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RELATIVE SET GENERICITY

VERA BOUTCHKOVA

A set of natural numbers is generic relatively a set B if and only if it is the preimage
of some set A using a B-generic B-regular enumeration such that both A and its
complement are e-reducible to B. ‘

-
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0. INTRODUCTION

The genericity and set genericity, as defined by Copestake in [2], are widely
explored and have an important role in studying the structure of the enumeration
degrees.

In this paper we consider the genericity relative a set of natural numbers, which
is in fact a set n-genericity. We refer to some well-known facts in this area, most
of which can be found in {2] and [1] and can be used to prove similar properties for
the relative genericity.

Further we provide some results concerning regular enumerations of the set of
natural numbers that we use to prove a characterization theorem. Concerning the
regular enumerations, the used notions and results are taken mostly from Soskov’s
course on Recursion Theory and the author’s Master’s Thesis.

Basic notions and definitions

By w we denote the set of all natural numbers, 2w denoting the set of all even
and 2w + 1 — the set of all odd natural numbers; by [0..n — 1], where n € w, we
denote the set {z € w | z < n}. We use IV to denote an arbitrary denumerable set.
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We use bijective recursive coding of pairs of natural numbers (-, -), the notation
(T1,%2,...,2%) meaning (z1, (Z2,...,Zx)), and of finite sets, where D, denotes the
finite set with code v. By ¢, ¥, ... we denote partial functions from w into w
and let Gr(p) = {(z,y) | ¢(z) = y} be the graph of the function ¢. The notation
w(z)| means z € Dom(p), and ¢(z)t means z ¢ Dom(p). The notation C is
used to denote inclusion between sets, extension between functions, w-strings or
0-1-strings, considered as finite functions.

By C4 we denote the semicharacteristic function of a set A C w, and by x4 —
its characteristic function, where

0= {0 Hzel
XA =11, ifzdA.

If each of P and @ denotes some property of natural numbers, we use the
following abbreviation:

1yew [QW)&P(y)], if Iy(P(y)&Q(y)),
e [QWIPW)] = { pye. [QW)], if 3y (Q(y)) and ~(P(1)&Q(y)),
1, if Vy(=Q(v)),

where pye,[@(y)] is the least y having the property Q.

Let A, B and C... be sets of natural numbers. We use the following standard
definitions and notations:

A <. B if and only if A = ¥,(B) for some e-operator ¥,, defined as ¥,(B) =
{z | 3v((z,v) € W, & D, C B)}, where W, is the recursively enumerable set with
Godel code a. A =, B if and only if A <, B and B <. A. The enumeration degree
(e-degree) of the set A is the equivalence class Deg.(4) = {BCw | A =, B}. We
denote the e-degrees by a, b, ¢ . ..

We use the standard join operation of two sets A®B = {2z | z € A}U{2z+1 |
z € B} having the property that Deg.(A® B) is the least upper bound of Deg,(A)
and Deg.(B).

A set of natural numbers C is said to be total if its complement is e-reducible
to C, i.e. C <. C (which is equivalent to C =, Ct, where we define C* =C & C,
and thus for every set Ct =, Gr(xc)).

1. B-GENERIC SETS

Definition 1.1. w-string is a finite function from w into w with domain an
initial segment of w. @, denotes the nowhere defined function, considered as an
empty w-string; note that length of o, is lh(o,,) = px[-Iy(ow(z) = y)].

0-1-string (or 2-valued string) is an w-string c,, such that Rng(a,) C {0,1}.
For every 0-1-string a,, we define the set o} = {z | a, (z) ~ 0}.
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Definition 1.2. The set A is B-generic, for B C w, if and only if for every set
S, such that S is a set of 0-1-strings and S <. B,

Jo,, € xa(aw €SV, 2 au(Bs €5))

The set A is quasi-minimal over B if and only if

(1) B<. A, but A £, B; and

(2) if C is a total set such that C <. A4, then C <. B.

The set A is minimal-like over B if and only if

(1) B<. A, but A £, B; and

(2) for every partial function ¢ such that ¢ <. A, there exists a partial function
1 such that ¢ C ¢ and ¥ <. B.

In analogue to the definitions in [1], an e-degree containing such set is said to
be strongly minimal-like over B.

Here we mention some of the properties of the B-generic sets that we will
need later: A is B-generic if and only if A is B-generic; if A is B-generic, there is
no infinite e-reducible to B subset of A; every B-generic set A is infinite and not
e-reducible to B.

Concerning the existence of a B-generic set, a minimal-like set over any set B
and the existence of a quasi-minimal set over any set B, see [1, 2], it is proven that
for an arbitrary B-generic set A, the set A @& B is minimal-like and quasi-minimal
over B.

Theorem 1.3. Let By, By,..., By,... be a sequence of sets of natural numbers.
There exists a set of natural numbers A, which is minimal-like over this sequence,
i. e. such that the next two conditions hold:

1) Vn(B, <. A);

2) For every partial function @ such that ¢ <. A, there exist a partial function
¢ and a natural number n such that ¢ C Y and Y <, Bo @ - @ Bh.

o
Proof. In the following proof the notation Vz P(z) is equivalent to IyVz(z > y
= P(z)). We define a set A, satisfying two requirements:

(a) Vno‘;m((x,n) € A&z € By), and

(b) Ve(\Ile(A) is a function = (¥ (A) C Y&t <. Bo®. .. EBBgeH)), and

build finite sets 49 C ... C A, C ..., having the property:
Vs((z,m) €A \As&m<s=>z¢€ B) for all z and m.

Stage 0. Let 4p = @.
Stage 2e + 1. A is built, where s = 2e. We have two cases:
Case 1. There exists (z,n) such that z € B, and (z,n) € A;. Then we
can define A;4; = A, U {(z,n)} for the first such (z,n) = u(z,n).
Case 2. Otherwise, define A;1; = As.



Stage 2e + 2. Aj is built, where s = 2e + 1. Again we have two cases:
Case 1. There exists a finite set D, such that A; C D, and ¥.(D,) is not
a function (i. e. 3z3y3z such that y # 2 & (z,y) € V. (D,) & (z,2) € ¥.(D,)) and
such that YtVm((t,m) € D, \ A;&m < s =t € By,).
Define A;4 to be the least D, (i. e. having the least code v) with this property.
Case 2. Otherwise, define A,4; = A,.
End.

o0
Finally, define 4 = | | 4,.
5=0
For this set we can prove the properties (a) and (b), from which our theorem
follows.
The interesting direction of the proof of (a) is (=). We can prove that

VnVe ((x,n) € A = z € B,). Assume it is not true, i.e. there exist n and
infinitely many zo < ... < z; < ... such that (z;,n) € A and z; ¢ B,,. Therefore
Vz;3s; ((zi,n) € As,+1\ As;). But at every stage s the set A,y \ A, is finite, then
there exist infinitely many z,,,...,x,,,... from this sequence such that at stages
s < ...<8; <...wehave (r,,n) € Ay, 41\ As;. But z,, & By, and then the stages
s; + 1 must be even (i.e. s; + 1 = 2e; + 2), and we have Case 1, i.e. A;,41 = D,
where D, 2 A4, and VeVm((t,m) € D, \ A, &m < s; = t € By,). Therefore for
every s; > n if (z5,,n) € Ag4+1 \ As,, then z5, € By, which is a contradiction.

The proof of (b) consists in the following: supposing ¥.(A) to be a graph of
some function, at Stage 2e + 2, for s = 2e + 1 we have Case 2. Define the set
Gy = {(z,9) | 3-Dv(Dv 2 As & (z,y) € Ye(Dy) & V(t,m)({t,m) € Dy \ 4, &
m < s =t € By,))}. Therefore the following conditions hold:

[} Gd;SeBO@---@Bs;

o Gy =Gr(y), i e. Gy is a graph of some function 4, since assuming it is not
true, there exist  and y; # y2 such that (z,3:) € Gy and (z,y1) € Gy. Therefore
there exist finite sets D, and D,,, both extending A, such that (z,y;) € T.(D,,)
and V(t,m)((t,m) € Dy, \ As&m < s = t € By,). Then for D, = D,, UD,,,
¥, (Dy) is not a function and V(¢, m)({t,m) € D,\As &m < s = t€ B,,;), which is
a contradiction with Case 2;

o V. (A) C Gy, since assuming there is (z,y) € ¥.(A4) \ Gy, there ex-
ists Agpp 2 As such that (z,y) € ¥e(Assp) and 3(t,m) ((t,m) € Asqp \ As &
m < s&t & Byp). It follows that there is 4, such that 0 < 7 < p and (¢,m) €
Agstitr \ As+i, and therefore m < s + 4. Since Agyita \ As+i # 9, we have Case 1
at Stage s +1¢ = 2e; + 1 or Case 1 at Stage s + 14 = 2¢;. But in both cases it follows
that t € B,,, which is a contradiction.

This proves our proposition. 0

As a corollary of the above theorem we obtain the existence of strongly mini-
mal-like e-degree over an infinite ascending sequence of e-degrees.
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2. B-GENERIC REGULAR ENUMERATIONS

In this section we illustrate briefly some results obtained using the relative
generic regular enumerations and many of the proofs will be only sketched.

Definition 2.1. Let B C w be a non-empty set of natural numbers.

1) The total and surjective function f : w—w is called B-regular w-enumeration
if f(2w) = B, where f(2w) = {f(2z) | z € w}.

2) An w-string 7, is B-regular if 7,(2w) C B, where 7, (2w)={y | 3z (1. (2z) =
y)}-

3) The B-regular w-enumeration f is called B-generic if for every e-reducible
to B set of w-strings F' the following holds:

Jo, C f(Uw € FVV1, Dou(r, &’F))

For every non-empty set B one can iteratively build a B-generic B-regular
enumeration f at stages, using w-strings to satisfy the requirements in the definition
of f.

It is true that f £, B for every B-generic B-regular enumeration f. This
can be proved assuming f <. B and defining the e-reducible to B set of w-strings
S ={r, | 7(2w) CB& 7, € f}, that will lead to the contradiction.

Proposition 2.2. For every B-generic B-reqular enumeration f, for every
set R such that R<. B, R<. B, RNB # @ and RN B # @, the set f~1(R) is
B-generic.

Proof. Since f~'(R) = {z | f(z) € R}, we have that xs-1(g) = xrof. Assume
f~Y(R) is not B-generic, i. e. there is an e-reducible to B set of w-strings such that

Vo, (aw - Xf-1(R) = Qu g F&3B,(By 2 au & B € F)) (1)

Define S = {0y, | Ja (o, € F& xr o0, = o)}, where xgr oo, = o, if and
only if (Ih(ow) = th(0,) &Vz < lh(aw) (0w () = 0 & o,(z) € R)), therefore S is a
set of B-regular w-strings and S <. B. But f is a B-generic B-regular enumeration,
so there is o, C f such that either o, € S or V7, D 0, (7, € S).

Assuming o, € S, there is o, € F such that yg oo, = ay, but g, C f and
then xgr o f 2 au, i. e. &y € Xf-1(r), Which is a contradiction with (1). Therefore
for that o, the following holds: ,

V1, 2 o'w('ru ¢ S) (2)

Define o, = xR © 0. Since o, C f, then o, C xr o f = Xy-1(r), and from
(1) it follows that there exists 8, such that 8, 2 a, and B, € F. Therefore
B. D xXroo, = a, and lh(B,) > lh(a,). If we fix two elements of B—a € RN B
and b € RN B, we can define an w-string 7, such that 7, 2 g, lh(r,) = lh(B.)
and Vz(lh(o,) < z < Ih(1,) = (Bu(z) =0 7,(2) € R)),i.e. Bu=XROTw 2
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XROO, = 0. Since f§, € F and xgot, = B, then 7, € S, which is a contradiction
with (b). Therefore f~!(R) is not B-generic set. a

The next corollary follows directly from Proposition 2.2 and the properties of
relative generic sets in Section 1.

Corollary 2.3. For every B-generic B-regular enumeration f, for every set
R such that R<. B, R<. B, RNB # @ and RN B # @, the set f"'(R) ® B is
quasi-minimal over B.

Lemma 2.4. Let A be B-generic. Let R C w such that R <. B, R <. B,
RNB # @ and RN B # @. Let 6, be an w-string, having the properties (1) and
(2). Then:

(1) 4., is B-regular;

(2) Vz < lh(b,) (x € A é,(z) € R).

For every S such that S is an e-reducible to B set of w-strings, there exists an
w-string o, having the properties (a)—(d):

(a) 0w 2 du;

(b) 0., is B-regular;

(c) Vz < lh(oy,) (z € A & 0,(z) € R);

(d) o, €S V V1, (1, Do, =7, ¢5).

Proof. Let us denote by a,, ~g o, the property
Vz € Dom(o,){aw(z) =0 < o.,(z) € R),

where a,, is a 0-1-string, o, is an w-string and R C w.

Define the set P = {a,, | 3oy, (aw €S&o, 26, &0,(2w) C B & lha,) =
Ih(oy) & o ~n aw)} that is e-reducible to B. Since A is B-generic, we have two
possibilities:

Case 1. Ja, C x4 (o, € P). In this case there exists o, — a B-regular
extension of &, in S with the same length as a,, such that a, ~g o,. But
a, C xa, then

Vz < lh(o,)(z € A © 0,(z) € R),
i.e. o, has the properties (a)—(d).
Case 2. da, C xoVBs 2 a, (B, € P). In this case

Jaw C xa(th(dy) < th(aw) & VB, 2 aw(B. € S)).

Fix two elements: a in RNB # @ and bin RN B # @. Now we can define an
w-string o, such that o, D 4, and lh{s,) = lh(a,) and for the arguments =z,
where [h(d,) < z < lh(a,), we have 0,(z) ~ a if o,(z) = 0; and o, (z) ~ b if
a,(z) = 1. Since ¢, is B-regular, then o, is B-regular, too. And from (2) and
o, C xa follows that Vz < lh(o,) (z € A & 0,(z) € R). So, 0, has the properties
(a)—(c). It remains to verify (d).

10




First, notice that oy, ~g 0,,. Assume that there exists 7, such that 7, D o, 2
0, and 7, € S (then 7, is B-regular). Therefore there exists a 0-1-string 3, such
that B8, 2 a, and lh(B,) = lh(7,), and for the arguments (h(ay,) < T < lh(7,)
we have f,(z) ~ 0 if 7,(z) € R, and B,(z) ~ 1if 7,(z) € R. Since a,, ~gr o,
for this g, it follows that Vz < lh(B,) (Bu(z) = 0 & 7,(z) € R),i.e. B, ~g Tu,
and therefore 3, € P, which is a contradiction with Case 2. Then the property (d)
holds.

In both cases we have found an w-string satisfying (a)-(d). a

Proposition 2.5. Let A be B-generic and R be such that RNB # &, RNB #
@, R<. B and R <. B. There ezxists a B-generic B-regular enumeration f such
that A = f~Y(R).

Proof. Since f~Y(R) = {z | f(z) € R}, A = f~!(R) is equivalent to Vz(z €
A< f(z) € R).

We build a sequence of w-strings ¢ C o} C...0% C ... such that each o¢ has
the properties (1) and (2):

(1) 63 is B-regular, i. e. 0% (2w) C B;

(2) Vz < lh(c?) (z € A & 0l(z) € R).

If (1) holds for all o2, then f(2w)C B. If (2) holds for each ¢¢, then from (3)
it follows that A = f~!(R).

At Stage (2e + 1) we insure f to be total, surjective and f(2w) C B, i.e.

(3) Vg=2e+1 (Ih(c%™) > lh(a2));

(4) Vz € w g =2e +1 (z € Rng(ad));

(5) Vz € B3g=2e+1 (z € 0% (2w)).

At Stage (2e + 2) we insure f to be B-generic, i. e.

(6) Vg=2e+2 ( if U.(B) is a set of B-regular w-strings, then
(08 € We(B) V7, D 0l (r ¢ Te(B))) ).

Stage 0. Define 02 = @,,.

Stage 2e + 1. At this stage ¢ is built with g = 2e.

Let zo, 1, Z2 and z3 be the first numbers, greater or equal to lh(c?), that
belong to 2w N A, (2w + 1) N A4, 20N 4 and (2w + 1) N 4, respectively. Such z;
exist, because assuming, for example, Vz (z > lh(c]) & = € 2w = = € A), the set
Co = {z | z > lh(0) & z € 2w} is infinite and recursively enumerable and Cy C A4,
which is a contradiction with the properties of the B-generic sets.

Let m = max{zo, 1, %2, 73} Define 04! such that ¢%*! D 04 and lh(cst!) =
m+ 1> lh(c?), and for the arguments lh(cl) < £ < m define as follows:

11



vyly€E RN Blly¢ Rng(od)], z€2w&z€ A,
pyly€ RN Blly¢ Rng(0l)], ze2w&kazgA,
yly € Ry ¢ Rng(a?)], s & TEA,
pyly € R)ly ¢ Rng(a?)], Tfwl& g A
Stage 2e + 2. At this stage ¢ is built with g = 2e + 2.

Define G = {0, | 0,(2w) C B & Yz < lh(0,) (z € A & 0,(z) € R)}, i.e.
G = {oy | for o, (1) and (2) hold true}. We have two possibilities:

Case 1. 3o, D ot (aw € G & (0, € T(B)VVr, 2 ou(r, ¢ U.(B) ))).
Define g%*! to be the least such o,,.
Case 2. Yo, D o (Uw €G = (0, € Ue(B) & 371, Do, (1, € \Ile(B))))

+1
Define %%+ = 0.
End.

oitl(z) ~

" oo

Define f = U al.

g=0

Using an induction on ¢, one can prove that for each ¢ the conditions (1) and
(2) hold. At Stage 2e + 1 we satisfy the requirements (3)—(5). It follows that f is
a B-regular enumeration and A = f~1(R).

From (1) and (2) for o, it follows that for every e € w, if ¥.(B) is a set of
B-regular w-strings, then there exists o,,, having the properties (a)—(d) of Lemma
24,1e o, 2 0l, 0, is B-regular, Vx < lh(o,) (z € A & o,(z) € R) and
(0w € e(B)VV7, (T 2 04 = 7, & ¥e(B))). This means that if ¥.(B) is a set
of B-regular w-strings, at Stage 2e + 1, we never have Case 2, i. e. the requirement
(6) is satisfied.

Therefore our f is a B-generic B-regular enumeration such that A = f~1(R).

d

Theorem 2.6. Let B be a non-empty set of natural numbers. Any set A Cw is
B-generic if and only if there exist a set R and a B-generic B-regular enumeration
f such that R<., B and R<. B, and A= f~1(R).

Proof. (<) The Proposition 2.2.

(=) If A is B-generic and there exist at least two different elements in B (oth-
erwise B is recursively enumerable and therefore e-equivalent to a set containing at
least two different elements) a # b. Then for R = {a} the conditions in Proposition
2.5 hold and therefore there exists a B-generic B-regular enumeration f such that
A = f7Y(R), and for the existence of B-generic B-regular enumeration we need
only B # @. O
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Let a1, ..., ar be positive integers and m = Z(a,- —1)+1. For a graph G the symbol
i=1
G — (a1,...,a,) means that in every r-colouring of the vertices of G there exists a
monochromatic a;-clique of colour ¢, for some i, 1 < 7 < r. In this paper we consider
the graphs G — (a1, ...,ar) (vertex Folkman graphs) with cI(G) < m — 1.
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1. NOTATIONS

We consider only finite, non-oriented graphs, without loops and multiple edges.
The vertex set and the edge set of a graph G will be denoted by V(G) and E(G),
respectively. We say that G is an n-vertex graph, when |V(G)| = n. For v € V(G)
we denote by Ad(v) the set of all vertices adjacent to v. We call a p-clique of G
a set of p vertices, each two of which are adjacent. The biggest natural number p
such that the graph G contains a p-clique is denoted by cl(G) (the clique number
of G). A set of vertices in a graph G is said to be independent if no two of them are
adjacent. The cardinality of any largest independent set of vertices in G is written
as a(G) (the independence number of G).

If W C V(@), then: G[W] is the subgraph induced by W and G — W is the
subgraph induced by V(G) \ W.

In this paper we shall use also the following notations:

x(G) — the chromatic number of G;
7(G) — the maximum number of independent edges in G
(the matching number of G);
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G — the complement of graph G;

K,, — the complete graph of n vertices;

P, — the path of n vertices;

Cn — the simple cycle of n vertices.

By C,, = v1,...,v, we denote that 7

V(Cn) = {v1,...,vn} and E(Cp) ={[vi,vis1], i=1,...,n =1, [v1,vn]}.

Let G; and G be two graphs without common vertices. We denote by G, + G
the graph G for which V(G) = V(G1) U V(G3) and E(G) = E(G1) U E(G2) U E',
where E' = {[v1,v2], v1 € V(G1), v2 € v(G2)}

2. THE VERTEX FOLKMAN GRAPHS

Definition. Let G be a graph, a4,...,a,, r > 2, be positive integers and
VIG)=VU...uV,, V,nV;=@, i#j,

be an r-colouring of the vertices of G. This r-coloring is said to be (ay, ..., a,)-free
ifforall¢ € {1,...,r} the set V; contains no a;-clique. The symbol G - (a4, ...,a,)
means that every r-coloring of V(G) is not (a4, ...,a,)-free.

It is obvious that:
T
Proposition 1. If m= ) (a; — 1) + 1, then Kp, = (a1,...,a,).
r=1
Proposition 2. For any r > 2
G—1(2,...,2) & x(G)>r+1.
—
r

Proposition 3. Let G — (a1,...,a,) and {b1,...,b:} C {a1,...,a,}. Then
G—‘)(bl,...,bt).

Proposition 4. Let A C V(G) be an independent set of G and G; = G — A.
Let also G = (a1,...,a,), where a; > 2 for some i € {1,...,r}. Then G; —
(al,...,ai—- 1,...0,.,.).

Proof. Assume the opposite and let ViU.. .UV, bean (ay,...,a;~1,...,a,)-free
r-colouring of V(G1). Then V1 U.. . U(V;UA)U...UV, isan (ay,...,a,,...,a.)-free
r-colouring of V(G), which is a contradiction.

Proposition 5. For any permutation ¢ of the symmetric group S, we have

G—)(al,...,ar) — G—)(a‘p(l),...,a(p(r)).

Let ai1,...,a,, 7 > 2, be positive integers. Then we put
T
m:Z(ai~1)+1 and @ = max{ai,...,ar}. (1)
i=1
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We put also
H(ay,...,a,;9) ={G:G = (a1,...,a,) and cl(G) < q}
Flai,...,ar;q) = min{|V(G)| : G € H(ay,...,ar;q)}
It is clear that if cl(G) < a, then there exists an (ay,...,a,)-free r-colouring

of V(G). Folkman has proved in [3] that if ¢ > a + 1, then H(ay,...,a,;q) # @.
The graphs of H{a1,...,ar;¢), ¢ > a+1, will be called the vertex Folkman graphs.

The numbers F(aa,...,a,;q) are called vertex Folkman numbers.
It is clear that Ky,,_; has an (ai,...,a,)-free r-colouring of V(K,—1). It is
clear also that from x(G) < m — 1 it follows that G has an (a4, ..., a,)-free vertex

r-colouring. Therefore we have the following:

Proposition 6. If G = (ai,...,a,), then x(G) > m.

Since K, — (a1,...,a,) and K1 4 (a1,...,ar), if ¢ > m + 1, we have

F(ai,...,0r;9) =m.
For the numbers F(ay,...,a,;m) the following facts are known:

Theorem A ([6]). Let ay, az, ..., ar, 7 > 2, be positive integers and m and
a satisfy (1). If m > a+1, then F(ai,...,a,;m) =m +a.

Theorem B ([7])). Let a1, a3, ..., a,, 7 > 2, be positive integers and m
and a satisfy (1). If m > a+1, G € H(ay,...,ar;m) and [V(G)| = m + a, then

G = Km—a—l + C2a+1-

In the present paper we consider the vertex Folkman numbers F(ay, ..., a,;m—
1),m>a+2.

From Proposition 5 follows that F'(ay,...,a,;q) is a symmetric function and
thus we may assume that a; § a2 < -+ < a,. Note that if a; = 1, then
F(ai,---,a.;q) = F(aa,...,ar;q). Hence we may assume also a; > 2,i=1,...,r.

Theorem A yields F(2,2;3) = 5.

In the special case @y = --- = a, = 2, r > 3, we have:

Theorem C. For any r > 3 it is true that

11, r=3orr =4
F(2,...,2,r)_{r+5’ r> 5

r

Mycielski, [8], presented an 11-vertex graph G € H(2,2,2;3), proving that
F(2,2,2;3) < 11. Chvatal, [2], show that Mycielski’s graph is the unique 11-
vertex graph in the class H(2,2,2;3) and hence F'(2,2,2;3) = 11. The inequality
F(2,2,2,2;4) > 11 is proved in [11] and the inequality F(2,2,2,2,;4) < 11 is
proved in [10] and [15] (see also [4] and [12]). The equality F(2,...,2;7) =7+ 5,

T > 5, is proved in [10], [15] and later in [7]. If r > 5, then K,_5 + Cs5 + Cs is the
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unique (7 + 5)-vertex graph in H(2,...,2;7), [10]. The class H(2,2,2,2;4) contains
S—— .

T
56 11-vertex graphs, [4]. In [4] it is proved also that F'(2,2,2,2;3) = 22. This is
the unique known vertex Folkman number F(ay,...,a,;q) for which ¢ <m — 2.

3. A LOWER BOUND ON THE VERTEX FOLKMAN NUMBERS
F(ay,...,ap;m—1)

Theorem 1. Let a1, ..., a, be positive integers. Let a and m satisfy (1) and
m > a+2. Then
F(ai,...,apym—1)>2m+a+2.

Proof. According to Proposition 5 we may assume thata; < as < --- < ar = a.
Let G € H(as,...,ar;m—1). Let also A be an independent set of G, |A| = a(G) and
G, = C — A. It follows from m > a + 2 that a,—; > 2. According to Proposition 4,
G: € H(ai,...,a,—1—1,a,;m—1). According to Theorem A, [V(G1)] > m+a-1,
ie. [V(G)| > m+a—1+a(G). Since a(G) > 2, it follows that [V(G)| 2 m+a+1.
We prove that |V (G)] # m+a+1. Assume the opposite. Then [V(G1)| =m+a—1
and a(G) = 2. According to Theorem B, G1 = Kpm—qa—2 +Caaq1. Let A = {u1,us},
V(Km__a_Q) = {21, ‘e ,zm_a_g} and Cga_H = V1,V2,...,V2a+41-

Case 1. Ad(u;) 2 V(Km—a—2), i = 1,2. In this case x(G) = x(G1) = m — 1,
which contradicts Proposition 6.

Case 2. Ad(u;) 2 V(Km-a—2) and Ad(ug) D V(Km-a—2). Let u1 and 2 be
not adjacent. It follows from cl(G) < m — 2 that Ad(uz2) 2 V(Caqa41)- Hence we
may assume that us and vy are not adjacent. The equality

V(G) = {z1,u1} U {2} U...U{zm—a—2} U {ug,vi} U{va,v3}U... U {von, Vant1}
implies x(G) < m — 1, which contradicts Proposition 6.
Case 3. Ad(u;) 2 V(Km-o—-2), i = 1,2. We put
M={vy—1:i=1,...,p—1} C V(Caat1)-
It is clear that M is an (@ — 1)-clique. We prove that
M ¢ Ad(w;), i=1,2. (2)
Assume the opposite and let M C Ad(u1). From c(G) £ m —2, {u1,v24-1,v24} I8

an independent set, which contradicts a(G) = 2.

We put
V' = V(Km-a—2) U {V2a+1,V2a,V2a—1,V2a—2}, G' = G[V'],
V! =V(Caat1) ~ {V2a+1, V20, V2a—1,V2a—2}, Ve =V, U{ur, w2}
Obviously, x(G') =m —a = Ti:ll(ai —1). This equality implies that there exists

an (ay,...,a,—1)-free (r — 1)-colouring V1 U... U Vr of V(G"). Since M is the
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unique (a — 1)-clique in V, from (2) follows that V. contains no a-cliques. Hence
Viu...UV:isan (a,...,a,)-free r-colouring of V(G), which is a contradiction.

Corollary. F(4,4;6) > 13.

In [13] it is proved that F(4,4;6) < 14, but the exact value of F(4,4;6) is
unknown.

4. ON THE NUMBERS F(3,p;p+ 1) AND F(2,2,p;p+ 1)
Lemma 1. Let V! C V(Capy1), |V =m and G = Cop1 [V']. If m < 2p+1,
m
then cl(G) > [—2—-]

Proof. It follows from m < 2p+ 1 that G is a subgraph of the graph P, (the
path of 2p vertices). Hence x(G) < 2. Let V(G) = V4 U V;, where V; and V; are

independent sets of G. Then a(G) > max{{Vi|,|V2|}. Hence a(G) > l_%], ie.

cA(G) > [ %]

Let 02p+1 = VU, U2,...,V2p41, P 2> 3, and My = V(02p+1) - {Ul,vzp_l,’vzp_g}.
The map o defined by o(v;) = viy1, i = 1,...,2p, and o(vapt1) = v1 is obviously
an automorphism of Capy1. We put M; = o~ 1(M;),5=1,...,2p+ 1. We denote
by I'p the extension of 52,,4_1 by adding the new vertices u;, ..., usp41, €ach two

of which are not adjacent and such that Ad(u;) = M;,i=1,...,2p+1. The graph
I'; is given on Fig. 1. This graph is published in [9].

Theorem 2. For any p > 3 we have ', € H(3,p;p + 1).

PT‘OOf. Since 62p+1[Mi] = Fz + ﬁ2p_4, CI(62p+1[Mi]) = p - 1. Hence
cd(Tp) =p. _

Let V1 U V3 be the 2-colouring of V(I'y). We put V; = V(Capt1)NV;, G =
Copt1[V{], i = 1,2. Assume that cl(G1) < 3 and cl(G2) < p. Lemma 1 and
cl(G1) < 3 imply |V{| < 4. Lemma 1 and cl(G2) < p yield |Vy| < 2p — 2, i.e.
Vi1 > 3. So, [V{|=3or |V]| =4.

Case 1. |V{| = 3. Since cl(G1) < 3, V{ contains two non adjacent vertices.
Hence we may assume that v;,v; € V{. We put w = V{ —{v1,v2} and Q = {wag; :
k=1,...,p}. Since Q is a p-clique and cl(Gs) < p, we have w € Q.

Subcase la. w € Q — {vzp—1,Vzp41}. If up € V4, then {uy,v1,w} is a 3-clique
in Vi. Let up € V5. We put Q' = {vor : k =2,...,p—1}. It is clear that Q' is a
(p—2)-clique. Since @' C Ad(us) and vapt1 € Ad(uz2), Q' U{vapy1,us)} is a p-clique
in Vg.

Subcase 1b. w = vop_1. If ugp € VA, then {v1,uzp,v2p—1} is a 3-clique in V3.
Let ug, € Vo. We put Q" = Q — {v2p—1,v2,—3}. Since Q" U {vap—2} C Ad(usp),
Q" U {vzp—2,usp} is a p-clique in V5.
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Fig. 1. Graph I'3

Subcase lc. w = vgps1. This subcase is equivalent to w = vz in subcase 1a.

Case 2. |V{| = 4. From cl(G1) < 3 and o(G;) = 2 it follows that E(G;)
contains two edges e;, ez without common vertex. Hence, we may assume that
e1 = {v1,v2} and ez = {v;,vi41} for some i € {3,...,2p}.

Subcase 2a. ©+ = 2k,2 <k <p. Let ug € Vi. If k = 2, then {ug,v2,v5} is a
3-clique in V;. If 3 < k < p, then {u4,ver, v} is a 3-clique in V5. Let uq € V5.
Weput Q1 = {vgqr:l=1,...,k—1}and Q2 = {vy: I =k+1,...,p}, k < p.
If Kk = p, then Q2 = @. It is clear that Q = Q1UQ; is a (p — 1)-clique. Since
Q C Ad(ug), QU {u4} is a p-clique in V5.

Subcase 2b. i =2k~1,2 < k <p. Let m = 2p—2k+3. Then 6™ (vog—1) = v1,
a™(var) = v2, 0™ (V1) = Um+1, 0™ (V2) = U2 (the map o is defined above). Since
m is an odd number, the subcase 2b is equivalent to the subcase 2a.

Theorem 3. If p > 3, then
2p+4<F3,p;p+1)<4p+2. (3)

Proof. From Theorem 2, F(3,p;p+ 1) < |V(T'p)| = 4p+ 2. The lower bound
in (3) has been proved in Theorem 1.

The inequality F(3,3;4) < 14 is proved in [9]. The work [16] provides a
computer proof of the inequality F(3,3;4) > 14 and thus F(3,3;4) = 14. In [13] it
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is proved that F(3,4;5) = 13. The exact value of F(3,p;p+1), p > 5, is unknown.

Theorem 4. If p > 3, then
2p+4< F(2,2,p;p+1) <4dp+2. (4)

Proof. The lower bound in (4) has been proved in Theorem 1. Since I'; — (3, p)
implies I'p — (2,2,p), we have F(2,2,p;p+ 1) < 4p+2.

