is
straightforward.

4. VARIATIONAL DERIVATION OF ¢>-FORMULA FOR THE EFFECTIVE
CONDUCTIVITY OF THE DISPERSION

Consider now the series (2.14) as a class of trial fields:

TP = {B(x) | 6(x) = G-x+//T1(x —y,8)D(y;5)d®y ds

+////T2(x —YuLX- 3’2’51»52)D$)(y'1,y2;51,52)d3_y1 Ay, ds; dsz} L (4)
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where now the kernels T3 (x, s) and Ta(x, y, 51, 52) are adjustable. Using the for-
mulae for the moments of the fields Dfpl) and bez), see Egs. (2.15), the restriction

W [T1(:), Ta(, -)] of the functional W, over this class becomes
W), T N = Wal o = WL O+ W [10), To(-, ),
where
W), Tl )] = nzﬂm////.(JO(YZ..l)PZ(SI,52)[|v::T2(x_‘y1;x_y2;slns2)|Z
+ V.o (x — y1,x— y2, 51, 3_2) - VTa(x ~y2, X — y1, 52, -?1)] d®y, &%y, ds1 dsy

* anf///gc’(yz'l)&(s“ 52) [(Kfsl — £m)h(x — y1)VTi(X — ya2,52)
+(Kys2~km)h(x=y2)VT1(x~y1, 31)] VoTa(x—y1,X—y2, 51,52) d°y1 d®y dsi ds;

* nz////go(yz'l)Pz(sl"92)[(1{”1 — &m)h(x —y1) + (Ky52 = £m )R(x — ¥2)]
X [lvaZ(x -Y , X—-Y2, 51)52)12 + V:Tz(x — Y1, X—Y2, 51, 32)

VoTa(x — y2,x — y1, 53, 51)] d°y1 d®y2 dsi ds2 + o(n?).

The optimal kernels Ti(x,s) and Ta(x,y,s1, sz) are looked for again in the
virial form (3.5) for T} and

T2(x1 Y, s1, 32) = TZ(xx Y, 51, 82, TL)
= TZ,O(xl Y, s1, 32) + T2,l(x) Y, s, 32) n+---
for T5, which implies the respective virial expansion of the functional Wf‘z), namely,
W L) To(, )] = () G + WD [T ()] m

+ W [T1,0(), T1a (), Too(-, )] 0 + ofn?), (42)

where
WD (T10(), T1a(), Taal, )]

= WD T 0(), Tia()] + WS [T10(), Taol )]s (4.3)

here Wfll'l) and Wf(‘l'z) are the virial coefficients from Eq. (3.6) for which, let us

recall, Eqs. (3.11) and (3.12) hold. Hence, the minimization of the functional W/(f)
is reduced to that of the functional

Wl [T, ) = WD [TO), Tao(, )]
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The Euler-Lagrange equation for the latter is

>

1:,_'2(51:52){'9m (V21 + Vz,) - [90(21 —23)(Vz, + vz;)TZ,O(ZI:ZLSI) 52)

+(Vaz, +V3,) - [90(21 — 22) (K81 — km)h(21) VT (24, 59)
+ (K52 — ki ) h(22) VT (24, sl)]]

+ (\721 + Vz2) . [90(21 - Z2)[(Kf51 — Km)h(z1) + (Kjsg — fﬁm)h(ZQ)]

+(Vaz, + Vaz,) Too(21,22, 51, 52) ]} =0 (4.4)
with the notation
To,0(21,22, 51, s9) = Ty,0(21,22, 51, 52) + T2,0(22, 21, 52, 81).

Taking into account that (Vzl + sz)go(zl — z3) = 0, an appropriate change
of variables allows to recast Eq. (4.4) as

go(z)Pa(s1, 52){NmAzT2,o(X,x —,51,52)
+V,-[(Kfsl—fcm)h(x)VT(l)(x—z,sz)+(I\"fsz—rcm)h(x—z)VT(l)(x,51)] (4.5)
+Vz- [[(Kfsl - nm)h(x) + (.Ksz - .‘Cm)h(x - Z)] V:TZ'Q(X,X —Z,5, .5‘2)] } =0.
Similarly to the monodisperse case [5], the solution of Eq. (4.5) is

Tzlo(x,x —z,81,8) = TN(x,51;2,59) — T(li)(x, 51) = TM(x —z,55), (4.6)

where T(?)(x,s;;y,ss) is the disturbance to the temperature field G - x in an
unbounded matrix of conductivity £, generated by two spherical inhomogeneities:
one of conductivity Kys; located at the origin, and the other of conductivity Kso
located at the point y.

Making use of Eq. (4.4), the minimum value of the functional Wf” can be
recast now in the form in which the field 73 o(x,y, 51, §2) enters linearly:

min Wf(f)'f [T20(, )] = n2////go(z1 — 23)Py(s1, 52)

X [(Kys1 = &m)h(21) VTN (23, 53) + (K52 — £m)h(22) VT (21, 51) ]
(Va, + V2z,)T2 0(21, 22, 51, 52) d°z1 d°25 ds ds;

= ////P2(31’52)(Kf51 — £m)go(¥)R(x)VTM(x — y, 52)
VT (%, 513y, 52) — VT (x,51) = VIO (x - y, 5)] d*x dy ds1 dsy. (4.7)
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Taking into account Egs. (4.2), (4.3), (3.11), (3.12) and the formulae

/ h(x) d* / Go(y)VTO(x — v, 52) - VT (x, 51) Py = 0,

Pz(sl,sz)/h(x) dax/go(y)lVT(l)(x -y, 32)[2 d3y = 3ﬂ2(sé)M2(sl,32)Va2,
one finds for the c?-coefficient
S as, = 3N+ as,,

where
1 Kisy — km
a’zﬂ = V—f//Pz(Sl,SZ)%— dsldb‘z

m

X /h(x) dax/go(y)VIT(l)(x —y,82) - V. T)(x,5,:y,59) d%y. (4.8)

Let us recall that the latter result follows from the fact that the solution of the
random problem (1.2), asymptotically valid to the order c2, is one of the trial
fields from the class Tﬁz), see Sec. 2.2, over which the energy functional W, [6(-)]
is minimized. The formula (4.8) is the counterpart of the formula (3.9) in [14] in
the monodisperse case. Note that the formula (4.8) contains absolutely convergent
integrals only, see [10, 11] for details, so that no “renormalization” is needed, similar
to that used by Jeffrey [19].

Finally, it is to be noted that the coefficient T3 1(x, s) in the expansion (3.5)
cannot be found within the frame of the above performed variational n2-analysis.
For the full solution of the random problem (1.2) to the order ¢? in the explained
above sense it is necessary, however, to know the virial coeficients Ti ¢(x, s),
T1,1(x,s) and T3 0(x,y, 51, 52): for example, when evaluating the two-point corre-
lation function (#'(x)8’(y)), the convolution [T} o(x —y,s)T1,1(y,s)d®y appears,
see [6] for details. That is why, in order to obtain function 77,:(x,s) and as a
consequence the full statistical solution of problem (1.2) to the order c¢?, either the
higher degrees of n in the virial expansion of the functional W, should be consid-
ered or the procedure of Christov and Markov [5] should be employed instead. In
the latter, however, conditionally convergent integral in the formula for the effec-
tive conductivity will show up with a correct mode of integration extracted in the
course of the appropriate solution, see again [2, 6, 7] for details.
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