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IN MEMORIAM

IIpo¢. aimu Koncrantun 3npaBkoB Mapkos

1945 - 2003

Ha 7 asrycr 2003 r. nounna Koncranrun 3apaskos MapkoB, 10KTOp Ha Ma-
TEMATHYECKUTE HAYKH, Npodecop Mo MexaHHKa 1a 1eDOPMUPYEMOTO TBBPIC TAI0
BB PaxyaTera no vareyvarnka n nudopsarika na Cocpuiickist yuusepeurer | Cp.
Kamient Oxpuicki=. pbKoBoanTeT Ha KaTeapa , MexaHHKa HA HENpeKbCIATHTE
cpeun”, raasen peiaktop na lommunnka na CY - OMII. Heka xparknre Guorpa-
hIYHIT TaHEH. TOMECTCHIT N10-10.TY, BbPHAT OIIE BC[HLA CBETITHS CIOMCH 3a Hero.

[pod. ;am KoncranTin Mapkos e poaer ma 28 avapr 1945 1. s Codust. [pes



1963 r. 3aBbpiosa cpeanoTo cH odpa3oBanue B coduiickara 22-pa ruMHasmg ¢ 13-
IPAICH CHJEH HIITCPEC K'bM MATEMATIKATR, HA KOATO TBBLPIO peuiaBa Jda ce [10-
csetd. [Tpe3 epwata roguta, clei H3TbPAKAH VCIOCUIHO KOIKYPC. CTaBa CTY.IEHT B
Maremaruko-yexanndeckns daxyarer Ha Cauxt [letepGyprexus (torasa leunn-
rpascky) yansepcuter. C TOBA JKETAINETO MY 14 ce 06yuaBsa B CBETOBHO NpH3HATA
MareMaTHYecKa [1K0J1a € W3IIbJIHEHO, HO He HaIl'b.IHO, 3al0TO ChUIeCTBYBAUIUST 11
A0 aHec crpaHeH (heHOMeH |, IbPKaBHA MOPBUYKA“ My JaBA BL3MOKHOCT 4 KaH, [i-
JATCTBA CAMO 33 CITEHMAIHOCTTA MCXaHUKA, HO HE U 33 NPEANOYHTAHATA TOTABA OT
HETO CIEeNHAIHOCT MaTeMaTHKa. Peinennero, koeto Toi Hamupa 3a cebe ci. e Kol
KOTO eJeMEHTAPHO, TOJIKOBA H HeTPUBHAIHO 33 H3MbJIHEHHE. A 10 e Ja ce o0vuasa
€ THOBPCMCHHO H 110 JBeTe crenyaasocT. ToBa croe peurenne Toil 40BexK1a 10 BlE-
yarssasaiy kpait. [Tpez 1968 r. ce aurmaoMupa ¢ OTIHYHE 1T MO JABETE CHeHHAIHOCTI
ChC 3allUTH Ha JguniaoMud paboru B kareapure | \larenarivecka dusuxa (irHTEp-
rosauus Ha juieiny oneparopu) u |, Teopus na enactavrOoCTTa™ (MOIETHpAHC HA
anuzorporuyn tesa). [oaydaBa npenopbka Aa OPOIbLIXKI ¢ PEJAOBHA aCIUpPAHTyYPa
{1969-1972 r.) o6y 4ennero cu B kateapa , Teopus na eaacrianocrra . Caex yeneur-
HA 3AlHTA HA THCEPTAIHA Ha TeMma , TeopeTHKO-rpyTIOR AHaiu3 Ha ONpPeIe ST
VDABHEHUsl 32 HeJMHENHM aHH30TDOIHU cpean ¢ nbjdere” na K. Mapkos e npu-
C'b/IeHA HAyYHATA CTEIeH ,, [OKTOP IO MaTeMaTuka* (Torasa ,KanInaar Ha (pU3NKO-
MareMaTHYecKiTe Hayku“). IIpes ocemTe roguHm ua CleIBance 0 acoHpaHTypa, Io-
JIMHH Ha NPEIJTHTaHe Ha YMCTa M NpuioxHa MaTemarika, v K. Mapkos ce doprpa
10 €CTeCTBEH LT BKYC'hT K'bM »KUBATA MATEMATHKA, T.€. K'bM IIPIJIOKCHHSTA HA Ma~
TeMaTHUKATa B U3CIeJBAHETO Ha PEadHH CPEeIAM H MPOIECH H/H, HHAYE KA3AHO, KbhM
TOBA&, KOETO JIHeC HAN-00II0 Ce ONpeesist KATO MaTeMaTHICCKO MogeanpaHne. Ha To-
34 CBOIf BKYC TOIf OCTaBa BEPEH M B M3CJIEABAHHSATA CH, KOUTO MV JIOHACAT IIHPOKO
MEKAYyHAPOAHO NPU3HAHHC, U B JEHHOCTTA CH HA IPENOJaBATed, ¢ KOATO TpaliHo
[HPUBAMYA MHOTO CBOM YYEHHMIHM 3a Kay3aTa Ha MaTeMaTHYecKOTO Mojelupainc. Ha
BCHYKH, KOHTO C€ HHTEPECYBAT OT MHOTOOPOMHHUTE NPHIOXKEHHUA Ha MATeMaTHKaTa
B PA3NMYHUTE KJIOHOBE Ha YOBekoTo nmo3Hamime, K. Mapxkop nHanpasy HeoTIaB-
Ha 9yJeCeH oJapbK, KaTO MOATOTBH, NPEBBb3MOrBaliku npobsesnTe, CBLP3aHl
TEXKKOTO My 3abonsBane, MoHorpadusita ,MaremaTHiecko Mogeaupane”, m31a.1e-
Ha oT YHupepcutercko nzgatencrso | Cs. Koument Oxpuacku npes 2002 r. Canio
rOJHHA MO-K'bCHO TIOCAEIBa BTOPH NMOJAPDBK 33 OHE3H, KOWTO NPOSIBABAT HHTEPEC
KbM MEXaHOMATeMaTHYeCKOTO MOIENHPAHe, T.e. KbM CreuudUYHUTC NPUI0KCHUSA
HA NPUHLOUANUTE M METOJUTE Ha MATEMATHYECKOTO MOJEJUDPAHC 110 OTHOIICHIe Ha
H3CEABAHCTO Ha MEXAHHYHOTO MOBEAEHUE Ha TRbpauTe 1eopMUDYeMI Tela 0 Ha
dbayuanTe. Tosu BTOpH mogapbK e MoHOrpaduara , Mexannka Ha HCIPeKbCHATITE
cpeau, u3nagena npes 2003 r. oT CHIIOTO YHUBEPCHTETCKO I31aTE/ICTBO.
Ilpodecnonannara kapuepa za K. Mapkos 3anousa B cextopa , Mexannka xna
HETPEK'bCHATHTE Cpean® KbM MHCTHTYTA No MareyaTuka M vexanuka - BAH, kb-
J€TO TOH e Hay4den ¢bTpyaHuk oT 1972 no 1977 r. I1pe3 nepuoaa ot 1977 10 1989
r. e joueHt, a or 1989 r. —~ mpodecop mo Mexanuka Ha 1eOPMHPYEMOTO TBh-
pao tano BB Pakynrera 1no marenaruxka u undopymaruka npy CY | Cs. Kan-
menT Oxpuacku«, Cieq yenemHarta 3ainTa npe3 1983 r. Ha jaucepTalnust Ha Tena
» MexanomareMaTH4ecKo MOIeIHPAHEe HA MUKPOHee,IHOPO, 1HH 1ehOPAIMpYeAi Te1a



npe.t Criennasn3upanns Havaen cbeer 1o Mexannka opu BAK na K. Mapxkos e
MPHCHIEHA HAVHHATA CTCHEH TOKTOD Ha MATEMaTHYCCKUTE HAYKI.