In [14] it is proved that F'(2,2,4;5) = 13. From Theorem 3, 10 < F(2,2,3;4) <
14. The exact value of F(2,2,3;4) is unknown.

5. ON THE NUMBERS F(2,...,2,p;p+7 — 1)
Nt s’

r

We put
F(2,...,2,p;p+71—1) = F.(2,p),
N —r’

H(2,....,2,p;p+7r—1)=H.(2,p).
e e’

T

Theorem 5. Let G € H(2,2,p;p + 1) = Ho(2,p). Then for any r > 2,
Kr—2 + Ge Hr(2’p)

Proof. Tt follows from cl(G) < p + 1 that cl(K,-2 + G) < p+r — 1. We prove
that

Keeg+G—>(2,...,2,p) (5)
——

T
by induction on r. The base r = 2 is clear, since G € Ha(2,p). Assume that r >3
and

Ko s+G—(2,...,2,p). (6)
——

r—1

Let Vi U...UV,41 be an (r + 1)-colouring of V(K,_2 + G). Let w € V(K,_2) and
K, 2+ G={w}+ (K-35 +G). ¥V;nV(K,_3+G) = & for some i, then from
(6) it follows that V4 U...U Vy4; is not (2,...,2,p)-free. Let

VinV(K,—3+G)#o, i=1,...,7r+1 )
Assume that V;, 4 = 1,...,r, are independent sets. From (7), w ¢ V;, ¢ =1,...,7.
Hence w € Vyy1. Let V)1 = Vg1 \ {w}. Then ViU...UV,_1 U (V; UV/,) is an
r-colouring of V(K ,_3 + G). From (6), V; UV, contains a p-clique. Since V; is
an independent set, V,/, ; contains a (p — 1)-clique. Hence V,41 contains a p-clique.
Thus, (5) holds.

Theorem 6. For any p > 3 and r > 2, one has
2p+r+2< F.(2,p) <4p+r. (8)
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Proof. Theorem 2 yields I'p, € H(2,2,p;p+1). From Theorem 5 it follows that
Ky 2+ T, € Hy(2,p). Hence F;(2,p) < 4p + r. The lower bound in (8) follows
from Theorem 1.

Theorem 7. For any r > 2, one has

r+10 < Fp(2,4) <r + 11 9)

Proof. Consider the 13-vertex graph @ (the complementary graph Q is given
on Fig. 2). It is proved in [14] that @ € H(2,2,4;5). From Theorem 5, K,_2+ Q €
H,(2,4). Hence F.(2,4) <r+11. The lower bound in (9) follows from Theorem 1.

6. ON THE NUMBERS F(3,...,3,p;2r +p— 1)
N —

T

We put
F(3,...,3,p;2r+p— 1) = FT(37p)a
e —
T
H3,...,3,p;2r+p-1)=H,(3,p)
e e’

r

Theorem 8. Let G € H(3,p;p+ 1) = Hi(3,p). Then for any v > 1,
Kor—2 + G € H.(3,p).

Proof. From cl(G) < p+ 1 we have cl(Ky,_2 + G) < 2r + p — 1. We prove
K27'—2+G’-> (3a13)p) (10)
——

r

by induction on 7. The base r = 1 is clear, since G € H,(3,p). Assume that r > 2
and

Ko g+G— (3,...,3,p). (11)
——

r—1
Let V3 U...UV,4; be an (r + 1)-colouring of V(K2,_5 + G) and suppose that
each V;, i =1,...,r, contains no 3-cliques. (12)
Let Kor_o+G = K +(Kar—4+G), where V(K,) = {a,b}. HV,NV(K3,_4+G) = @
for some 4, then from (11) it follows that V3 U... U V.4, is not (3,...,3, p)-free.
Suppose that
VinV(Kyr—4+G)#£ @, i=1,...,r+1. (13)
Case 1. a,b € V; for some i € {1,...,r}. It follows from (13) that V; contains
a 3-clique, which contradicts (12).
Case 2. a € V;, be Vj, i #4,1,j €{1,...,r}. We may assume that a € 11,
beVy, Weput V) =V, —{a}, Vj = Vo — {b}. From (12), V{ and V; are
independent sets. Hence V] UV contains no 3-cliques. Consider an r-colouring
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(VfuVz)u VaU...UVeqq of V(Kar_g + G). It follows from (11) and (12) that
V,41 contains a p-clique.

Case 3. a € V;,i#r+1and b € V., ;. We may assume that a € V,. We put
v =Ve—a, V) 1 = Vep1 — {b}. From (12), V/ is an independent set. Consider an
r-colouring ViU. ..UV, U(VIUV] ) of V(K2,_4+G). By (11) and (12), VUV,
contains a p-clique. Since V] is independent, V;',; contains a (p — 1)-clique. Hence
V41 contains a p-clique.

Case 4. a,b € Voy1. We put V', ; = V.11 — {a,b}. Consider an r-colouring
Viu...U (Ve UV/4). From (11) and (12), V, UV, contains a p-clique. By (12),
V., contains a (p — 2)-clique. Hence V;.1; contains a p-clique. Thus, (10) holds.

Theorem 9. Let p > 3 andr > 1. Then

20+ 2r +2 < F.(3,p) <4p+2r. (14)

Proof. By Theorem 2 and Theorem 8, Ka,_2+1'p € H-(3,p). Hence F.(3,p) <
4p + 2r. The lower bound in (14) follows from Theorem 1.

Theorem 10. There holds

2r+1W0<F.(3,4)<2r+11, r>1 (15)

Proof. The lower bound in (15) follows from
Theorem 1. Consider the 13-vertex graph ¢ (see
Fig. 2). It is proved in [13] that Q € H;(3,4).
According to Theorem 8, Kor_2 + Q € H,(3,4).
Hence F;(3,4) < 2r + 11.

Theorem 11. Let r > 2. Then

F.(3,3) = F(3,...,3;2r +2) < 2r + 10.
——
r+1

Proof. We consider the graph @, which com- Fig. 2. Graph Q
plementary graph @ is given on Fig. 2. Obviously,

a(Q) = 2 and it is true that cl(Q) = 4, [18]. We prove K; + Q € H(3,3,3;6) =
H(3,3). From cl(Q) = 4 it follows that cl(K1 + Q) = 5. Let ViUV, U V3 be a
3-colouring of V(K; + Q) and V(K1) = {w}. We may assume w € V;. Assume
also that V; contains no 3-cliques. Then V{ = V; — {w} is an independent set of Q.
From o(Q) = 2 it follows |V/| < 2. Hence either |V2| > 6 or V3] > 6. Let V3| > 6
and G = Q[V4]. It is clear that o(G) = 2. From a(G) = 2 and |V2| > 6 it follows
cl(G) > 3, [18], i.e. V5 contains a 3-clique.

So, K1 +Q — (3,3,3) and cl(K; + Q) = 5. Hence K; + Q € H(3,3). By
induction on r it follows Kar_4 + (K3 + Q) € H,(3,3) (see the proof of Theorem
8). Hence F,(3,3) < 2r + 10.
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7. A NEW PROOF OF THEOREM B

B. Toft has conjectured that if G' is a (2p + 1)-vertex graph, a(G) = p and
a(G — {u,v}) = a(G) for all u,v € V(G), then G = Cypyy. This conjecture
is verified in [17] and [5] (see problem 8.26, p. 58). The proof in [5], actually,
establishes the following stronger statement:

Theorem D. Let G be a (2p + 1)-vertex graph, a(G) = p, a(G —v) = a(G)
for allv € V(G), and o(G — {u,v}) = a(G) for any pair u,v adjacent vertices.
Then G = Capy1.

Theorem D is proved also in {7]. In the proof of Theorem B we shall use the
following:

Lemma 2. Let the graph G be such that cl(G — v) = cl(G) for all v € V(G).

Then ©(G) > cl(G).

This lemma is proved in [17] (see also problem 8, p. 302, in [1}).

The proof of Theorem B. According to Proposition 5 we may assume that
ar £ --- < ar = a. We prove Theorem B by induction on m. By the inequality
m > a+ 1, the minimal admissible value of m is a + 1. The base of the induction
is then m = a+ 1. From m = a + 1 it follows that a; = -+ = a,_5 = 1,
ar-1 = 2, and cl(G) = a. According to Proposition 3, G ~+ (2,a). By G — (2,a),
c(G) = (G —v) Yv € V(G) and cl(G — {u,v}) = cl(G) for each pair u,v non
adjacent vertices, i.e. the graph G satisfies the conditions of Theorem D. Hence
C‘— = CZa+1, ie. G= 620,.{_1.

Let m > a + 2. Let L be a graph such that V(L) = V(G), E(L) 2 E(G) and
cl(L) =m — 1. It is clear that L — (a1,...,a,). We prove that cl(L — v) < cl(L)
for some vy € V(L). Assume the opposite. According to Lemma 2, we have
m(L) > m ~ 1. Hence

x(L)<m -1+ (V(L)]-2(m—-1)) =a+1.

From m > a + 2 it follows x(L) < m — 1. This contradicts Proposition 6.

So, Jup € V(L) such that cl(L—vp) < c{L) =m—-1. Bym>a+2, a,_; > 2.
According to Proposition 4, L — vg — (aj....,a,—1 — 1,a,;). Hence L — vy €
H{ay,...,ar—1 — 1,a,;m — 1). By the inductive hypothesis, L — vy = Kpi_qo +
Caq41- The vertex vg is adjacent to each vertex of V(Kpm—_q_3 + Caq41) (otherwise,
x(L) < m, which contradicts Proposition 6). Therefore, L = Kp,_q_1 + Ca41.
Since each proper subgraph of K,,_s_1 4 Cao41 has an (ay, ... , a,)-free r-colouring
of the vertices (see [7], Proposition 3), we have G = K,—a_1 + Caa41-

The proof of Theorem B is complete.
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In 1985 B. Moszkowski [7] introduced a logical system called Interval Temporal
Logic. Its semantics, proposed by B. Dutertre [2] in 1995, uses a kind of structures
called duration domains. The same kind of structures have been used later also
by D. Guelev for the semantics of other logical systems (cf., for example, [4, 5]).
The structures in question can be defined as triples (D, +,0), where D is a set, +
is a binary operation in D, 0 is an element of D and the following five axioms are
identically satisfied in D:

(D1) (z+y)+z=z+(y+2),
) z+0=0+4+2 =z,
3) z+z=y+z=>z=y, z+z=2z+y=>zr=Uy,
D4) z+y=0=2z=y=0,
) z(z+z=yVy+z=z), e(z+z=yVz+y=n1).
The aim of the present paper is to characterize the duration domains as the

positive cones of the right-ordered groups. This will be done by proving theorems
1 and 2 below.
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A right-ordered group (cf. [1, 6]) is a structure (G, +,0, —, >), where (G, +,0, —)
is a group (not necessarily abelian), +, 0, — being respectively the binary group
operation, the neutral element of the group and the unary operation of constructing
the inverse element, and > is a linear ordering in G such that for all z, y, z in G
the following implication holds:

r2y=>zc+z>2y+z

(as in [6]), we assume the orderings reflexive, although the orderings in [1] are
assumed to be irreflexive). The positive cone of such a structure is the set of all
elements z of G that satisfy the condition z > 0. If P is the positive cone of a
right-ordered group (G, +,0, —, >), then the following three conditions are satisfied
for all x and y in G:

(Pl)ze PA —z€P = z=0,

P2)zePAyeP =>ax+ye P,

(P3)z€ePvV —zcP.
Conversely, whenever (G, +,0,—) is a group and P is a subset of G with the prop-
erties (P1)—(P3), then a binary relation > in @ exists such that (G,+,0,—,>)is a
right-ordered group with positive cone P.

Theorem 1. Let (G,+,0,—,>) be a right-ordered group and P be its positive
cone. Let +p be the restriction of the operation + to P2. Then (P,+p,0) is a
duration domain.

Proof. The element 0 of G belongs to P by (P3), hence, taking into account also
(P2), we may consider the structure (P, +p,0). This structure obviously satisfies
the axioms (D1)-(D3), and (D4) follows immediately from the property (P1). To
verify (D5), suppose z and y are some elements of P. If we set uw = (—x) + y, then
the equalities z + u = y and y + (—u) = z hold, and, since some of the elements
u and —u belongs to P by (P3), this establishes the first statement of (D5). The
second one can be established in a similar way. O

Remark. Under the assumptions of the above theorem, if the considered
group is not abelian, then the operation +p is not commutative.! In fact, let = and
y be elements of G such that ¢ +y # y + z. By (P3) some of the elements z and
—2 belongs to P and also some of the elements y and —y belongs to P. Therefore
it is sufficient to establish the inequalities

T+ (-y) # (~y)+z, (—2)+y#y+(~-2), (-2)+(~y) # (-y) + (-2).

To prove the first one, we suppose the equality z + (-y) = (-y) + = and get
y+@+(~y)+y=y+((~y)+2)+y ie y+z=2z+y. In asimilar way we

1 Since there are non-abelian right-ordered groups (examples of such groups can be found,
for instance, in 1] and [3, ch. 2}), this implies the existence of a duration domain with non-

commutative addition operation.
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show the impossibility of the equality (—z) +y = y + (—z). Finally, if we suppose
that (—z) + (=) = (-y) + (~z), then we get —((-z) + (-y)) = —((—-y) + (-2)),
and this leads again to the contradictory equality y + z = = + y.

Theorem 2. Any duration domain can be obtained in the way from Theorem 1
at a convenient choice of some right-ordered group (G,+,0,—,>).

Proof. Let (D,+,0) be a duration domain. To each element s of D \ {0}
we make to correspond an object 3 not belonging to D in such a way that 5 # ¢
whenever s and t are distinct elements of D \ {0}. Then we set

G=DU{s|seD\{0}},

and we define the inverse element of any element of G by setting —0 = 0 and

f

—8=3, —s=3s§

for any s in D\ {0}. We extend the binary operation + from D to G by stipulating
the equalities

(z+8)+3=2, z+t+z=1 S+(s+2)=2z y+t+y=1% 5+i=1+s
for all 7,y,z in D and all s,¢ in D\ {0}.2 It follows immediately that
0+t=t+0=1% s+35=5+s=0
for all s,t in D\ {0}, hence
O4+u=u+0=u, u+(-u)=(-u)+u=0
for all w in G. If we denote the set D by P, then the properties (P1)-(P3) will
be obviously present. Therefore the proof will be completed if we show that the

operation + in G is associative. This reduces to showing that for all p,q,7 in D
the following seven-implications hold:

(Al) r#0 = (p+q)+7=p+ (¢ +7),

(A2) ¢#0 = (p+Q)+r=p+(@+1),

(A3) ¢#0AT#0 = (p+Q+T=p+ (+7),

(A4) p#0 = P+q +r=DP+(g+1),

(A5) p#OAT#0 => (P+q)+T=p+(¢+7),

(A6) p#O0Ng#0=> P+ +r=p+(T+7),

(A7) p#FO0Aq#OAT#0=> P+ +7=DP+ (@ +7).

Thus the remaining part of the proof decomposes into the verifications of (A1)~
(A7), where p, g, r are arbitrary elements of D.

% To show that the above definition is a legitimate one, we use all axioms (D1)-{D5); in
particular, the axiom (D4) is used for showing that it is not possible to have simultaneously two
equalities z+s = x, s = t+x or two equalities s = y+t, s+2z =y, where z,y,z € D, s,t € D\ {0},
and the axiom (D5) is used for showing that the extension is defined for any pair of elements
of G.
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Verification of (Al). Let r # 0. By axiom (D5), there is some element z of D
such that ¢ = z + 7 or r = z + ¢. We choose such a z and we could assume that
z # 0 in the second case, since if z = 0, then the second case is covered by the first
one. If ¢ = z +r, then

p+(@+7)=p+({(z+7r)+F)=p+2z (P+@+7=(p+2)+r)+T7=p+2
Consider now the case when r = z 4+ ¢q and 2 # 0. Then
p+{g+7F)=p+(@+z+q)=p+7

and it is natural to apply the axiom (D§) again for choosing an element 2’ of G
such that either p = 2z’ + z or z = 2’ + p, 2’ being distinct from 0 in the second
case. If p= 2’ + z, then

(P+a)+7=(Z+2+qQ+F=(E"+r)+7=2, p+@g+7) =" +2)+z2=2"
Otherwise, i.e. when 2 = 2’ + p and 2’ # 0, we have

(Pt +T=(@+g+2'+(p+q) =7, p+(q+F) =p+2+p=7"

Verification of (A2). Let ¢ # 0. By Axiom (D5), there is an element z of D
such that either p= 2+ q or ¢ = z + p, z being distinct from 0 in the second case.
Choosing such a z, we shall have

P+ +r=(+qd+D+r=2+7
in the first case and
(p+7)+r=(p+7Tp) +r=2+r

in the second one. By the same axiom, there is an element 2’ of D such that either
r=gq+2 org=r+2z', z being distinct from 0 in the second case. Choosing such
a z', we shall have

p+@+r)=p+(@+(@+2)=p+7
in the first case and
p+@+7)=p+(r+2 +r)=p+2
in the second one. The four combinations of cases below have to be considered.
Combination 1.1: p=z+¢, r = ¢+ 2. Then
(p+q) +r=z+q+7, p+(@+r)=2+q+2.

Combination 1.2: p=2z+¢q, g=r+2', 2/ #0. Then
p+@G@+r)=(z+7) +_z')+-z—’=z+r=(p+6)+r.

Combination 2.1: q=z2+p, 2z#0, r=q+ 2. Then
P+ +r=Z+(+(p+2) =p+2 =p+@+r)

30




Combination 2.2: q=z+p, 2#0, g=r+2, 2 #0. Then 2 +p=71+2'.
By axiom (D5), there is an element 2" of D such that either r = z+2" or 2z = r 42",
2" being distinct from 0 in the second case. In the first case we get

p=2"+2, PP +r=Z+(z+2") =" p+@+r)=("+2)+ =2"
In the second one we have

2 +p=2, P+D+r=r+"+r=2", p+@+r)=p+2 +tp=17".

Verification of (A3). Let ¢ # 0,7 # 0. Then p+(g+7) = p+7 + q. By Axiom
(D5), there is an element z of D such that either p=z2+qorg=2z+p, z bemg
distinct from 0 in the second case. In the first case we get

p+D+7=((z+9)+Q+T=2+7, p+@+F) =2+ (q+7+q) =2+T.

In the second one we have

Verification of (A4). Similar to the verification of (A1).

Verification of (A5). Let p# 0, r # 0. By Axiom (D5), there is an element 2
of D such that either ¢ = p+ z or p = g + 2, z being distinct from 0 in the second
case. Choosing such a z, we shall have

P+ +7=FP+@pP+2)+T=2+TF
in the first case and
P+O+T=(g+2z4+9Q+T7=Z+T=7+2

in the second one. By the same axiom, there is an element 2’ of D such that either
g=2'+rorr ==z 4q, 2 being distinct from 0 in the second case. Choosing such
a z', we shall have

P+g+7) =p+ (' +r)+7) =p+2
in the first case and
P+(@+7)=p+(@+7+9)=p+7=2+p
in the second one. The four combinations of cases below have to be considered.

Combination 1.1: g=p+2z, g=2'+r. Thenp+ 2z = 2’ +r. By Axiom
(D5), there is an element 2" of D such that either z = 2" +r or r = 2" + 2z, 2"
being distinct from 0 in the second case. In the first case we get

pt2"=2, B+ +T=("+r)+7=2", P+ (q+7)=p+(+2") ="
In the second one we have

p=2"+2", P+ +T=z+2"+2=2", p+(q+T)=2"+2"+2' =2".
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Combination 1.2: q=p+ 2z, r =2'+q, 2/ #0. Then
P+a)+7=2+{+p)+2=2Tp=F+(¢+7).
Combination 2.1: p=gq+2, 2#0, g=2'+r. Then
P+@+N) =2+ +2)+2' =7F2=F+q) +7.
Combination 2.2: p=g+2z, 2#0, r=2"+4¢q, 2/ #0. Then
P+9+T7=2"+q+z P+(g+F)=2"+q+2

Verification of (A6). Similar to the verification of (A3).

Verification of (A7). Let p#0,q#0, r #0. Then
P+9 +T=q+p+F=7r+q+p, P+ @+F)=p+7+qg=7+q+p0O

APPENDIX

The proof of Theorem 2 makes use of the existence of some set that has the
same cardinality as D \ {0} and does not meet 0. The existence of such a set
can be obtained as a particular case of the statement that for any sets A and B
there is a set having the same cardinality as A and not meeting B. This statement
follows immediately from certain facts of the cardinal arithmetic, but some of them
in the final analysis are based on the Axiom of Choice. Here is a direct proof of
the statement without using that axiom. Let

C = (A xP(B))NB,

where P(B) is the set of the subsets of B. Let f be the projection mapping of C
into P(B) defined by the equality

flz,Y) =Y.

Since C is a subset of B, the range of f is a proper subset of P(B) (as the well-
known diagonal argument shows, the set {z € C' | z ¢ f(z)} is an element of P(B)
not belonging to the range of f). If Yj is an element of P(B) \ range(f), then the
set A x {¥5} does not meet B, and clearly 4 x {}3} has the same cardinality as A.
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1. INTRODUCTION

Let N denote the class of Nevanlinna analytic functions

1

w=i@)= [ =3 % se0 )
J =

where p(t) is a probability measure on [0, 1], i.e. u(t) is a nondecreasing function
on [0,1] with (0) =0 and p(1) =1, and

1

an=/t""1dp(t), n=12 ..., a =1L (2)
0
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If we replace z by 1/z in (1), we obtain the class T of analytic functions
1

w1 (1) = [220 - e, cgll it ()
0

1-—1tz —~

with totally monotonic Taylor coefficients, which has been introduced by Hausdorff
[1]. According to the Thale theorem [2, pp. 234-235, Theorem 2.3] (see also Good-
man [3, pp. 183-184, Section 8]) the disk {z: |2 — (1/2)| > (1/2)} is the maximal
domain of univalence for the class N. Hence the half-plane {z : Rez < 1} is the
maximal domain of univalence for the class T. Wirths [4, p. 512, Corollary 2.3] has
found the Koebe domain of the class T with respect to the unit disk |2} < 1. In [5]
it is noted that the Koebe domains of the classes V and T with respect to the disks
|z] > 1 and |2| < 1 are one and the same, respectively. Therefore we need to study
only the class T in the unit disk |z| < 1. It follows from the Wirths result (see
also [5, p. 345, Corollary 2]) that the largest common region of convergence of all
Taylor series at the point w = 0 of the inverse functions z = ¥/(w) of the functions
(3) in |2| < 1 is the disk |w| < 1/2. Let

= 1
e=Yw) =Y baw", [wl<z, b=l 4)
n=1

be such series, where the coefficients b, are determined by the coefficients a,, in (2)
with the help of Theorem 3 below.

In this paper we derive variational methods which yield more precise informa-
tion in comparison with the Wirths result [4, p. 513, Theorem 2.3] for the extremal
functions of a given bounded real-valued continuous functional in the class T'. As
an application of these methods we find the minimum and the maximum of the co-
efficients b,, b3 and by and state two conjectures for the extrema of all coefficients
bp,n=2,3,4,...,in (4).

2. VARIATIONAL FORMULAS FOR THE CLASS T

The variational methods and results represented by Theorems 1 and 2 below
are new.

Theorem 1. Let ¢ with —1 < e < 1, € # 0, be an arbitrary number and let
the function ¢(z) belong to the class T. Then the varied function

1
_ zdu(t)
o0)= [ —S ) (5)
0 1+¢e— 2t
also belongs to the class T and it has the asymptotic representation
1
t(l—~t

0u(2) = p(2) — 2622 (_1(_—t—z))_2_ du(t) + O(?), |zl <1, (6)

0
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where O(€*) denotes a magnitude, the ratio of which to €2 is uniformly bounded for
, lying in an arbitrary closed set of the disk |z < 1.

Proof. The linear fractional function

(1—e)t
= — <t< -1
T4z o’ 0<t<1, <e<l, e#0, (7)

for fixed €, increases with ¢ from 0 to 1. This property of (7) permits us to substitute
(1- )t/(1% € — 2¢et) for t in (3) to obtain (5). The function (5) belongs to the
class T with the probability measure

(1+¢)r
= _ <r<1.
v(r) “(1-s+za ., 0<r<1

The difference between (5) and (3) is

F -1 du(t)
0a(z) — = —22 (8)
[

1—tz2)? 2t—1—tz

1—-1tz

/ (1-¢) — ~t
= -9 2 — v Z
ez / 1—tz225 ( ) dult), |z] <1,
0 v=0
since |2t — 1 —tz[ < [1 —tz] for 0 < ¢t <1 and [2[ < 1. Thus from (8) we obtain (6),
which completes the proof of Theorem 1.

Theorem 2. For given point z of the disk |z| < 1 and a gwen analytic function
®(uo,u1, ..., Un; 2), n > 0, on the set | {¢(2),¢'(2), ..., (2 ); 2}, the minimum
T

(mazimum) of the functional
Re® ((2),#'(2), .-, ¢ (2); 2) (9)

in the class T is attained only either in the subclass Ty C T of functions

(p(z):cz-i-(l—c)lzzETl, 0<e«l, (10)
or in the subclass To C T of functions
Ld Cr2
= T. 1
2 11—tz €5 ( 1)

k=1

with,

Y4
1<p<n+2, 0St <t <<t <1, 0<g <], > =1, (12)




where t1, ta, ..., tp are among the numbers 0 and 1, and the roots in the interval
0 <t <1 of the equation

Re{[ go (2)] 22(1 —tz)" (13)

Z 6@6[‘2 s1572(s — 1+ 2t2)(1 — tz)"‘s} 1- tz)"“} =0,

where we assume that at the extremum of the functional (9) the equation (13) is
not an identity for all ¢t in the interval 0 <t <1,

3lp(2)] = & (9(2), ¢ (2, 6™ () 2)
and the empty sum for n = 0 is zero by convention.

Proof. The extremal functions ¢(z) € T exist since the functional (9) is con-
tinuous and bounded on T and the class T is normal and compact in |z| < 1. If we

set
uy = 09 (2), w=¢P() (0<s<n), (14)

then the increments by the asymptotic formula (6) are
1
duy = Ul — g = —253!/t(1 _ YL ) du(t) +OE?) (0<s<n),  (15)
0

where

o= () [01) () +o()em e (3)3] o0

for 0 < s < n, and (T) =mform=1,2,... and (T) =0form =0, -1.
Further we introduce the abridged notations
® = ®(ug,u1,-- -, Un;2), P*=®(ug,ui,---,un;2), (17)

where u; and u? (0 < s < n) are given by (14). Then for sufficiently small le| we
have the Taylor series

—<1>+Z (Z—a—dus> ® (18)

v=1

for the functions (17). From (18) and (15)-(16) we obtain
98 |
* _ 1= . 2 .
o =& 2523 = / H1 — )1, (t, 2) du(t) + O(?) (19)
§= 0
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1t follows from (19) that
1

Re &* :Re<1>—26/t(1—t)Re [Zs!gcb
§=0

Usg
0

The extremality of the function ¢(z) in the class T and the arbitrariness of & imply
that the coefficient of € in (20) vanishes, i.e.

/l—t Re[Zs' tz)}d,u() 0. (21)

L(t, z)} du(t) + O(g?). (20)

If the equation

P(t)ERe[is!aaf (2, )] =0 (22)
5=0 8

is not an identity for all ¢ in the interval 0 < ¢ < 1, i.e. if the conditions for
the equation (13) hold, then the equation of the extremality (21) is fulfilled if and
only if the measure u(t) is a step function with points of discontinuity at 0, 1 and
the roots of the equation (22) in ¢ in the closed interval [0, 1}, i.e. the roots of the
equation (13) in ¢ € [0, 1], where the sum of the corresponding jumps equals to unit.
In fact, this is evident if u(t) is a corresponding step function. Conversely, it follows
from the Goluzin variational formula applied to the class T' (see, for example, (6,
p. 93, formula (19)]) that u(t) is a constant between any two adjacent roots of
the equation (22) for the extremal function o(z) (see the comments for formulas
(27)-(28) in [6, pp. 94-95]). Hence, the extremal functions ¢(z) belong to the
subclasses 7y C T and T C T of functions (10) and (11)—(12), respectively, where
the upper bound of the number p is determined in the following manner.

Let the real number ¢ be with a sufficiently small le|. If the extremal function
¢(z) € Ty and in (11)-(12) we substitute ¢; + ¢ and ck+1 — € for cx and cpyq,
respectively, then the varied function

puae) =pla) e |15 - | (23)

11—tz 1—tg412

also belongs to the subclass T,. If we set analogously
us = (2), wr=¢l(z) (0<s<n), (24)

then by formula (23) the increments are

o° z 0° z

du. =uv* -y =-¢|l—on - 7
s s s [8z31——tkz 8251 — try12

} (0 <s<n). (25)

For brevity, we again denote
D = D(ug, U1, .., Un; 2), O™ = P(ud*,ul”, ..., ur;2), (26)

where u,; and u}* (0 < s < n) are given by (24). Then the corresponding Taylor

series (18) for the functions (26) and (25) yield

o9 [68 z 0° z

s=06_us %l—tkz _%1—151‘;4_12

Re ¢** =Re<I>+5Re{ }} +O0(e?). (27)
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In addition, from the conditions for the equation (13) (or (22)) it follows that we
have the inequality

P = 2 g (p(e), (2] 9 (2)52) £ 0 (28)

at least for one s € {0,1,...,n}. Then the extremality of ¢(2) in (27), the arbi-
trariness of € and the inequality (28) imply the condition

= 9% [o° z 0° z
R — | =— _v —o
° { s=0 aus I:azs 1 - tkz 623 1~ tk-l-lz] } 0 (29)
The condition (29) shows that the function
NCT 2 L
)= A <t<
m)ﬂMMWhJJJJ’ (30)

has equal values at any two adjacent points of discontinuity ¢ and try; of the
measure u(t) for the subclass T3, i.e. Q(f) bas equal values at all the points of
discontinuity of the measure u(t) for the subclass T>. Hence, the derivative Q'(t)
vanishes at least at one point inside the intervals between any two adjacent points
of discontinuity of u(t) in 0 <t < 1. But from (30) and (22), having in mind (16),
we conclude that )

0% 8 22
[Zau,,azs 1-—1t2)? } Re[Zs'

The equation (22) or the equivalent algebraic equation (13) have no more than
2n + 2 roots in t. Taking into account the endpoints 0 and 1, we conclude that the
step measure p(t) has no more than 2n + 4 points of discontinuity in the interval
0 <t < 1. It follows from (31) that if the points of discontinuity of u(t) in
0 < t < 1 are more than n + 2, then the equation (22) (or (13)) will have more
than 2n + 2 roots in 0 < ¢t < 1, which is impossible. Hence, the number p satisfies
the inequalities in (12). If the extremal function ¢(z) € Ti, the corresponding
assertions are established in the same way.
This completes the proof of Theorem 2.

=P@t). (31)

3. APPLICATION TO THE COEFFICIENT PROBLEM
OF THE INVERSE FUNCTIONS IN THE CLASS T

We need the following

Theorem 3. In terms of the coefficients a, in (2), the coefficients by, in (4)
have the following simplest explicit form:

1 & nt+k-1
= -T; Z(—l)k( k )Dn_l,k(az,ag, [ ,an_k+1), n Z 2, (32)
k=1
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where

, an-k+1) = Z k!(a2)"1 (a,3)v2 . (an—k+1)y"_k (33)

D1 k(az,as,... P
(8 2L TN |

for 1< k<n-—1,n > 2, are the ordinary Bell polynomials in ay, a3, ..., an-k41,
and the sum is taken over all nonnegative integers vy, va, ..., v, satisfying

ntve+ o trpg =k,

34
vi+2ve+ o+ (n—klng=n-1, 1<k<n-1 n>2. (34)

Proof. We use the method in [6, pp. 91-93, Theorem 1], which is applicable
to each analytic function F(z) in |z| < 1 normalized by the requirements F(0) =
F'(0) —1 =0 (see in [6] a recurrence relation for the polynomials (33) and tables
for the polynomials (33) and the coefficients (32)).

Theorem 4. The minimum (maximum) of the coefficients b,, n > 2, from
(32) in the class T is attained only either in the subclass Ty C T of functions (10)
or in the subclass Ty C T of functions (11)—(12) with:

HYl1<p<mifn=2m,m=1,2..,,

@ 1<p<m+lifn=2m+1l,m=1,2...,
where in (12) the points ty, ta, ..., t, are among the numbers 0 and 1 and the roots
in the interval 0 <t < 1 of the equation

abﬂ ts 2

=0, n>2 (35)

(for n = 2 this equation is zmposszble — see below Corollary 1), and the function
Z aa £ QM) =P), n22, (36)

has equal values at any two ad]acent points of the sequence t1, ta, ..., tp.
Proof. We apply Theorem 2 for 2 = 0 and the function

bp = ®{uo,u1,...,un;0)

n-1
1 Z gfnt+k—1 Uz U3 Un—ior1
n - D - T Aa ey T
nk:l( ) ( k ) nobk (2!’ 3!’ ’(n—k+1)!) 37)

on the set [J {(0),¢'(0),...,4(™(0);0}, where n > 2, having in mind (32)-(34).
T

For the function (37), the equation (22) (or (13)) and the function (30) for the
condition (29) are reduced to (35) and (36), respectively, where

Oby, 8<I> o = o 0) _ _Us
da; 8us Y s’
It is clear from (38) and (32)—(34) that for the function (37) the equation (35) is

not an identity in ¢ in the interval 0 < t < 1 since, for example, db,,/da,, = —1 # 0,
n > 2. Further:

2<s5<n. (38)
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(i) For n = 2m, m = 1, 2,..., the function u(t) in (3) for the extremum of
(37) has not more than 2m points of discontinuity among the roots of the equation
(35) and the points 0 and 1. For all the points of discontinuity of the extremal step
function p(t), if they are more than one, the function (36) has equal values. If u(t)
has more than m (m > 1) points of discontinuity in 0 < ¢ < 1, then the equation
(35) will have more than 2m — 2 roots in 0 < ¢ < 1, which is impossible. Hence,
the points of discontinuity of u(t) in 0 < ¢t < 1 are not more than m (m > 1).
Therefore, the interval of the integer p in (12) is contracted to 1 < p < m.

(ii) Forn =2m + 1, m = 1, 2, ..., the function p(t) in (3) for the extremum
of (37) has not more than 2m + 1 points of discontinuity among the roots of the
equation (35) and the points 0 and 1. For all the points of discontinuity of the
extremal step function u(t), if they are more than one, the function (36) has equal
values. If p(t) has more than m + 1 points of discontinuity in 0 < ¢ < 1, then the
equation (35) will have more than 2m — 1 roots in 0 < ¢t < 1, which is impossible.
Hence, the points of discontinuity of u(t) in 0 < ¢t < 1 are not more than m + 1.
Therefore, the interval of the integer p in (12) is contracted to 1 <p <m + 1.

This completes the proof of Theorem 4.

Corollary 1. The coefficient by from (32) satisfies the sharp inequalities
~1<b, <0, (39)

where the equalities hold only for the following extremal functions:
— on the left-hand side of (39), for the function

Y(w) = 7 — —-jij( Dl (40)
inverse of the function
P o0
— — n .
w(Z)—l_z—n;z € Ty; (41)
— on the right-hand side of (39), for the function
P(w) = w, (42)
inverse of the function
e(z) =z €Ty. (43)

Proof. For n = 2, Theorem 4(i) yields p = 1. For n = 2, from (32)—(34) and
(35) we obtain

by = —az, 2= 1, (44)
6a2
and :
P(t)=-1#0, (45)

respectively. It follows from (45) that the point of discontinuity of u(t) can be
either t; = 0 or t; = 1 with the corresponding jumps ¢; = 1 and ¢; = 1. Therefore,
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we obtain the two extremal functions (41) and (43) of the form (10), the inverse
ones of which (40) and (42) supply the equalities in (39), respectively.
Remark 1. The inequalities (39) and the extremal functions (41) (or (40))
and (43) (or (42)) follow from (44) and (2) for n = 2 as well.
Corollary 2. The coefficient by from (32) satisfies the sharp inequalities
- 1

where the equalities hold only for the following extremal functions:
— on the left-hand side of (46), for the function

1/;(w)=§(1+w—\/iT+w?)
rifore 2 ((00)

n=2 n/2<v<n

(47)

where /1 = 1 and the inner sum is taken over all integers v satisfyingn/2 < v < n,
inverse of the function

() =341 2 _ +li e Ty (48)
PSP T AT T R S
— on the right-hand side of (46), for the function (40), inverse of the function
(41), respectively.
Proof. For n'= 3, Theorem 4(ii) yields p = 1, 2. For n = 3, from (32)—(34),
(35), (36) and (38) we obtain

1 1
bs = —a3 + 2a3, a2=(pT(0), agz%o-)—, (49)
1
§P(t) =2a9 —t =0, (50)
and
Qt) = dast —¢*, Q'(t) = P(1), (51)
respectively.

If p =1, then (11)-(12) are reduced to

z

p(z) = -4 € 2 (52)
where ¢ can be either the root ¢t = 2ay of (50) or any of the points 0 and 1. From
(52) we obtain ¢"(0) = 2¢. On the other hand, ¢"(0) = 2ay = ¢, and hence ¢t = 0.
Then (52) takes the form ¢(z) = z, the inverse one of which is 1(w) = w. It is clear
that the identity is not an extremal function. If t = 1 in (52), then we obtain that
©"(0) = 2, ¢"'(0) = 6 and the equations (49) yield b5 = 1. Thus for the function
(40), inverse of the extremal function (41), the bound 1 in (46) is attained.
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If p = 2, then (11) has two terms, corresponding to the condition Q(t1) = Q(¢2),
where Q(t) is determined by (51) and ¢; and ¢, are among the numbers 0, ¢ = 2a;
and 1. According to this condition and the Rolle theorem, the equation (50) has an
odd number of roots between ¢; and t5. This is possible only if ¢; = 0 and ¢, = 1.
Hence, the extremal function p(z) is

z

plz) =cz+(1—¢) €T,, 0<c<1. (53)

1-=z

Further, the condition @Q(0) = @(1), where Q(t) is given by (51), yields a; =
¢"(0)/2 = 1/4. On the other hand, from (53) we obtain ¢"(0) = 2(1 — ¢), and
hence ¢ = 3/4. For ¢ = 3/4, from (53) we obtain the extremal function (48) and
its inverse function (47) for which the bound —1/8 in (46) is attained.

Remark 2. The second sharp inequality in (46) and the extremal function (41)
(or (40)) can be obtained in another way. With the help of the Cauchy inequality
and (2) we obtain that

1

Q= ( / 1.tdu(t)> < 0/ 12 du(t). / £ dut) = as. (54)

0 0
Now from (54) and the first equation in (49) we obtain the sharp inequalities
b3 <a3 <1

with the unique extremal function (41) (or (40)).

Corollary 3. The coefficient by from (32) satisfies the sharp inegqualities
5+ 410
135

where the equalities hold only for the following extremal functions:
— on the left-hand side of (55), for the function (40), inverse of the function

“1<by < =0.13073415..., (55)

(41);
-— on the right-hand side of (55), for the inverse function of the function (53)
for
c= E"TQL—E = 0.45584816... . (56)

Proof. For n = 4, Theorem 4(i) yields p = 1, 2. For n = 4, from (32)-(34),
(35), (36) and (38) we obtain

by = —ay + 5aza3 — 5a3, (57)
P(t) = 5a3 — 15a + 10ast — 3t* =0, (58)
Q(t) = (5as — 15a3) t + 5ast® — 13, Q'(t) = P(2), (59)

where aj 3.4 are the coefficients of the extremal functions p(z) € T, i.e.
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_ "0 _¢"(0) V()
a2 = 9 y @3 = 6 y Q4= 24 )

(60)

respectively.
If p = 1, then (11)-(12) are reduced to (52), where ¢ can be either any root
of (58)in 0 £t <1 orany of the points 0 and 1. Converting (52) or by means of
(60), (52) and (57), we obtain
i by=—t3, 0<t<L (61)
If p = 2, then (11), having in mind (12), can have the following forms:
z
1-tz

p(z) =cz+(1-¢) €Ty, 0<c<l, 0<t<l, (62)

z z
and (53), where t (in general different for each function) is a real root of (58) and
the other root of (58) has to lie in the open intervals (0,t), (¢,1) and (0,1) in
accordance to (59) and the conditions

Q) =Q@), Q1) =Q(), Q)= (64)

€Ty, 0<ec<l, 0<t<l, (63)

respectively.
(a) From the first equation of (64) and (59) we obtain the corresponding equa-
tion for (62), namely,

5as — 1502 + 5ast — t* = 0. (65)
1t follows from (58) and (65) that
2t 782
0.2——5—, ag——2—5—- (66)
On the other hand, from (60) and (62) we get
az=(1-0ct, az=(1- ot?, as=(1- o3 (67)

The equations (66) and (67) yield the different values ¢ = 3/5 and ¢ = 18/25,
respectively, i.e. the extremal function ¢(z) is not of the form (62).

(b) From the second equation of (64) and (59) we obtain the corresponding
equation for (63), namely,

5as — 1502 + Bag(t +1) —t? =t —1=0. (68)
It follows from (58) and (68) that
2t+1 T2+ 2t 43
ag = —‘5—‘— , a3 = o5 ' (69)
On the other hand, from (60) and (63) we get
gy =ct+1-g¢, az=ct?+1-¢, ag=ct’+1-c (70)

The equations (69) and (70) yield the equations

2(t - 2) y 6 — /30
_AtTe) g2 19t42=0, t=
CTEt-1)’ * 3

=0.1742581...  (71)
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(the other root of the second equation is not in the open interval (0,1)). From (71),
(69) and (70) we obtain

2 (10 + v/30) 4 — 15-2v30
35 T
35 — 6v/30 345 — 62v/30

=T T

By the values of a 3 from (72) the equation (58) becomes
0f? - 2 (15 2v30) t+2 (17 - 3v30) = 0. (73)
Really, for the roots of (73) we have

0< 8= v30 <12-v30 <1
3 9
Finally, by the values of a3 3 4 from (72) and (57) we obtain
_45-8v30
45

(c) From the third equation of (64) and (59) we obtain the corresponding
equation for (53), namely,

(72)

by = = —0.026271... . (74)

5a3 — 15a3 + 5a3 — 1 = 0. (75)

It follows from (60) and (53) that
a2=1-¢, a3=1-¢, ay=1-c (76)

From (75)-(76) we get the values
C12 = i (77)

The equations (76) and (77) yield

4 = SFVIO 0 < BFVI0 0 = 2FVIO 78)
2 = 15 ) 3 ~— 15 ’ 4 = 15 )
respectively. By the values of a; 3 from (78) the equation (58) becomes
9t2—2(5¢\/ﬁ)t+2¢\/ﬁzo. (79)

Really, each equation of (79) has one root in 0 < ¢ < 1, respectively. Finally, from
(78) and (57) we find

by = %m = —0.05666..., b, = %ﬁ =0.13073415...,  (80)

respectively. Now the comparison of (61), (74) and (80) leads us to (55) and (56),
which completes the proof of Corollary 3.
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Remark 3. The first inequality in (55) and the extremal function (41) (or
(40)) follow also from (57), (54) and (2), namely,

by = —aq + 5as (ag - a%) > —aq > —1.
For the coefficients bs, bg, ..., we can proceed in the same way.

Conjecture 1. In the class T each coefficient b,, n = 2, 3,..., from (32)
attains its minimum (mazimum) only for the rational functions of the form (10).

Conjecture 2. In the class T each coefficient b,, n = 2, 3, ..., from (32)
satisfies the sharp inequalities

bom > -1, m=1,2, ...,

and
bomr1 <1, m=1,2,...,

where the equalities hold only for the extremal function (40), inverse of the function
(41).
For n = 2, 3, 4 these conjectures are proved in the above corollaries 1-3.
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The fibered surfaces are shown to be finite branched coverings of products of alge-
braic curves. As a consequence, the fundamental group of a finite surface turns to be
commensurable with a product of the fundamental groups of Riemann surfaces.
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The compact Kahler surface S is said to be fibered if there is a surjective
holomorphic map S — C, with connected fibers onto a curve Cy of genus g > 2.
The work focuses on some properties of fibered surfaces S. The first section exhibits
S as a finite ramified covering S — Cy xCh, g+h = h19(S) of products of curves. As
a consequence, the second section shows the commensurability of the fundamental
group 71 (S) of a fibered surface with the product m1{C,;) X 71(Cy) of fundamental
groups of appropriate Riemann surfaces.

1. STRUCTURE RESULT

Proposition 1. Any fibered surface f : S — Cy, g > 2, with non-isotropic
HY0(S) is a finite ramified covering f = (f1,f2) : S = Cy x Ch, g+ h < A1O(S).

According to the Theorem of Castelnuovo de Franchis (cf. [1]), for any fibered
surface fi : S = C, the subspace ff H'°(C,;) C H0(S) is isotropic, which means

* The work is partially supported under Contract MM1003/2000 by the National Foun-
dation for Scientific Research.
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that the wedge product of any two forms from f;H'%(C,) is zero. Let us start
with the following

Lemma 2. Let X be a compact complex manifold with functionally indepen-
dent 1,2 € HY(X) and C-linearly independent 91,...,%m € HY°(X). Sup-
pose that with respect to some coordinate covering X = Uy s W (@ there hold P =

Z /\gf)cp, for some local meromorphic functions /\§-?) W@ 5 PL1<j<m,

and k =1 or2. Then there exist global holomorphic functions b;, di, fi,9;: X = C,

such that w; := (gi, t = 1,2, are global holomorphic (1,0)-forms, as well as
Y; = fjwy in the case of k=1 and djv); = fjw1 + gjwe in the case of k = 2.
Proof. The local rings Oy («) of the holomorphic functions on W{® are fac-

torial. Their fraction fields My () consist of the meromorphic functions on W{®).
oy
c(@) j5

;f'),cg?) € Owa. Since ; and 1/)]- are globally defined, at z ¢ W{®) nw®,

one has 0 = %('a)( ) - ¢(ﬁ) (z) = Z(/\(?) - /\gf))%(x), which implies /\2?) = )\%’)

That allows to represent uniquely )\§§") = as ratios of relatively prime

due to the functional 1ndependence of ©i-
One can represent the global meromorphic functions A;; : X — C by glo-
bal holomorphic numerators and denominators. Indeed, on W(® N W) the

relation a(") (‘3 ) = P requires aﬁ to be divisible by agz), according to

Jr TJe

GCD( ajs’ gf‘)) = 1. Exchanging o with 3, one obtains

(aﬂ)

— ,,(aB) (ﬂ —
S lwenwe = uls lweawe, 3 lwaaws = u; lw(a) we

(aﬁ ). Due to the compactness of X, one can choose a

finite coordmate covermg and adjust all u(®®)ji = 1. After fixing some a(l), one

puts aﬂ |W(a)nW(ﬁ) = aﬁ lW(cx)nW(ﬁ) for all B € {44,... , Bk} with W nw®) #
@ and extends holomorphically a(ﬁ ) over the simply connected W) . The same
procedure is applied to all 8 with W(ﬁ) NW®E) £ g 1<i<k, etc.

for some locally invertible u;

In the case k = 2 let us consider the greatest common divisors d; :=
GCD(cj1,¢j2) and introduce bj; = % forall 1 < j <m,i=1,2 Then§; :=
J
2 Qji a1
djv; = E B gol For future convenience let us put b, := ¢j1, §; 1= ¢; = 3. P
J?

for k = 1
Multiplying 6; by b 3_; for i =1,2 and bearing in mind that GCD(a;;, bj;) =
1, GCD(bj3-4,bj) = 1, one concludes that b;; divide ¢, i.e., ;£~ are global holo-
ji
morphic (1,0)-forms. The same holds if £ = 1. Then the least common multiples
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p, = LCM (bji]1 £ j < m) divide p; and allow to define the global holomor-

) - k b:
phic wi = % As a result, one obtains the representations §; = > ajib—'wi as
i i=1 Ji

(O x-linear combinations of w;, Q.E.D.

Proof of Proposition 1. The subspace U := ffH(C,) C HO(S) is
maximal isotropic, according to the connectedness of the fibers of f;. Therefore,
any C-basis uy,...,uy of U is of the form u; = /\Ea)ul, 2 <1 < g, for some local

meromorphic functions )\1(:04) : W® 5 Py on the coordinate charts W ¢ S.
According to Lemma 2, there exist global holomorphic functions &1,...,&, and a
global holomorphic (1,0)-form w; € U such that u; = {uwq, 1 <1< g.

For a non-ruled fibered surface, U := ffH°(C,) is a proper subspace of
H10(S). Any complement of U has a basis vi,...,v, k& = hM%(S) — g with
wi Avj #0foral 1l <j <k The functionally independent w;, v; on the sur-
face S generate H'°(S) over the fields My of local meromorphic functions.

That allows to represent v; = aga)wl + Tfa)vl on Wa) aga),ri(a) € My(a.
The application of Lemma 2 yields global holomorphic functions b1, b, d;, A;, 5,
1<j§k,suchthat&7{:=u—“— ul§

- b bg
djvj = Ajl1 + pjwe, 2 < j < k. Let Vg be the C-span of 1 = v1 = bawe = pwo,
@; = djv; — A\jiw1 = pows, 2 £ j < k, and V be a maximal isotropic subspace of

)

HY(S), containing Vo. Wedging by vy an arbitrary v = ) ¢;éws € VNU and

i=1

, W 1= are global holomorphic (1, 0)-forms and

bearing in mind that w; A v; # 0, one infers Eg: cié; = 0. As far as §iwy, ..., €gun
=1

are C-linearly independent, there follows ¢; = 0 for all 1 < ¢ < g. In other words,

UNV = 0 and there exist maximal isotropic subspaces U,V with U@V C HM(S).
If dim¢ V > 2, Castelnuovo-de Franchis’ Theorem implies that there is a surjec-

tive holomorphic map f» : S — Cj, with connected fibers, such that f3H 1LO(Cy) =

V. The holomorphic map f = (f1, f2) : S = Cy x C}, is generically of rankcdf = 2

since

Fr=fraofy  HY(Cy x Ch) =HY(Cg) @ HYO(Cy) UV C HY(S)

and fr, f are injective. According to Remmert’s Proper Mapping Theorem, f(S)
is a 2-dimensional complex analytic subspace of Cy X Cj. Therefore f(S) = Cy X Cp.
The generic fiber of f is a compact complex analytic 0-dimensional subspace of S,
i.e., finite number of points.

In the case of V = Spanc(vi), let us consider the dual V* C Hy(S,C) and
its quotient E := V*/V* N Hi(S,Z)free modulo the free part of H;(S,Z). As a
closed subtorus of the compact Albanese variety Alb(S) = HVO(S)*/H1(S,Z)frees
E is an elliptic curve. For any fixed sg € S the holomorphic map f; : S = E,

8
75(8) := [ vimoduloH:(S,Z)ree is of rankcdf; = 1, whereas surjective. Since the

So
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fibers of f; can be disconnected, we pass to Stein factorization f : S — Cp, h > 1.
Then apply the rest of the proof for dim¢ V > 2, Q.E.D.

Remark. Generalization of Proposition 1 to higher dimensional compact
Kdbhler manifolds. Catanese has generalized in [3] the theorem of Castelnuovo-de
Franchis. Let us say that the normal Kahler variety Y is of Albanese general type if
the irregularity A'°(Y') > dim¢ Y and the image of Albanese map o : Y — Alb(Y)
is of dimc a(Y’) = dim¢cY. The compact Kéhler manifold X, of dim¢c X, = n
is Albanese general type k-fibration if it admits a surjective holomorphic map
fi + Xn — Y with connected fibers onto a normal k-dimensional Kahler vari-
ety of Albanese general type. Catanese has shown that a necessary and sufficient
condition for the existence of an Albanese general type k-fibration f; : X, — Y
is the presence of a maximal subspace U C H°(X,,) with A**1U/ = 0, contain-
ing a subspace Uy C U of dim¢ Uy > k + 1, whose k-wedge A*U, is embedded
in H*%(X,). A slight modification of the proof of Proposition 1 establishes that
if a compact Kéhler n-dimensional manifold X,, admits an Albanese general type
(n — 1)-fibration f; : X, — X,_;, whose generic fibers are different from P;, then
X is a finite ramified covering f : X, = Xn—1 X X of the product of X,_; and a
Riemann surface X of genus > 1. The study of the complements of Albanese gen-
eral k-fibrations f; : Xn — X with an arbitrary k is obstructed by the condition
A" *Uy — H"%0(X,)), which is not easy to be understood.

2. THE FUNDAMENTAL GROUP

Corollary 3. If the surface S is a finite ramified covering f = (f1,f2) : S —
Cy xCh, 9 > 2, h > 2, then its fundamental group m (S) is commensurable with
m(Cm) X m1(Cy) for somem > g, n > h.

Proof. Campana has shown in [2] that for any surjective holomorphic map
X — C of a compact_Kéhler manifold X onto a Riemann surface C there is a
finite etale cover r : X — X such that the Stein factorization f : X — C of
fr: X — C has no multiple fibers and there is a finite map p : C — C with
pf = fr. The application of this result to f; : § — C, yields a finite etale cover
r1: 81 = S, a surjective holomorphic map fi : S; — Cp, m > g, without multiple
fibers, and a finite map p; : Cp, — C, such that fir; = p; f{. The subsequent
application of the aforementioned result to far; : S; — Cp provides a finite etale
cover 79 : Z — S1, a holomorphic surjection @3 : Z - Cy, n > h, without multiple
fibers, and a finite map pz : C, = Cp with fariry = poys. Consequently, the
composition ¢; := fire : Z — C,, of the unramified r, and f| has no multiple
fibers. The Cartesian product ¢ = (p1,¢2) : Z = Cp x Cy is a finite covering,
as far as riry : Z — S is a finite etale, f = (f1,f2) : S = Cy x C}, is finite and
there is a projection (p1, p2) : Cp X Cp = Cy x Cp. We claim that ¢ is unramified
since the generic fibers of ¢ : Z = Cp, and w2 : Z — Cj, have no self-intersections.
Indeed, for apropriate ramified coverings py : Cy, = P1 and py : C,, = Py one
obtains linear pencils of divisors pyp1 : Z — Py and peps : Z — P;. According
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to Bertini’s theorem, the generic fibers (pigi) "2 (z) = @7 (p; ' (2)), i = 1,2, have
1no singularities outside the base locus. Thus, Z — Cp x Cy, is a finite unramified
covering and 71(Z) is a finite index subgroup of m (Cm) x m{(Cyr). On the other
pand, r172 : Z — S is finite and unramified, so that 7;(Z) is a finite index subgroup
of m1(S). That justifies the commensurability of (S) and 71 (Crm) x71(Cr), Q.E.D.

Ackno@vledgements. The author is extremely indebted to Prof. V. Tsanov
for the useful advices and conversations.
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Existence results for two-point boundary value problems are established, the equation
is not solved with respect to the high derivative, and the boundary conditions are
nonlinear and full. The proofs are based on a variant of a basic theorem of Granas,
Guenther and Lee. The a priori bounds needed for its application are obtained by the
barrier strips technique.

Keywords: boundary value problems, nonlinear boundary conditions, existence, bar-
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1. INTRODUCTION

In this paper we study the solvability of boundary value problems (BVPs) of

the form
fit,z,z',2") = 0, telo,1], (1.1)
Wi(z) = Vi), i=12. '
Here the scalar function f{t,z,p,q) is continuous and has continuous first deriva-
tives only on suitable subsets of [0, 1] x R3,
Vi(z) = » (2(0),2'(0),z(1),2'(1)), Va(z) = (2(0),2'(0),2(1),2'(1)),
#,% : R* = R are continuous, and (W) (z), Ws(z)) are of the type
(M1) (2(0),2'(1)), (M2)('(0),z(1)) or (D)(x(0),2(1)).
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Further, we will write as (M;), (M;) and (D) the BVP (1.1) in the cases (M;),
(M) and (D), respectively.

The solvability of BVPs for the equation & = f(t,z,2') with various nonlinear
boundary conditions is studied in [1-8], for example, under various conditions on
f(t,z,p).

The results [9-14], see also [15], guarantee the existence of C2[0, 1]-solutions
to BVPs for the equation 2’ = f(t,z,z', ") — y(t). Moreover, the solutions satisfy
mixed boundary conditions (M; ) or (M2) in [9], periodic ones in [10], Neumann ones
in [9, 11], Dirichlet or periodic ones in [9, 12, 13], and either Dirichlet, Neumann,
Sturm-Liouvile, periodic or antiperiodic ones in [14]; in the last work uniqueness
results are also obtained. Moreover, the growth of f(¢,z,p,q) is linear with respect
to z,p and ¢ in [10-12], semilinear in {13], quadratic with respect to p and linear
with respect to ¢ in [14]. In addition f satisfies various further conditions. The
results [16] guarantee an existence and an uniqueness of CZ[0, 1]-solution to the
BVP for the equation " = f(t,z,z’',2") with boundary conditions of the form

a;12(0) + a;x'(0) + az(l) + ayx'(1) =0,i =1,2.

In [16] f(t,z, p, q) satisfies a growth condition, which is a Nagumo one with respect
to p and a linear one with respect to ¢, and some further conditions. The ap-
proach [10-14, 16] relies on the topological transversality [8] or similar arguments.
The existence results {17} guarantee W2°[0, 1]-solutions or C?[0, 1]-solutions to
the Dirichlet BVP for the equation (1.1). The function f(t,z,p,q) is defined on
[0,1]x R*x R®*x Y, where Y is a non-empty closed connected and locally connected
subset of R". Growth conditions on f are not used. The approach [17] follows that
introduced in (18] with regard to the Cauchy problem. The results [19] guarantee an
existence of C?(0, 1]-solutions to the BVP for the equation =" + g(t,z,2',z") = y(t)
with either Dirichlet, Neumann or mixed boundary conditions. The authors use
conditions of Lipschitz type on g and barrier strips [20].

In this paper we also do not use assumptions on the growth of f. Using again
the barrier strips technique [20), see also [19] for similar conditions, we obtain some
uniformely a priori bounds for 2/, z and z” (in this order) for the eventual solutions
z(t) € C?[0,1] to the family of BVPs

Kz = )\(Kﬁ'll+f(tyx’z’7xll))’ t€ [0’ 1]’
(L1)x

Wi(z) = Mi(z), i=12,

where A € [0,1], and K is a suitable positive constant; further, we will write as
(M1)a, (M2)x and (D)y the family (1.1) in the cases (M), (M2) and (D), respec-
tively. Then the solvability of the problems considered follows by a basic existence
result (Theorem 4.1) proved by an application of the topological transversality
theorem [8].
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2. HYPOTHESES

We will say that (A1) holds for the constants F and L if:
(A1) L > F and there are functions F7(t),L}F(t) € C[0,1), i = 1,2, such that
. Li(1) > L,F > Fr (1),
LF (¢) is nonincreasing and Fy (t) is nondecreasing on [0,1],
LY@ > L) and Fy(8) > Fy (t) for te(0,1],
and there is a constant K > 0 for which
ft,z,p,9) 2 ~Kq
on {(t,z,p,q) .z € R,q € (—00,0),t €[0,1] and Ly <p< L;L(t)},

ft,z,p,9) < —Kg
on {(t,a:,p,q) .z € R,q € (0,00),t €[0,1] and Fy(t)<p< Ff(t)}.

We will say that (Az) holds for the constants F and L if:
(Az) L > F and there are functions F(t), L (t) € C[0, 1], i = 1,2, such that
L7(0) > L, F > Ff (0),
Ly () is nondecreasing and Fif(t) is nonincreasing on [0,1],
Ly(t)>Li(t) and F{(t)> Fir(t) for tel0,1],
and there is a constant K > 0 for which
f(t,z,p,q) < ~Kq
on {(t,w,p,q) . z€R, g€ (0,00),t€0,1]and Ly (t) <p< L;(t)},

f(t,z,pq) 2 —Kq
on {(t,x,p,q) .z € R,q € (—00,0),t €0,1] and FrHt)<p< Ff(t)}.

Remark. The constant K from (A;) and the constant K from (Az) could be
different. ,

Lemma 2.1. Let the condition (A1) hold for some F and L and z(t) € C?[0,1]
be a solution to (1.1)x (with the constant K from (A1)). Suppose there is an interval
T, C [0,1] such that

L@ <a'(ty S LF(t) for t€Tr (2.1)
Then z"(t) > 0 for t € Ty. If there is an interval Ty C [0,1] such that
Fy(t)<a'(®) SF (@) for teTy
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then z"(t) <0 for t € Ty. .
Proof. We will show only that (2.1) yields z"(t) > O for t € Ty. The assertion
is true for A = 0. Now let A € (0, 1]. Assume there is ¢y € T} such that z'"(tg) < 0.
Then
0> Kx”(to) = /\[K.’L‘”(to) + f(to, :E(to),(l?’(to),.’lt”(to))] > 0.
The contradiction obtained yields the assertion. [J

Lemma 2.2. Let the condition (Az2) hold for some F and L and z(t) € Cc?[o,1] ;
be a solution to (1.1)y (with the constant K from (Az)). Suppose there is an interval
Ty C [0,1] such that

L) <z'(t) <Ly (t) for teTy.
Then z'(t) < 0 for t € Ty. If there is an interval T C [0,1] such that Fit) <
T'(t) < FF(@) for teTy, then () >0 fort e T,.

Proof. The proof is the same as for Lemma 2.1 except for a few inessential
changes in the details. g

Denote

max u(t) := r[réai)]tu(t), min u(t) ;= I[Blilrllu(t), and |ullo := max |u(t)].

Let M, @ € R* be some constants, and L(t), F(t) € C|0, 1] be some functions
such that L(t) > F(t) on [0,1]. Let the functions Gi (t),GF(t), H7 (t),Hf (t) €
C[0,1],7 = 1,2, be such that for

C = max {||Fllo, || L{lo} (2.2)

we have ‘

[G;f(t) > 20,G7 (t) > 2C for t € [0, 1),
H(t) < ~2C,H{ (t) < ~2C for t € [0,1],

J G (t) and H{ (t) are nonincreasing on [0, 1], 2.3)
Gy (t) and H; (t) are nondecreasing on [0, 1],

G (t) > G (1),G7 (8) > GL (t), for t € [0,1],

| H(t) > By (8), H (2) > Hy () for t € [0,1].

Replace

Y :={(t,w,p,q) tlal <M te, te0,1], pe[F(t)—¢, L(t) +¢] and

ge [min{minH;(t),min H;(t)} —e, max{maxag(t),ma,xcg(t)} +5J},

where
{5 > 0 is small enough and such that HE () > Hi(t) +e, (2.4)

Hy () > Hy (t) + ¢, G (t) > GF (t) +e, GT () >G5 (t) +e,
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Yy = {(t, z,p,q) : « € [-M, M], and (¢,p,q) is such that
t € [0,1], p € [F(t), L(t)], ¢ € [min {H (), H; (t)}, max {G;T(t),GE(t)}]}

Y :={(t,:z,p,q) 1z € [~-M,M], and (t,p,q) is such that

te[0,1], p€ [F(t), L), q € [HS (8), H (U [Gf(t),Gi(t)]}

Yy =={(t,x,p, q): z € [~M,M], and (¢,p,q) is such that

€[0,1], pe [F(2),L(t)], g € [Hz'(t),Hf(t)]U[Gf(t),G{(t)]}

Y5 = {(/\,t,:l:,p) :A€0,1], z€[-Q,Q], te[0,1], p€ [F(t),L(t)]}.

We will say that (B) holds for the functions L(t), F(t) € C|[0,1] and the con-
stant M € Rt if:

(B) There are functions G; (t), Gf (t), H; (t), H; (t) € C[0,1], (i = 1,2), which
satisfy (2.3) and are such that

{f(t,:z:,p, g) and f4(t,z,p,q) are continuous on Y; @25)

and f,(t,z,p,¢) <0 onlj,
ft(tazvpa q)a fw(t,ﬂ?,p, Q) a‘nd fq(tvxapv q) are continuous on Y2a
fe(t,2,p,9) + fo(t,z,p,@)p + fo(t,%,p,9)g > 0 on Y3,

and
ft(t’$:p79) +f2(t’ x:P,Q)P"'fp(t,x:P’Q)Q S 0 on Y4-

We will say that (C) holds for the functions L(t), F(t) € C[0,1] and for the
constants Q € RT, Q1, @ if:

(C) F()"t,xvpan)F()Htvx;pa Q2) S_ 0 for (Avt,zvp) € YS,
where F(\,t,z,p,q) = (A-1)Kq+Af(t,z,p,q), and K is the constant from (1.1).

3. TOPOLOGICAL PRELIMINARIES

For the sake of completeness, we give the topological transversahty theorem
which will be used later; moreover, we follow [8].
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Let X be a metric space, and ¥ be a convex subset of a Banach space E.
The continuous map F : X — Y is called compact if F(X) is a compact subset of
Y. The continuous map F : X — Y is completely continuous if it maps bounded
subsets in X into compact subsets of V.

Theorem 3.1 (Shauder’s fixed point theorem). Let Y be a convez subset of
E,and F:Y - Y be a compact map. Then there ezists a point zo € Y such that
F(.’l)o) = Zp.

We say that the homotopy {Hy: X - Y}, 0 < X <1, is compact if the
map H(z,A) : X x [0,1] = Y given by H(z,)) = Hx(z) for (z,)) € X x [0,1] is
compact.

Let U C Y be open in Y, 8U be the boundary ofU in Y, and U = 8U U U.
The compact map F : U — Y is called admissible if it is fixed point free on 8U.

We denote the set of all such maps by Loy (U,Y).

Definition 3.1. The map F'in Lsy(U,Y) is inessential if there is a fixed point
free compact map G : U — Y such that G|oU = F|0U. The map F in Lgy (U, Y),
which is not inessential, is called essential.