Brneuarasama ¢ nayyuarta npoaykuug na K. Mapkos. Toit e aprop na uo-
peye oT 70 HayvuHi Tpvia. nyvOIHMKYBAHH OCBEH BBLE BOJEIIHTE HAILIM HAYYHH ClH-
cantsi, Takupa Kato Jowaadu ne BAH, Toduwnux na Copulickua ynueepcumemn,
Mathematica Balkanica, Teopemuuna u npuaoscna mexanuxe - BAH u ap., ta-
Ka H B HAH-TIPECTIDKHUTC B 00.1aCTTA HA NMPHIOKHATA MATCMATHKA W MATEMATH-
YOeCKOTO MOJACIHpALe UVIKICCTPAHHH HAYUYHH KypHAH, cpeld Kouto Proc. Royal
Society London - Ser. A, J. Mechanics and Physics of Solids, Int. J. Solids and
Structures. SIAM J. Applied Mathematics, ZAMM, IMA J. Applied Mathematics
1 MHOro apyri. Tasm HaydHa npoIyKIHsS OTPa3saBa Pe3yATaATHTE OT M3CIeIBAHHATA
na K. Mapkos 110 mHpok Kpbr OT IpobaeMi Ha MEeXaHOMAaTEeMaTITUeCKOTO MO, 161~
pane Ha Cpel ¢ pa3HoobpasHa CTPYKTYPa M € PA3JHYHU TUIIOBE noBejxeHne. Tosa
ca U30TPONHM H AHWU30TPONHH, 00paTHMO (€JaCTHYIHO) H HCOBPATHMO (IITACTHYHO
H BHUCKO3HO) JedopMHpYeMH CPeaM KaKTIO C eJHOPOJHA, TaKa H C HeeJHOPOIHA,
JTeTePMUHMPAHA WM CIydaiia Bbrperina crpykrypa. OcobeHo 3HAYHMH €A MOCTH-
keauara Ha I NMapkos or 110C1€HITE TOIMHH, CRBP3AHN € 3JeKBAaTHOTO MOJe-
JIpane Ha CPeAM Cbe cyyalida, NpH TOBA HEH3BECTHA, HAYAJHA M IpHIobuTa
(HanpuMep 1opaall MMKPOpaspyUaBaHe, ChIPOBOXKIALO JeOPMAIMOHHITE NTPO-
HeCH) IHCIEPCHA BLTPeurna cCTpyKTypa. TpyaoseTe My, MOCBETEHU HA TO3KM KPBT OT
BLIPOCH, JEMOHCTPUPAT CILJIATA 1A PAa3BUTHA OT HErO M NPH3HAT OT M3CJICAOBATE-
JIHTE B Ta3u 001aCT M0X0d, B PAMKITE Ha KOITO, Bb3 OCHOBA HA NOCTPOSBAIE HA
ACIMITOTHYHO-TOUHH PELICHHs 32 TapaMeTpuTe Ha cilyvyalfiHUTe 110JIeTa, XapaKrep-
HH 32 MHIKPOCTPYKTYPATA Ha TaKMBA CPEeJIH, Ce H3BJIMYAT BAPHALIHOHHHU OLCHKH 34
MAKPOCKOMHYHHTE MEXaHHUHU CBOHCTBA HA chiuuTe cpean. OCBEH ¢ YHCTO Hay YHMS
CH NIPHHOC Te3H TPV, I0BC NPHBINHYAT BHHMAHHETO U ¢ ICMONCTPUPAHATA B TSIX KOM-
OunHanMa OT BIeYaT/IsBalla MaTeMaTHYeCKa epy,IUIHA H 3aBHIHA MaTeMaTH4ecKa
cpputoct. C Ta3zu koMOMHALIMA OT €pYAULHS U CPBLUHOCT, XapaKTCPHA 32 I1AJ10CT-
HOTO MY HayuHo TBopuecTBo, K. MapKoB u3rpajiu 3aBu/1eH aBTOPUTET M CIIEUe1H
VBazKEeHHEeTO HA MHOTO OT CBOMTE KOMIEril y Hac U B 4y;KOnHa.

Ocobeno orrosopuo 6eme orromenuero Ha K. Mapkos KbM aHTa)KNMEHTHTE
sy Ha npenogasares. OCHOBHa HeroBa UpHUyKa BHHArK e 6uia ga U3Jjara deTeHus
\MaTepuaT [0 Bb3MOXKHO Hall-I0CTHIEH 34 CTYICHTHTE HAYMH, Ja WIIOCTPHUPA TO3H
MATEePHas ¢ PeASIHY MMPUMEPH 1 C TOBA & UM ITOMOFHE 13 OCMUCISAT H | TIOYyBCTBAT ©
genzbexknnTe B MaTemaTukata abcerpakTnn nonartnd. Ocsed jekuuure mo Ananu-
TUYHA MexaHuka, Maremaruuecko Moaesuparne, Maremarudnu METOAH B MeXalld-
Kata, Mexanuka Ha HenpekbcuaruTe cpe/in, MexaHuka Ha KOMMO3UIKOHHUTE MaTe-
puaan, Mexanuka na yspe;xkIanero, kouro dete rnosede ot 30 roguan sbs MU, K.
Mapkos e yea jaekuun ome kato acnupanT B Cankr IlerepOyprckus yHHBepCHTET
(Termzopua axrebpa u Tem3oped avaamus, 1970-1972 r.), KaTo rocrT-IpenoiaBaret
B Hlyyenckus yuusepcurer (Maremarnuecki aHaiu3 W AHATIHTHYHA MeXaHMKA,
1981-1992 1.), B MucruTyTa no xuMudecky u 6uorexnonoruu B Pasrpaa (Texuuue-
cka Mexanuka, CbnpoTunIenne Ha maTepuasnTe, 1994-1996 r.), o Wcranbyickus
TexHH4eckn yvumeepcuter (Mexanuka Ha 110BpeXxJaHero W MexaHuKa Ha KOMIIO-
3unMoHHuTe Marepann, 1992 1 1994 r.). IlogroTeusa e 1eceTky TUILVIOMAHTH BbB



OMHM npu CY u B lUlvyencknsa yHIBEPCHTET, KAKTO U JIBAMA JOKTOPH 110 MaTeya-
TUKA.

K. Mapxkos e yuacTpand kaTo »#eldad TOCT B PEIIIA TPeCTHIKHI MeK IV AP0, IH
ayaud GOPYIMH 1 ¢ OHIT OPTraHI3aTOP HA HEMA KO OT Tax. Ocobero 1Pe;iC TaBuTe I
€a yJaCcTHusTa My € JOKJIaIH B MCAIYHAPO I KodepeHuun 11 KoUrpect:, Oprasi-
supanu 0T HioTonosns imctnty T o vareMarideckn nayki, Keadpiouk, Beanko-
Oputanna (1999 r.), Maremaruueckis nncrirryr 5 Obeppoadax, Tepaanms (1983,
1986, 1990 r.), Haumonannara nayuna couganust na CAIL Bawmnrron (1993 r.),
ot yausepcurerute B Coayn, Iopuus (1990, 1993, 1998 r.), Tlinsa. Hraana (1997
r.), Juewpuyn, Besuxobpuranna (1999 r.), 0T yHUBEPCHTETH M HAYYHH HHCTHTYV-
™ Bus @paumia, Hommua, Hlsenus u ap. Cpea nayunire dopyam, ra konto K.
MapxkoB e opramnzaTop u chopranusarop, ca Obarapckute HamoHa Hr KOHrpech
1o TeopeTHYHA U npuiokHa Mexaunka (Bapra, 1977 11 1981 ), By arapo-rpbukis
CHMITO3HYM II0 MATEMATHYECKO MOJIeIUPaHe B MeXaHIKaTa Il Texankarta {['bosedn-
1a, 1989 r.), cummosuyarbT EBposex 278 mo MHKPOCTDYKTYPA H eDeKTHBHH CBO-
¢TBa Ha KOMIIOBMIMOHHM MaTepHaan cbhe cIyuaiina crpykrypa (lyyen, 1991 r.).
ocMara I JeBeTaTa MeKAyNapoaHu KOHMePCHIHMI 10 KOHTIHYATIIN MOIe M H JIHC-
kperrn cpenu (Bapra, 1995 ., u Heran6y.a, 1998 r.). Karo rocr-uscaetoparea K.
Mapxop paboTH 110 CHbBMECTHII NIPOEKTH B LelapTaMeHTa no HIKeHepHH HayKH Ha
WeranOyncxkus rexiitiueckyt yHuBepcnTeT, B JlenapTarenTa mo MaTe MaTIuecKH Ha-
vku B bar, Besmxobpuramis, B Jenaprayventa no yaresartika mpn Y HHBepCHTCTa
B Topuno, WUrtasus.

C apropuTera CH Cpey UyKIMTC H3CICIOBATETH, AKTUBHO PaBOTEIH B HErOBA-
ra obsact, K. Mapkos crtapa Thpcet Haydell PEIAKTOD Ha CHCHHAIH3UPAHH COOp-
HMUH C HAYYHU TPY/0Be B 001aCTTa Ha MATeMaTH'ieCKOTO MoleqHpaie. Takusa
ca Recent Advauces in Mathematical Modelling of Composite Materials (World
Scientific, 1994), Heterogeneous Media: Modelling and Simulation (cneaecrio ¢ L.
Preziosi, Birkhéuser, 1999), kakTo n cGopuuyt ¢ MaTepua. i Ha IPOBEIeHH v ac
B uyzkOnHa konrpecu n kondepenunn. Ot 1997 r. Toit e pernona’ten peiaxTop Ha
Zentralblatt fir Mathematik.