Theorem 3.2. Let p € U be arbitrary and F € Lou(U,Y) be the constant
map F(z) =p forz € U. Then F is essential.

Proof. Let G : U — Y be a compact map such that G|6U = F|AU. Define the
map H:Y - Y by
H(z)=p for zeY\U,
H(z)=G(z) for z€U.
Clearly, H : Y - Y is a compact map. By Shauder’s theorem H has a fixed point
zo €Y, i.e. H(zo) = zo. By definition of H we have z¢ € U. Thus, G(z) = zo

since H equals G on U. So every compact map from U into Y, which agrees with
F on 8U, has a fixed point. That is, F is essential. [

Definition 3.2. The maps F,G € Lgy(U,Y) are called homotopic (F ~ G)
if there is a compact homotopy Hy : U = Y such that H, is admissible for each
AE [0,1] and G = Hy, F = H,.

Lemma 3.1. The map F € Lgy(U,Y) is inessential if and only if it is
homotopic to a fized point free map.

Proof. Let F be inessential and G : U = Y be a compact fixed point free map
such that G|0U = F|0U. Then the homotopy Hy : U — Y, defined by

Hy(z) = AF(z) + (1 - NG(z), Ael0,1],

is compact, admissible and such that G = Hy, F = H;. B
Now let Hy : U = Y be a compact fixed point free map, and Hy : U = Y
be an admissible homotopy joining Hy and F. To show that Hy, A € [0,1], is an
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inessential map, consider the map H : U x [0,1] = Y such that H(z,\) = Ha(x)
for each € U and X € [0,1] and define the set B C U by
B={z€U:H(z)=H(z,\) =z forsome e [0,1]}.

If B is empty, then H; = F has no fixed point which means that F is inessential.
So we may assume that B is non-empty. In addition, B is closed and such that
BNAU = @ since Hy, A € [0,1], is an admissible map. Now consider the Urysohn
function 8 : U — [0, 1] with

f(z) =1lforz € U and 6(z)=0forz € B
and define the homotopy H} : U — Y, X € [0,1], by
H; = H(z,0(z))) for (z,)\) € U x [0,1].
It is easy to see that Hj : U — Y is inessential. In particular, H, = F is inessential,
too. The proof is completed. O

As a consequence of Lemma 3.1 we have:

Theorem 3.3 (Topological transversality theorem). Let F,G € Lou (U,Y) be
homotopics maps. Then one of these maps is essential if and only if the other one
is.

Theorem 3.3 is used in the following equivalent form:

Theorem 3.4 (Topological transversality theorem). LetY be a convex subset
of a Banach space E, and U C Y be open. Suppose:

(i) F,G:TU —Y are compact maps;

(i) G € Loy(U,Y) is essential,

(i) Ha(z), X € [0,1], is a compact homotopy joining F and G,

i. e. Ho(zx) = G(z), Hi(z) = F(z); '

(iv) Hx(z), X € [0,1], is a fized point free on 8U.

Then Hyx, A € [0,1], has at least one fized point To € U, and, in particular,
there is an o € U such that zo = F(zo).

4. A BASIC EXISTENCE RESULT, ANCILLARY RESULTS

The following theorem is a modification of [8, Chapter II, Theorem 6.1].

Theorem 4.1. Let ©,% : R* = R be continuous. Assume there are constants
Q,Q1,Q2 (independent of A) and functions L(t), F(t) € C[0,1] (independent of A)
such that: :

i) |zt)<Q, F(t) <z'(t) < L(t), @1 < z''(t) < Q2, t € [0,1], for each solution
2(t) € C%0,1] to (1.1)x (with fized K > 0) and for X €[0,1];
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(i) f(t,z,p,q) and fy(t,z,p,q) are continuous, and f,(t,z,p,q) <0 on
{6o0.0): 2€[-Q.Q), 0 € (@1, Qa], t € [0,1] and p € [F(1), L(1)]}.
(i) F(At,z,p,Q1)F(\t,z,p,Q2) <0 for (\t,z,p) € A=
{AMtzp):reo1), 2€-Q,Q) te[0,1] andp e [F(0), L)}

Then the BVP (1.1) has at least one C?[0, 1]-solution.

Proof. From (ii) and (iii) it follows that there is an unique function G(),t, z, p)
continuous on A and such that

g=G(\t,z,p) for (\t,z,p) € A

is equivalent to the equation F'(),¢,z,p,q) = 0 on A x [@1,Q]. Thus, the family
(1.1)y is equivalent to the family of BVPs

" = G(\tz,2'), te[o,l],
Wi(z) = AVi(z), i=1,2,

A € [0,1]. Note that F = ~Kgq for A = 0 and it yields
G(0,t,z,p) = Ofor(t, z,p) € Q, (4.2)

where 0= {(t,2,9) : 2 € [~Q,Q], € [0,1], and p € [F(®), L)}
Define the map

L :C*[0,1] - C[0,1] x R? by Lyz= (a: Wi (z), WQ(z))

(4.1)

and the maps _
G :CY0,1] = C[0,1] x R? by

G,\(m):(G(/\,t,z,x’),/\Vl(z), ,\VQ(x)) for A€[0,1].

It is easy to see that L; is a continuous, linear, one-to-one map of C2[0,1] onto
C[0,1] x R?. So L; has a continuous inverse L7". Finally, define j : C2[0,1] —
C'[0,1] by jz = x, which is a completely continuous embeding.

Now define the set

U= {m € C?(0,1]: for t € [0,1], |z(t)] < M, F(t) < 2'(t) < L(t), Q1 < z"(t) < Qg}

. and consider the homotopy
H:U x[0,1] — C?[0,1] defined by H(z,X) = Hy(z) = L7 0 Gyo j(z).

This homotopy is compact since j(U) is a compact subset of C'[0,1], and G, A €
[0,1], and L;" are continuous on j(U) and Gy ((0)), respectively. In addition,
the equation )

L7'oGro j(z) =z yields Ly(z) = Ga(x),
which is the BVPs (4.1). Then it follows from (i) that H,(z) is a fixed point free
on dU, i. e. Hx(z) is an admissible map for all X € [0, 1]. Finally, Hy = 0 by (4.2).
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So Hy is an essential map by [8, Chapter I, Theorem 2.2]. Now we are in a position
to apply Theorem 3.4. It implies that H; = Ll‘1 o (G10 j is essential, too, which
means that the original problem (1.1) has a solution in C?[0,1]. O

The next results prepare the application of Theorem 4.1. They guarantee the
a priori baunds from (i) of Theorem 4.1.

Lemma 4.1.A. Let (A,) hold for some constants My and M, (i. e. (A1) holds
for F(t) = My and L(t) = Ms, t € [0,1]). Suppose z(t) € C*[0,1] is a solution to
(1.1) (with the constant K from (Ai)) such that M; < 2'(1) < M. Then

Fr(t) <a'(t) < Lf(t) for telo,1].

Proof. Suppose the set
So={te[0,1]: LT(t) < 2'(t) < LT (®)}
or »
S ={te(0,1]: B (1) < ') < Fy (1)}

is not empty. The continuity of z'(t) and the inequalities F (1) < z'(1) < LT (1)
imply that there are closed intervals

[to,t5] € So or [t1,t]C S
such that
T'(to) > 2'(ty) or z'(t1) < z'(ty). (4.3)
On the other hand, by Lemma 2.1, we have
z"(t) > Ofort € [to,ty] or =z"(t) <0 fort € [t1,1].
Consequently,
' z'(to) <a'(ty) or &'(t) 22'(8)-
The contradiction to (4.3) shows that S and S; are empty, which yields the lemma.
a

Lemma 4.1.B. Let (A;) hold for some constants M, and My and (B) hold for
L(t) = LT(t), F(t) = Fy (t),t € [0,1], and M = C + N, where C is the constant
(2.2), N is some constant, and the functions L} (t) and Fy(t) are from the condition
(A,). Suppose z(t) € C?[0,1} is a solution to (1.1)x (with K from A1)} such that

|z(0)] € N,t €[0,1], and M <z'(1) < M.

Then
lz(t)] < M for te€[0,1) (4.4)

and

min{ ;" (1), Hy 0} <a"(t) < ma,x{a;r(O),G;(n}, te[0,1). (4.5)
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Proof. In fact C = max {||L{ |lo, IFy llo}. By the mean value theorem there is
d € (0,1) such that z"(d) = z'(1) — 2'(0). Lemma 4.1.A implies

Fr(t) <a2'(t) <Lf () for tel0,1],
i.e |2'(t)] < C fort €[0,1]. So
z"(d) <2C < GtH(t) for telo,d]. (4.6)
On the other hand, for each t € (0, d] there is ¢ € (0,%) such that
z(t) — z(0) = z' ()¢,

which yields
|z(t)| < M for t € [0,d].

Now suppose the set
S={te[0,d:Gf@) <z"(t) <G )}
is not empty. The continuity of z'/(¢) and (4.6) imply that there is a closed interval
lto,to] €S such that z"(tp) > z”(tp). 4.7
Since for ¢ € [to, ty]
“M<z(t) <M, Fr(t) <o'(t) SLE(), Gf(t) <z"(t) <G5 (),
we have
fo(t,z(t),2'(t),2"(t)) <0, te [to, to), (4.8)
and
felt, (), 2" (1), 2" (t) + fa(t,2(1), 2" (8), 2" (1))" + fo(t, 2(2), ' (B),2" (¢))z" > O
for t € [to,ty]. From the differential equation (1.1), for ¢ € [to, 5] we obtain
[K(1=X) = Afq(t, z(t),2' (), qn)] [z (¢t + h) — 2" (t))]
{ = hfe(Pin) + fo(P2n)[z(t + h) — 2()] + fo(Pan)la' (¢ + B) —2'(8)]  (4.9)
= fi(P) + fo(P)z'(t) + fp(P)z"(2),

where (t,z(t),z'(t), z"(t)) and the points Py, Pop and Py tend to P. Because of
(4.8) it follows from (4.9) that z'(t) exists and

2" =Mfe+ L'+ fp") [ [K (L= 2) = M), (4.10)

which yields ’
‘ () >0 for ¢t € [to,ty).

Then
z"(to) < 2" (to),

a contradiction to (4.7). Consequently,
"(t) < Gf(t) for te0,d].
The inequality
Hy(t) <a"(t), te(o,d],
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may be obtained in a similar way.
Similarly, the inequalities

o) <M and Hf(t) <2"(H) <Gr (1), te€dll]
may be established. O
Lemma 4.2.A. Let (As) hold for some constants M3 and My. Suppose z(t) €

C?[0,1] is a solution to (1.1) (with the constant K from (As)) such that M3 <
z'(0) € My. Then

Fri) <z'(t) <L) for t€[0,1]

Proof. The lemma can be obtained by using Lemma 2.2 and following the proof
of Lemma 4.2.A. 0

Lemma 4.2.B. Let (A,) hold for some constants M3 and My, and (B) hold
for L(t) = LT (), F(t) = Ff@), t € [0,1], and M = C + N, where C is the
constant (2.2), N is some constant, and the functions L1 (t) and Ff(t) are from
the condition (Az). Suppose z(t) € C2[0,1] is a solution to (1.1)x (with K from
(As)) such that

lz(1)| < N, t€[0,1], and Mz < z'(0) < My.
Then (4.4) and (4.5) hold with current notations.
Proof. 1t is not too different from the proof of Lemma 4.1.B. O
Lemma 4.3.A. Let (A1) and (Az) hold for F = min{0, M3 — Mz} and L =
max{0, My — M}, where M; € R, i = 1,4. Suppose z(t) € C?[0,1] is a solution

to (L.1)x (with K = min{Ki, K2}, where K; is the “yalue” of the constant K from
(A;), © = 1,2) such that

M, < :II(O) < M, and M; <z(1) < My.
Then for t € [0,1]
min {Fl'(O),Ff'(l)} < z'(t) < max {Lf(O),Lf(l)} .

Proof. There is d € (0,1) such that
2'(d) = (1) — 2(0) = A(x(0),2'(0),z(1), ' (1)) — (z(0),2'(0), z(1), ' (D)),
from where it follows
min{O,M3 - M2} < MMz — M,) < x'(d)

and
Zl(d) S_ )\(M4 el Ml) S max{O,M4 - Ml}

For t € [0,d] we have
Frt) <«'(t) < LT (t), by Lemma 4.1.A,
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and for ¢ € [d, 1] we have

FF() <2'(t) < L7(t), by Lemma 4.2.A,
and the assertion follows. J

Lemma 4.3.B. Let (A;) and A,) hold for F = min{0, M5 — M} and L =
max{0, My — M1}, where M; € R, i =1, 4, and (B) hold for
L(t) = max {L{(0), LT (1)},  F(t) = min {F7(0), F¥ (1)},

and M = C + max{| M|, | Ma|,|M3|,| M|}, where C is the constant (2.2). Suppose
z(t) € C?*[0,1] is a solution to (1.1), (with K = min{Ky, K>}, where K; is the
“value” of the constant K from (A;), i = 1,2) such that

My <z(0) < M; and M; <z(l) < M,.
Then (4.4) and (4.5) hold with a current notations.
Proof. 1t is not too different from the proof of Lemma 4.1.B. 0

5. EXISTENCE RESULTS

Theorem 5.1. Let p,9 : R* > R be continuous. Suppose there are constants
M;, i =1,2, and N such that:
(i) My <(s1,82,83,80) < My for (s1,89,53,84) € Ry
(ii) (Ai) holds for My and Ms;
(iii) |o(s1,52,53,84)| < N for (s1,8,53,84) € R x [F7(0), LT (0)] x R x [My, M,);

(iv) (B) holds for L(t) = L} (¢), F(t) = Fy (t), t €[0,1], and M = C + N, where
C is the constant (2.2);

(v) (C) holds for L(t) = L{ (t) +¢, F(t) = F () —¢, t € [0, 1], for
Q=C+N+e, Q) = min{H;“(l),H;(O)}—e, Qs = max{Gf(O),Gl‘(l)}-i—s,
where C is the constant (2.2), and € satisfies (2.4).

Then the mized BVP (M;) has a C2[0, 1}-solution.
Proof. Let z(t) € C?[0, 1] be a solution to (M;),. Then
Fr(t)~e<z'(t) <L(t) +e for te[0,1],by Lemma 4.1.A,
and Lemma 4.1.B yields the bounds
) < Q for te0,1],
Q1 <z"(t)<Qy for tel0,1].

Then the condition (i) of Theorem 4.1 holds. From (2.5) it follows that the condition
(ii) of Theorem 4.1 holds. Finally, (v) implies that the condition (iii) of Theorem
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4.1 holds. So we can apply Theorem 4.1 to conclude that the problem (M;) has a
solution in C2[0,1]. O

Theorem 5.2. Let @,% : R* =& R be continuous. Suppose there are constant

M, i= 3,4, and N such that:

(i) Ms < @(s1,52,53,84) < My for (81,52, 83,54) € Ry;

(i) (Ag) holds for M3 and My;

(lll) W)(Sl, 82, 83, S4)| < N far (31, 82, 83,54) € Rx {Mg,M4] x R x [Fl—{_(l), Ll—(l)],

(iv) (B) holds for L(t) = Ly (t), F(t) = Ft(t), t€(0,1], and M = C + N, where
C is the constant (2.2);

(v) (C) holds for L(t) = LT (t) +¢, F(t) = F{ (t) — ¢, t € [0, 1], for
Q=C+N+e, Q1 = min{H;*(l),H;(O)}—e, Q; = ma,x{Gf(O),Gl‘(l)}—ke,
where C is the constant (2.2), and € satisfies (2.4).

Then the mized BVP (My) has o C*(0, 1]-solution.

Proof. Tt is not too different from the proof of Theorem 5.1. Consider (Ma)».
Now Lemma 4.2.A guarantees the a priori bound for 2, and Lemma 4.2.B guaran-
tees the a priori bounds for z and . (0

Theorem 5.3. Let @,1 : R* — R be continuous. Suppose there are constants
M;, i = 1,4, such that:

(i) M <p(s1,82,83,84) < M2 and M3 < (81, 52,53,84) < My
for (s1,82,83,54) € Ry;
(i) (A1) and (Az) hold for F = min{0, M5 — My} and L = max{0, My — M1 };
(iii) (B) holds for L(t) = max{L;“(O), L;(1)}, F(t) = min{F;(O),Fﬁ(n} and
M = C + max{|Mi|, |Ma], |Ms|, |Ma|}, where C is the constant (2.2);
(iv) (C) holds for the functions

L{t) = max{L;L(O), L;(l)} te, Ft)= min{F;(O),F;ru)} e,
Q = C + max{|Mi|, |Mal, |Mal, |Mal} +¢, Q1= min{Hm),H;(O)} —e,

Q2 = max{G{ (0),GT (D)} +¢,
where C is the constant (2.2), and ¢ satisfies (2.4).
Then the Dirichlet BVP (D) has a C?(0,1]-solution.

Proof. It is not too different from the proof of Theorem 5.1. Now consider the
family (D)x. The a priori bound for z' follows by Lemma 4.3.A, and the a priori
bounds for z and z" follow by Lemma 4.3.B. [J
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6. EXAMPLES

Example 6.1. Consider the boundary value problem
~(2- 0" —tz"° +sin(e' —02) =0, te[o,1),
z(0) =0, 2'(1)=0.15.
For L = F = 0.15 (A;) holds. Moreover, we can choose
LE(t) =025, LT (t) = 0.3, F[(t) = 0.1, Fy (t) =0.05, t € [0,1],

and K is sufficiently small; to say K = 10~10, It is easy to see that f, = —(2—¢)g—
3tg® < 0 for t € [0,1] and each . This fact allows us to conclude that (B) holds
for L(t) = 0.25, F(t) = 0.1, t € [0,1], and M = 0.25. Moreover, we can choose

Gf () =09,Gf () =1, Gr(t)=2,G5(t)=3,

Hy(t) =09, Hy (t) = -1, H (t) = -2, Hf () = -3, t € [0,1).

Finally, from
2.01(A ~ DK + A [-2.01(2 - ¢) - (2.01)% +sin(p — 0.2)] <0

and

—2.01(A = 1)K + X [-(-2.01)(2 - t) ~ (—=2.01)%¢ + sin(p — 02)] >0
for A, ¢ € [0, 1] and each p we conclude that (C) holds for Q; = —2.01 and Q, = 2.01.
Thus the problem considered has a C2[0, 1]-solution by Theorem 5.1.

Example 6.2. Consider the boundary value problem
o —4-50Q - t)e" —tz"° =0, te[0,1],
2(0) = [z*(0) + 2*(0) + 22(1) + (1) + 1Y, (1) = sin? 2 (1),
For L=1and F = -1 (A;) and (A3) hold. Moreover, we can choose
L) =21, Lf(t) =2.2, F{ (t) = -1.1, F; () = ~1.2,
Ly() =11, Ly (t) = 1.2, Fif (1) = -2.1, Fff (t) = 2.2, t € [0, 1],

and K is sufficiently small; to say K = 10719, Tt is easy to see that fe=-50(2 -
t) — 5¢*t < 0 for t € [0,1] and each g. Thus (B) holds for L(t) =21, F(t) = -2.1,
t € [0,1] and, M = 3.1. Moreover, we can choose

G (t) =6.5, G} (t) = 6.6, Gy (t) = 10, G (¢) = 11,
Hy(t) =-6.5, Hy (t) = -6.6, H{ (t) = -10, H (t) = —11, t € [0,1].
Finally, from
10.01(A - 1K + A [p* — 4 - 50(2 — £)10.01 ~ (10.01)%] < 0
and
~10.01(A = 1)K + A [p® — 4 - 50(2 — t)(-10.01) — (=10.01)%¢] >0
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for A,t € [0,1] and p € [-3.11,3.11] we conclude that (C) holds for L(t) = 2.11,
F(t) =—-211,t € [0,1], @ = 3.11, Q; = —10.01 and Q> = 10.01; ¢ = 0.01. Thus
the problem considered has a C2[0, 1}-solution by Theorem 5.3.
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GALERKIN SPECTRAL METHOD FOR HIGHER-ORDER
BOUNDARY VALUE PROBLEMS ARISING
IN THERMAL CONVECTION

N. PAPANICOLAOU AND C. 1. CHRISTOV

In the present work we develop a Galerkin spectral technique for solving coupled higher-
order boundary value problems arising in continuum mechanics. The set of the so-called
beam functions are used as a basis together with the harmonic functions. As featuring
examples we solve two fourth-order boundary value problems related to the convective
flow of viscous liquid in a vertical slot and a coupled convective problem. We show
that the rate of convergence of the series is fifth-order algebraic both for linear and
nonlinear problems of fourth order. The coupled problem exhibits fourth- and fifth-
order convergence for the different unknown functions. Though algebraic, the fourth
order rate of convergence is fully adequate for the generic problems under consideration,
which makes the new technique a useful tool in numerical approaches to convective
problems.

Keywords: spectral methods, beam functions, natural convection

MSC 2000: 37L65, 74825, 76M22, 76E06, 7T6R10

1. INTRODUCTION

Fourth-order boundary value problems are the standard model in continuum
mechanics arising both in elasticity and in viscous liquid dynamics. The simplified
1D models are respectively the beam equations and Poiseuille flow. The method
developed here can be applied to both elasticity and fluid dynamics. For the sake
of definiteness we will focus our attention on thermal convection in a vertical slot,
which is a generalization of the Poiseuille flow.
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There is a compelling need to develop fast spectral methods that will lead
to more efficient algorithms. Such algorithms would allow a rapid interrogation
of parameter space in order to discover and understand mechanisms of flow and
instability. The performance of a spectral method depends heavily on the type
of the basis system. Naturally, a basis system of functions which does not satisfy
all of the boundary conditions, such as Fourier functions, would exhibit very poor
convergence near the boundaries, where the solution is supposed to satisfy four
boundary conditions. An elucidating discussion on the performance of different set
of functions can be found in the encyclopedic book of Boyd [2]. In the present work
we embark on developing spectral techniques involving the so-called beam functions
introduced first by Lord Rayleigh, see [10]. Along these lines we will investigate
also in a future work the performance of Galerkin techniques with a basis derived
from Chebyshev polynomials — something that goes, however, beyond the scope
of the present work.

The application of the beam-Galerkin method to Poiseuille flow is at present
well developed, see [9, 4]. We go a step further here and consider the generic bound-
ary value problem for convective flows of viscous liquids. These are rather complex
ones, hence geometrically simplified situations are considered in order to identify
the physical mechanisms, e.g. straight ducts and/or slots. These mechanisms are
often operative in more complicated situations. Even for the simplest geometries
with plane parallel flows, the mathematical models are represented by higher-order
boundary value problems in one and two dimensions and analytical solutions are
not available. In the same time the parametric space of physical interest and signif-
icance is enormous (4-5 dimensionless parameters to vary). The Rayleigh number
and modulation frequency can take on very high values, signaling the occurrence
of boundary or internal layers of steep profiles of the field variables. This makes
the development of effective numerical approaches a must.

2. THERMAL CONVECTION IN A VERTICAL SLOT

Consider the 2D flow in a vertical slot with a linear vertical temperature gradi-
ent, differentially heated walls, and subject to modulation of gravity in the vertical
direction. The problem definition is well-described in the literature (refer to (1, 6]
and Fig. 1 for a definition sketch), and the notation we use is standard:

* * L2
z:%—l, y=-:l-/E, w—w‘?
’lﬂ* T
tzt*W*i ¢=77 0=3T+$ TBY,

where v is the kinematic viscosity, & — the thermal diffusivity, 2L — the width
of the slot, and 0T — the horizontal temperature difference. The asterisk denotes
dimensional variables, while the same notation without an asterisk stands for the
respective dimensionless quantity. Note that the field 6(z,y,t) is the departure
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from the linear vertical and horizontal stratification. Hence one can seek solutions
which are pericgdic in the vertical dimension.
The dimensionless boundary value problem under consideration reads

1/ 8AY a_;gamp_ggam
F;(w ot * 0y 0z Oz 8y)

= —Ra (% - 1) [1 + & cos(t)] +A%Y,

50 (0w00 Owae\ & 5
Rl (¢__£_)=—£+735%+A0 @)

ot " \dydzr Ozdy

1

v/

g = gol1 + cos(wt)]

MMM
as

S

9} x

z=-1 T
(z* =0) (a*

Fig. 1. Flow geometry

with boundary conditions

w:%%:ﬂzo for ===, 3)

and periodic conditions in vertical direction

P(z,0, t) = Y(z, H, t),
Py(2,0,t) = Wy(z, H, 1),
"l’yy(xa 0,1) wyy(x) H,t), (4)
Pyyy(2,0,1) Pyyy(z, H, t),
6(z,0,t) 6(z, H,1),
6,(z,0,t) = 8,(z, H,t),
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where H = H*/L = 2r/a is the dimensionless height of the vertical box: equiva-
lently, a is the dimensionless vertical wave number of the periodic solutions.

The Rayleigh number Ra, the Prandtl number Pr, and stratifications param-
eter, v, are defined as:

oTL?
Ra = PgodTL” , Pr= L4 , 4v* =7pRa,
VK K

where (3 is the coefficient of thermal expansion of the liquid, go — the mean gravity,
¢ — the dimensionless amplitude of gravity modulations, w — the dimensionless
frequency, and 7p is the dimensionless vertical temperature gradient. Using a
difference approximation and an operator splitting, the 2D flow is investigated
numerically in [5]. We focus our attention on the 1D case for the purposes of
developing the new numerical technique.

Under the selected boundary conditions the problem also admits a plane--
parallel solution of the form ¥(z, ), ©(z, t) for which the governing system reduces
to the following:

w 8% 80 o'y
Protoe —Ra [1 + E] [1+ecos(?)] + 571 (5)
0 _ o, g0 ;
“ot T Por T a2’ (©)

with the same boundary conditions (3).

The 1D flow was first treated in [6], where different régimes of flow were studied.
The parametric bifurcation of the 1D solutions was studied in detail in [5] by means
of a fully implicit difference scheme and a related 1D problem in [12].

A way out of these difficulties is to use spectral decomposition with respect
to complete orthonormal (CON) systems in z-direction. The performance of a
spectral method depends heavily on the type of the basis system of functions. The
scope of this paper is to implement these ideas for the one-dimensional in space
and time-dependent problem (5), (6), (3).

In order to assess the approximation, convergence rate and truncation error,
it is enough to consider a model ODE which contains all of the different terms of
the time dependent system. A simplified first step is to consider just one ODE of
fourth order and to compile the rest of the technique.

To this end we consider the following three boundary value problems (b.v.p.):

1. B.v.p. containing both fourth and second-order derivatives:

d4 d2’U, / !
Ttimtu=l w-D=ul)=0, v(-D=vl)=0, (7)

which possesses an analytical solution:

2cosz[cosl +sinl] — 2zsinlsinz ®)

ue)=1- 2 +sin2
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2. A nonlinear version of the above b.v.p.:

: dtu _d*u _ 2
E+2W+u—1—100u (ZII), (9)
u(-1)=u() =0, u'(-1)=4'(1)=0,

where the large coefficient 100, multiplying the nonlinear term, is selected for
the sake of making the nonlinearity more appreciable.

3. The higher-order coupled b.v.p. for an ODE system, which retains all of
the important terms in the full-fledged unsteady problem for the thermal
convection in a vertical slot:

9 _p 1, 9], L0
dzt dz Pr 8z2’ (10)
dv  d?0

@—-EE—-J;{, \I’—‘I’z—@—~0, for = =+l1.

We find the above system generically representative of the problem under con-
sideration, because it retains the second spatial derivatives. In a sense, it can be
considered as a simplification of an Euler time-stepping scheme with time increment
equal to one. :

3. THE SPECTRAL TECHNIQUE

The expansion in & direction is nontrivial because of the higher-order boundary
value problem for the stream function. The right CON system for a fourth-order
problem was introduced by Lord Rayleigh for the problem of vibration of elastic
beams. For the specific boundary conditions arising in viscous liquid dynamics the
system and its completeness were discussed in [3]. The product formulas as well
as the expansion formulas for the derivatives of different orders were derived in a
preceding authors work [4). The product formula is essential for the application to
a nonlinear problem.

3.1. BEAM FUNCTIONS

Consider the Sturm-Liouville problem .
4 d
%y—’j:A%, u=d—’;=o, for z=:%1. (11)

The nontrivial solutions (eigen-functions) of this problem are given by

1 [sinh)\mz‘ sin)\mw}

cotanh A, — cotan A, =0,  (12)

Sm = V2 | sinh Ay T sin A
1 [coshkmz COSKEMT

= ——— _— , t h t = O . 13

m =/ [ coshky,  COSkKm ] anh fim -+ tan fm (13)
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These functions have been introduced by Lord Rayleigh to solve problems arising '
in beam theory and they are sometimes called beam functions. A major step in the &
advancement of the application of the beam functions to fluid-dynamics problems
was made by Poots [9]. The magnitudes of the different eigenvalues can be found §
in most of the above cited works from the literature.

Chandrasekhar [3] derived their counterparts for problems with cylindrical
symmetry. For applications to stability problems, see also [7, 11].

The expressions for developing the nonlinear terms into series with respect to §
the system appeared simultaneously in [8] and [4] though in different form. We }
stick here to the notations of {4] as more explicit and easier to verify.

3.2. EXPANSIONS FOR THE DERIVATIVES

The different derivatives can be expressed in series with respect to the system
as follows:

ad 4K2 N2

€= Gnmdm,  Gnm = RO (14) ]

m=1 .

oo k-

4Kk2 22 ~

ro_ = = = mn 3

Sp = mz=1 QCnmCm Qnm "’9"1411 T Xy‘; y (15) ]

00 o

CZ. = E BrmCm, s:: = Z nmSm, (16) E
m=1 m=1

14'_&2;53112_ (km tanh K, — Kptanh k), m#n, | 4

Brm = § Km — &n (17)

kn tanh K, — (K, tanh nn)2 , m=n, ]

_ AN (), cotanh Ap — A cotanh M), m £,

Brm = ’\n - ’\m (18) E

An cotanh A, — (A, cotanh /\,,,)2 , m=n,
> 4323 !
= Z domSm,  Onm = — o tanh £, cotanh A, (19)

— -4+ M

= - - 4k3 23 4

s = Z dnmCm » dpm = ﬁ tanh k., cotanh A,,. (20)
m n

3.3. PRODUCTS OF BEAM FUNCTIONS

The most important for the present work are the product formulae
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’

cn(@)em (T} = Z h™er(x), V2hE™ = V2 / en(z)em (z)ck(z)dz
o -1

_ —(km + &i)(tanh km + tanh ki) — Kn tanh ka
(km + K&)% — KZ
—(Km — &x)(tanh K, — tanh Ki) + kn tanh &n
—(Km — kk)? + K2
—(Km + ki) (tanh £m + tanh k) + &n tanh kn
" (o + R8)? + 2
—(#m — Ki)(tanh K, — tanh ki) + Kn tanh kn
(km — KK)? + K5
—(Kn + ki )(tanh K, + tanh ki) + £m tanh km
(Kn + Kk)% + K2,
—(kn — & )(tanh kn — tanh ki) + Km tanh &m
(Kn — Ki)? + K2,
4 —(Kn + Km)(tanh K, + tanh nm) + ki tanh K¢
(Kfn + Km)2 + K'k
—(Kn — Km)(tanh kn — tanh k) + K& tanh nk
(Kn — Km)? + K2

+

+

00 0o 1
Sntm = 3 JE™8ks SnSm = Zf,’,‘,kck, V2fpm = \/5/ 8nCmSkdT
k=1 -1

(/\n + /\k)(coth An + coth Ap) — £m tanh £m

(M + An)? — K2,
+ —(Ak = An)(coth Ax — coth A,) + km tanh £m
Ak — An)? — K2,

—()\k + Km)(coth A + tanh £m) + An coth A,
Ak + £m)? + 22
—()\k — Km)(coth A\x — tanh Km) + An coth An
(Ax — km)? + AZ
+ —(An + £m)(coth A, + tanh Km) + Ak coth Ag
(An + km)2 + X%
—()\ — Km)(coth A, — tanh km) + Ak coth A
(On — Km)?2 + X
—()\ + Ax){coth A, + coth ) + Km tanh &m
(M + An)? + 62,
()\k — An)(coth A, — coth Ag) + Km b tanh K
(/\k - A )2 + I€2 )

(21)

(22)
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The most obvious test to verify the correctness and consistency of the above
derived formulas for the products is to take the product of some two particular
functions ¢, and ¢, and to compare pointwise the products cpcm and spe, with
their Galerkin expansions into ¢; and sg, respectively. For the products of even
functions this comparison is shown in Fig. 2.

0-001 T T l I T T 7T
0.0001 [~
16-05 N
10-06
1e-07
1e-08 [
1e-09
1e-10 |-
fe-11 | ot : :
1e-12 i 1 j T 1 1 I i L1 i
20 30 40 5060 80 100 200 300 500 700 1000

2600/x*5 — |

Fig. 2. The convergence of the series for the product cgca. Solid line: h3; dashed line: the best
fit curve h%3 = 26005

Our numerical experiments with different products of beam functions invari-
ably led us to the fifth-order convergence :

[ ~ f(m,n)k™5,  RP™ ~ h(m,n)k5.

Thus a conjecture is in order that the fifth order of convergence of the series for a 1
quadratic nonlinear term is a general property of the system of beam functions.

3.4. EXPANSION OF UNITY

We also expanded the unity into a ¢, series as follows:

Kk

00 1
2
1= thck(z), hy = / ek (z)dr = M-t—arl}ﬂ. (23)
k=1 1

The convergence of this expansion is algebraic of first order. This is due to the
fact that the unity does not satisfy the boundary conditions for the beam functions j
and as a result a strong Gibbs effect is observed near the boundaries. 4
Yet the overall rate of convergence of the method is fifth-order algebraic, be- §
cause in the left-hand side of the problems under consideration the fourth power of
the respective eigen-value appears as a multiplier.
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3.5. BEAM-FUNCTION SERIES AND TRIGONOMETRIC SERIES
13

For the convective problem under consideration the difficulties arise from the
fact that the boundary value problem for temperature function is of second order,
which means that the system of beam functions is not suitable for expanding
the temperature field. It is clear that the best suited to the task system are
the trigonometric sines and cosines. Hence we need to develop expressions for
expanding the beam functions into trigonometric functions and vice versa:

o0
. 2v 2l (Ap)? (—1)
sinlnz = Za,ksk(z’), O = \/_14 (4 k)/\(4 ) , (24)
k=1 ™= A
00
2v2k3 (—=1)"* tanh &
coslmr = ZXlkck(w)a Xik = kl(4 4) 1 b 3 (25)
pot T — K
o0
. . 2v2k3 (~1)*' tanh &
cn() =) Xmcoslnz,  Xn = v2 ”l(4 4) —, (26)
po mt— k4
. . . 2v2m(\p)? (1)
sn(z) = zanl sin lmz, Ol = \/_14 (4 ")/\(4 ) . (27)
=1 - n

Once again we point out that the convergence when expanding cos(lmwzx) into
ci series is first order k~! (see (25)) due to the fact that it does not satisfy both
b.c. for the beam functions. It satisfies the condition on the derivatives but fails
to satisfy the conditions on the function itself. Clearly, the situation with the
sin(lwz) is better and the rate of convergence is of second order k=2 (see (24)),
because the sine functions satisfy the boundary conditions on the functions and
the disagreement is more subtle since the conditions on the first derivative are
not satisfied. The situation with the expansions of s, and ¢; in Fourier series is
reversed. The order of convergence for ¢ is =% (see (26)), and for s, is I3 (see
(27)). As it will be shown in what follows, this property is of crucial importance
for the overall rate of convergence.

4. THE GALERKIN METHOD

In this section we present the numerical tests and verifications of the Galerkin
technique using as featuring examples the three boundary value problems outlined
in Section 2.

4.1. SOLVING THE MODEL FOURTH-ORDER PROBLEM

We solve (7) numerically using the developed here beam-Galerkin expansion
with respect to the complete orthonormal (CON) system of functions ¢, (), sn(z).
Because of the nature of the boundary conditions, we can constrain ourselves to

.
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the subset of even functions ¢, (a fact verified also by the analytic solution) anq
expand the sought function into series with respect to c, (z):

N
u(zx) = Z bpen(z). (28) :
1

Making use of the above compiled formulas we obtain for the coefficients b, ‘
the following linear algebraic system of N equations with N unknowns:

N
2v/2tanh ; ]
(1+£)bi +2) by = _— 1
=1 R (29) ¢
i=1,...,N, '
with B;; defined in (17).
The last system is solved by means of LAPACK routine dgesv.

We found that the coefficients &; decay with the number of the term i as 175,
which is clearly seen in Fig. 3. i

b 0.001
0.0001
1e-05
1e-06 |-
1e-07 +-
1e-08
1e-09
1e-10
le-11
1e-12 -
1e-13 i 1 L 1

1 2 3 4 5678910 20 30 40 5060 80100

I 1 y SR W R T |

Fig. 3. Convergence of the beam-Galerkin series for the model equation (7). Solid line: b;;
dashed line: the best fit curve b; = 0.00234-5

The obtained spectral solution is compared to the analytical one and the overall “_
truncation error is estimated. As it is to be expected for a series with fifth-order
algebraic convergence, the truncation error for N = 100 is of order of 0(10719),

4.2. THE NONLINEAR MODEL PROBLEM

The nonlinear problem (9) results into the following nonlinear algebraic system:

N N N
2v/2 tanh &;
4 — d m
(1+n,-)bi+2§. bibij = =" =100 3~ 3" bubuhP", .
j=1 * m=1n=1 (3)
i=1,...,N,
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where h"™ is defined in formula (21). We solve the latter with semi-implicit method
and iterations.

The results about the convergence of the spectral solution are shown in Fig. 4.
The convergence is once again algebraic of fifth order.

001 [
oooor b S e ]
ros | — | ]
1608 | » j = : 1

1e-10 + ; (S . TR T o

1e-12 i i i i i ! ; 1 [ |
1 2 3 4 5678 10 20 30 40 5060 80 100

Fig. 4. Rate of convergence for the solution of the nonlinear equation. Solid line: b;; dashed line:
b; = 0.01775

4.3. THE COUPLED SYSTEM

In this case we consider the coupled system of one fourth-order equation for ¢
and one second-order equation for § (10). Because of the obvious symmetry of the
boundary value problem under consideration, we can seek a solution in which the
stream function is even and the temperature is an odd function. Acknowledging
the symmetry of the problem, we develop the sought function into the series

K K
U(z,t) =Y _mei(z), Oz,t)= > di sin(krz). (31)
k=1 k=1

Upon introducing these expansions into (5), (6) and making use of the above
compiled formulae, an algebraic system for the coefficients dj, and py is derived:

1 N
~ KPi + B > pibij
j=1

= —Ra ﬁl: d mn2v/2(—1)"1k3 tanh k; 2v/2tanh x; (#2)
= m m4ﬂ-4 — K/é K’i ’
1= 1, v ,N,
N N
8v2k2 K2 Im(-1)"
1+ 222)d, = v
( +l T )dl TBT;;I)" (K% _ K/}n)(l‘lﬂ"i —_ K';in) ’ (33)
l=1,...,N.
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The results for the coefficients p; and d; are presented in Fig. 5. The peculiay g
finding is that the rate of convergence for O is algebraic of fifth order, while the |
rate for ¥ is one order lower (fourth-order). The analytical explanation of thig 3
phenomena will be the object of a separate study. Here it will suffice to mention |
that the off-diagonal elements in (32) can degrade the rate of convergence, while in 4
the equation (33) for © no off-diagonal elements are present and the convergence }
is of fifth order as in the previous examples.

1000 [ T T T T T T T T T T L T T LI
100 | "3 ~ q
10 | Ty ey : ; : B
1 b T T . - ; -
0.1 | e S e : : - d]
0.01 - I . . . . R 4 .
0.001 - ‘L I S H . i ——— —
0.0001 | - b [ S
1e-05 . R 4 N R . Coa H, : . .
1e-06 : : Lo <

16-07 Il TR NN SO TR S A B { n I [

2 3 45678 10 20 30 405060 80100 200

Solid line: p;; Dashed line: p; = 350:—4

0.01 R+ : s ]
0.0001 |- \\7‘\__\_;7;\ . o i : 1
1006 f - - - - . : : ol . 4
1e-08 '

1e-10

1e-12 + SR . : I . e ‘ .
1e_14 1 1 g 1 L1 i i 1 1 1 1 1 L ]

1 2 3 4567810 20 30 405060 80100 200

T
A

Solid line: d;; Dashed line: d; = 0.03:~5
Fig. 5. The rate of convergence for the coupled system for Ra = 6000, Pr = 1 and 75 = 0.001.

The upper panel shows the spectral coefficient for the function Psi; the lower panel shows ©

The fourth order for the rate of convergence means that a number of terms
N =100 is fully adequate to obtain results with a very high precision 108.

5. CONCLUSIONS

In the present work a new Galerkin technique is developed for coupled thermo-
convective flows in a vertical slot. The well-known beam functions are used as basis
set together with the trigonometric functions. The formulas for the cross expansion
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of the two systems are not available from the literature and are derived here. The
construction of the numerical algorithms is also presented.

Three generic model problems are considered. The spectral solutions exhibit a

gfth-order algebraic convergence except for the case of the coupled system pertinent
to the convection in a vertical slot, where the rate is of fourth order for one of the
functions. The fourth or fifth order means that although algebraic, the convergence
is fast enough for all practical purposes. The theoretical and numerical findings are
illustrated graphically.
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1. INTRODUCTION

For many problems in the Geometry of Banach spaces and Nonlinear analysis in
Banach spaces, the existence of bump functions with prescribed order of smoothness
or with derivatives sharing properties of Holder’s type is of essential importance.

As a Frechet smooth norm immediately produces a bump function of the same
smoothness, all negative results about bump functions are negative results about
the smoothness in the class of all equivalent norms.

The question of finding an upper bound of the order of Frechet differentiability
of bump functions in arbitrary Orlicz space is solved in [10]. Recently, in [11] Ruiz
has proved that for a given Orlicz function M all weighted Orlicz sequence spaces
r(w), generated by weight sequence w = {w;}32,, verifying the condition

o0
kllf& wj, =0, ;wjk =0, (1)

1 Partially supported by the National Fund for Scientific Research of the Bulgarian Ministry
of Education and Science, Contract N808/98.
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for some subsequence {wj. }22,, are mutually isomorphic. This result raises the
question whether the best possible w;-Hélder properties of the first derivatives of
bump functions in £/(w) depend on the sequence w = {w;}$2,, verifying (1).

For the proof of the main result we shall need an estimate from below of the
modulus of smoothness in weighted Orlicz sequence space £p(w). Maleev and
Troyanski [9] have found an upper estimate for the modulus of smoothness of an
arbitrary Orlicz space. Figiel in [3] has shown that this estimate is exact up to
equivalent renorming in Orlicz spaces. Using the method of Figiel, we will show
in Section 4, Lemma 1, that the estimates found in [9] are exact up to equivalent
renorming also in weighted Orlicz sequence space.

2. PRELIMINARY RESULTS

We denote by X a Banach space, X* its dual one, Sx the unit shpere in X, N
the naturals, and R the reals. Everywhere differentiabilily is understood as Frechet
differentiabilily.

An Orlicz function M is an even, continuous, convex and monotone in [0, o)
function with M(0) = 0, M(t) > 0 for any ¢ # 0. The Orlicz function M is said
to have the property A, if there exists a constant C such that M (2¢) < CM(¢) for
every t € [0, 00).

To every Orlicz function M the following numbers are associated:

oS =sup{p: sup MOM)/(MN?) < oo},
0<A, £<1

op =sup{p: sup MA}P/M(\) < o},
1<), t<o0

oy =min {ad;,a$3} (see, e.g., [5], p. 143, and (6], p. 382).

Let (S, X, 1) be a positive measure space. The Orlicz space Lps(p) is defined
as the set of all equivalence classes of u-measurable scalar functions z on S such
that

H(z/3) = [ M@0/ du(t) < oo
s
for some A > 0, equipped with the Luxemburg’s norm
||a:||=inf{)\>0 : M(z/)) 51}. (2)

For 5 =Nand w = {w;}, = {u(j)}32, we get the weighted Orlicz sequence
spaces £a7(w). In this case we have z = {z; 121 € Lar(w) iff there exists A > 0:

M(z/)\) = i w; M(z;/A) < oo.

Clearly, the unit vector sequence is an unconditional basis in £, (w). When w; =1
for each j € N, we obtain the usual Orlicz sequence space and denote it by €
instead of £3s(w).
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Let w = {w;}32, be a sequence and w; > 0 for every j € N. By w € A we
mean that there exists a subsequence {w;, }32,, verifying conditions (1).
We call modulus of smoothness of X the function

px(7) = 2supla + 7yl +llo 7yl =2 s 3y € Sx), T >0

We introduce the following function necessary for the estimation of p(¢,, (w),-|) ()
with respect to an appropriate equivalent norm | - | in £p (w):

M (uv)
_ .2
Gu(r) =71°sup {u2M(U)
The function f : X — R is said to be differentiable at z € X if there exists
2% € X* such that

tu € [rn,1], v>0}, T € (0,1].

fz +ty) = f(z) +tz;(y) + (2,9, 1), 3)
where th_r)% t~1sup{r(z,y,t) : y € Sx} = 0. The functional 27 is called derivative

of f at z and is denoted by f'(z).

In the applications often are considered functions, which are not only differen-
tiable, but their derivatives share properties of Holder’s type.

By Q we denote the class of all functions w : RY — R* such that w(t) = o(t)
and wi(t) = w(t)/t is a nondecreasing function, satisfying the condition wj (At) €
Awi (t) for every A > 1.

We say that f : X — R is locally H¥-smooth in the open subset V C X if f is
continuously differentiable in V and for every = € V' there exist d =4(z) >0 and
A = A(z) > 0 such that

1) - £/ < Aunlly — =1 = 422D @
for every y,z € B(z;8) C V (see [1]).

If there exists A > 0 such that (4) is fulfilled for arbitrary y,z € V, the
function f is called H“-smooth in V. The class of all H “_smooth (locally
H“-smooth) functions in V is denoted by H* (V) (LH“(V)), respectively.

We say that b: X — R is a bump function iff suppb = {z € X; b(z) # ol is
a bounded non empty set.

It is easy to observe that if there exists H*(X) (LH*(X )) — a smooth equiv-
alent norm, then there exists H*(X) (LH“(X)) — a smooth bump (see, e.g., [2],
p. 9). The converse is not true. Haydon [4] gives an example of a space with
C>_smooth bump, which has not even a Gateaux differentiable equivalent norm.

3. MAIN RESULT

Theorem 1. Let X = £p(w), where M is an Orlicz function, satisfying the
A,-condition at 0 and at 0o, apy € (1,2), w € A andw € Q. Ifb is an LH“ -smooth
bump function in £y (w), then

Gu () = O(w(T))-
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4. MODULUS OF SMOOTHNESS OF WEIGHTED ORLICZ SPACES

In the proof of the next Lemma 1 we shall use the following result:

Proposition 1 ([3], [6]). There exists a positive absolute constant L such that
px(0)/o? < Lpx(r)/7%, whenever 0 < 7 < o.

Lemma 1. Let X = € (w), where M is an Orlicz function, satisfying the
As-condition, and w € A. Then for every equivalent norm |- | on X there ezists q
constant K = K|| > 0 such that

Px1p(T) 2 KGu(1),  7€(0,1].
Proof. We can assume WLOG that |z| < ||z]| < blz| for every z € X, where ||-||
is the Luxemburg norm (2). As the norm |-| is fixed, we can denote p(T) = p(x,.y (1)

and we shall denote the subsequence {w;, }¢2, fulfilling (1) again by {w;}52, just
for simplicity.

n
Observe first that from the equivalence of the norms it follows that > o(zi)) <
. i=1

n 3
1, provided } p(||z;]|]) < 1. Hence by Lindenstrauss’ theorem (in the Figiel’s form
i=1 i

n
(3]) there exist signs €; = +1,i = 1,...,n,sothat [} e;xilg 1+ /3, which gives
i=1
us that

< (1+V3)b=4, (5)

n
PILEE
=1

n
whenever Y~ p(]|z;]|) < 1.
i=1

For every given 7 € (0,1], u € [r,1], v € (0, 0) we put n = [1/p(w)], ¢ = uw,
where by [a] we denote the largest integer not greater than a.
For every v we can choose a sequence of integers {me}2:

1 "‘Z’“‘i‘ 1
T < Wy < ——,
2M (v) Pl M(v)
because w € A. Let zx € X, k=1,...,n, be disjointly supported vectors such that
Mp41
Iy =c Z ej,
J=mg+1

where {e;}$2, is the unit vector basis in X. Obviously,

1= S wM/lel) = Mlefleel) S wy < M/l
st st M(v)

n
So we obtain that ||z|| < u, which yields the inequalities 3 p([|z:]|) < np(u) < 1.
i=1
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Using (5), we obtain immediately the inequalities

n ME41 n MEe41
1
1> kz ._Z w;M(c/d) = M(c/d) Z ._Z wj > M(c/d)n-ZM—(v)--
=1 j=mr+1 k=1 j=m+1
Hence
M(c/d) _ 2 2
M) ~nSihFis 4p(u)

Since ¢ = wwv, then there exists a constant a, depending only on d and the
A,-condition, such that M (uv) < aM(c/d). Finally, we obtain

M (uv) M(c/d)
< < .
To finish the proof, we need only to apply (6) and Proposition 1. Indeed,
M {uv)

u) p(T)
Gu(r) =1  sup <7* sup 4a£ < 72 4al P~
") u€lr,1],v>0 uZM (v) ug([r,1},v>0 u? ~ 72

Combining the result in [9] with Lemma 1, we find that the estimate of the
modulus of smoothness in weighted Orlicz sequence spaces is exact up to an equiv-
alent renorming.

5. PROOF OF THE MAIN RESULT

In the proof of Theorem 1 we shall need a variant of known theorems (see, €.g.,
[2], p- 199). As the proofs are literally the same, we shall omit them.

Theorem 2 (see, e.g., [2], 5.3.1). Assume that a Banach space X D co.
Suppose that X admits a bump function b(z) € LH¥(X). Then X admits a bump

function f(z) € H*(X).

Theorem 3 (see, e.g., [2], 5.3.2). Assume that a Banach space admits a bump
function b(z) € H(X). Then X admits an equivalent norm |-]€ H¥(Sx).

Now we are ready to prove Theorem 1.

Proof of Theorem 1. Let f be an LH“-smooth bump function in X =
£3(w). Since there is no isomorphic copy of ¢ in X, then according to Theorem
9 there is a H¥-smooth bump function in X. According to Theorem 3, there is an

equivalent H(Sx)-smooth norm Il - Il such that
px, i) < Kw(t), t20, K>0. %

On the other hand, we have just proved that the best order of the modulus of
smoothness of any equivalent renorming of X is G Mm(t), ie.

px, () = cGu(®), = ey > 0 (8)
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for every equivalent norm || - ||| in X. Combining (7) and (8), we obtain

Gu(t) < %w(t).

Remark. If ap = 2 and M, satisfying the condition
sup{M (uv) /u*™ M (v) : u,v € (0,00)} < o0,

is solved in [8].

Remark. If M ~ t2, then there exists an equivalent, infinitly many times

Frechet differentiable norm, and it is seen right away that G (7) = 72, so there is
nothing to be proved.
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1. INTRODUCTION

One of the most important properties of a hypersurface of an almost Hermitian
manifold is the existence on a such hypersurface of an almost contact metric
structure, determined in a natural way. As it seems, this is the reason for the
great importance of the almost Hermitian manifolds in differential geometry and
in the modern theoretical physics. This structure has been studied mainly in the

case of Kihlerian [1, 2] and quasi-Kéhlerian (3, 4] manifolds. In the case when the

embedding manifold is Hermitian, however, comparatively little is known about the
geometry of its hypersurfaces. In the present work a certain result is obtained in
this direction by using the Cartan structure equations of such hypersurfaces.

Let O = R8 be the Cayley algebra. As it is well-known [5], two non-isomorphic
3-vector cross products are defined on it by means of the relations

P(X,Y,2)=-XT2)+(X,V)Z +(Y,2)X - (Z,X)Y,

91



Py(X,Y,2) = —(XV)Z + (X,Y)Z + (Y, 2)X — (Z,X)Y,

where X,Y,Z € O, (-,-) is the scalar product in O and X — X is the conjugation
operator. Moreover, any other 3-vector cross product in the octave algebra is
isomorphic to one of the above-mentioned two.

If M8 C O is a six-dimensional oriented submanifold, then the induced almost
Hermitian structure {J,, g = {-,)} is determined by the relation

Ja(X)ZPa(X,Cl,ez), a=1,2,

where {e1,e2} is an arbitrary orthonormal basis of the normal space of M® at a
point p, X € Tp(M¢®) [5]. The submanifold M® C O is called Hermitian if the
almost Hermitian structure induced on it is integrable. The point p € M® is called
general [6] if

eo ¢ Tp(M®) and T,(M®) C L(eo)t,
where eg is the unit of Cayley algebra and L(eg)* is its orthogonal supplement.
A submanifold M® C O, consisting only of general points, is called a general-type

submanifold [6]. In what follows, all submanifolds M® that will be considered are
assumed to be of general type.

2. COSYMPLECTIC HYPERSURFACES OF HERMITIAN M% c O

Let N be an oriented hypersurface of a Hermitian M® C O and let ¢ be the
second fundamental form of the immersion of N into M. As it is well-known (2, 4],
the almost Hermitian structure on M® induces an almost contact metric structure
on N. We recall [3, 4] that an almost contact metric structure on the manifold N
is defined by the system {®,&,7, g} of tensor fields on this manifold, where £ is a
vector, 77 is a covector, ® is a tensor of a type (1,1), and ¢ is a Riemannian metric
on N such that

nE) =1, @=0, nod=0, & =-id+{®,
(@X,8Y) =(X,Y) =n(X)n(Y), X,¥Y eR(N).
The almost contact metric structure is called cosymplectic [4] if
Vn=V®=0.

(Here V is the Riemannian connection of the metric g.) The first group of the
Cartan structure equations of a hypersurface of a Hermitian manifold looks as
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follows {8]:
dw® = wf AW’ + B w° Aws

. 1 .
+ (\@Basb + w,‘,‘) WAw+ (~———B°"’3 + w“b> wp A\ w,

V2
dws = — W Awp + Bap‘we A Wb
b ;b 1 3 _ . b )
+ (\/iBas - wa) wp Nw + (—7_§Bab - wab) w’ Aw,

dw = (\/EB“,, — V2B3® - 2iag) W A we
+ (B3 +ios) w A W + ((B%3 — i05) w Aws.

Here the B’s are Kirichencko structure tensors of the Hermitian manifold [9];
abe=12a=a+31= +/—1. Taking into account that the first group of the
Cartan structure equations of the cosymplectic structure must look as follows [10]:

dw® = wg AW,
dwﬂ = ‘wz. A wp, (2)
dw =0,

we get the conditions whose simultaneous fulfilment is a criterion for the hypersur-
face N to be cosymplectic:

1
— —=B%; +i0} =0,

V2 (3)
4) B%, — V2By,® — 2i0f =0, 5) B3 —io3=0,

1) B®, =0, 2)V2B®;,+ioy =0, 3)

and the formulae, obtained by complex conjugation (no need to write them down
explicitly).
Now, let us analyze the obtained conditions. From (3)s it follows that

ab _];_Bab3.

U=T\/_2-

By alternating of this relation we have

0= [ab]:___i_B[ab} =____1:__ Ba.b _Bba =__’I:_Bab .
o B 2\/5( 3 3) ol

Therefore B3 = 0 and consequently @ = 0. From (3) we get that B>, = %a;}.
We substitute this value in (3)4. As a result we have

0';,1 = i\/éB;;ba.

93




Now, we use the relation for the Kirichenko structure tensors of six-dimensional
Hermitian submanifolds of Cayley algebra [9]:

1 1
B"‘ﬁ,, — Tieaﬂqu’ Baﬂ‘r = EeaﬁyD;W,

where

— T8 4 T _ — L8 7

Dﬂ—y = :ETII/Y + ZT#’Y’ DI‘V7 = D";jy\ = :i:T;;'; -— sz
Here T,:’} are the components of the configuration tensor (in Gray’s notation [1 1], or
the Euler curvature tensor (12]) of the Hermitian submanifold M® CO;a,8,7v, 1 =
L2,3B=p+3kj=1,..6¢= 7,8; e2Pn — eff';, Eapp = s}lgz are the
components of the third order Kronecker tensor [13].
From (3); we obtain

1 1
B¥e =06 ™Dy =06 —5e™Ds =0 Dy, =0,

V2

The similar reasoning can be applied to the above obtained condition Bobg = (:
1 1
B¥%3 =06 —="D 3 =0& D, = 0o D =0.
3 72 v3 72 33 33

So, D3. = D33 = 0 and hence
D3, = 0. (4)

From (3)5 we get
1
b — _.p3b _ . 3by _
03 =0,=—iB""3 = —i—¢ Dy3 =0.
V2

We have o4 = 0% = 936 = 04 = 0. We shall compute the rest of the components

of the second fundamental form using (3)s:

Tab

1
— 0(',’ = 1:\/53031, = i\/iﬁea:hD—yb — 1:60'30ch.

Then
o~ =iel¥p, = ie'32Dy; = —iDqy;
Op, = 1'% Dy = i€'2Dgy = —i Dy
o3 = €D,y = ie3lDy; = 1Dqq;
05y = €23 Dyy = e Dy = 1D1g;
o7 =05 = iD12, 05 =05, = iD?2;
o5 =T = —iDY og=75 = ~iD"
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We thus obtain that the matrix of the second fundamental form of the immersion
of the cosymplectic hyperspace N into M® C O looks as follows:

0 0 0 D2 —;pUu

0 0 0 iD*® —iD"v?
g = 0 0 033 0 0
—iD1p3 —iDyp O 0 0
tDi11 1Dgg 0 0 0

3. THE MAIN RESULT

As the hypersurface N is a totally geodesic submanifold of a Hermitian M% Cc O
precisely when the matrix ¢ vanishes, we can conclude that the conditions

D11 = D12 = D22 = .Dl1 = D12 = D22 = 033 = 0 (5)

are a criterion for N to be a totally geodesic submanifold of MS.

We recall that the almost Hermitian manifold satisfies the g-cosymplectic
hypersurfaces axiom if through every point of this manifold passes a totally geodesic
cosymplectic hypersurface. That is why for the Hermitian M% C O, satisfying the
g-cosymplectic hypersurfaces axiom, the equalities (5) hold for every point of M.
But we have proved previously [9, 14] that the matrix D of a six-dimensional
Hermitian submanifold of the octave algebra looks as follows:

Dy Dy D3 O 0 0
Doy Doy Doz O 0 0
D3y D33 D3z O 0 0
D= 0 0 0o D' p2 p3
0 o o D® D2 D=
0 0 0 D D¥® D%

If M satisfies the g-cosymplectic hypersurfaces axiom, this matrix D vanishes
as a consequence of (4) and (5). But the matrix D vanishes at every point of a
si%-dimensional almost Hermitian submanifold of Cayley algebra precisely when
the given submanifold is K&hlerian [9, 14-16]. Hence we have proved the following
Theorem.

Theorem. Every siz-dimensional Hermitian submanifold of a Cayley algebra,
satisfying the g-cosymplectic hypersurfaces aziom, is a Kdhlerian manifold.
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Let M be a compact Kihler manifold and G/K be a non-Hermitian Riemannian sym-
metric space of Hodge type. Certain harmonic maps f: M o T'\ G/K will be proved
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1. STATEMENT OF THE RESULTS

Let M be a compact Kéhler manifold and I' \ G/K be a local Riemannian
symmetric space of noncompact type. The results of Eells and Sampson from [7]
imply that whenever I' \ G/K is compact, any continuous map ¢ : M -+ T\G/K
is homotopic to a harmonic map f : M — I'\ G/K. Corlette has proved in [6]
that a continuous map ¢ : M — T'\ G/K has a unique harmonic representative
f: M — '\ G/K in its homotopy class if and only if the image ¢.m1 (M) of the
induced representation c, : w1 (M) — T has reductive real Zariski closure in G.
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The present article studies the harmonic maps f : M — T' \ G/K for which
there exist parabolic subgroups P C G€, complex homogeneous fibrations p :
G/GNP — G/K and holomorphic liftings Fp : M — T \ G/G N P, such that
f =1lpFp. For the compact discrete quotients I' \ G/K of the irreducible classical
Hermitian symmetric spaces G/K of noncompact type and dim¢ G/K > 3, Siu has
established in [14] that the harmonic maps f : M — T \ G/K of maximum con-
stant rankSdf = dimc dfS(T1OM) = dime G /K, Yz € M, are either holomorphic
or anti-holomorphic. Following Helgason’s classification [8] of the irreducible Rie-
mannian symmetric spaces G/K of noncompact type, we recall the other known
results for the harmonic maps f : M — T \ G/K of compact Kahler manifolds
M. Carlson and Toledo show in [4] that the nonconstant non-holomorphic (non-
anti-holomorphic) harmonic f : M — T'\ SU(n, 1)/S(U, x Uy) either map to a
closed geodesic f(M) or factor through a holomorphic map to a Riemann surface.
For a harmonic map f : M — I'\ SL(2n,R) /SO(2n) with n > 3 they establish

1
in [5] that rankSdf < n(L;-—) for z € M, and the equality is realized only by

the holomorphic maps of maximum constant rank onto an equivariantly embed-
ded discrete quotient of Sp(n,R)/U,. In [9] is proved that the harmonic maps

f: M- T\SL2n +1,R)/SO(2n + 1), n > 4, are of rankSdf < w +1 at

z € M. The equality is attained by the holomorphic f with f(M) =Tp\Gp/K}, for
a Hermitian symmetric (not necessarily equivariant) subspace G /Ky C SL(2n +
1,R)/SO(2n+1) or by a non-holomorphic f with F(M) =To\ (Sp(n,R)/U, x ™),
where Sp(n,R)/U, C SL(2n + 1,R)/SO(2n + 1) is an equivariant subspace and
T* ¢ SL(2n + 1,R) is a noncompact 1-dimensional torus, centralizing Sp(n, R).
Carlson and Toledo show in [5] that the harmonic maps f : M — P\SU*(2n)/Sp(n)

1)

with n > 3 have rankSdf < n_(22—__ at z € M, and the equality is attained by the

holomorphic f onto a discrete quotient of an equivariantly embedded SO*(2n)/U,,.
For the harmonic maps f : M — T \ SOy(n,1)/SO0(n), Carlson and Toledo ob-
tain in [4] that either f(M) is a closed geodesic or f factors through a holomor-
phic map to a Riemann surface. In (5] they establish that the harmonic maps
f M = '\ §00(2m,2n)/SO(2m) x SO(2n) with min(m,n) > 3, m+n > 6,
have rankSdf < mn, z € M , and the equality is attained by the holomorphic
f onto discrete quotients of equivariantly embedded SU(m,n) /S(Um x Uy,). For
the harmonic maps f; : M — T'\ SOy(2m + 1,2n)/SO(2m + 1) x SO(2n) or
fa: M - T\SOo(2m+1,2n+1)/S0(2m+1) x SO(2n+1) with min(m,n) > 5, the
work [9] shows that rankSdf; < mn+1, rankSdf; < mn+2 and the equalities are at-
tained by the holomorphic f; onto discrete quotients of (not necessarily equivariant)
Hermitian symmetric subspaces. In the case of f : M — '\ Sp(n,1)/Sp(n) x Sp(1)
with n > 3, Carlson and Toledo prove in [4] that either f (M) is a closed geodesic
or f factors through a holomorphic map to a Riemann surface or f has a holomor-
phic lifting F: M — T\ Sp(n,1)/Sp(n) x U;. In [5] Carlson and Toledo establish
that the harmonic f : M — T'\ Sp(m,n)/Sp(m) x Sp(n) with min(m,n) > 2 have
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rankSdf < mn and the equality is attained by the holomorphic f onto discrete
quotients of equivariantly embedded SU(m,n)/S(Um x Ur). Carlson and Hernan-
dez show in [3] that a harmonic f : M — T'\ Fy(_20)/SO(9) = T\ FII either maps
to a closed geodesic or factors through a holomorphic map to a Riemann surface,
or factors through a holomorphic map F : M — T \ SU(2,1)/S(U2 x U1) = S to
a discrete quotient S of a 2-ball, followed by a geodesic immersion S — '\ FIL

Let G be a noncompact simple real Lie group and P be a parabolic subgroup
of its complexification GC. A necessary condition for the existence of a fibration
G/GNP — G/K is the inclusion of GNP in K. First of all, that requires the
presence of a Cartan subalgebra h C g = LieG, contained in k := LieK. The
noncompact semisimple Lie groups G, whose Lie algebras admit common Cartan
subalgebras with the Lie algebras of the maximal compact subgroups K of G, are
said to be of Hodge type. According to Simpson [13] or Burstall and Rawnsley [2],
a noncompact semisimple Lie group G is of Hodge type exactly when the Cartan
involution of G is an inner automorphism. The isometry groups G of the irreducible
Hermitian symmetric spaces G/K of noncompact type are groups of Hodge type.
According to Simpson [13], the remaining noncompact simple Lie groups of Hodge
type are

SO(m,2n), Sp(m,n), Esz), Erz), Er(-s)
Es(sy, Es(-21), Faa), Fa—20, Ga(2)-

Let G, be the compact real form of G. For a simple Lie group G of Hodge type and a
parabolic subgroup P C G€ the inclusion GNP C K is equivalent to GNP = GNP
and happens exactly when G, N P is a subgroup of K.