Katecrsara my Ha yuen, npenojapaTed U TPOCTO 14 KOJIEra U 90BEK ¢ TOKa-
3aHO OTTOBOPIIO OTHOLICHHE KbM aNTAXKINMEHTHTE, KOUTO OCMa, ca 0OeKTUBHATA
npramnna K. Mapxkor 1a 65,10 nocrostHHO npuBangan B pafotarta na CBLP3AHITE C
YIPABICHIETO Ha HayKaTa v Hac uncturyuuu. Toit e nayden cekperap (1979-1992r.)
1 npeacejaredn {1993 - 1998 1) na Crensa m3nupans HAYCH ChBeT N0 MaTeMaTHKA,
unicpopmartaka 1 mexanuka npn BAK, unen na Koyuensata mo MaTeMaTieckn Ha-
yku npu BAK (1990-1992 . u caies 1998 1.), wnen wa Hayurno - excreprnara Koi-
CHd 10 MATEMATHKA ¥ MeXannka Kby Hamnonaanus doug  Hayanir n3creapanus -
(1991-1992 ), wnen ma Ynpasurtemus coret (1993-1999 r.) u va H3nbanuTe Ho-
to Gropo (or 1999 r.) na Haummowatnus cueer | Hayunn mscaesanns®. Ot 1999 1
K. Mapxos e wien 1 va IoctostnnaTa KoMECHA 0 1PHPO, (HE HAVKIH Kb Axpeu-
TallHoHuuA Cheer na HAQA,

B npogvmkenne na noseue or 20 roamim K. Mapkos Baomu MHOrO YCHHIA
3a ocbppeMenAsanero na logummanka na CY - OMI u yTebpixIaBaHeTo Ha aBTO-
purera my. Or 1980 r. Toii e uiaeH Ha peJaKINOHHATA KOJCrHS HA Toanwnnxa, a



or 1996 r. ¢ HeroB riased pPeJakTop. B tasm ci poas TO# 10e BBLPXY cebe ci He
€a)O0 ro1sM 06eN OPTanT3alHoHHa paboTa, HO H3BbPUIM JNHHO H 3HAMNTE A, 0CO-
HOHO HOJe3HA YMCTO TeXimdecka pabora, ¢Bbp3ana € MpCINCIaTHATA IT0JIOTOBKA
1A OTIeTHHTe TOMOBE H ¢ TANHOTO BBHHIIHO OOpIMIeHue.

Komernsita ua ®MIT - CY ute 3anasu 106bp cunoyen 3a npod. amu Koncranrun
\MapkoB KATO 3a epyMpaH I Ipeian Ha paboTaTa CH yueH U nperojgasare, 100D
KOJ1eTa 1 CBET'hJ YOBEK.

[Mok:10H npea naMerta My!

Qaxyamemen cssem - DMHU
Ped. xonezusa na loduwnux ne CY - OMH
Kamedpa MHC - OMH
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SOME SHORT HISTORICAL NOTES ON DEVELOPMENT
OF MATHEMATICAL LOGIC IN SOFIA

DINMITER SKORDEV

We present some information about the pre-history and the history of development of
mathematical logic in Sofia. The history of the so-called Sector of Mathematical Logic
(existing from 1972 to 1989) is considered in some detail.
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University, Faculty of Mathematics, Bulgarian Academy of Sciences, Institute of Ma-
thematics
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Currently, mathematical logic in Bulgaria has some presence not only at Sofia,
but also at several university centres. However, I shall restrict myself only to its
history in Sofia, since both the history and the present state of the field in those
other places are far from being as abundant as in Sofla. In addition, I shall speak
mainly about the earlier part of the history, since it is probably the less known to the
audience. The year 1989 will be regarded as the end of that period of time. Besides.
I shall actually speak mostly about the history of the Department of Mathematical
Logic, meaning the former Sector of Mathematical Logic and the two currently
existing units that succeeded it in 1989. In fact, almost all people who work or have
worked in mathematical logic at the Sofia either are present or former members of
this department, or have graduated from it. There are only a few exceptions. Bojan
Petkanchin {1907-1987), a greatly respected professor in geometry at the Sofia
University. is one of them, and his pioneering role in the history of mathematical
logic in Sofia will be considered further. Another exception is Nadejda Georgieva
(1931-1995) — her education at the Sofia University was completed before the

11



time of mathematical logic had come there. she was a professor at the Institute of
Mining Engineering and taught General Mathematics. but she did research mainly
in mathematical logic after a specialization abroad. (Information about some other
people not mentioned here can be found in Section 3 of [15].)

As well known, the foundations of mathematics have been and still are an
important background and an object of study for mathematical logic. The interest in
them has a long tradition in Sofia. For example. several competently written articles
on the foundations of arithmetic were published in the Journal of the Physico-
Mathematical Society in Sofia almost a century ago, in particular. a series of articles
by an author publishing under the alias “Uni”. (Corresponding references can be
found in the survey [16]). Mention may be made here also of a lecture of the
German mathematician Otto Blumenthal (1876-1944), which was held in Sofia in
1935. The title of this lecture is “The life and the scientific work of David Hilbert”.
and the contents of the lecture is known from its Bulgarian translation [1]. A short
description of Hilbert's work on the foundations of arithmetic and logic can be
found on pp. 49-50 there, namely, the idea of Hilbert’s program is briefly explained
(without using the term “mathematical logic” and. unfortunately. keeping off the
then alrcady known problems encountered by that program).

One may be curious about the carliest occasions when mathematical logic was
explicitly mentioned in Sofia in public. The first such occasion, known to me. is a
lecture held in 1945 by the Bulgarian mathematician Yaroslav Tagamlitzki (1917-
1983). An information about it can be found in [2], where one sees a list of 11 titles
of talks given in the Sofia University during the summer semester of the academic
year 1944/1945. Tagamlitzki’s lecture is the second one in the list and has the
title “On some problems of mathematical logic”. To my regret. there is no other
information about the contents of this lecture. I should like to note that Tagamlitzki
has been an assistant professor in 1945 and one of the eminent professors in the
Sofia University later. It is known that he has attended a series of Blumenthal's
lectures still being a high school student, so probably he has attended also the
above-mentioned one.

The next ten years after 1945 have not been favourable for doing mathematical
logic in Bulgaria. As in the former Soviet Union at that time, some scientific areas
became practically forbidden then in our country too. Although mathematical logic
did not completely fall in such a position, it was definitely not favoured by the
political authorities, since only the so-called dialectical logic was officially accepted
by them. Nevertheless, several mathematical courses at Sofia University have been
taught in a modern logically clear way that raised the interest towards logical
problems and prepared a ground for further acquaintance with their contemporary
treatment. I would like to mention as examples of such courses the ones in Analysis.
taught by Professor Y. Tagamlitzki, and in Foundations of Mathematics. taught by
Professor B. Petkanchin. The second one of them was especially helpful in this
respect thanks to its subject matter and the irreproachable way of its presentation.
(The corresponding monumental textbook [3] has some of the features of a mono-
graph).
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At a certain moment of time prior to 1960 the authorities in the Soviet Union
changed their attitude to mathematical logic. (This happened when they learned
about the importance of clectronic computing machinery and about a relation of
mathematical logic to it). When those authorities finally admitted that mathemati-
cal logic should be considered as a legitimate and promising part of mathematics, so
did the Bulgarian ones.! An attempt to take advantage of the changed situation was
made in July 1959 in a plan signed by the Director of the Institute of Mathematics®
at the Bulgarian Academy of Sciences. The plan contained a clause about having
next yvear a Bulgarian Ph.D. student in mathematical logic in the German Democra-
tic Republic or Poland. (However, as far as I know, this clause was not put into
effect.) Several months later, in November 1959, a decree of the Central Committee
of the Bulgarian Communist Party and of the Ministerial Council planned a number
of activities aiming at the scientific progress of Bulgaria. The decree assigned many
tasks to the Academy of Sciences. one of them being the creation of seven sections
at the Institute of Mathematics, including a Section of Mathematical Logic (cf. [4,
p. 2]). Such a section was eventually created, and Professor B. Petkanchin became
its head. (Already in 1960 some documents listed this section in the structure of the
Institute of Mathematics, but with an empty set of regular members). The scction
existed until the end of 1970, remaining a small one during all this time.

The first course of mathematical logic in the Sofia University was given by
Professor B. Petkanchin during the academic year 1959/1960. It contained material
from propositional and predicate calculus that is usually present in such courses,
including also Gédel’s Completeness Theorem. Starting from 1962 (soon after my
return back to Bulgaria from a one-academic-year stay at the Department of Mathe-
matical Logic of the Moscow State University) I also began giving some lecture
courses in the field of mathematical logic. especially a course in Recursive Function
Theory.

No particular department at the Sofia University was officially engaged in
teaching mathematical logic at that time. Me and the somewhat younger colleagues
Petio Petkov and Dimiter Vakarelov had positions in the Faculty of Mathematics
at various departments. whose main teaching duties had been in other scientific
areas. The research in mathematical logic was something additional to our main
obligations too, with the following two exceptions: for P. Petkov in a several-
vears period (ending in 1970), when he was a Ph.D. student at the Department of
Mathematical Logic of the Moscow State University, and for me during the already
mentioned stay there and during a second one in the academic year 1968/1969.
At the end of 1970 and the beginning of 1971 the so-called United Centre of

10n the other hand, the official tradition to deny or undervalue the philosophical significance
of mathematical logic continued during a much longer period of time, as seen for example from [5].
Even now some after-effects of this can be still observed.