Let us recall that GE/P = G./G. N P is a projective algebraic manifold when
P C GC is a parabolic subgroup. For G of Hodge type we claim that the orbit
G/GNP is an open subset of G /G.NP. If g =k@®p is the Cartan decomposition
of g, then the tangent space TRG/K at the origin 6 € G/K can be identified with p.
The exponential map Expg/ K. p — G/K at 3 € G/K is a global diffeomorphism,
due to the nonpositiveness of the sectional curvatures of G/K. Let Ea:p?‘/ K.
TRG./K = ip — G./K be the locally defined exponential map of the compact
dual G./K at 6 € G./K and p; : p — ip be the multiplication by the imaginary

unit 2. Then Exp; °/Km (Expg/K) ' : G/K = G./K is alocal diffeomorphism.
Since G/G N P and G./G. N P have coinciding fibers K/GNP=K/G.NP, the
homogeneous space G/GN P is immersed in G, /G.NP. In particular, G/GN P is
a complex (even Kéhler) manifold.

Recall also that for a group G of Hodge type and a parabolic subgroup P C G©
with G N P C K the reductive Lie group G N P is a centralizer of a torus TCK
in G. Conversely, any centralizer Z C G of a torus T C K determines uniquely
the parabolic subgroup P, whose semisimple part is the complexification of the
semisimple part of Z.

Let h be a common Cartan subalgebra of k, g and

gerC=herC+ > CX,+ Y CX_,
ceAt geAt
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k@rC=h®RC+ Y CX, + > CX_,, A} cAt
seat ceAt

be ‘the corresponding root decompositions of the complexified Lie algebras. A
parabolic subalgebra of g€ = LieGC = g ®g C is of the form

LieP=h®kC+ ) CX_,+ Y CX,
ceA+ cEA+(P)

for an appropriate subset A*(P) C AF. The minimal parabolic subgroup B C G€

with LieB=h@r C+ Y. CX_, is called a Borel subgroup. The corresponding
seAt

G/GNB — G/K is referred to as a maximal complex homogeneous fibration.
The Borel subgroup B C G€ intersects the real form ¢ in the common maximal
torus T = G N B of K,G with LieT = h and centralizes itself. The maximal
complex homogeneous fibration G/T contains an equivariant Hermitian symmetric
subspace Gp/Kp if and only if G»/K} is a polydisc. Any parabolic subgroup
T C P C G€ contains the Borel subgroup B O T. That determines a fibration
G/GNB — G /GNP with a holomorphic projection. The existence of a holomorphic
lifting Fig : M — T\G/T of a harmonic map f : M — I'\G/K implies the existence
of holomorphic liftings Fp : M — T'\ G/G N P for all parabolic subgroups P O T.
The complex homogeneous fibrations G/G N P, associated with centralizers G N P
of 1-dimensional tori 7! C K, are called minimal.

Let J(G./K) = G./K be the bundle of the Hermitian almost complex struc-
tures on G./K. Burstall and Rawnsley show in [2] that for any parabolic subgroup
P C G€ the quotient G€ /P=G./G.NPisa holomorphically embedded subspace
of J(Ge/K). Therefore the open subset G/GNP of G, /GNP is also a holomorphi-
cally embedded subspace of the twistor fibration J (G./K) = G./K. Consequently,
any holomorphic lifting F': M — T'\G/GN P of a harmonic map f: M - T'\G/K
can be regarded as a local holomorphic map to the twistor fibration.

The results of the present article are summarized in the following

Theorem 1. (i) There are two minimal complex homogeneous fibrations
Ga2)/Gay N P; — G22)/SO(4), i = 1,2, with fibers CP! and a mazimal complex
homogeneous fibration Ga)/T? - G2(2)/SO(4) with fiber CP! x CPY, A har-
monic map f : M — T\ Gy2)/SO(4) with dfS(T1O°M), Vz € M, consisting of
nilpotents and of mazimum constant rankSdf = 3, admits a holomorphic lifting to
either of the complex homogeneous fibrations. Neither of the corresponding holo-
morphic images is an equivariantly embedded local Hermitian symmetric subspace.

(i) Any harmonic map f : M — T'\ Fy4)/Sp(3) x SU(2) with dfC(T1OM),
Vz € M, consisting of nilpotents and mazimum constant rankSdf = 7 admits
holomorphic liftings Fp : M - T \ Fyy /Fya) N P to all complex homogeneous
fibrations. The images of these Fp are not equivariant local Hermitian symmetric
subspaces.

(iii) A harmonic map f : M — T\ Eg2)/SU(6) x SU(2) of mazimum con-
stant rankSdf = 10 with adh-invariant dfC(T1OM) = 9z Spanc(X,|o € C(J))g; 1,
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labeled by an Eg(o)-admissible indez set J, has a holomorphic lifting Fg : M —
'\ Eg(2) /T® to a mazimal complez homogeneous fibration. There are sufficient con-
ditions for nonezistence of equivariant Hermitian symmetric subspaces Gr/Kn C
G/G N P with Fp(M)=T}4 \ Gh/Kh.

(iv) If the harmonic map f : M — T\ Eq7)/SU(8) has dfS(TI°M) =
geSpanc(X,lc € C(J,K))gz! for an Eq(s)-admissible set of indices J, K, then
there is a holomorphic lifting Fp : M — T\ Eq(7) /T7 to a mazimal complex homoge-
neous fibration. There are sufficient conditions for nonezistence of equivariant Her-
mitian symmetric subspaces Gn/Kn C Eqrqry/EvryNP with Fp(M) = T \Gr/K}.

(v) For any harmonic f : M — T'\ Er(-5/50(12) x SU(2) with mazimal
dfS(TIOM) = g Spanc(X,|lo € C(I,K))g;* there is a holomorphic lifting Fp :
M = T\ Eq-5)/50(12) x T to a minimal complez homogeneous fibration. For
an En(_s)-admissible set of indices I, K, there ezists a holomorphic lifting Fg :
M = T\ Ey_s) /T? to a mazimal complex homogeneous fibration. There is a
list of sufficient conditions for monexistence of equivariantly embedded Hermitian
symmetric subspaces Gp/Kp C Er(_s)/Ez(-5y N P with Fp(M) =Tp \ Gr/Ks.

(vi) If a harmonic map f : M — T\ Eg)/SO(16) has dfe(T}°M) =
gzSpanc(X,lo € C2(J, K))gz " for an Egs) -semi-admissible indez set J, K of sec-
ond kind, then there is a holomorphic lifting Fp : M — [\ Eg(s)/Us x T! to a min-
imal complex homogeneous fibration. Whenever dfS(T°M) = gz Spanc(Xq|o €
Cig;t, i = 1,2, for a commutative root system Ci(I,J,K) or Co(J,K) with
Eg(s)-admissible index sets of first or second kind, there is a holomorphic lifting
Fg : M — T\ Eys /T® to a mazimal complex homogeneous fibration. There is
a set of sufficient conditions for nonezistence of equivariant Hermitian symmetric
Gu/Krn C Eg(g)/Eg(g) N P with Fp(M) =Th \ Gn/Kh.

(vii) Any harmonic map f : M — T'\ Eg(—24)/ Br X SU(2) with mazimal
dfS(TIHOM) = g, Spanc(X,lo € Ci(Iy, I, J))g;!, i = 1,2, admits o holomorphic
lifting Fp : M = T'\ Eg(—24)/ En X T1 to a minimal complez homogeneous fibration.
If, moreover, I, I, J is an FEg(~24)-admissible set of indices of i-th kind, then
there ezists a holomorphic lifting Fg : M — '\ Eg(_24 /T8 to a mazimal complez
homogeneous fibration. Under certain conditions on I, Iy, J there is no equivariant
Hermitian symmetric image Fp(M) =Tn \ Gn/Kh.

The notions of admissible index sets and the sufficient conditions for nonexis-
tence of equivariant locally Hermitian symmetric images will be clearified separately
for each exceptional Riemannian symmetric space under consideration.

Here is an interpretation of a part of the already mentioned results on harmonic
maps as existence of holomorphic liftings, whenever they exist. Since the Hermitian
symmetric G/K of noncompact type are complex homogeneous spaces, Siu’s result
[14] can be viewed as an existence of a holomorphic lifting to the fibration with a
trivial fiber. Similarly, Carlson and Toledo’s article [4] specifies that a harmonic
map f: M — '\ SU(n,1)/S(U, x U1), whose image is not a closed geodesic and
which does not factor through a holomorphic map to a Riemann surface, admits a
holomorphic lifting to the complex homogeneous fibration with a trivial fiber. For
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a harmonic map f : M — T'\ SOy(2m, 2n)/S0(2m) x SO(2n) with min(m,n) > 3,
m+n > 6, rankSdf = mn forall z ¢ M , Carlson and Toledo’s results from
[5] can be interpreted as an existence of a holomorphic lifting Fp : M — T\
500(2m, 2n) /Uy x Up x T? to a complex homogeneous fibration. The results of 9]
imply that a harmonic map f : M — '\ SO (2m + 1,2n)/SO(2m + 1) x SO(2n)
with min(m,n) > 5 and a constant rankSdf = mn + 1 admits a holomorphic
lifting Fp : M — T'\ SOo(2m +1,2n) /Uy, x Up—1 x T3. Concerning the harmonic
maps f : M — I'\ Sp(n,1)/Sp(n) x Sp(1) with n > 3, which do not map to a
closed geodesic and do not factor through holomorphic maps to Riemann surfaces,
Carlson and Toledo prove in [4] the existence of a holomorphic lifting Fp : M -
I'\ Sp(n,1)/Sp(n) x Uy to a complex homogeneous fibration. Carlson and Toledo’s
results from [5] reveal that a harmonic map f : M — T \ Sp(m,n)/Sp(m) x Sp(n)
with min(m, n) > 2 and constant rankCdf = mn admits a holomorphic lifting Fp :
M — I'\Sp(m,n)/Up, xU, xT? to a complex homogeneous fibration. In [3] Carlson
and Hernandez establish that the harmonic maps f : M — I\ Fy(—20)/50(9), whose
image is not a closed geodesic and which do not factor through holomorphic maps
to Riemann surfaces, admit holomorphic liftings Fip : M — T'\ Fy(—20)/S(Uz x U3)
to complex homogeneous fibrations.

2. BASIC TECHNIQUES OF THE ARGUMENT

The proof of Theorem 1 is based on Sampson’s result [11] for the harmonic maps
f: M — P\G/K of compact Kihler manifolds M into local Riemannian symmetric
spaces I' \ G/K of noncompact type. It asserts that such f are pluriharmonic and
df€(T}°M) are abelian subspaces of TP\ G/K forall z € M.

In order to formulate precisely, let us recall few basics of the structure theory
of semisimple Lie algebras. Assume that g := LieG for a noncompact simple Lie
group G of Hodge type and fix a common Cartan subalgebra h of k(G) := Liek
and g, where K is a maximal compact subgroup of G. There is a Killing orthogonal
Cartan decomposition g := k(G) ® p(G). Its complexification g€ = kC(G) & pt(Q)
is invariant under the adjoint action of h® := h ®g C. More precisely, k¢(G) :=

k(G)@rC =0+ Y CX, and p¢(G) := p(G) @ C = >, CX, for
o€EAL(G) TEAL(G)

an appropriate decomposition A(G) = A (G) U A,.(G) into a disjoint union of
compact and noncompact roots. An arbitrary ordering on A(G), compatible with
the Lie bracket of the corresponding root vectors, introduces splittings into disjoint
unions A(G) = AF(G)UA; (G), Ane(G) = A#(G) UALL(G), whereas A(G) =
A*(G) U A~(G) with AT(G) = AHG) N AL(G), A~(G) = AZ (G)UAL(G).
The pairs of positive and negative root vectors are complex conjugate to each
other, X, = X_,. Observe also that the root system A(G) and its decomposition
A(G) = A*(G) U A~ (G) depend only on the complexification G€ but not on the
real form G. We take A(Gyg)) = A(GS) from Sato and Kimura’s paper [12] and
borrow the other A(G) = A(G®) from the Table of Bourbaki’s book [1]. The
notation G, stands for the real form of G€ with dimg P(G(n)) ~dimr k(G(n)) = n
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(cf. [8]). In order to avoid the explicit matrix realization of the root vectors Xo,
o € A(G), and the calculation of their Lie brackets, let us introduce structure
constants N, ,, such that [X,, X;] = No .z Xo4r whenever ¢ + 7 € A(G).

At the origin 6 € G/K, the complexified tangent space TEG/K =
TRG/K ®r C = pS(G) and the holomorphic tangent space of a Hermitian sym-
metric G/ K} is T;’OGh/Kh = p; . At an arbitrary point gK € G/K the tangent
spaces TheG/K = gp(G)g™" and TSG/K = gpt (&gt

Carlson and Toledo have established in [5] that for any abelian subspace
a C pC, which consists entirely of nilpotent elements, there exists a Cartan sub-
algebra b C g with respect to which a C p+. The construction of h reveals
that whenever G is of Hodge type, this Cartan subalgebra is contained in k(G).
Whenever df®(T2,°M) is an abelian subspace of pt, f(zo) = 6, the complexified
differential of f is represented by 6 + g for an appropriate 6 € Qi},o (p*). Let 7 be
the flat Levi-Civita connection of the locally trivial bundle f*T®(I'\ G/K). It de-
composes into a sum YV = D +60 +0, where D is a k(G)-valued connection. Further
decomposition into (1,0)- and (0, 1)-types provides D = D' + D" with D' = D".
The pluriharmonic equation for f reads as

D"6=0. 1)

On the other hand, the (2,0)-component with values in p® of the flatness equation
v? = 0 provides '

D'9=0. (2)

For some specific df€(TL° M) or, equivalently, 8, the equations (1) and (2) reduce D
to a Lie(G N P)-valued connection for an appropriate parabolic subgroup P C G€.
That implies the existence of a lifting Fp : M — T\ G/GN P of f:M—>T\G/K.
If f(xr) =Tg,K and

dFS(TIOM) = dfS(TH°M) C goptor' Coulpt @ ), CXo)g'
AT (G)-AH(P)

=132 enp T \G/GNP

for all z € M, then the lifting Fp is holomorphic. That is why, it is natural to
assume that dfS(T1°M) consist entirely of nilpotent elements for all z € M, in
order to look for holomorphic liftings of f : M = T\ G/K.

For the proof of the main Theorem 1, we have to characterize the abelian
subspaces a C pT(Ga(z)) of maximum dimc a = 3 and the abelian subspaces a C
pt(Fys)) of maximum dimc a = 7. To this end, we apply Malcev’s method of the
leading root vectors for studying abelian subspaces of nilpotents in semisimple Lie
algebras (cf. [10]). More precisely, Gauss-Jordan elimination on a basis Y1,..., Y%
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of an abelian subspace a C p* allows to represent

}/lz XU!. + Z y{X‘r)
1';’:0'1,...,0,,

1/'22 X0'2 + E y;XT7
THO s Oh

Y. = Xew + Y viX:
THTL,...,0p

by positive noncompact root vectors with oy < g3 < ... <oy, 0: <7, forall X, g
SuppY; and y] € C. According to the compatibility of the Lie bracket with the
ordering, the equality 0 = [Y;,Y;] = [Xo,, X0, ] + [Xoi, 4T X + [ 97 X7, Xoj )+
BulX: > y}-’X,] implies the vanishing of the minimal term [X,,, X,,] = 0. Thus,
the root system C = {07, 09,...,0,} is commutative, i.e.,

Vai,aj eC = o; +0j QA(G)

The commutative root systems C C A} (G) are studied up to the Weyl group
action. Accordingly, the abelian subspaces a C p* are described modulo the adjoint
action of KC.

Let us assume that there exists an equivariant Hermitian symmetric subspace
Gh/Kn C G/G N P with T{°G /K = a for some parabolic subgroup P C GC.
Then the Lie bracket of g), := LieG}, is the restriction of the Lie bracket of g :=
LieG. The same holds for the corresponding complexifications. If a = p}, then §
[a,3] C k§ and [a,[a,a]] C a. When a = Spanc(X,|o € C), the presence of
a1,02,03 € C with g5 — 03 € A(G) and a1 + (02 — 03) € An(G) — C rejects
the existence of an equivariant Hermitian symmetric G,/K C G/G N P with
T;’oGh/Kh = a.

For each of the noncompact exceptional simple Lie groups G # FEg(_14),
Er(_25), Fy(—20) of Hodge type are constructed examples of harmonic maps f :
M - T\ G/K, which do not admit holomorphic liftings. Let dfS(T}°M) =
gzSpanc(X,, X_5,X|o € S1,7 € S3)g; ! for z € M, f(x) = g, K, where S; # @
and the disjoint union S = S; U S, C Af,(G) is strongly commutative, i.e.,

Vo,r€S = o+7¢€A(G) and 0 — 7 € A(G).

Then a lifting Fp: M - '\ G/G N P to a complex homogeneous fibration is not

holomorphic, according to dF§(T3°M) = dfS(T}°M) ¢ Ty @nml \G/GNP.

For specific examples of strongly commutative S C A} (G), we refer to the next
sections.

3. G = Gyp)/SO(4)

The complexified Lie algebra g$ admits a representation by (7 x 7)-matrices
and can be identified with the derivations of the Cayley numbers (cf. [12]). We use
the system of the positive roots AT (GS) = {e1,e2,e1+e2,€; —e2,€1+2e3,2e1+e2},
borrowed from {12]. The Lie algebra gy(9) of Hodge type admits a 2-dimensional
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Cartan subalgebra h C so(4). The complexified isotropy subalgebra:so(4, C) =

2 2

he + 3 CX,, + Y, CX_s;, where the compact roots 1,02 have one and the same
=1 i=1

length and o1 + 02 € A(GS). Bearing in mind that 0,7 € AF (Gyg))o + T €

At (Gyp)) > 0+TE A} (Gaz)), one specifies that AF(Gay) ={er1 —ex, 1 + es}s

whereas A;fc(GQ(z)) = {e1, ez, €1 + 2es,2e; + ez}. This choice is also subject to

0 € AH(Ga),7 € Afo(Ga), 0 +7 € AY(Go)) F o+ T € At (Ga))-

The only restriction to which a commutative root system C C A} (Ga2)
obeys is not to contain simultaneously e; and e2. Up to the action of the Weyl
group of SO(4,C), which is generated by the permutation of e; with ez and their
simultaneous sign changes, one can assume that the maximal commutative root
system C = {e1,e1 + 2e2, 2e; + €2}

Lemma 2. The 3-dimensional abelian subspaces a C pt(Gaz) are SO(4,C)-
conjugate to
a4 = Spa'nC(Xeu Xei+2e X2€1+ez)'

Proof. An abelian a C pt(Ga)) with a leading root system C = {e1,
e + 2e3,2e1 + ez} has generators :

Y],I = X61 + alXez) .YZI = Xe1+2e2 + a2X827 Y?: = X2e1+82 + a3X82-
After the action of

[>.¢]
—ay 1 —0y
i (s Xe) = e (Wi Xone).

—ey+e2,€1
followed by an elimination of Xe,+2¢, from the image of Y7, one gets Y{' = Xe,,
Yy = Xey42ep + a2Xen) Yy = Xaeyter + a3 Xe,- The commutations [Y{',Y3'] =0
and [Y7',Y4'] = 0 reveal the vanishing of az and a3, Q.E.D.

Let us describe the parabolic subgroups P C GS. According to cardA} =2,

there are a Borel subgroup B C G§ with LieB = h + 5. CX_, and two
ceAH(GS)

maximal parabolic subgroups Pi, Pz C GS with LieP, = LieB + CXe,—e, and
LieP, = LieB + CXeypep. Cleatly, Gy N B = T* = Ezp ®® (RH; + RH>)
centralizes itself, Gar2y N P1 SU(2) x T}_ centralizes the 1-dimensional torus
T = EopS® (R(H: + Hp)) and Go N Py = SU(2) x T2 centralizes the 1-
dimensional torus T} = Explaz‘” (R(H, — H,)). Bearing in mind that S0(4) =
SU(2)xSU(2), one observes that the complex homogeneous fibrations Ga2)/G22)N
P = Ga2)/SO(4), i = 1,2, have fibers SU@2)/S* = SU@2)/S(U x U1) = cp!
and G2(2)/T2 - Ga2)/SO(4) has a fiber CP! x CP!. There are also fibrations
G2(2)/T2 — Ga2)/Ga2) N B with fibers CP! and holomorphic projections.

Lemma 3. Let f : M = T'\ Ga(2)/SO(4) be a harmonic map of a compact
Kéhler manifold M with mazimum constant rankCdf = 3 and dfS(T;°M), Vz €
M, consisting entirely of nilpotent elements. Then there exists a holomorphic lifting
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Fg: M — T'\ Gy /T? to a mazimal complex homogeneous fibration. Neither of
f(M), Fg(M), Fp,(M) or Fp,(M) is a local equivariantly embedded Hermitian
symmetric subspace.

Proof. The (0, 1)-part of the so(4)-valued connection D is of the form
2
D"=8+) GOHi+P® Xey—eq +7® Xoeyper + L ® Xertes +Z® Xeey—e,
=1
for some &;,7:;,¢,2 € Q}v’fo. The holomorphic differential of f is represented by the
1-form
6= dl’l R X61 + dIIIZ ® X51+232 + diL’a ® X231+62.

Wedging the forms and computing the Lie bracket of the root vectors and Car-
tan generators, one obtains D"8 = (& A dz! + N_¢, ¢, 2¢,4e,Z A dz®) @ X, +
(Noeites,e TAAT! + Negy—ep 1 426,Z Ad2?) ® Xey + N_gy—ey e, EA T ® X, +
[(gl +2§2)/\dz2 "_'_N-’€1+€2,281 +€2FAdz3]®X€1 +2e2 +[(2£1 +€)/\d{£3 +Ne, —e2,e1+2¢2 P\
dz® + Nejtes,e,( Adz'] ® Xze, e, = 0. Bearing in mind the C-linear independence
of the root vectors and the functional independence of dz!, dz2, dz®, one derives
that D = 8. Therefore D = 8 + & = d takes values in h = Lie(Gy(2) N B) and
there is a holomorphic lifting Fp : M — T'\ Gy(3)/T?.

The only 3-dimensional Hermitian symmetric spaces of noncompact type are
SU(3,1)/S(Us x Uy) ~ SO*(6)/Us with 9-dimensional complexified isotropy sub-
algebra and S0O(3,2)/S0O(3) x SO(2) ~ Sp(2)/U, with 3-dimensional complex
isotropy subalgebra. They both satisfy k5 = [p$,p§]. For the abelian subspace
a = Spanc(Xe,, Xe, +2¢3) Xae,4¢,) it is straightforward that [a+d,a+3] = so(4,C)
is of dimension 6. That would contradict an assumption a = p;[ = p*(G}) for an
equivariant Hermitian symmetric subspace G/ K}, Q.E.D.

The strongly commutative subsets S C A} (Gy(z)) are commutative. There-
fore, one can assume that S C {e;,e; + 2e3, 2e; + e2}. Bearing in mind that (2e; +
e2) —e1 = e1+ez, (2e1+e2) — (e1+2e2) = e; — ey, one determines S = {e;, e; +2e3}
of maximal cardinality, up to Weyl(SO(4, C))-action. The harmonic maps f : M —
T \ G2(2)/SO(4) with dfC(T;’OM) = ngpanc(Xel y X—el , X81+2€2) X—81—2ez )g;l,

dfC(T:clYOM) = ngpanC(Xh ’ X—e; ’ X€1+2€2 )g;l

or
dfc(Ta}’OM) = gchpanC(Xex > X61+262) X—el—%z)g;l

have no holomorphic liftings to complex homogeneous fibrations.

4. FI = Fy4)/Sp(3) x SU(2)
Let us recall from Bourbaki’s Table [1]

A*+(FS) = {ei(l <i<4), eite;(1<i<j<4),

1
5(61 + geg + vez + pey)(e, v, € {:L-l})}.

106




One needs to decompose into a disjoint union A¥(FF) = A} (Fyqy) U A (Fay),
where AT (Fy)) = AT(Sp(3,C)) UA*(SL(2,C)). Observe that the positive roots
of Sp(3,C) can be expressed by two short simple roots a;,a; and a long simple

1
root 3. Among the short roots e;, -2—(61 + gea + ves + pey) and the long roots

1
e; +e; of Ff, the only possible choices are a1 = e;, ag = 5(61 —e; — € Fer),
a3 = ej * ex. Up to the action of the Weyl group of FE, let us specify a; = e,
1
Qg = -2'(61 — ey —e3 —eq), a3 = e3 + eq. As far as Sp(3) and SU(2) are in a direct

product in the isotropy subgroup, for any ¢ € A*(Sp(3,C)) and the only positive
root 7 of SL(2,C) the sum o + 7 is not a root of Ff. That determines 7 = e3 — e4,
so that

A¥ (Fy)

1
= {ei(l <i<2), e1tey, e3Eey, 5(61 +ceex + ves +veg)(e,v € {:I:l})},

AL (Fua) = {3 <i <), eite(1<i<2,3<5<9),

%(e1 + ey + ves - ves)(e,v € {£1}) }.

A maximal commutative root system C C A}, (Fy4)) decomposes into a dis-
joint union of the commutative root systems C; := C'N {eil3 <1< 4}, Cp =
cn {%(el + eeq + ves — veg)le,v € {£1}}, C3 := CN{e;tes|l < i< 2} and
Cy := C N {e; £ eq|l <i <2} Therefore ¢y C {e;} for some fixed i = 3 or 4,
Cy C {%(el + ey +ves — vey)|e = £1} for some fixed v € {#1}, and C; C {e; +¢;}

for some fixed 1 < i < 2 or C; C {e;+ee;|1 < i < 2} for some fixed € € {1} when-
ever 3 < j < 4. Preventing the presence of p; € C, p; € C; with p;+p; € C,1#7,
one obtains the following commutative root systems C C Af,(Fy4)) of maximal
cardC = 7, up to the action of the Weyl group of Sp(3,C) x SL(2, C) :

1
C':{eg, e1+e3, ey t+es, e ey, 5(61 :i:62+€3—-e4)}

and

1
C”:{eg, e +e3, ex+e3, €1 —ey4, €2 €4, 5(61:1:62-%63—64) .

Lemma 4. The abelian subalgebras a C p+(F4(4)) of mazimal dimca =7 are
Sp(3,C) x SL(2,C)-conjugate to a' = Spanc(X,|o € C') ora” = Spanc(Xq|o €
C"), where C',C" C A} (Fya)) are the aforementioned commutative root systems
of mazimal cardinality 7.
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Proof. OnY, = X, + > yrX,, foro € C, C = C' or C”, one
TEAY(Fa(a))~C
Yes
N —e3teq,e3
the coeflicient of X, from Y,,. After eliminating X,, from the expressions of
Y, for g;,0; € C, 0; # 0;, one calculates the commutators [Y;,,Y,,] = 0 for all

applies the adjoint action of Ezp (— X_e3+e4), in order to annihilate

different 0;,0; € C and concludes the vanishing of y7 except yzgfjj forC=C".If

Yer—es = Xep—es UL 62 Xe, e, With yS2 752 # 0, one can reduce the considerations

to the leading root system C’, Q.E.D.

Lemma 5. If f : M — T\ Fy4)/Sp(3) x SU(2) is a harmonic map with
7-dimensional abelian spaces of nilpotents dfC(T2°M), Vz € M, then there is a
holomorphic lifting Fg : M — T'\ Fyy /T* to a mazimal complex homogeneous
fibration. There are no parabolic subgroup P C FY and equivariant Hermitian
symmetric subspace Gp/Kp C Fy(4)/Fysy N P such that Fp(M) =Ty \ Gn/Kp.

Proof. The (0, 1)-part of the sp(3) @ su(2)-valued connection D is of the form

4
D'"=0+) E®Hi+ > TW®X.+ Y. G®X_,.
i=1 c€AT (Fya)) oc€A¥ (Fyq)

The differential of a harmonic map f with df(T}°M) = g,a'g; ! or dfS(T2OM) =
gza"g;! for z € M, f(z) = T'g,(Sp(38) x SU(2)) is represented, respectively, by

6= Y de"®X,orf,= Y dx”®X,. The pluriharmonic equations D"8; =0
rec’ rec”

imply D" = 8 + 7z, 765 ® Xey e, in both cases. Then the consequences D'§; = 0 of
the flatness equation force D = d.

Let us assume that there is an equivariant Hermitian symmetric subspace
Gn/Kn C Fyuy/Fyq) N P with pf = a’ or a”. Then [Xejqey, Xoey] =
Neytes —esXer € kS, whereas [X_¢,, Xe,—e] = Noegey—esX—es € PS, which is
not true in either case, Q.E.D.

After detecting the pairs g,7 from C' or C” with o — 7 € A (Fy4)), one drops
out at least one member of these pairs and obtains the strongly commutative root
systems

1
S; ={es3, e1tes} and Sz={§(el +est+e3—eq), €2 —€3, € +e4}

in A} (Fya)), up to Weyl(Sp(3,C) x SL(2,C))-action.

Let us recall that there is a chain of subgroups Ef C ES C Ef. In terms of
the root decompositions of the corresponding Lie algebras, if H,,... Hg generate a
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Cartan subalgebra h§ of LieE§, then
8
hc = { inHi|$i [ C,I7 + I3 = 0} - hg
i=1
is a Cartan subalgebra of LieEf and

8
h¢ = { inHdZ,' €C,zg —z7= 0,z7 + =3 =0} Chg

i=1
is a Cartan subalgebra of LieES. The positive root system

AHES) = { —eite(1<i<i <), ete(1<i<i<B),

1/ T
§(Zsiei+es)(6i—il,gaz 1)}

=1
contains
A+(E$)={—e,-+e,-(1gi<j56), ei+ej(1<i<j<6), —er+es,

-;—(iEiei —er + es) (€i = il’ﬁe" = _1)}’
=1 =1

which, in turn, contains
A+(Eg)={—ei+ej(1§i<j55), ei+ej(1<i<j<B),

5

(Zaiei—ee —e7+eg) (ei = ﬂ:l,f[ei = 1)}
i=1

i=1

[ A

(cf. [1]).
For the study of the Riemannian symmetric spaces EIL EV, EVI, EVIII and

EIX, let us introduce the notations

Aij 1= —e; T gj (1S’l:<j§8), Lij =€+ ¢€j (1S’l:<j_<_8),

o)

=1

1 .
Bij = 5(—e,~—e,~+ek+ez+em+en+ep+es) (1<i<j<T),

(ei+ej+ek—el—em—en—ep+es) (1<i<j<kgT,

| 3

Vijk ‘=
1 .
6,-::§(e,~—e]~—ek-—e;—-em«en—ep+eg) (1<i<7),
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where i, j, k,I,m,n, p stand for a permutation of 1,2,...,7. It is convenient to put
also Aji = —Xijy pji 1= pij, Bji = By for i < j and Yik; = Yjix = Yjpi = Yhij
Yiji = Yijr for i < j < k.

In order to recognize the subset A} (Egs)) C AT(ES), let us observe that

J
sl(6,C) = su(6) ®r C has 5 simple roots a;, such that > ay is a root for any
k=1

1 <4< j <5. Looking at the Dynkin diagram of Ef, one notes that the only
unramified path with 5 vertices corresponds to the simple roots 41, A2, Aas, Asgq,
Ags. Therefore AT(SL(6,C)) = {Ai;(1 < i< j <5),8(1<i<5)}. Since SU(6)
and SU(2) are in a direct product in the isotropy group of EII, the only positive
root o of sl(2,C) is such that o + 7 ¢ A*(Ef) for all 7 € A*(SL(6,C)). That
specifies AT(SL(2,C)) = {Bs7}. Thus,

A (Egz)) ={Aj(1<i<j<5), 8(1<i<5), Ber}

and
Ar(Bey) = {mi;(1 <i<j<5), mpml<i<j<k<5)l.

The maximal commutative C C Af,(Eg(z)) are of the form C(J) = {p;;((i, j) €
J), Yiam((3,5) € J)} for some subsets J of unordered pairs 1 <3, < 5 .In particu-
lar, cardC(J) = 10.

A generic abelian subspace a C PT(Eg(z)) of maximal dimca = 10 is not
invariant under the adjoint action of the Cartan subalgebra. Therefore, the pluri-
harmonic equation D"8 = 0 and the consequence D'6 = 0 of the flatness 2 = 0
do not force a reduction of D to a Lie(G N P)-valued connection.

Definition 6. The set J of unordered pairs is Eg(2)-admissible if there hold
simultaneously the following conditions:

(i) for an arbitrary 1 # j with (j, k) € J for all k & {i, 5} there exists (i,k) € J;

(ii) for an arbitrary ¢ there exists (j, k) € J with different i, j, k;

(iii) for an arbitrary ¢ there exists (j,k) ¢ J with different i, 5, k.