2The names “Institute of Mathematics” and “Faculty of Mathematics” (1o be encountered
further) are used in these notes as the invariant parts of two names that changed in the course of
time. For example, an addition “and Mechanics” was present in them during a certain period of
time, and this addition was replaced by “and Informatics” later.
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Mathematics and Mechanics was formed. It encompassed the Faculty of Mathema-
tics of the Sofia University and the Institute of Mathematics of the Bulgarian
Academy of Sciences. The structure of the United Centre included a unit called
Sector of Topology and Mathematical Logic. Professor Doitchin Doitchinoy (1926~
1996), one of the Bulgarian topologists, was appointed chief of the sector. (To be
more precise, I ought to mention that all chiefs of such units figured during a long
period of time as temporary ones in the administrative hierarchy of the United
Centre, but their duties were not substantially influenced by this.) The staff of the
Sector of Topology and Mathematical Logic consisted of specialists in both scientific
areas from the Faculty of Mathematics and from the Institute of Mathematics.
Before the formation of the United Centre, these people had belonged to different
departments of the faculty and sections of the institute.

The logicians, who became members of the sector at the beginning, are the
following ones (in alphabetic order of surnames): Radoslay Pavlov, Petio Petkov.
Dimiter Skordev, Vladimir Sotirov and Dimiter Vakarelov. All of them except
Pavlov had graduated from the Faculty of Mathematics of the Sofia University,
and Pavlov had graduated from the Moscow State University not long ago. Petkov,
Skordev and Vakarelov themselves belonged to the staff of the faculty at the time
of the formation of the sector, and they had been members of the departments
of Applied Mathematics, of Analysis and of Geometry, respectively. On the other
hand, Sotirov and Pavlov were members of the Section of Mathematical Logic at
the Institute of Mathematics at that time (Sotirov entered the staff of the section
in January 1970 and Pavlov entered it in August 1970). In 1971 one more logician
came into the sector - the late Georgi Gargov (1947-1996), who had then just
graduated from the Moscow State University. However, in October 1972 Gargov
went to Moscow again and became a Ph.D. student there. (He returned to his work
in Sofia only several years later).

In 1971 among the logicians in the sector only Petkov and Skordev had Ph.D.
degrees, and Skordev was also an associate professor. (Petkov received his Ph.D.
degree from the Moscow University in 1970 after defending a dissertation in con-
structive mathematical logic; Skordev’s Ph.D. degrec was received three years ear-
lier, but it was from the Sofia University — for some results in functional analysis.)
It is appropriate to mention that in the course of the next eight years the other
three of the five people listed above also received Ph.D. degrees — Vakarelov received
his one from the Warsaw University, and Paviov and Sotirov — from the Moscow
University.

The heterogeneity of the Sector of Topology and Mathematical Logic was fairly
obvious — actually both its components, the topological and the logical one, had
quite good activities in their fields, but without any substantial interaction between
them. The main areas in mathematical logic developed by members of the logical
part were recursive function theory, constructive mathematical logic. many-valued
logic, algorithmic problems in algebra, set theory.

A remarkable event in the life of the logical part of the sector took place in the
autumn of 1972, namely a one-month visit of the eminent Russian logician Andrei
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Andreevich Markov (1903-1979). head of the Department of Mathematical Logic
in the Moscow State University. On the 6th of October Markov delivered a lecture
under the title “Introduction into constructive mathematical logic”, and nine other
lectures on constructive mathematical logic followed it during the next three weeks.

Having in mind the heterogeneity of the sector, its chief took reasonable steps
toward a correction of this situation. In a report dated March 7, 1972, Professor
Doitchinov suggested to the authorities of the United Centre to split the sector
in two - a Sector of Topology and a Sector of Mathematical Logic. He indicated
that there were sufficiently many specialists in the sector (7 in topology and 6 in
mathematical logic) for the normal functioning of the two prospective sectors. The
splitting became reality not later than a few days after the departure of Markov
from Sofia. The decision was taken by the Bulgarian Academy of Sciences on the
&th of November, 1972, and on the 20th of November an order of the Rector of the
Sofia University and of the Head of the Academy appointed Dimiter Skordev as
chief of the Sector of Mathematical Logic.

No essential changes occurred in the activity of the logic group after that
administrative change. In fact, few things of administrative nature depended on
the newly appointed chief. who never became member of the Communist Party.
Fortunately, all members of the group had the abilities and the enthusiasm needed
for fruitful work in the field of mathematical logic - both in research and in teaching,
and the work did not get embarrassed by careeristic conflicts inside the group. In
addition, there were certain opportunities for rising our research qualification by
specializations in leading universities and other scientific institutions abroad, as
well as by contacts with distinguished foreign logicians who visited our group. I
shall list some of the first realizations of these opportunities.

Dimiter Vakarelov had a 7-month specialization in the Warsaw University
during the academic year 1972/1973. Radoslav Pavlov and Vladimir Sotirov entered
external Ph.D. study at the Moscow University in 1973. Dimiter Skordev had a 3-
month specialization in the USA during the period November 1974 — February
1975. (He stayed at the Stanford University for about two months, and the rest of
the time was spent mainly at UCLA.) Professor Helena Rasiowa (1917-1994) from
the Warsaw University visited the sector for about a month in the academic year
1974/1975 and she delivered nine lectures on algorithmic logic in the period from
February 17 to March 11, 1975. I would like to mention that professor Rasiowa was
a guest of the sector many times later and gave a lot of other talks to its members
and to a broader audience. A great number of other specialists in mathematical logic
and in related fields from abroad visited the sector and gave talks in the next yecars
of its existence too, many of them several times. Here is a possibly incomplete list of
them (37 persons, listed in alphabetic order of surnames): S. N. Artemov (Moscow),
F. G. Asenjo (Pittsburg), N. da Costa (Sao Paolo), B. Dahn (Berlin), A. G. Dragalin
(Debrecen), K. Dyrda (Kelce. Poland), A. P. Ershov (Novosibirsk), Ju. L. Ershov
(Novosibirsk), J. Gehne (Berlin), K. Hirtig (Berlin), V. E. Itkin (Novosibirsk),

1. Janicka-Zuk (Kelce, Poland). A. Jankowski (Warsaw), M. J. Kanovich (Kalinin),
A. Kuéera (Prague), L. L. Maksimova (Novosibirsk), I. A. Malcev (Novosibirsk),
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A. Mazurkiewicz (Warsaw), N. N. Nepeyvoda (Izhevsk), V. A. Nepomnyashchy
(Novosibirsk), E. Orlowska (Warsaw), G. Priest (Australia), C. Rauszer {(Warsaw).
V. Rybakov (Krasnoyarsk). L. Rudak (Warsaw). A. Salwicki {(Warsaw), A. L. Se-
myonov (Moscow), A. Shen (Moscow), N. Shilov (Novosibirsk), D. I. Sviridenko
(Novosibirsk), A. Trybulec (Bialystok), I Urbas (Australia), P. Urzyczyn (Warsaw).
V. A. Uspensky (Moscow). J. van Benthem (Amsterdam), M. Weese (Berlin).
G. Wolf (Berlin). This list does not include some names of people who gave talks
at conferences organized by the sector (these conferences will be considered later
in this report).

The subject matter of the research done in the sector gradually became wider.
In particular, more attention was directed towards the interconnections with theore-
tical computer science. This process was also accelerated to some extent by the
reinforcement of the sector with several new people in the course of time. In January
1976 Georgi Gargov came back to Sofia from his Ph.D. study and entered the staff
of the sector (two months later he got his Ph.D. degree in Moscow). A completely
new person came in the Sector of Mathematical Logic in July 1976 - then Anatoly
Buda moved from the Sector of Software Programming after finding out that our
research ficld was better related to the directions of computer science studied by
him in Novosibirsk (Buda had received his education from the Novosibirsk State
University, there he had defended a Ph.D. dissertation under the supervision of
A. P. Ershov in 1975). Three other persons came later - Slavian Radev in 1980,
Lyubomir Ivanov in 1981 and Solomon Passy in 1985. All three of them had been
graduate students at the Sector of Mathematical Logic before. and entered its staff
immediately after receiving their Ph.D. degrees (at the Warsaw University in the
case of Radev and at the Sofia University in the case of Ivanov and Passy).

The intercst of the sector’s members in the connections between mathematical
logic and theoretical computer science can be seen from the survey [9]. a joint
work of all the staff of the sector as it was about 1984 together with two Ph.D.
students. The bibliography of the survey contains 58 references (without claims on
exhaustiveness) to relevant works of foreign authors and 37 references to publicati-
ons in the mentioned scientific area with results obtained by members of the sector
and by other participants in the seminars of the sector.

All people who entered the staff of the sector had high professional qualities.
and they did first class research that was acknowledged abroad. In particular,
the results from Ivanov’s dissertation were published in England in 1986 in his
monograph [11]. (These results present a rather interesting algebraic generalization
of Recursion Theory, different from the one given in my book [6].) All these pcople
contributed very much to the high level of the scientific and educational activities
of the sector. Unfortunately, no other new members of the sector came during its
existence, although five other excellent Ph.D. dissertations of our former graduate
students were defended in the same period of time, and cfforts were made to appoint
their authors - Jordan Zashev, Ivan Soskov, Angel Ditchev, Tinko Tinchev and
Valentin Goranko. (These dissertations were defended in 1983, 1984, 1984, 1986
and 1988, respectively.) It is difficult to give an explanation of this injustice, except
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by repeating once more that quite many things did not depend on the will of the
sector’s chief. A partial correction of the situation was achieved in 1987-1988, when,
thanks to the exceptional activity of professor Dimiter Vakarelov, a Laboratory
of Applied Logic was created at the Sofia University, and all of the five persons
mentioned above became its members. To come to an end of the story about the
staff of the sector, I shall list those people who were there in 1989, the last year
of existence of the sector. They are (in alphabetic order of surnames): Anatoly
Buda, Lyubomir Ivanov, Solomon Passy, Petio Petkov, Dimiter Skordev, Vladimir
Sotirov and Dimiter Vakarelov. {Buda, Ivanov, Petkov and Vakarclov were already
associate professors at that time, and Skordev was Dr. habil. in mathematics and
a full professor.) Three people are missing — Radoslav Pavlov. who left the sector
about 1978. and Georgi Gargov and Slavian Radev, who left it about ten ycars
later. (All three of them also were associate professors in 1989.)

The Sector of Mathematical Logic has had a very intensive teaching activity.
It has been directed mostly to graduate students. They have been taught the main
topics in mathematical logic and recursion theory, as well as many topics of current
research by the members of the sector. (A lot of things from mathematical logic
taught to these students in the period from 1975 to 1980 are presented in Professor
P. Petkov's book [10].) A series of 33 master theses, most of them excellent, were
defended during the existence of the sector. The authors of 12 of them have been
later (for some time) or still are members of the sector or of some of the two units
that descended from it in 1989. If we are to encompass also the period after 1989
too, then we should add 32 more master theses of the same quality with 4 of their
authors being members now of some of the two above-mentioned units.

Several conferences were organized by the Sector of Mathematical Logic in
the period of its existence. (Three other conferences were organized later by the
successors of the sector, namely one in 1990, another one in 1996 and, finally, the
present one.) Here follows brief information on the first several conferences.

The verv first of them was a Summer School on Algebra and Logic, organized
together with the Sector of Algebra of the United Centre of Mathematics. The
school took place in September 1979 in Blagoevgrad. The invited lecturers from
abroad for the logical part of the school were H. Rasiowa and A. Skowron from
Warsaw.

In September 1980, a Conference on Mathematical Logic, dedicated to the
memory of A. A. Markov, took place in Sofia. N. M. Nagorny from Moscow presented
a talk (prepared jointly with N. A. Shanin) on the works of Markov in mathematical
logic and the theory of algorithms. Most of the talks given on the conference were
published in [8]. (Unfortunately, no written copy of Nagorny-Shanin’s talk was
presented for publication in that volume.)

A Summer School on Mathematical Logic and Its Applications took place in
September 1983 in Primorsko. Here is the complete list (extracted from [7]) of
the participants from abroad (22 persons, including not only the invited lecturers,
but also the other participants): B. R. Bori¢i¢ (Beograd), W. Danko (Bialystok),



O. Demuth (Prague), Ju. L. Ershov (Novosibirsk), A. Gajda {Bialvstok), G. Geor-
gescu (Bucharest). S. S. Goncharov (Novosibirsk). J. Harrera (Paris), A. Jankowski
(Warsaw), K. P. Jantke (Berlin), J. Krempa (Warsaw). A. Ju. Muravitsky (Kishi-
nev), N. M. Nagorny (Moscow), S. Puczylowski {Warsaw), H. Rasiowa (Warsaw).
C. Rauszer (Warsaw), A. Salwicki (Warsaw), A. Skowron (Warsaw), D. I. Sviridenko
(Novosibirsk), A. Szalas (Warsaw), H. Thiele (Berlin}. P. Vopénka (Prague)®.

A Summer School and Conference on Mathematical Logic honourably dedica-
ted to the 80th anniversary of Kurt Godel took place in Druzhba near Varna
from September 24 to October 4, 1986. The list of invited lecturers includes 20
persons, namely: C. C. Christian, J. W. Dawson, Jr.. P. P. Petkov, J. van Benthem,
D. S. Bridges, O. Demuth, A. G. Dragalin, Yu. L. Ershov, S. S. Goncharov, H. R. Jer-
vell, Y. N. Moschovakis, N. M. Nagorny, V. A. Nepomnyashchy, N. A. Shanin,
A. Skowron, H. Rasiowa, G. Sambin, K. Segerberg, B. A. Trakhtenbrot, V. A. Uspen-
sky (there was also an invited seminar talk by D. Siefkes). The corresponding
proceedings [12] include 14 of the invited papers and 13 of the contributed ones.
The event was estimated by many of the participants as very successful, and a
person to be certainly thanked for the success was Professor Petio Petkov whose
activity at organizing the event was highly productive.

The last event of this kind during the existence of the sector was a Summer
School and Conference on Mathematical Logic honourably dedicated to the 90th
anniversary of Arend Heyting. It took place in September 1988, again near Varna.
Petio Petkov was the chairman of the Organizing Committee, and the event was
very successful too. A proceedings volume [14] was published again. It contains
two invited papers on intuitionism and Heyting, 12 invited lectures and 14 selected
contributed papers. The invited papers and lectures included in the volume are
by the following people: A. S. Troelstra, D. van Dalen, D. de Jongh (joint with
F. Veltman), S. Hayashi, B. Kushner, G. Mints, D. Normann, H. Ono, V. Shehtman
(joint with D. Skvortsov), I. N. Soskov, G. Takeuti, W. Veldman, A. Visser, S. S. Wai-
ner.

Along with the conferences, the sector also had an activity of another nature,
namely a series of nine popular lectures in 1987, followed by a discussion. The
lectures and the discussion attracted a very large audience and surely helped
some more students to make their choice in favour of the mathematical logic. The
realization of this activity resulted in the book [13].

In July 1989, after long previous discussions in other places, the Faculty Council
of the Faculty of Mathematics took the decision a Department of Mathematical
Logic and Its Applications to be formed at the faculty. It was to include the people
from the Sector of Mathematical Logic who administratively belonged to the faculty.
i.e. Petkov, Skordev and Vakarelov, as well as Buda, who moved from the Institute
of Mathematics into the Faculty of Mathematics at that time, the five members
of the Laboratory of Applied Logic, namely Ditchev, Goranko, Soskov, Tinchev,
Zashev and, in addition, Roussanka Loukanova, who came into the new department

31t seems, however, that P. Vopénka in fact did not attend the event.
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from the former Sector of Mathematical Linguistics. Skordev was chosen to be the
chicf again. The other people from the Sector of Mathematical Logic, i.e. Lyubomir
Ivanov, Solomon Passy and Vladimir Sotirov, formed a Section of Mathematical
Logic at the Institute of Mathematics with Lyubomir Ivanov as its chief.

The staff of both units underwent some changes in the next years. For example,
Marion Aircheva was a member of the Section of Logic during a certain period of
time, Solomon Passy left the section at a certain moment and devoted himself
completely to politics, Dimiter Dobrev and Dimitar Guelev came into the section
later. (Guelev did this after defending his Ph.D. dissertation at the Sofia University.)
Several new persons came into the department at the faculty: Stela Nikolova in
1991, Alexandra Soskova in 1994, Vessela Baleva in 1998, Anton Zinoviev in 1999.
Three of them had to replace Valentin Goranko, Jordan Zashev and Roussanka
Loukanova, who had left the department at different times within this period.
(Zashev moved to the Section of Logic, whereas Goranko and Loukanova got acade-
mic positions abroad.) Meanwhile Soskova, Nikolova and recently Baleva defended
their Ph.D. dissertations at the Sofia University, and Loukanova defended one at the
Moscow State University when she still was a member of the department. Soskov,
Ditchev and Tinchev {as well as Zashev and Sotirov in the Section of Logic) became
associate professors. Vakarelov and Soskov received also the Dr. habil. degree in
this period, and Vakarclov became a full professor. In connection with the age
restrictions imposed by the law the chief position in the department was eventually
taken by Ivan Soskov. Unlike before 1989, now the department has many teaching
activities in the first stage vears of education (the Bachelor Program). The teaching
traditions from the past have been continued by the department’s activities in the
M.Sc. Program.

At the end, I would like to say a few concluding words. To my opinion, history
must be known and respected. Unfortunately, the department’s archives turned out
to be not in a sufficiently good state. Of course, this is mainly my fault. I am sorry
for all imperfections and possible incorrectnesses that resulted from this in the
present notes. I recommend to my younger colleagues to take care about preserving
and saving all essential information about what happens in the department in order
that this information could be used by those, who will come later.

Acknowledgements. I thank professor Petio Petkov for his very substantial
help in the search of sources throwing light on the pre-history and the early history
of development of mathematical logic in Sofia. Thanks are due also to him and to
professor Dimiter Vakarelov for clarifying when a lecture course in mathematical
logic has been first given in Sofia, and to professor Vladimir Sotirov for giving
detailed information about the staff of the Section of Mathematical Logic as in
1970. T would like also to mention that Vakarelov’s paper [15] has been very useful
in preparing these notes, and the English version of their presentation has got
numerous serious improvements thanks to Dr. Dimitar Guelev’s competent and
precise editorial work on a draft of the notes.
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In this paper it is shown that: 1) There exists such a tt-degree which contains infinitely
many m-degrees of the tvpe of w* for any positive natural number k; 2) There exists
such a tt-degree which contains infinitelv many m-degrees of the type of Q of rational
numbers.
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In [1 - 7] Degtev, Ditchev and Downey have considered how many recursively
cnumerable (r.e.) m-degrees could be contained in a single r.e. tt-degree. It is
shown in [2, 5, 6] that a single r.e. tt-degree can contain finitely many m-degrees,
and in [3, 4, 7] — infinitely many r.e. m-degrees. In the case when a single r.e.
tt-degree contains infinitely many r.e. m-degrees, it is known that they can be
linearly ordered in the type of the ordinal w 7] and can be mutually incomparable
[3. 4]. In the present paper we show that a single r.e. tt-degree (cven pc-degree)
can contain infinitely many m-degrees with type the ordinal w* for every natural
number k and with type { of the rational numbers.