Lemma 7. Let f : M — '\ Eg(9)/SU(6) x SU(2) be a harmonic map of mazi-
mum dimension with dfS(T}°M) = g, Spanc(X,|o € C(J))g:! for a commutative
root system C(J), labeled by an Eg(s)-admissible set of indices J. Then f lifts to
a holomorphic map Fp : M — T'\ Eg(5)/T® to a mazimal complex homogeneous
fibration. :

Proof. In general,

5
D" :5+2§®H¢+E&®(H6+H7"H8)+ Z Tij ® Xa,;

i=1 1<i#j<5

5 5
+ZC®X‘51' + ZE{®X-5.' +P® Xpg, +T R X_g,,

and
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o= di®X,,+ Y, d"eX,,.
(i.5)ed (1.5)¢J
Making use of the table of 0 € Ac(Eg(2)), 7 € At (Eg(2)) With 0 +7 € Ane(Eo(2)),
one derives from the pluriharmonic equation D" = 0 that n;; = 0 if 3(i, k) € J
or 3G, k) € J, ¢ = 0if 3(j,k) € J, z; = 0if 3(j,k) ¢ J and r = 0. For an
Eg(2)-admissible index set J there follows

5
D"=03+) &®H;+& ® (He + Hr — Hs) + P ® Xp,,.
i=1
Then the consequence D'6 = 0 of the flatness equation 72 = O reveals the vanishing
of p, Q.E.D.

Lemma 8. Each of the following conditions is sufficient for the nonezis-
tence of o Hermitian symmetric Gp/Kp, where Gy is a subgroup of Eg) and
py = Spanc(X,lo € C(J)) is associated with a mazimal commutative root system
ClI) C At(Boy):

(a) the existence of different i,j,k, with (,5), (3, k), (k,1) € J and (5,1) € J;

(b) the existence of different 1,3, k,l with (i,k) € J and (i,5),(4,1), (k,1) € J;

(c) the existence of different i, j,k,l with (i,37), (i,k), (4,1) € J and (k,1) &€ J.

Proof. In either case, it suffices to exhibit 01,03,03 € C(J) with 02 — 03 €
AC(EG(Z)) and o7 + (0'2 - 0’3) € Anc(Eﬁ(z)) - C(J) Namely,

(a) Yikm + (sj — pik) = Yikm + Mg = Yijm;

(b) pik + (Yigm — Yikm) = Mik + Akj = Hij;

(c) pir + (Vijm — Bij) = Hik + Om = Yikm, Q.E.D.

Towards the construction of strongly commutative root systems S C
A(Eg(2)), let us associate them to graphs with 5 vertices. For p;; € S draw
a “blue” edge, connecting the i-th and the j-th vertices. When Yiim € S, the
complementing vertices i and j are connected by a “red” edge. According to
Bij — Bik = Akj € Ac(E(s(z)) and Yrim — Yjtm = Ajk € AC(EG(Z))a no edges of one
and the same color have a common vertex. Further, Yiim — pr = 6m € Ac(Eg(2))
requires the nonexistence of disjoint “blue” and “red” edges. Putting all together,
one obtains S = {vs4s, M23, Y125, Has} up to Weyl(SL(6,C))-action.

6. EV = Ey(7)/SU(8)

The elements of AF (Er(r)) are expressed by simple roots ay, ..., ar, such that

J

" ay € AF(Eyq)) for all 1 <i < j < 7. From the Dynkin diagram of EF (cf. [1])
k=i
one recognizes a1 := 6; and o == A1, for 2 < i < 6 with

J
AL(ET) = {Zakll <i<j ss}

k=1
= {51 <i<6),2j(1<i <j<6)} CAT(ED).
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The existence of ag € AT (EY) — AL(ES) with ap + 6; € A+ (E€)forall1<i<6
is contradicted by pi; +8; € A(EF), Mg + 6; & A(ES), Bir +6; ¢ A(ES) for i # j
and yijx + 0; ¢ A(EY) for different i,j,k. Therefore, there is ay € A+(ES) -
AL(ES) with a7 + A\is € AT(ES) for 1 <i < 5 and a7 + 8 € A*(EE). For any
1 <4 <j <5 there exists k € {1,...,5} — {,j} such that p;; + A\ & AT(ES).
Clearly, Ms + Aig & AT(ET), Bir + Mig & AH(ES) for 1 < i < 5 and ik + 6 ¢
A*(EF), regardless whether 6 € {i,7,k} or 6 & {i,5,k}. Finally, Be7 + Ais = Bir
for 1 <i <5 and fe7 + 86 = Ars reveal that oy = Bg7, whereas

Af(Ery) ={Nij(1 <i<j<6), Ms, Bir(1<i<6), &(1<i< 6)}
and
AGe(Brmy) = {m(1 <1< <6), vpn(1<i<j<k<6)}

After listing the pairs 0,7 € A}, (E7(7)) with o + 7 € A¥(Ey 7)), one charac-

terizes the commutative root systems .

C(J’ K) = {/‘1‘1]((7'7]) € J)”Yijk((irja k) € K)} - A;'IL-C(E7(7))
by the conditions (i,j,k) € K = (I,m) ¢ J and (3,j,k) € K = (I,m,n) ¢ K for
different 1, j, k, I, m, n.

A generic abelian subspace a C p*(E7(7)) with a leading root system C(J, K) is
not invariant under the adjoint action of the Cartan subalgebra hS. The associated
su(8)-valued connection D is not reduced to a Lie(Ez ) N P)-valued one. Even
when T}°M, z € M, map to adh$-invariant abelian subspaces of 9=P" (E7())93 ",
f(z) = I'gSU(8), the existence of a holomorphic lifting to a complex homogeneous
fibration is not clear.

Definition 9. The set of indices J C {(4,5)|1 < i #j <6}, K C {(i,4,k) |
1 < i,5,k < 6}, labeling a commutative root system C(J,K) C A} (Er)), is
Eq(7y-admissible if there hold simultaneously the conditions:

(i) for an arbitrary i # j with (i, k) & J for all k & {i,5} there exists (4,k,1) €
K;

(ii) for an arbitrary ¢ with (j,k) € J for all j, k different from i there exists
(k1) € K with L ¢ {i,5,k, };

(iii) for an arbitrary i there exists (4, 7,k) € K.

Lemma 10. Let us suppose that for the harmonic map f : M — I\Er(1)/SU(8)
there holds df € (T2 M) = g,Spanc(X,|o € C(J, K))g;* for some Ey(7)-admissible
indez set J,K. Then there is a holomorphic lifting Fg : M — T\ E7(7)/T7 to a
mazimal complex homogeneous fibration.

Proof. In general, the (0, 1)-component of the su(8)-valued connection D is

6
D”=—5+ZE®H1+€_7®(H7'—'H8)+ Z UT'J'®X>\;;,' +7778®X>\78
i=1 1<i#5<6 .

6 6 6 6
T O Xogr + ) GO Xp + ) O X g+ pi®Xs + Y 110 X_s,.

i=1 i=1 =1 i=1
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The (1,0)-component of df€ is represented by
o= d9eX,;+ Y, de7®X,.
(id)eJt (i,dkYEK
The pluriharmonic equation D"8 = 0 implies that 7;; = 0 if there exist (i,k) € J

or (i,k,1) € K, ngz = 0, z; = 0 if there exist (j,k) € J or (j,k,1) € K,and r; =0
if there exists (i, j, k) € K. For E(7)-admissible J, K there follows

6 6 6
D' = a—Z€i®Hi_£7®(H7_H8)+n78 ®XA87+2Ci®X—ﬁn+ZPi®X—6.~-

i=1 i=1 i=1

The consequence D'f = 0 of the flatness equation 2 = 0 forces
6
D=d+ Z(g—fi) ® H; + (& — &) ® (Hr — Hg),
=1

which suffices for the existence of a holomorphic Fg, Q.E.D.

Lemma 11. Each of the following conditions is sufficient for the nonez-
istence of an equivariant Hermitian symmetric Gr/Kn C Er(r)/E7¢ry 0 P with
p; = Spanc(X,|o € C(J,K)):

(a) the existence of (i,k), (4, k), (4,1) € J with (4,1) € J;

(b) the ezistence of (i,k,1),(j, k,1), (i,p,q) € K with (j,p,q) € K, regardless
of {k,1}n{p,q};

(c) the ezistence of (i,5,k), (i,p,q) € K and (j, k) € J with (p,q) & J, regard-
less of {j,k} N {p,q}.

Proof. In either case, we choose 01,02,03 € C(J, K) with o3 — 03 € Ac(Er(7))
and o} + (02 — 03) € Apc(Erny) — C(J, K). More precisely,

() pir + (k= pax) = pat + Aij = B3

(b) Yipg + (Vikt — Yikt) = Yipg + Aij = Vipgs

(€) Yipg + (Bjk — Yijk) = Yipg — 6i = fipg, Q-E.D.

The root system

S(J, K) = {pi5((, 5) € I), 7 (G, 5, k) € K)} C AL (Br(ry)

is strongly commutative if its index set J, K satisfies the following conditions:

(i) any two pairs from J are disjoint;

(i) any two triples from K intersect in exactly one index;

(iii) any triple from K intersects any pair from J in exactly one index.

7. EVI = E7(_5)/SO(12) X SU(2)

The complexified isotropy subalgebra
50(12,C) =h§ + 3 CXa;+ D (CXuy +CXopy)-

1<i#j<6 1<i<j<6
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Since SU(2) is in a direct product with SO(12), the only positive root o of sl (2,C) -
satisfies 0 + 7 & A(EF) for all T € A(s0(12,C)). That specifies o = Arg. Conse-
quently,

At (Eres)) = {Aj(1 < i < j <6), pi;(1<i<j<6), Ms}
and
AL (Brs) ={Bir(1<i<6), mp(1<i<j<k<6), &(1<i< 6)}.

The maximal commutative subsets C' C A} (Ey(_s)) are of the form C(I, K) =
{Bin(i € I),vix((i,5,k) € K),8;(i & I)} for I C {1,...,6} and a subset K of
unordered triples, subject to (i,7,k) € K = (I,m,n) € K. In particular, the
maximum cardinality of a commutative root system C' C AY (Br_s)) is 16.

In order to study the holomorphic liftings to a maximal complex homogeneous
fibration, let us introduce

Definition 12. An index set /, K of a commutative root system C(I, K) is
Er7(_s)-admissible if it satisfies the following conditions:

(i) for any i € I, j & I there exists (4,k,!) € K with different 1, j, &, [;

(ii) if {1,...,6} — {4,5} C I, then there exists (k,I,m) € K with different
iaja k’ lam’

(iti) if I C {1, 7}, then there exists k & {i,5} with (3,5,k) € K.

For example, I = {1}, K = {(1,4,)|2 < i < j < 6} and I = {1,2},
K 2 {(1,2,4)|3 < i < 6} are E;(_5)-admissible.

Lemma 13. Let f : M — T'\ E;_5/S0(12) x SU(2) be a harmonic
map with mazimum dimensional df©(T}°M) = g,Spanc(X,|o € C(I,K))g;!
forz € M, f(z) = I'g,(SO(12) x SU(2)). Then there is a holomorphic lifting
Fp: M — T\ Ey(_5)/SO(12) x T to the minimal complez homogeneous fibration,
whose associated parabolic subgroup P has semisimple part SO(12,C). If, more-
over, the index set I, K is Eq(_s)-admissible, then f admits a holomorphic lifting
Fp:M — T\ Ey_5/T" to a mazimal complex homogeneous fibration.

Proof. The (0, 1)-part of the so(12) x su(2)-valued connection D is of the form
6
D"=0+) GOH +&®(Hi—Hs)+ Y. 75 ® Xy,
i=1 1<i#j<6

T ® Xorg + T @ Xoer + D GG @ Xy + Y. TGO Xy,
1<i<j<6 1<i<j<6

Under the assumptions of the lemma, the (1,0)-component of dfC is represented by
0= de'®@ X, + Y, dz*eX, , +3 dr'®X;,.
i€l (i,5,k)EK igl

The pluriharmonic equation D"8 = 0 reveals that ng; = 0,7;; = 0fori g Jorj € I
or if there is (4,k,1) € K, (;; =0 if A(k,I,m) € K or Ik ¢ I and 2;; =0if Ik € |
or 3(i,4,k) € K for different i,j,k,I,m. Further, D'§ = 0 implies that 7,5 = 0.
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Consequently, D = D" + D" takes values in so(12) and there is a holomorphic
lifting Fp: M = T'\ E7(_5)/SO(12) x Tt
For Er(_s)-admissible I, K, the pluriharmonic equation forces
6
D"=38+Y &®H;+& ® (Hy — Hy) + 778 ® X

i=1
and D' = 0 specifies that D takes values in hy. In other words, there is a holo-
morphic lifting Fg : M — '\ E7(_5/T", Q.E.D.

Lemma 14. Each of the following conditions is sufficient for the nonexis-
tence of a Hermitian symmetric space G /Ky with pi = Spanc(X,|o € C(I,K)),
equivariantly embedded in some complex homogeneous fibration Eq;(_5y/E7(_syN P:

(aykel,l¢1,(i,5,1) € K and (I, m,n) € K for different i,j,k,l,m,n;

(b) (,4,k),(l,m,n) € K for different i, j,k,l,m,n;

(c) k,0 € 1, (3,5,1) € K and (3,4,k) & K for different i,j,k,1.

Proof. The aforementioned conditions provide the following g1, 02,03 € C(I, K)
with o3 — 03 € A(Er(~5)) and 01 + (02 — 03) € Anc(Er(_s5)) — C(I, K):

(a) Brr + (8t — vijt) = Brr — Mij = Yimns

(®) Yijk + Vimn — Brr) = Yijk — pij = Ok for k € I or Ymn + (Yije — ) =
Vimn + Mij = Brr for k ¢ I

(c) Ok + (vije — O1) = Ok + pij = Vijk, Q-E.D.

The strongly commutative root systems S C A} (Ers)) of maximum car-
dinality are equivalent to S = {817, 7134, 7156, 62} modulo the action of the Weyl
group of SO(12,C) x SL(2,C).

8. EVIII = Eg(s)/S0O(16)

As far as

A*(50(16,C)) = AZ (Eg(s)) = {Mij(1 S1<j<8), mi(1<i<j<8)},
there follows

Al (Bys) ={a, Bij(1<i<i<T), 1pp(1<i<j<k<T7), 6(1<i<T)}
The commutative root systems C C A} (Eg(s)) are of the form
Ci(I,J,K) = {8;(i € I), Bi;((3, ) € J), 75 ((3,5,k) € K)}
or '
C2(J, K) = {a, Bi; (5, 5) € ), 7 ((1,5,k) € K)}

with (i,j) € J = p g I forp € {i,5}; (i,5,k) € K = (p,q) € J for p,q € {,],k};
(4,5,k) € K = (I,m,n) € K for different i, j,k,l,m,n.

Definition 15. For a commutative root system Cy(I,J, K) one says that
I,J, K is an Egg)-admissible index set of first kind whenever there hold the follow-
ing conditions:
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(i) ifi € I, i & SuppK, then there exists (4, k) € J for different i, j, k;

(i) if (5,4) € J, I C {i,j}, then there exists (k,I,m) € K with different
i’j7 k’ l’ m;

(iii) if (4,5, k) € K for fixed 4 # § and all k & {4,7}, then there exists (k,1) € J.

Definition 16. If C3(J,K) is a commutative root system, then J, K is ap
Ej(s)-semi-admissible set of indices of second kind whenever for any unordered pair
(4,7) € J there exists an unordered triple (k,l1,m) € K with different i, , k, l,m.

Definition 17. For a commutative root system C>(J, K) the pair J, K is an
Eg(s)-admissible index set of second kind if it is Eg(s)-semi-admissible and for any
i # j with (j,k) & J for all k ¢ {4, j} there exists | ¢ {i,4,k} with (i,k,1) € K.

Lemma 18. Let f : M — I\ Eg(3)/SO(16) be a harmonic map of a compact
Kihler manifold M with df€(T}°M) = g,Spanc(X,|o € Cy(J, K))g:! for z € M,
f(z) = T'g:SO(16) and an Eg(s)-semi-admissible index set J,K of second kind.
Then f admits a holomorphic lifting Fp : M — T\ Eg(s)/Us x T! to a minimal
complez homogeneous fibration T\ Egs)/Us x T - T\ Eg(s)/SO(16) with fiber
DIII.(8)/T". For a harmonic map f: M — T'\ Egy(8)/S0(16) with dfS(T1°M) =
geSpanc(Xslo € Ci(I,J,K))g;, where I, J K is an Eg(s)-admissible index set
of first kind, or dfS(T}°M) = g.Spanc(X,|o € Ca(J, K))g:?, where J,K is an
Egs)-admissible indez set of second kind, there is a holomorphic lifting Fg : M —
T\ Es(g)/Ts to the mazimal complex homogeneous fibration.

Proof. The (0, 1)-component of the so(16)-valued connection D is of the form

8
D'=9+) &@Hi+ ), THRXa,+ . (@ X+ Y mHeX_,,.
i=1 1<i#j<8 1<i<j<8 1<i<;j<6
The (1,0)-component of the differential dfC, associated with a commutative root
system Cs(J, K), is
bp=d®®@Xa+ ) deM®Xp, + Y dPTeX,.
(k.D)eJ (pa.r)EK

The pluriharmonic equation D6y = 0 implies that z;; = 0 forall 1 <4 < j < 7,
zig =0forall 1 <i <7, m;=0if3(j,k) € Jor 3(i, k,0) € K, ¢;j = 0 if (5,7) € J
or 3(k,l,m) € K for different 1, §, k,{,m. For Eg(g)-semi-admissible J, K of second
kind that provides

8
D"=0+Y GRH,+ Y. X,
i=1 1<i#5<8
and an existence of a holomorphic lifting Fp : M — [\ Eg(s)/Us xT*. Here Ug x T!

8
is the centralizer of Ezpfa(s’ (IR (E H,-) ) Whenever J, K is an Eg(g)-admissible
i=1

— 8 _
index set of second kind, there follows D" = 8 + 3 € ® H;, which suffices for the
i=1

existence of a holomorphic lifting Fg : M — T'\ Eg(g)/T®.
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If the harmonic map f is associated with a commutative root system C1 (I, J, K)
of first kind, then

6 = dei ® X5 + Z dz ® Xp,; + z dz'7* @ Xy
iel .4y eJ (i.J,k)EK

The pluriharmonic equation D"¢; = 0 implies that 7;; = 0 if 7 € I or there exist
(G, k) € Jor (i,k,1) € K, {;; = 0 for (i,j) € J or 3(k,l,m) € K or 3k € I,
z; =0for1 <i<j<7if3k1) € J or 3(i,5,k) € K, zg =0if1 € [ or
3(j, k) € J or 3(i, 5, k) € K. The Eg(s)-admissibility of the index set I, J, K of first

— 8 _
kind suffices for D" = 8 + 3. & ® H; and the existence of a holomorphic lifting
i=1

Fg: M —> P\Eg(g)/Ts, QED

Lemma 19. Each of the following conditions implies the noneristence of an
equivariant Hermitian symmetric Gp/Kn C Es(s)/Es(syN P with p?{ = Spanc(X,|
o e Ci(I,J,K)) or pi = Spanc(Xs|o € C2(J, K)):

(a) the existence of (i, k), (j, k) € J, (i,k,1) € K with (4, k1) € K;

(b) the ezistence of i,j € I, (j,k) € J with (i,k) & J in the case of C1(1, J, K);

(c) the existence of (i,5) € J, (i,5,k) € K in the case of C2(J,K).

Proof. Below are exhibited 01,02,03 € C; with g5 — 03 € Ac(Egs)) and
oy + (0’2 - 0'3) ¢ C;:

(a) Yikt + (Bix — Bjr) = Yire + Aij = YViki;

(b) Bk + (85 — 8:) = Bjk +Xij = Bix;

(c) Yijk + (Bij — @) = Yije — pij = Ok, QE.D.

In order to describe the strongly commutative root systems S C At (Ess)),
one lists o,7 € AJ,(Eg(g)) with o — 7 € Ac(Eg(s)) and observes that

S = Sl(Ia JaK) = {61(1 € I)1ﬂ1]((1:]) € J)avijk((iﬂjak) € K)}

are subject to the conditions:

(i) cardl < 1; (ii) the pairs from J are disjoint; (iii) any two triples from
K intersect in a single element; (iv) (§,5) € J = 4,j € I; (v) (i,5,k) € K =
(i 7), G k), G k) € J; () (6,3, k) € K = (Lm) ¢ J for different 4,j,k,1,m;
(vii) (3,5, k) € K = 1,5,k ¢ L.

The strongly commutative root systems Sa(J = &, K ) = {a, 7k ((4,5,k) €
K)} are characterized by the fact that any pair of triples from K intersect in a
single index.

9. EIX = Eg(_24)/E7 X SU(?)

The positive roots of E; are listed at the beginning of Section 5. The only
positive root 7 of sl(2, C) is subject to the property o+7 ¢ A(ES) forallo € A(ES).
Thus, T = p7s and
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Af (Byagy) = {Aj(1<i<j < 6), 1ij(1 <4 < j <6), Ars, prs,
Bir(1<i<6),7n(1<i<j<k<6),6(1<i< 6)},
AL (Bg(-24)) = {Mijypij(1 < < 6,7 < J£8),
‘ 0, Bi5(1 <1< j <6),757(1 < i < j<6),6,).

For a commutative root system C C A}, (E8(-24)) of maximal cardinality, let
I be the set of the indices i with \;; € C, I, be the set of the indices { with Aig € C,
and J be the set of the unordered pairs (i, j) with Bij € C. Then either

C= Cl(I],IQ,J) = {a, /\ﬂ(i € 11),[1,,'8(’i € Il);/\is(i € I2),
it (i € I2), B ((i,5) € J), vij2 (G, §) € )}
or
C=Co(l, I, J) = {87, \ir(i € I), pis (i & L), Mis(i € Ip),
it (i € I2), Bii ((1,5) € J), vi52((5,5) & J)).

Definition 20. A maximal commutative root system Cy(l1, I, J) is labeled
by Eg(_24)-admissible indices of first kind if there hold the following conditions:

(i) forany i € h NI, and j ¢ I; U I, there exist (4,k) € Jor (3,k) ¢ J;

(i) if h = @, then I, # {1, . .,6};

(iii) if J; = @, then I, # {1,...,6}%

(iv) if (¢,4) € J and i € I, U I, then there exists (k, 1) g J;

(v)ifi € I and I; C {3}, then there exists (t,7) € J;

(vi) if {i,5,k}N1L, =@, l,m,n € I, and (I,m),(,n),(m,n) € J, then at least
one of the pairs (4, 5), (j, k) and (i, k) belongs to J; )

(vii) if {4, 5,k} NI =@, {I,m,n} NI, = & and (4,7), (i,k), (4, k) € J, then at
least one of the pairs (I,m), (I,n), (m,n) belongs to J:

(viii) if 4 € I, and I C {i}, then there exists (t,5) & J.

Definition 21. A maximal commutative root system Cqo(Ih,I5,J) has an
FEg(_24)-admissible index set Iy, I, J of second kind when there hold the following
conditions:

()if j ¢ L UI, and 1 € I; N I, then there exists (4, k) e J;

(i) if = @, then I, # {1,...,6};

(iii) if I = @, then I; # {1,...,6};

(iv) if i € I, N I, then there exists (i,5) & J;

(v) if i ¢ I, then there exists (i,) € J ;

(vi) for any permutation i,j,k,I,m,n of 1,...,6 with {{,m,n} C I, and
(I, m), (l,n), (m,n) € J there exists (i, 7), (j, k) or (¢, k) from J;

(vii) for {4,7,k} C I with (4,7), (4, k), (4,k) € J there exists (I,m) € J;

(viii) if i ¢ I, then there exists (i, ) € J.

Lemma 22. If f : M — T\ Eg(—24)/E7 x SU(2) is a harmonic map with
dfS(TH°M) = g,Spanc(X,|o € Cy(I1, I», J))g;! for a mazimal commutative root
system C;(11,1,J) C At (Es(—24)), then there is a holomorphic lifting Fp : M —
I\ Eg(—94)/ B x T to a minimal complez homogeneous fibration. If C;(I1, I, J) is
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labeled by an Eg(_24)-admissible indez set of i-th kind, i = 1 or 2, then f admits a
holomorphic lifting Fg : M = T'\ Eg(_24)/T8 to a mazimal complex homogeneous
fibration.

Proof. The (0,1)-component of the e7 @ su(2)-valued connection D has the
form

8
D”=5+Z§®H¢+ Z UTj@X/\gj+%®X>\7a+;’78_7®Xx\s7
=1 1<i£5<6

+ Y GG®Xust+ Y F®Xopuy (18 ® Xpsg + 78 ® Xorg
1<i<j<6 1<i<j<6

6 6
+ZF¢®X;3,.7+ZS_Z'®X_,3”+ Z Tijk ® Xoijn
i=1 i=1 1<i<j<k<6
6

6
+ > Tk ® X + 3 Pi® Xgy + Y Ti® X_si.
1<i<j<k<6 i=1 i=1

The (1,0)-component of the differential of f, associated with C;(I1, >, J), is

By =de® ® Xo+ D da' ® Xniy + ) dy' ® Xpig + ) dut ® X,

i€ly gl iclz
+ Z dv' ® Xy + Z dz” ® Xp,; + Z dy"? ® Xz
igl> (,5)ed (i.9)¢J

The pluriharmonic equation D"8; = 0 implies that n;; = Qfori g [ NI or
jE LUl or 3(],]{)) € Jor E(Z,k) g J, s =0if L 75 @or Iy ;ﬁ {1,...,6},1’]87 =0
for I, # @ or I # {1,...,6}, G = 0 if (i,5) € Jor Ik, 1) g Jori€ LU,
zij=0f0ralll§i<j_<_6,273=0,Ui=0ifi¢I20r3(i,j)¢Jor3j€ll,
s;=0forall 1<i<6, mj=0if 3(,m) ¢ J or 3(i,j) € Jor i € [y or A & I,
tijx = 0if 3(3, ) gJor3(l,m)yeJordielordlel, pi=0forall1<i<6
and r; = 0if i ¢ I or 3j € I or A(i,5) ¢ J. Then the consequence D'6; = 0 of
the fatness equation 2 = 0 yields (zs Adz® = 0 for i € I; and (7 A dy* = 0 for
i ¢ I,. I cardl; > 2, then (75 € (dz) N (dz'2) for i1,95 € I forces the vanishing of
(7. Otherwise, card({1,...,6} —I1) 25 and the containment of (7s in at least two
different, differential ideals (dy™*), (dy®), where i1,12 ¢ I1, leads to {zs = 0. That
suffices for the existence of a holomorphic lifting Fp : M — T\ Eg(—24)/ E7 X T,

Observe that By x TV is the centralizer of the torus T" = Expfs(‘“) (H; + Hg). If,

8 _.
moreover, the index set Iy, Iz, J is Eg(_24)-admissible, then D =d+ Y (& —&)®H;

=1
justifies the existence of a holomorphic lifting Fp : M = '\ Eg(—24)/ T8,
For a harmonic map f with an associated commutative root system Co(l1, I, J)
one has
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02 =da® ® X5, + > dz' ® Xy, + DA Xu, + 3 duieX,,
i€l (-3 £ i€l

DA @K, + Y T eXs + Y dieX,,.
i€12 (i,j)EJ (iyj)g‘]

The pluriharmonic equation provides nj =0forje hULorigLni or
3(.k) € J, ms =0for I, # @ or I, # {1,...,6}, nsr = 0 for I, # @ or
I #{1,...,6}, (;; =0 for all 1 Si<j<6,z;=0forighL NI or (5,7) &€ J,
278:0,0,-=0f0ra111§i§6, si=0ifie orEI(i,j)eJ, Tijk =01f3l¢.[2
or 3(i,5) € Jor A(l,m) & J, tijp, =0 if €L or3(i,5) g JorI,m)e J, p; =0
ifi€lor3(,j) € Jandr; =0forall 1< < 6. The consequence D', = 0
of the flatness equation specifies (75 = 0. Therefore, f admits a holomorphic
lifting Fp : M — T'\ Eg(_24)/E7 x T If I,,I,,J is an Eg(_24)-admissible index
set of second kind, then D takes values in h and there is a holomorphic lifting
Fg:M—>T \ ES(_24)/T8, QED

Lemma 23. Each of the following conditions on the index set Iy, I, J im-
plies the nonexistence of an equivariant Hermitian symmetric subspace G, /K, C
Eg(_24)/Eg(~24y N P with pjf = Spanc(X,|o € Ci(l1,13,J)) fori=1 or 2:

(a) the existence of i € Iy, j € I, (k,1) € J with (m,n) & J;

(b) the existence of i € I, j & I, with (4,7) € J in the case of Ci(h, L, J);

(c) the ezistence of i € I, j € I; with (1,5) € J in the case of Co(ly, I, J).

Proof. Here are the appropriate oy,0,,03 € Ci(l1,I5,J) with 03 — a5 €
AC(ES(—24)) and o1 + (09 — o3) € Ci(h, I, J)

(a) Air + (Bt = Ymn7) = Air + pij = pyr;

(b) &+ (Air — pjr) = @ — pij = Byj;

(¢) par + (Bi5 — Aj7) = pir + Bir = @, QE.D.

Applying the very definition, one observes that the strongly commutative root
systems S C A} (Eg(_a4)) of the form

S={Air(i € [),Ais(i € I), pis(i € I), pir (i € I),
Bii((5,7) € J1),7i57((3,5) € J2)}
are S = { M7, Aos, B13, B4, 27}, S = {ps, par, Prz, 1137, Yoar}, S = {A17, Azs, Bra,
Y127}, S = {17, pos, Bos, M3z}, S = {M7, s, B2, mar}, S = {17, pas, Bi2, mar},

S = {8, a7, b12, 127}, S = {Ms, 17, B2, M7} and S = {118, pa7, Bi2, Y127} up
to Weyl(ES x SL(2,C))-action.
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A NEW BOUND ON THE ABSORPTION
COEFFICIENT OF A TWO-PHASE MEDIUM
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The Doi bound on the effective absorption coefficient of a random two-phase medium
is revisited in this brief note. Defects are created in one of the constituents, being
absorbed by the other one, which thus act as a perfect sink. Use is made of a variational
principle due to Rubinstein and Torquato. The trial fields generalize the ones, originally
proposed by Doi, and hence the new bound is more restrictive than the original Doi’s
one for an arbitrary medium. In the particular case of an array of nonoverlapping
array of spherical sinks, the new bound however coincides with Doi’s and with the one,
derived by Talbot and Willis. In passing, besides the known “particle-particle” bound,
a curious new “surface-surface” bound is extracted. Though a bit weaker than the
Doi’s, this bound relies only upon the two-point “surface” statistics. In the dilute case
it reproduces the classical Smoluchowski result.

Keywords: random dispersions, correlation functions, effective properties, variational
bounds, absorption problem
Mathematics Subject Classification 2000: 60G60, 60H15, 49K45

Consider a two-phase random medium, consisting of a phase ‘1’, immersed into
an unbounded matrix (phase ‘2’). The medium is assumed statistically homoge-
neous and isotropic. Let a species (defects) be generated at the rate K within the
phase ‘2’ (matrix) occupying the region K. It is absorbed by the “sink” phase
‘1’ in the region K; = R*\K,. In the steady-state limit the concentration of the
defects c(x) is governed by the well-known equations

=0. (1)

Ac(z)+ K =0, z€Ks, c(z) oKa
2

The creation of defects is exactly compensated by their removal from the sinks
k™2 (e(z)) = K(1—m). ()
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(The brackets (-) denote ensemble averaging.) The rate constant k*2 is the so-
called effective absorption coefficient (or the sink strength) of the medium. Its
evaluation and bounding for special kinds of random constitution and, above all,
for random dispersion of spheres, have been the subject of numerous works, starting
with the classical studies of Smoluchowski [1], see, e.g., [2-7], the survey [8], and
the references therein. (Note that we have added the factor 1 — m; in (2), due to
the fact that in the case under study defects are created only within the phase ‘2°,
see [9] for a discussion.)

We shall confine the analysis to variational bounding of the sink strength
k*?, taking into account the two-point statistical information concerning medium
constitution. The basic tool to be employed to this end is the variational principle
of Rubinstein and Torquato (R-T) [6]. The principle states that in the class of
statistically homogeneous trial fields such that

A:{u(:c)|Au(z)+K=0, :ceng}, (3)

the following inequality holds:

K*(1—m)
(I (2)|Vu(z)|?)
Moreover, the equality sign in (4) is achieved if u(z) = ¢(z) is the actual field that

solves the problem (1).
Since (Ix(z)|Vu(z)[?) < (|Vu(z)|?), another bound follows from (4):

K*(1-m)
k2> =L 5
Z Vu@P) ®
see [6]. Though weaker than (4), the evaluation of the bound (5) is simpler, because
it obviously employs a smaller amount of statistical information.

Consider the trial fields

ue) === [6a =) (M) = m + S VRG)) d, (©)

k*2 2 (4)

where G(z) = 1/(4x|z|) and the (nondimensional) constants A, x4 are adjustable.
Since I;(z) is the characteristic function of X1, |VI;(z)| is -function, concentrated
on the interphase boundary. In turn, the quantity S in (6) is the so-called mean
surface, defined as S = (|VIi(z)|).

Since AG(z) + §(z) = 0, one has Au(z) = K if z € K5. This means that the
fields u(z) in (6) are indeed admissible, u(z) € A.