In this paper we use N to denote the set of all natural numbers, Z — the set
of all integers, and Q — the set of all rational numbers. We use also w* to denote
the usual ordinal number.

If f is a partial function, we use Dom(f) to denote the domain and Ran(f) —
the range of values of the function f.

If 4 is a finite set. we use |A| to denote the cardinality of the set A.

Let us remind some definitions from [9, 10] and give some new ones.
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Let 11, L, R be the usual primitive recursive functions such that Dom(Il) =
N°, Ran(Il) = Dom(L) = Dom(R) = Ran(L) = Ran(R) = N, which satisfv the
following cquations for all natural numbers . y:

L{z,y)) = 2. R(I(z.y)) = y. I(L(z).R(x)) = x.

If 8 is a Goedel function, then for every natural numbers &, pi, .... py. i.
k > 0, we use the following notations:

(1, pk) = pp[3(p,0) = k&B(p, 1) = pr& ... &B(p. k) = pu;

h(p) = 8(p,0):  (p)i = B(p,i+1);
Seq(p) < V(e <p= (lh(z) # thip) vV 3ili <Ih(p)&(z); # (p)i)));
Seqi(p) <= Seq(p)&lh(p) = k.

with code p, and Seq and Seq; are predicates, which indicate a sequence and a
sequence with length k, respectively.

A set A is said to be m-reducible to a set B (4 <,,, B) iff there exists a total
recursive function f such that the following equivalence hold:

V(v € A <= f(x) € B).

The set A is said to be bounded conjunctive reducible (be-reducible) to the set
B iff there exist natural mumber & and k total recursive functions f, ..., fi, which
satisfy the following equivalence:

Ve[t € A <= fi(z) € B&.. . &fi(z) € B).

If r is any reducibility, a set A is said to be r-equivalent to a set B (4 =, B)
it A <, Band B <, A. For any reducibility r the r-degree of the set 4 is called the
tamily d,.(4) = {B|B =, A}. If some r-degree contains a set 4, which is recursively
enumerable, then this r-degree is said to be recursively enumerable (r.e.).

The ordinal w® we represent as the set {(ar,...,ap)la; € N& .. &ay, € N}
and the order is the usual lexical one:

(CL] < [)1)\/((11 = b]&ag < bg)\/...\/(al = bl&ag = bg&...&ak_l = bk—l&ak < bl\)

We are constructing an r.e. be-degree. which considered as an upper-semilattice
of m-degree contains a set of tvpe w* of different r.e. m-degrees. The idea for
constructing such r.e. be-degree comes from the effective structures with functions
and without predicates. The functions are choosen in an appropriate way to ensure
that the choosen sets are in the same be-degree and in the above-mentioned order.

For the sake of simplicity, we consider in full only the case k& = 2.
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Let {6;}. k € N, be the recursive functions with Dom(#;) = Ran(f) = «?,
k € N. defined as follows:

90<l]>:(7]+1>7 ]7]€N

(0. 7). iti =0,
0,(i.7) =< (i—=1,0), #fi>0& jiscven,
(i-1.2), ifi>0& jisodd;

fi=0&j=0,
ifi=0&j>0.
0), ifi>0& (jisodd vj=0),
1), fi>0&jiscven &j> 0
(1+1,0), ifj==k,

6(i,5) =

e
~ =00
[ R

keN.

It is easy to check that the following lemmas are correct.

Lemma 1. For all a € w? and for all natural numbers i, j and k the following
equivalences hold:
a=(i,j) <= fola) = (i,7 +1);

a=(i,k) <= Opysla) = (i+1,0);
a=(i+1.0) e 0i(a) = (i,0) & :(a) = (,0).

Lemma 2. For all a,b € w?. such that a < b, there exists a function n, which
is a composition of the functions 8o, {9’«*3}#4\1: id such that Ve(e = a <= 1n(c) =
b).

Lemma 3. a) For all natural numbers i, j such thati < j there exist functions
M, ..., N, which are compositions of the functions 01, 0,5, such that Ya(e =
(JO> = T}l(a> = (7“0) L. & 7721(0') = (ZO)

b) For all a,b € w? such that a < b there exist functions 1, ..., Nar, which
are compositions of the functions {ek}keN’ such that Ve(c = b <= ni(c) =

ad&....&nlc) =a).

We say that a set A4 contains almost all even (odd) numbers iff there exists a
finite set B such that all even (odd) numbers are subset of AU B.

Lemma 4. a)lf 6,.(i + 1,5) = (i1,51), k = 1,2, for some natural numbers i1,
j1, then either for almost all even numbers j' or for almost all odd numbers j' the
equation O, (i + 1,j") = (i1, j1) holds.



b) Let 1 be such composition of the functions {Hk}kEN that at least one of 4,
and 0y appears inn. If n(i +1,7) = (i1, j1) for some natural numbers i,. j1, then
etther for almost all even numbers 5’ or for almost all odd numbers J' the equation
n(i+1,7") = (i1, 51) holds.

Let ¢; = (i,z), i € N, and Ny = N\ (UiEN Ran(y;)).

Definition. Let {4,},c.2 be a sequence of disjoint subsets of Ny. We define
the sequence {[A44]}4¢.2 of disjoint sets of natural numbers by the following rules:

(a) If p € A,, then p € [A,];

(b) Ifi € N, p € [4,], and 6;(a) = b, then ¢, (p) € [4].

Lemma 5. If {d.}.c.2 is a recursive (r.e.) sequence of disjoint subsets of
No, then {[Au]}aew? 15 a recursive (r.e.) sequence of disjoint sets.

Lemma 6. If {A.}.c.2 is a sequence of disjoint subsets of Ng. then the
following equivalences hold for all natural x,i.j:

e [A(i_j)] < \,5‘0(:13) S [4‘1(i.j+1)]§

T € [Aun] = orgs(®) € [Aip1.0));
T € [44(2'-“_0” <= ¥ (Jf) € [rl(i‘o)] & Qg(l) & [.4(1"0)].

Corollary 1. If {A.}.c.2 is a sequence of disjoint subsets of Ny, then
(A ] <im [A¢ij41)) and [Aim] <m [A(i11.0)] for all natural numbers i, j.

Corollary 2. If {Ai}ac.> is a sequence of disjoint subsets of Ny. then
[Aa] =pe [Ab] for all a,b € w2

Corollary 3. If {A.}uc.2 is a sequence of disjoint subsets of Ny, then
(o] = [Ap] for all a,b € w2,

Lemma 7. For every natural number z, either x € Ny or there exists an
effective way to find a function ¢, which is a composition of the functions {Hk}ch
and y € Ny such that p(y) = .

Lemma 8. Let {A.}.c.2 be a sequence of disjoint subsets of No. For any
function o, which is a composition of the functions {ek}k’N’ and for any a € w?
there exists b € w* such that o([A,]) C [4].

Lemma 9. Let {Aq},c.2 be a sequence of disjoint non-empty subsets of Ng.

For any function ¢, which is a composition of the functions wk}keN’ and for any

a.b € w? there exists an effective way to verify whether or not ¢([4,]) C [44].
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Lemma 10. Let {A,},c.2 be a sequence of disjoint non-empty subsets of
Ny and o be @ composition of the functions {Hk}ch' If a.b € w? are such that

2([Aa]) C [Ap]. then there exist infinitely many ¢ € w? such that p([A.]) C [4s].

Let Ay = N; U Ns. where N and N, are infinite disjoint recursive sets,
and let r' be a monotonically increasing function such that Ran(r’) = N; and
n(n+1

rin) = r’(—~;( )

which is universal for all unary p.rf. Let &, = Av.®(e,z) and &, 5 be a finite p.r.
approximation of ®.. i.e.

+n). In addition, let ® be a partial recursive function (p.r.f.),

o, ()= . (z). if 2 € Dom(®,)& ®.(r) is computable in less than s steps,
€V 71 undefined, otherwise.

Theorem 1. There exists an r.e. be-degree, which contains different m-degrees
of the type of w?.

Proof. In order to construct such a degree, we shall construct an r.e. sequence
{Aq}ae.e of disjoint subset of Ny such that if a < b, then [4.] <o [As], but
(4] € [4a]. Then it will follow from Corollary 2 that all sets {4, }.c.2 are in
the same be-degree and, therefore, the proof will be completed.

We construct the sets { A, }oe.2 by steps, building a finite approximation A4,
of 4, on step s, a € w”.

On step s, if (s)o = {e.1,j,i1,j1) and (7. j) < (i1.51), then our aim is to satisty
that the function ®, does not m-reduce [A(;, ;] to [Aq ), Le. to find such a
witness z € Dom(®.) that at least one of the following two conditions is satisfied:

1) = [l & 2el@) € Ayl

(i) @€ [Ap ) & (o) &[4 ).

For this purpose on step s if we find an z, such that « € Dom(®.), then we
would like to do the following:

If ¢.(x) € [4(.] then to put z outside of A(;, ;), satisfying (i).

If ®,(x) & [A ;)] then to put @ in Ay, ), satisfying (i1).

If on step s, z is placed in some set A, in order to satisfy either (i) or (ii),
we create an (s)o-requirement x. In this case, if « satisfies (i), we need also some
element y not to belong to a chosen set A,. So, we create a negative (s)o-requirement
y. To guarantce that for any e, such that ®. is a total, and for every (i,7), (i1, J1),
such that (i,7) < (i1, 1), there exists an z satisfying either (i) or (ii), we shall use
the priority argument, so that the smaller (s)o will have priority.

If = is an (s)o-requirement and y is a negative (s)o-requirement, created on
step s, and till step ¢ the condition (it), which is satisfied on step s, is not injured,
then we sav that the (s)o-requirement and the negative (s)o-requirement are active
on step {.

If an (s)o-requirement z satisfies (i), then we call it active on any step £ > s.
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If an (s)o-requirement (a negative (s)o-requirement) created on step s is active
on every step t > s, then we say that it is a constant.

Now we can describe the construction of the sequence {4, },c.2.

Step s = 0. Let Ny = {ap < a; < ...}: we take Aigro = {ang )} Thus it is
ensured that A ;) is non-empty.

Step s > 0. If neither Seq((s)o) nor Seqs;((s)o) & (((s)o)1, ((s)a)2) #4
(((8)o)3, ((5)0)4). then we do nothing, i.e. we take Aigys = Agpgys—1. 7 € N,
and do not create any requirements.

If Seqy((s)o) and s = (e.1, .71, j1), where (i, ) < (i).j1), we verify whether an
active (s)o-requirement exists. If there exists such a requirement. then do nothing.

If such a requirement does not exist, then we verify whether there exists an
r € Ny such that & > r((s)), © € Dom(®.,), ¢ & Ueoo a1 and z does
not belong to any active negative requirement, (1eatcd on a step ¢t < s such that
(t)o < (s)o- If such an z does not exist, then we do nothing.

Otherwise, we denote by 2, the least such 2 and create an {$)o-requirement
ws. Let @.(zs) = z and ¢1(y) = z, where v is either a composition of the functions
{@;‘}LGN or ¢ =id and y € Ny.

We verify whether z € A, ;) ;1. If so, then we fix Apigs = Ay s U{zs],
Aenys = 4A1)s 1 for (k. 1) # (i, ).

Othumso we verify if z € A ;o oy for some (i'. ") # (i.4). If so. then fix
fl(ﬁ.jl),s = A(i],jl).s—l U {iL’s}, .4(;‘,,”.5 = ,4(;‘._”_5V] for (lxl) # (lljl) Otherwise
we consider two cases:

Case L xs £y, We fix Ay, 5y = Ay s U{zg), Lty = Apgys1 for
(k,1) # (i1, 1) and create a negative (s)g-requirement Y.

Case 1L zy = y. We find effectively (is, js) # (i1, 1) such that w([Ags
(A p]and fix Ay, sy s = A jarss 1L,{L } —1;\, = Ao for (k1) # (ia,

Finally, we take ~la = U N hss @ €W’

Obviously, the (omrrlutlon is effective, hence the sequence {4,},c.2 is r.e.
Moreover, {4, }4e.2 is a sequence of disjoint subsets of Ny since one element may
be placed in only one A4,.

Lemma 11. The set N1\ A is infinite.

Proof. Let (Ny), = {z|r € N1&z < n}.
We will prove that the set (Ny),(,) N (N7 \ A) contains at least n elements or.

which is the same, [(N]),(,) N 4] < M ’

Indeed, for every (e,4,j,i1.j1) such that (i,j) < (i1.j;) we have no more
than (e,i,7,i1,71) + 1 {e,i,,41,J1)-requirements and each of them is greater than
r({e,7,7,71,1)) and belongs to some A4, C A. Therefore, in [(Ny),(,) N A there
are only m-requirements for m < n, i.c. in {(N1) i)

nin+1
1+24+ ... +n= ‘%—) elements. Lemma 11 is proved.
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Lemma 12. The set Ny \ A is immune. i.c. Ny \ A does not contain infinite
r.e. subset.

Proof. Let us assume that there exists a set ¢ C N7\ A. which is infinite and
r.e. and zg € Ny. Obviously,

flz) = {To ifre C

undefined, otherwise

is a p.r.l. Let e be a natural number, such that f = ®, and let x € Dom(f) be such
that 2 > r((e,0,1,0,2)) and so be the least s satisfying the equality ®. ((z) = f(z).
Then x must be an (e.0, 1,0, 2)-requirement created on some step s > so such that
(s)o = (e.0.1.0,2), i.e. C N A is non-empty, which contradicts the assumption.
Therefore, N} \ A is immune.

Lemma 13. For any natural number e, such that Ny C Dom(®.), and for
every (e.i.j.iy,41), such that (i.j) < (i1.Jj1), there exists a constant le,i,7,01,71)~
requirement.

Proof. Assume that therve is no constant {e,i.4j,11, j1)-requirement, where
(i,7) =< (i1.j1) and N7 C Dom(®.). We find an so such that if s > sg and
(e'i', ' i\, j1) < {e.i.j.i1,j1). then every constant {¢',i', j’,4}, j)-requirement is
already created. Morcover, let z € Ny \ A, z > 7(<€,l.j,L1,J]>) and s be such
that s > s, ®, ()P () and (s)o = (e,7,j.71.71). Then on step s a constant
{e.1,].i1. 5 )-requirement & would be created. Lemma 13 is proved.

Now we will prove Theorem 1. Let us assume that [4g, ;] <m [Ap] and
(i.j) < (i1,j1). Therefore, there exists a total recursive function [ such that
Ve(x € [‘4(1'1‘1'1)] — f(T) € [:1(1'.]-)]).

Let e be such that ®, = f. It follows from Lemma 13 that there exists a
constant (e, i, j, iy, j )-requirement z, created on step s. Then zy € N, flas) ==,
= 2(y). where ¢ is either a composition of {w\} N OF 1 = 1id, and y € Ny.

It is not possible z € A; j)s—1, because then 75 € Afigy.s, since x5 € A jy
{‘4(1.1 } and f(rs) =z € [—4 L])]'

It is also not possible z € Ay jiy s—1 for some (i'.7") # (i.j), because then
2y € Ay s © A € o } and f(us) =z € [—l(“m)]

It is also not posmblo x5 £y, because x5 € A gy © Ay C (Agiy o) and
flag) =2 ¢ Urzeuzl‘_lﬁ]'

Therefore, x5 = y. Then (is.js) # (iv.j1), ©{[Aun]) € Mgl and a5 €
Alisjores © Aizjoy € [4(is joy]. The received contradiction shows that the assump-
tion H(nm,} < [4¢i. 5] is not true. Theorem 1 is proved.

Corollary 4. There exists an r.e. tt-degree, which contains different m-degrees
of the type of w2,

Now we consider the corresponding functions for the case & € Nk >
{61}, Bp. 01, B2 with Dom(f) = Ran(§?) = Dom(;) = Ran(f;) = « Fomoe N,

m m
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90([1,...,7‘1\.) = (i],....ik71.5k+1>, 11, ...0p c N

(0,150 ip), if iy =0,
iy, ... ix) =< (i —1,0.....0). if i1 >0 & 15 is even.
(i7 = 1,2,0.....0), ifi, >0& iy is odd :

0,1,i3,...,4), ifi; =0& iy =0,

O,do,. ... 1x), ifip =0& iy >0,

0,....ig), ifix >0 & (i2 is odd Viy = 0),

1,0,...,0), ifi; >0&iyiseven & ir > 0;
(iy, .. vipor +1,0),  ifip =1,

O/ (iv, . ovin) =< (i1 gt ), if iy = 0.
(i, o yipr + 1,4), ifiy ¢ {Ol}

(i1 +1,0,03,....44), ifiy =1,
0" (ir, ... i) =< (i + 1,05, ... i5), ifio=0,
(Z.1+177/.2-,"'7i/€)7 1fl_’€{0~]}'

le N,

Analogously, one can prove the following

Theorem 2. There exists an r.e. be-degree, which contains different m-degrees
of the type of W* for any positive integer k.

Corollary 5. There exists an r.e. tt-degree, which contains different m-degrees
of the type of w* for any positive integer k.

We will construct also an r.e. be-degree, which considered as an upper-semi-
lattice of m-degree contains a set of type Q of different r.e. m-degree. The idea for
constructing such r.e. be-degree is the same as in Theorem 1.