Consider now the quantity of central importance

U= (|Vu(z)) /K* (7)

that enters the estimate (5). For the latter to be finite, and hence to produce a
nontrivial lower bound (5), it is necessary that the integrand in (6) have a zero

mean value. This implies
A+pu=1, (8)
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since (I;(y)) = m.
Note that the class of trial fields (6) generalizes the one, proposed by Doi

himself [2]:

ue) = K [6(a =) (L) +EIVE@I) dv. Q
The condition that mean value of the integrand in (9) vanishes reads
n+£5=0, (10)

so that, as pointed out in [6, 7], there is no place for optimization with respect to
¢, as envisaged originally by Doi [2].
A simple check shows that our fields (6) reproduce the Doi’s one (9) for a
special choice of A, namely, for
)‘=7717 #=1—771, 5‘_‘“/57 (11)

of. Eq. (8).
With Eq. (8) taken into account, the class (6) is recast as
- Elaw- () + P -
we) =~ [y {Miw) + 5 (VR@I1-5)} a,

(I{(y) =0, (Vii(z)l-8)=0, (12)

Li(y) =nL(y) —m,
50 that both random variables in the right-hand side of (11); are fluctuations. Then
the needed quantity U, cf. (7), becomes

2
U =% (67 + 2y O + 07 (13)
1
after an appropriate integration by parts. Here

o0
o = [
0
oo
W=/0W@®, (14)
0

6 = /0 pF*(p)dp

are the first moments on the semiaxis (0,00) of the “particle-particle,” “particle-
surface,” and “surface-surface” (two-point) correlation functions, respectively, de-
fined here as follows:

FPP(p) = (I1(2)11(0))
% (I (z) (VILO) - ) , (15)
F%(p) = —51—2 (Vi (z) — S) (VIL(0)| - S)) -

FP(p) =
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The multipliers 1/S and 1/5?% have been added in the definitions (14) in order to
make the respective correlations dimensionless. In Eq. (14) p = r/a, r = |z|, where
a is a certain characteristic length for the phase ‘1’, for example, the mean size of
the sinks. If the sinks are identical spheres — a case to be specially discussed below
— then obviously a is to be identified with their radius.

In virtue of (8) and (13) we have

2
a S s
U=UK) = {2 (657 — 2mel” +0}6F) + 20m (OF° - mop) + 26}, (16
1

Optimizing (15) with respect to A gives the estimate

01 — 2m6p° + niye
o — (07

k*2a2 > k;ﬁa?’ k&2a2 — (1 _ 7)1) (17)

This is our generalization of Doi’s bound. The latter shows upif A= in U,
as given in (16):

1-m
*2 > *2 k*2 2 — .
k fol kD ) D @ afp"f' 2n20?s + n%eis (18)

It is clear that (17) always improves upon Doi’s bound (18), since we have
allowed for ) to be adjustable. The bounds (17) and (18) will coincide only if the
optimal A, that minimizes &/(}) in (16), is exactly ,. The latter is the case if the
moments (14) for a given random constitution are, by chance, interconnected as

follows:
6P + (1 - 2m1)0%° — mma65° = 0. (19)

It is to be noted that, besides “Doi’s choice” A = 1;, two more particular values
of A deserve a special attention.
The first choice is A = 1. Then U = a?65” and Eqs. (5) and (7) yield

2
*2 *2 *2 2 _ 7 (1 —m)
k Z kpp s k'pf,a = —_Tfp—. . (20)

This is a known bound, called by Torquato and Rubinstein (5] “particle-particle.”
The reason behind this term is clear — the evaluation of k;g requires only the
statistical information incorporated into the “particle” correlation function FPP (p).
The second choice of interest is A = 0. Then U = a%6$°, see (15), and Egs. (5)
and (7) yield .
Kla?= —. (21)
1
This is a new bound, which is natural to be called “surface-surface.” The reason for
this term is again clear. The evaluation of k22 this time requires only the statistical
information incorporated into the “surface” correlation function FPP(p).
Consider two classical examples that concern dispersions of identical spherical
sinks of radius @ with number density n.

k*2 Z k*2

88 ?
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In the first example the sinks are forbidden to overlap. Their centers are
distributed randomly with the two-point distribution function

fa(r) = n’g(r). (22)

The interpretation is that f2(r) dV4dVg provides the probability of finding spheres
centers in the vicinities dV4 and dVg of the points A and B, respectively, such that
the distance between the latter is r; the function g(r) in (21) is the familiar radial
distribution function.

The moments (14) have been evaluated in [10], among other statistical charac-
teristics of dispersions of nonoverlapping spheres, making use of the function g(r).
The needed, for our purposes, expressions read

2—-9n '
gPP — 2
1 m (_“—5”1 +m1> )

5 — 26
91ps =m (_f)nl_m +m1) ) (23)
1-5m
S8 __
to 3m s

where m; = %wna3 is the volume fraction of the sinks (the phase ‘1’) and

my = / cx>p1/z(p) dp, v2(p) =g(p)—1, (24)
2

so that vo(r) is the so-called total correlation function. A simple check shows that
the condition (19) is satisfied, whatever the total correlation. Hence our bound
coincides in this case with Doi’s one, yielding

k*2 > ki32 : kf‘faz > 3771(1 - 771)

= 3m +olm)- 25

As indicated, the bound (25) is exact in the dilute limit 7, < 1, since it reproduces
in this case the well-known Smoluchowski’s result [1].

The bound (25) first appeared in Willis’ lecture [4]; a more precise derivation,
together with some generalizations, is due to Talbot and Willis [5], see also [11]
for a discussion and an alternative derivation, based on the Rubinstein-Torquato
variational principle (4). The fact that the original Doi’s bound for a dispersion of
nonoverlapping spheres can be recast in the elegant Talbot-Willis’ form (24) was
noticed also by Beasley and Torquato [12].

It is noted that the “particle-particle” and “surface-surface” bounds for the
dispersion under study have, respectively, the form

5m1(1 —m)
k*2q2 = — 5 ,
PP = 9 0m + smma am +olm)
3 (1 ) (26)
ki2a? = T =3 4 o(m),

T 1 -5+ 3mm
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see Eqgs. (20) - (22).

Clearly, the “surface” bound kX% is superior to the “particle” one, which is
natural — the absorption phenomenon under study, Eq. (1), is governed by the
absorption, taking place on the interphase boundary. Moreover, k22 reproduces the
correct Smoluchowski’s value in the dilute limit, unlike k32, Also, k22 is very close
to Doi’s bound k{?, the sole difference being the term -n3/5 in the denominator,

cf. Egs. (25) and (26). However, one cannot claim that k2 will be superior to k32
for all random constitutions and for all values of ;. An example, when this is not
so, will be supplied below, when discussing the appropriate bounds for the Boolean
model of overlapping spheres.

In the simplest “well-stirred” dispersion g(r) ~ 1 = ho,(r), i.e. the spheres are
only forbidden to overlap (haq(r) is the characteristic function for a sphere of radius
2a located at the origin). Then v3(p) = 0, if p > 2, m; = 0 and the bounds (24),
(25) become

w2 2 _ Sm(l—m) w2 2 _ 3m(l—m)
kppa® = T om kila® = R 5

20 3m(1—-m)
= s

Obviously, the “particle” bound k;g fails in this case if 7, > 2/9. Similarly, the

“surface” one, kX2, fails at 7, > 0.2, and Doi-Talbot-Willis k? —at g > 19,
79 ~ 0.1984 — a fact, explicitly underlined in [4, 5]. This means that the “well-
stirred” approximation is unrealistic beyond the value n? of sphere fraction. This
fact, however, is of little interest due to the more recent result of Markov and Willis
(13, 14], stating that “well-stirred” approximation is already unrealistic if 7; > 1/8.

More realistic than the well-stirred one is the Percus-Yevick (PY) approxi-
mation for a dispersion of nonoverlapping spheres [15], widely used in the liquid
state theory. The Laplace transform of the function v, is analytically known due to
Wertheim [16]. An appropriate asymptotic analysis of the Wertheim’s formula
allows one to obtain, in turn, a number of statistical characteristics of a PY
dispersion, see [16, 6]. In particular, it turns out that the parameter (24), needed
in the bounds under consideration, is simply

(27)

py _ Mm(22—-m)
= Mmige—m) 28
™= B+ 2m) (28)

(Note that an equivalent, but much more complicated formula for mYY is given by
Talbot and Willis [5, Egs. (8.14) and (8.15)].) '

The formula (28), when inserted into (25), gives the Doi-Talbot-Willis bound
for a Percus-Yevick dispersion in an extremely simple form:

kia? = S 2m) (29)

(1—m)?

The values of kj? obviously remain finite for all sphere fractions m € (0,1). This
fact makes the application of the PY approximation suspicious for higher volume
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fractions. The reason is that any realistic model of dispersions, in which the spheres
are forbidden to overlap, should fail for volume fractions higher than 0.64 — the
value corresponding approximately to the close packing of the inclusions.

The second case is the well-known randomly imbedded model of spheres {13,
14], called also Boolean [15]. Here an infinite family of points are placed “fully”
randomly throughout the space — more precisely, forming a Poissonian system of
number density (intensity) n. Identical spheres of the radius a are centered then
at these points, with overlapping permitted. The phase ‘2’ (the “sink-free” part) is
then defined as the region, empty of spheres. The “sink” phase ‘1’ comprises either
the single spheres or the aggregates, formed by families of overlapping spheres.

0 91 02 03 04 05 06 07 ™

Fig. 1. The various bounds on the dlmensmnless effective absorption coeﬂ‘icxent for the
Boolean model. ‘1’ — our new bound k}?a®, see (17); ‘2' — the Doi bound kK ee
(18); ‘3" — the “surface-surface” bound ks*szaz, see (21); ‘4’ — the “partlcle-pa.rtlcle
bound kj2a?, see (20)

Here the needed two-point correlations, as evaluated by Doi (2], read

ns = exp(mna®), D(p)=1+5p—%0%,
FPP(p) = (79 - ) (1 - H(p - 2)),
1 2+ p)(n3 +FPP(P)) (30)
Frs - 1-H(p-2)),
570 = (m - (1 Hip~2)
1 2+ P)2> 2 }
FSS {( +FPP(p)) —13(1—H(p—-2)),
here p = r/a, H(r) is the Heaviside function.
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The moments (14) can be evaluated in this case only numerically. The ap-
propriate bounds on the dimensionless effective absorption coefficient k*2a2? are
shown in Fig. 1 as functions on the volume fraction 7, of the sink constituent. It
is seen that our bound (17) does improve upon the Doi one, given in (17), but
the improvement is small and shows up only at very high values of the fraction
M- The behaviour of the “surface-surface” bound k:2a?, see (21), deserves some
more attention. For dilute fractions g < 1, it is undoubtedly better than the
‘particle-particle” one, see (26), since the Boolean and “nonoverlapping” dispersions
share the same effective properties in the dilute limit. However, in the region
m € (0.1,0.3), a bit unexpectedly, kx2a? falls below kr2a®. Only at n; > 0.3 the
“surface-surface” bound becomes superior as compared to the “particle-particle”
one. Moreover, it becomes much more sensible when 7 increases. At the same
time the bound k;gaz deteriorates badly with increasing ;. The reason is clear: in
the Boolean model, when the sink fraction increases, the overlapping becomes more
and more frequent, the shape of the aggregates formed by the particles becomes
more and more complicated and the specific surface increases considerably as a
result.
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FINITE DEFORMATIONS OF TWO DROPS
DUE TO ELECTRIC FIELD

IAVOR VARBANOV HRISTOV

The finite deformations of two drops due to electric field are investigated in this article.
The radii of the drops and the fluid phases could be different. Reynolds’ number is
assumed small enough to solve the problem in quasisteady Stokes’ approximation.
It is also supposed that the initial form of the drops is spherical and the fluids are
homogenous, incompressible and Newtonian.

The electric and hydrodynamic problems are separated and the electric one has an

influence on the hydrodynamic one through the boundary conditions. The Maxwell’s
equations are turned to Laplace’s equations, and together with Stokes’ equations they
are solved by semianalytical-seminumerical method. We use boundary-integral type of
these equations to solve them by the method of boundary elements. The kinematic
condition gives a new form to the particles.

The results obtained indicate that interactions between two and three fluid phases,

due to electric field, lead to deformations of the drops. The influence over the defor-
mations of some dimensionless parameters of the problem has been given graphically.

Keywords: electric field, deformation, drop, boundary elements method, fluid phases,
interfaces

Mathematics Subject Classification 2000: 76T30

1. INTRODUCTION

Basic ideas for investigating the matter of fluid particles deformations have
been presented first by G. L. Taylor (1932). In his next paper (1934) Taylor has
found the critical velocity of shear flow, after which a drop set in the flow starts to
elongate. In [26] it has been proved that in uniform flow in Stokes approximation
an initially spherical particle remains spherical without any deformations.
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E. Chervenivanova and Z. Zapryanov obtain small deformations of drop moving
with a uniform velocity in spherical container, full with viscous fluid. Although the
flow is uniform, there are deformations of the drop, because it is in a container
which causes the deformations.

Uijttewaal et al. (1993) solve numerically the three-dimensional problem of
drop in linear shear flow moving to a plane wall, using the boundary element
method.

The problems of single drop subjected in viscous flow are in the basis for
solving problems of compound drops (drop in drop), drop near a plane wall or two
separated drops.

The technique “method of reflection”, which is used for the first time by Smolu-
chowski (1911), is in the base of the first systematic investigations of the dynamics
of two fluid drops made by Happel & Brenner (1965).

Small deformations of two fluid drops have been presented first in [3]. De-
formations of two fluid droplets, drop and bubble, and drop and rigid particle in
uniform flow are obtained. A parametric analysis of the small deformations relative
to the distance between drops and the ration of viscosities of the different phases
is made. “Dimple” formation is one of the basic results of the paper.

The influence of electric field on a water drop has been investigated experimen-
tally in [29] and [12]. The authors have found the critical value of dimensionless
parameter (E*) after which the drop breaks up. Taylor (1964) improves theoreti-
cally this value supposing that the drop preserves its spherical form until the break
up. In [1, 5, 9, 25] a drop’s break up with conical tips is examined. Ramos &
Castellanos (1994) present theoretical result for the influence of the coefficients of
permittivity and conductivity on the conical tips formation. Torza, Cox & Mason
(1971) have found experimentally another model of breaking up a drop, which is
divided into two spherical parts connected with a thin “throat”. Sherwood (1988),
using the method of boundary elements, solves numerically the problem of a single
fluid particle deformation under the influence of electric field.

The form which two equal fluid drops achieve in the presence of electric field is
given experimentally by O’Konski & Thacker (1953). In the papers [5, 13, 23] the
authors show that due to the same electric field but with different parameters of the
fluid phases (conductivities, permittivities) there are deformations of the interfaces
based on electrostatic charge. In [2, 11, 24] a couple of equal water drops situated
in an electric field is investigated experimentally. Sozou (1975), using bipolar co-
ordinate system, presents semianalytical decision for velocities in and out of the
drops, presuming keeping the spherical form.

2. FORMULATION OF THE PROBLEM

The problem for defining the finite deformations of two fluid drops due to the
electric field is separated into two problems — electrostatic and hydrodynamic. The
Navier-Stokes equations and the Maxwell’s equations are describing most precisely
that problem. In low Reynolds number and quasisteady approximation they turn
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respectively into Stokes equations for velocities and Laplace’s equations for electric
potentials, as written below.

Ay
9]
o [N,
U g
z Sl
S2
Eq

Fig. 1. Scheme of two drops in the presence of electric field

The drops on Fig. 1 are compounded of fluid 2 with viscosity p2, conductivity
o9, permittivity €2, and Auid 3 with viscosity us, conductivity o3, permittivity £3.
The electric field that acts on the axis connecting the centres of the drops is with
intensity Eo. Under its influence the interfaces of the drops deform. The initial
form of fluid drops is spherical with undistorted radius Ry of the first sphere and
undistorted radius Ry of the second one. With S; is marked the interface between
phase 1 and phase 2, and with S — the interface between phase 1 and phase 3.
The interfacial tensions over S; and S, are v; and 72, respectively. The fluids 1,
9 and 3 are situated in €, 2 and )5, respectively, while Q, is the infinite area
outside the drop (Fig. 1).

At each point the electric potential and the velocity of the flow at each moment
is governed by the following equations:

— Laplace’s equations: Akt =0 (k=1,2,3); (2.1)
k
— discontinuity equations: %1:-:’— =0 (i,k=1,2,3); (2.2)
1
. Oak; .
— Stokes’ equations: T = 0 (4,5,k=1,2,3) (2.3)
J

Sut Out\-
where afj is the stress tensor ofj = —p’“&ij + Uk (5%:— + —6-9_1:]7 .
The index k = 1 for € 1, k=2forx € Q2 and k = 3 for x € Qs, while p*
is the hydrodynamic pressure of the respective fluid. The electric potential in the
three phases satisfies the following boundary conditions:

¢! (z0) - Eoy, |zo| — o0, (2.1.8)
o' (o) = P2 (o),  To €51, (2.1.b)
@' (20) = ©* (o), xo € 2, (2.1.c)
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! dp?

o1 -(%(mo) = 025%(560), Zo € Si, (2.1.d)
D! dp®

01*32;7(350) =03 F(pn_(mo)’ Zo € 53, (2.1.e)

where Ej is the intensity of the electric field, =} is the z-component in Decart co-
ordinate system Ozyz of the vector 2y, and o1, 02, 03 are the electric conductivities

. . 0 . .
of the respective fluids, and —— is the normal derivative to the surface, pointed out

on
of the respective domain.
The flow field is governed by the following boundary conditions:

ul(z) 0,  |@o| = oo, (2.3.a)
u} (o) = uf (o), Zo € S1, (2.3.b)
U%j(mo)nj(wo) - Ufj(fvo)nj(wo)
s
= fylni% ~ (i (o)nj(wo) — 75 (o)1 j(0)) , zo €51, (2.3.)
J
uj(@o) = ui(zo), o € Sy, (2.3.d)
03 (®o)nj(2o) — 0 (wo)m;(20)
on.
= 72ni5% — (r(zo)nj(@o) — 75 (wo)nj(a)),  To €S2 (2.3.€)
j

Here n is the single outer normal to the interface S; or Sz,

€ Ek 2
== (5 -mt)
is the Maxwell’s electric stress tensor for the respective phases (k = 1,2, 3), where g
is the electric permittivity of the different phases and EF = —~Vy*. Let us hssume
that S and S; are Lyapunov’s surfaces. The solution of (2.1) with boundary
conditions (2.1.a—e) gives us the electric potentials at each moment and at every
point of the three phases. The solution of (2.2), (2.3) with boundary conditions
(2.3.a¢) gives us the velocity at each moment and at every point of S; and S,.
The deformation of the interfaces is determined at each moment by the normal
component of the velocity and the kinematic condition:

dx,

dt
Here x; is a point of the respective surface S; or Sz, while u, is the normal
component of the velocity at this point.

Following Greengard & Moura (1994), the integral equations, which determine

the potentials of the electric field on the interfaces, are solutions of the system (2.1)
with boundary conditions (2.1.a—e) in the single-layer integral form:

o(@o) = P(o) + / G20, z)p(x) dS., (2.5)
S

= n,-(u,- . n,~) =7Nn;Uy. (24)
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where ¢(zo) is the total potential of the field at the point @o:
¢ (o) = <P(fl=0)|9l ) ¢*(@o) = W(mo)\nz,
¢ (@) = p(@o)yg,  ¥(@o) = Eo.z5,

p(x) is an unknown function of distribution, G(zo, ) is a Green’s function for the

domain S = S1 U S, which for our case is G(zo,x) = ﬁ .
—Zo

By substituting (2.1.d-e) in (2.5) and using the single-layer potential theory

we derive:

Ok [Q}%(?Z - —12-/)(:1:0) + / %%(mo,a:)p(m) dsx}

5
=01 {‘2’»"_6(592 + %P(mo) + / g%(wo,m)p(w)dsxl , (2-6)
s
p(zo) — 2Ak / g——i(mo,w)p(w) dS, = Aka—%Tf——o)—,
5

where A = 22 k=23,

o+ 01

In order to solve the hydrodynamic problem (2.2), (2.3) with boundary condi-
tions (2.3.a—e), following Power [14), we use Green’s integral representation formulae
for Stokes equations to get to integral equations, which determine the velocities on
the interfaces:

1+ (I;1/I£2) w} (o) = - (1 _ H“_1> / T (o, 2)ul ()i () S 2.7
2
S
_ (1 - ﬂ) /Tijk(wo,m)u'jf(m)nk(a:) dSz
H3 2
1 on
. / Jij (@0, T) (’nnrﬂf - (lek"k - Tfk"’e)) dSz
S1

1 ony
—_— -,ZS/ J,'j(:l:o,m) (7211,-%; - (’T;k’n.k - 'rfknk)) dSz
2

for each Tp € 51,

1+ (lél/#s)u?(mo) = - (1 - %;—) /Tijk(zo,z)u} (w)nk(m) dSz (2.8)

51

{3
Sa

- (1-2) [ TantenaniEinle) o5
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1 on
- ;&:/J,'j(mo,m) ('an,-é;f = (1 ~ Tfknk)) ds,
S2

1 on
—_ l:l_é/ J;,-(:z:o,:z:) (’yfn,jaf — (t}knk - 7-12kn;c)> dSz
1

for each g € S,.
The equations (2.5)-(2.8) are dimensionlized o s form that is given in the next
part and the following dimensionless Parameters are included:

E7 - 61E3R1

p)
the electric and the capillary forces;

— dimensionless parameter that indicates the relation between

pig = 'L—tl-, Hiz = L the relation of the viscosities of the different neigh-
3
bouring phases;
€ £ . - i ,
€91 = gg , €37 = 6—3 — the relation of the electric permittivity of the different
1 1

neighbouring phases;

c o
J1a = Ei , 013 = ;—1- — the relation of the electric conductivity of the different
p) 3

neighbouring phases;
Y12 = n_ the relation of the interface tension coefficient of the two surfaces
)
of the drops;
R . "
Ry = R;I — the relation between the radii of the two drops.
2
To accomplish the formulation of the problem, we should say that on each time
step we solve first the electrostatic problem, which has an influence on the hydro-
dynamic one, by Maxwell’s electric stress tensor. On its turn, the solving of the
hydrodynamic problem gives us the velocities of the fluids in the different phases.
Using the kinematic condition for the normal velocity components on the fluid sur-
faces, we get their deformation. With the new form (changed boundary conditions)
we solve once again the electrostatic problem and after that the hydrodynamic one,
since the number of time steps determines how many times this procedure will be
used. The criteria for ending the procedure are reaching an equilibrium form of the
drops or “break up”. ,

3. ALGORITHM FOR DETERMINING THE DEFORMATIONS
OF TWO DROPS DUE TO ELECTRIC FIELD

The main steps of the algorithm followed are:

e change of the co-ordinate system from Decart’s to cylindrical, in order to
transform the boundary integrals to one-dimensional;

¢ introduction of boundary elements over the boundaries of the domains —
arcs of circles;
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e introduction of local polar co-ordinate system for each boundary element;

o calculation of the integrals of the single- and double-layer over each boundary
element;

e subtraction of the integrals singularities;

« calculation of the velocity on the interfaces;

o determination of the drops form from the kinematic condition.

Due to the axisymmetric flow of the problem, we change the co-ordinate system
to a cylindrical one (z,0,$), in which none of the unknown functions depends on
the azimuthal angle ¢: @¢ = pp = up =n¢ =0 (Fig. 2).

v4

c a'g

z

Fig. 2. Scheme of cylindrical co-ordinate system for axisymmetric flow

The normal n, the velocity u, the electric potential  and the unknown function
of distribution p are presented through the new co-ordinates:

z = [z,0c08¢,08in ¢, o = [xo,00c0s ¢o,T0 singp], Te=To—% Tz=To %
(e, Mgy Mz] = [N, Mg CO8H, Mg SI0 G, (U, tys Uz] = [tas Uo COS &, U SIR),
(e Pys 0:] = (P2, 95 08§, 00 sl [P Py, p:) = [Pz, P €08 9, po S B]-

The differential dS is presented through the formula dS = o d¢dl, where dl is
the elementary length of the curve € = C1 U C, projection of S = S} U :S'z in the
meridian plain Ozy, i.e. C) is the projection of Sy, while C is the projection of S;.
Thus, we get to the following equations:

olao) = ¥(wo) + 5 / SHKS (@0, Do (D) di(@), (3.)
c
plxo) — éﬂ_ﬁ /p(l)KD(wo,l)a(l) di(z) = M%:O) ) (3.2)
c
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where

27 2w
dé(z) _ [ dé(z)

Ks(wo,l) = |$0'—$| = |"':zl =I10(m0a0a00)a
0 0
27 2
D _ [ (o —2) -n(z) _ [Tz n(z)
K ((E(),l) - / |$0 — w|3 d¢($) - / |7':]3 d¢($)
0 0

= (rgng + 0oNe)I30(o, 0, 00) — doneI31 (2o, 0,00).

Imn(zo,0,00) are functions defined by:

27 ¢
cos™
Inn = [ : 4
(r2 + 02 4+ 03 — 2000 cos P)
w/2
4™ // (2cos?w —1)"
" (4ogo)™/? J (1—k?cos?w)™?
4o00¢
2 _ )
where k' = T T (0 +00)?
1
2 + Db (@o) + (1 = prg) [ gosr (0, Duh@ma(@) @) (33)
Cy
+(1= ) | daps (@0, D)@ (@) ()
C2
=_ / Mog(zo, ) (Mm2mgV - n — Ey (1o5mp — T2gmge2)) di(z)
Ch
— /Maﬁ(mo,w) (ngV-n - E, (T;ﬂ'nﬁ - 2ﬁn3631)) di(z),
Ca
1
L1+ iud@o) + (1 - ) [ oy @0 DJub@m @) dls) (34
C1
+ (1 — pas) / qaﬁ.y(mo,a:)u%(z)nq(m) dl(x)
Co
=- /Mag(mo,a:) (mangV - n — Ey (1agnp — 12gnpen)) di(z)
C1
- /Mag(a:o,a:) (ngV -n — Ey (Tasns — Togngear)) di(z).
Ca
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The indices o, 8, v are for z or o, and we denote by them the axial and radial
components, respectively.
The matrices M and g are defined as in [30]:

27

— Mzz Mza — J:m; Jzy COS¢+J;,;Z sinqS
M(-’Bo,:ﬂ) - [Maz aa} —U/ !:Jzy Jyy sin¢+JyZ COS¢ d¢’

[qutz q:z::a] (330, a:)

9zoz YGzoo

2
Y / [ Trzz ’ Tegycos ¢+ Thp-sing 5
TzzyTa:zz + TyzzSing Tx'yy cos? ¢+ T, sin’ ¢+ 2Ta:yz sin ¢ cos @ ’

[QUz:c Qozo :l (mo’ ill)

Qaaz (Imnr

2n
Teay Toyycos ¢ + Tpy, sin ¢

=9 / [Txnyzzz + Tpyzsing Tyyycos® ¢+ Ty,, sin® ¢ + 2T,y sin ¢ cos ¢] d¢-
0

Formulated by the integrals I, (o, 0,00), we have

I + 7‘3130 —rz(0I30 — 00l31)
—7‘,,(0‘[31 - 0‘0130) I + (0’2 + O'%) I3 — O'O‘o(Igo + 132) ’

—r2],
Qraax 2150
I:‘Ixmo = qwzjl = 6or, rz(0I50 — 0ols1) ,
— (02Is0 + 03152 — 2000151)

M=c¢

Qzo0
tous r2(0ls, — ools0)
[Qama = Qaaz] = 6o —Ty [(02 + 00)2 Isy — ooo(Is0 + 152)]
oo 0351 — 0200(Iso + 2Is2) + 002 (Is3 + 2I51) — 03 Iss
The integrals I,,, could be expressed by elliptic integrals of first and second
kind — F(k') and E(k'), which are calculated numerically:
/2 /2
F') = / ( du E(') = / (1 - k" cos? w)1/2 dw.

1 — k'2 cos? o.))l/2 ’

0

The integrals of single and double layer integrals in (3.1)-(3.4) have singularities,
and in the singularity point these integrals are calculated using the formulae derived
by Pozrikidis [15].

The system (3.1)—(3.4) is solved using the method of boundary elements, and
the algebraic system following the electric problem (3.1), (3.2) is solved by Gauss’
elimination, while the one following the hydrodynamic part (3.3), (3.4) is solved by
the iterative method. For the calculations a project in Code Warrior C has been
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conducted, as the main results have been obtained through Power Mac 200/6400
in the Laboratory of the Department of Mechanics of Continua at the Faculty of
Mathematics and Informatics at the Sofia University “St. KI. Ohridski”.

For the determination of the drops form on each time-step, we use the kinematic
condition of the following type:

3™ = xy + ni(u; - n;)dt, where dt is a preliminary set time-step.

We assume that the form reaches the equilibrium when the normal component
of the velocity becomes less than the preliminary set minimum at every point of the
interfaces. Another criterion for the end of the procedure is the normal component
to become bigger than the initially set number; then we consider the drop’s break-

up.

4. RESULTS

The algorithm for obtaining the finite deformations of two drops due to electric
field has been tested for a single drop in the presence of an electric field and it has
shown a good agreement with the results of Sherwood [18].

1.5

&L

™
AW}

O

18

Fig. 3 Fig. 4

L8 The deformation of fluid interfaces

' when they are with equal radii does not

depend essentially on the distance be-

q tween the drops in low intensities E, =

0.4 of the electric field. The initial dis-

tance between the centres of the drops

Fig. 5 on Fig. 3is 2.1R1, on Fig. 4 is 2.5 R1,

on Fig. 5 is 3.5R1 with pyo = 0.50,

H13 = 1.50, E,y = 0.4, €a1 = 2.0, R12 = 1.0, €31 — 3.0, 012 = 10.0, Jg13 = 15.0,
dt = 0.01, 12 = 1.0.

qxY

a8

)
M

N Y
AN

N

Fig. 6 Fig. 7
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When we increase the intensity of the
electric field, the form reached by the first
drop is elongating, till the second one re-
tains almost spherical. On Fig. 6 Ey =
1.0, on Fig. 7 E,, = 2.0, on Fig. 8 E, =50
with p12 = 0.50, 91 = 2.0, 13 = 1.5,
R12 = 1.0, €31 — 30, 012 — 10.0, Jg13 =
15.0, dt = 0.01, 712 = 1.0.

405
%059 ) t

Fig. 9

The ratio between the radii of the
two drops causes different pictures of de-
formation as shown on Fig. 9-11. On
Fig. 9 Ry2 = 0.5, on Fig. 10 Ry2 = 1.25,
on Flg 11 R12 = 1.49 with Hi12 = 0. 5
E = 0.5, ﬂ13—20 621—-20 €31 =
3.0, o120 = 10.0, 013 = 15.0, dt = 0.01,
12 = 1.0. The change of the ratio causes
increase of the influence of the initially

TR T T R L s PG S,

Fig. 12

On Fig. 12-14 the ratio between
the viscosities is changed from piz =
1.0 on Fig. 12, 13 = 2.0 on Fig. 13 and
H13 = 4.0 on Fig. 14 with Rz = 1. 0,

—18 H12 —-20 En —20 €31 =
15 J12 —200 013 = 150 dt—OO].
72 = 1.0. That shows that a change
of viscosity between two phases causes
a change of deformations on the both
drops.

£

Fig. 8
1.5
s\/““‘\
. .
-2 &-0.5 ( ] W‘

Fig. 10

N
PN

Fig. 11

bigger drop to the smaller one.

Fig. 13

Fig. 14
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Fig. 15 Fig. 16

On Fig. 15 and 16 the permittivity ratio £3; changes from 2.0 to 10.0 on Fig. 16
with R12 = 10, E’Y = 18, Hi13 = 15, Hi2 = 05, €21 = 50, O12 = 200, 013 = 150,
dt = 0.01, 715 = 1.0. That indicates that the increase of permittivity ratio between
the phases 1 and 2 tends the drop to elongate in the direction opposite to the
neighbour drop, but the configuration of Fig. 16 (£3; = 10.0) is not stable and after
some time steps a “break-up” appears.

Fig. 17 Fig. 18

On Fig. 17 the ratio of conductivities is o153 = 5.0, and on Fig. 18 it is 013 = 10.0
with R, = 1.0, E‘Y =04, m3 = 1.5, 12 = 0.5, €917 = 2.0, €31 = 3.0, 015 = 15.0,
dt = 0.01, y12 = 1.0, so when the drops are with equal radii and the intensity of
the electric field is not strong, the change of conductivity ratio has no significant
influence on the deformations.

The problem for the finite deformations of two drops due to electric field has
ten dimensionless parameters, each of them having an influence on the process of
deformations somehow, so further results will be presented in next papers.
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ERRATA

In the article SCATTERING OF ACOUSTOELECTRIC WAVES ON A
CYLINDRICAL INHOMOGENEITY IN THE TRANSVERSELY ISOTROPIC
PIEZOELECTRIC MEDIUM by Valery Levin and Thomas Michelitsch, vol. 93, p.
153, instead of (5.20) it has to be
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