Let Q be the set of rational numbers with the usual ordering, ) be the set
{(a1. a2 + V]a, € Z&a, ¢ N}. It is well-known that we can represent {Q with the
elements of () having in mind that two elements (ay,a2), (b1, ba) represent the same
rational number (a aj_ 1) iff a;.(by + 1) = (ay + 1).b,. We write

2

(al,ag) < (bl,bg) iff

ay < L
ar + 1 by + 1
. 5] bl ai bl
Jaz) < (by, bo) iff = .
(al(Q)_(l)Z)l ((L2+1 b2+10r(13+1 Z)2+1)
Let 6y, 61 and 6, be the recursive functions with Dom(f,) = Ran(f;) = Q.
k=0,1,2, defined as follows:

and write

Oo(i.k)=(i+1,k), icZ, keN;

(i—3,k), ifrem(3,4) =0,
O1(i,k) =< (i —2,k), if rem(3,1) = 2,
(i, k), if rem(3,1) = 1;

30



(i —3,k). if rem(3,1)
O2(i. k) =< (i —1,k), if rem(3,i)
(1, k), if rem(3,%)

i

0,
1,
2;
iecZ, keN.

The following lemmas are analogous to those before Theorem 1 and it is easy
to check that they are again correct.

Lemma 14. Foralla € Q, i € Z and for every natural number k the following
equivalences hold:

a=(i,k) < byla) = (i, k+1);
a=(i+3.k) & 6i(a) = (i,k) & O2(a) = (i, k).

Lemma 15. For all a.b € Q such that a < b, there exists a function n, which
is a composition of the functions 6y, 61, 62, id such that Ve(c = a <= nic) = b).

Lemma 16. For all a,b € Q such that a X b, there exist functions m, ...,
121, which are compositions of the functions 01, 62 such thatVe(c =b <= m (c) =
ak. . . &nylc)=a

Lemma 17.2) If 6,(i1, 1) = (i,5), k € {1,2} for some integers i, j such that
rem({3,i) = 0, then j1 = j and there ea:zsfs at least one iy # 11 such that the equation
Orlia, j) = (i, ) holds.

b) Let 1 be such composition of the functions 6o 01, 02 that at least one of B and

8, appears in n. If n(iy, j1) = (i.j) for some integers i, j, such that rem(3.7) = 0,
then j1 = j and there exists at least one iy # iy such that the equation nlia,j) =
(i.]) holds.

Let o, = (i.2).7=0,1,2;r € Nand Ny = N\ (Ran(go))URan(p1)URan(p2)).

Definition. Let {4,}.cqo be a sequence of disjoint subset of No. We define
the sequence {[Aq]}acq of disjoint sets of natural numbers by the following rules:

(a) If p € A, then p € [Ad];

(b) If i € {0,1,2}. p € [4,] and 6;(a) = b, then ¢;(p) € [4s].

Lemma 18. If {4, }ecq is a recursive (r.e.) sequence of disjoint subsets of
No. then {[44]}acq is a recursive (r.e.) sequence of disjoint sets.

Lemma 19. If {4, }ecq is a sequence of disjoint subsets of No, then the
following equivalences hold for all natural z,j and integer i:

z € [App] <= wol) € [Auspl

€ [Aes ) <= w(e) € Ayl & palz) € Ayl
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Corollary 6. If {4,}uco is a sequence of disjoint subsets of Ng. then
(Ao ] <o [ ] for all natural § and integer 1.

Corollary 7. If {4 }acq is a sequence of disjoint subscts of No. then [4,] =,
[Hp] for all a,b € Q.

Corollary 8. If {A,}acq is a sequence of disjoint subsets of Ny, then [4,] =,
[Ap] for all a,b € Q.

Lemma 20. For every natural number z, either x € Ny or there exists an
effective way to find a function ., which is a composition of the functions 6y, 0;,
0> and y € Ny such that p(y) = .

Lemma 21. Let {A.}scq be a sequence of disjoint subsets of Ny. For any
function @, which is a composition of the functions 6y, 61, 8+, and for any a € Q
there exists b € Q such that p([A.]) C [4,]).

Lemma 22. Let {A,}eco be a sequence of disjoint non-empty subsets of Ny.
For any function ¢, whick is a composition of the functions 0y, 8. 65, and for any
a.b € Q there exists an effective way to verify whether or not ([4,]) C [4,].

Lemma 23. Let {4.}aco be a sequence of disjoint non-empty subsets of Ny
and @ be a composition of the functions 6y, 81, 65. If a,b € Q are such that
o([A]) C 4], then there exist at least two different elements ¢y, ca € Q such that

o([Ae,]) € [As] and p([Ae]) € [Ab].

Theorem 3. There exists an r.e. be-degree, which contains different m-degrees
of the type of Q.

Proof. The construction of such a degree is analogous to that in Theorem 1.
Le. we construct an r.c. sequence {A,}.eq of disjoint subset of Ny such that if
a < b, then [A4,] <p, [4,], but [4,] £, [Aa].

We construct the sets {4, }oco by steps, building the finite approximation Aq
of 4,, a € Q, on step s.

On step s if (s)o = (e.4,7,i1,J1) and (i,7) < (i1.j1). then our aim is to satisfy
that the function @, does not m-reduce [4;, ;] to [ 5], i.e. to find such a
witness € Dom(®,) that at least one of the following two conditions is satisfied:

() o @ [y 0) & o(2) € [A)

() € A & Do) ¢ 40y

Since the definitions are the same as in Theorem 1, we omit them and describe
the construction of the sequence {4, }qeq.

Step s = 0. Let Ny = {ap < a1 < ...}; we take A(; j) 0 = amg )

Step s > 0. If neither [Seq;((s)o) nor Seq;((s)o)&(((s)o ) (( Jo)2 + 1) <
(((s)o)3.((s)o)a + 1)], then we do nothing, i.e. we take Aips ™ Apjysor. 1€
Z,j ¢ N, and do not create any requirements.
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If Seq; ((s)o) and s = {e,7.j.71, j1). where (7,7) < (41, 1), we verify whether an
active (s)g-requirement exists. If there exists such a requirement, then do nothing.

If such a requirement does not exist, then we verify whether there exists an
r € Ny such that @ > r((s)g), * € Dom(®. ). © & Useodas—1 and z does
not belong to any active negative requirement, created on a step ¢ < s such that
(t)g < (8)o. If such an x does not exist, then we do nothing.

Otherwise, we denote by z the loast such z and create an (s)g-requirement
x,. Let .{zs) = z and v(y) = z, where v is either a composition of the functions
{QL'}OSI\'SZ or I/) =1id and Y€ j\vg,

We verify whether z € A ;) ,-1. If so. then we fix A ;s = A s 1 U {z},
Atk = Aepys—1 for (k1) # (i.7).

Otherwise. we verify if z € Ay 1y 1 for some (i',7") # (i, 7). I so, then fix
Aitigoes = Ao U{zsh Agnys = Agn,s-a for (K1) # (71 _]1) Otherwise,
we consldex two cases:

Case 1. Tg #— y. We fix A(i].jl).s = ’l(i1,j1),s‘l U {.’L’S}, A(k,l),s = A(k.[).sfl for
(k.1) # (i1, j1) and create a negative e-requirement y.

Case 1I. o = y. We find effectively (i-’_),j)) # (z'l,jl) such that ¥([A, j,1]) C
(A and fix A, goys = A o) s—1U{zs ), A = A(pay.s—1 for (B, 1) # (ia, jo).

Finally, we take 4, = UseNA""S‘ a€ Q.

Obviously, the construction is effective, hence the sequence {4d,}qc0 1s an r.c.
sequence of disjoint subsets of Ng.

The proofs of the following lemmas are analogous to those in Theorem 1.

Lemma 24. The set Ny \ A is infinite.
Lemma 25. The set Ny \ A is immune.

Lemma 26. For any notural number e, such that N1 C Dom(®.), and for
every (e,i.7.i1,j1), such that (i,j) < (i1,j1), there exists a constant {(e,i,j,i1,j1)-
reguirement.

Theorem 3 is completed.

Corollary 9. There exists an r.e. ti-degree, which contains different m-degrees

of the type of Q.

Combining the technique from Theorem 1 above and [3],Theorem 1, one can
receive that there exists an r.e. pc-degree, which contains infinite antichains of
chains of the type of w* for different numbers k (but r.e.).
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1. INTRODUCTION

Let A = (N; Ry, ..., R;) be a structure with domain the set of all natural num-
bers N, where each R; is a subset of N and "=" and "#” are among Ry, ... LRy
An enumeration f of % is a total mapping from N onto N.

For every 4 C N* define
T7HA) = {{zr ... za) : (f(z1),. .. ,f(zg)) € A}
Let
) =R @@ [ (Ry),

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A <. B) if there is an enumeration operator I', such that 4 = I',(B). By de(A)
we denote the enumeration degree of the set A. The set A4 is total if 4 =, AT,
where 47 = 4@ (N\A). An enumeration degree is called total if it contains a total
set.

Definition 1.1. The degree spectrum of 2l is the set
DS(A) = {d.(f*(2)) : f is an enumeration of A}.
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The notion is introduced by [6] for bijective enumerations. In [2, 3, 4, 7] several
results about degree spectra of structures are obtained. In [7] it is shown that if
a € DS(A) and b is a total e-degree, a < b, then b € DS(2). In other words, the
degree spectrum of 2 is closed upwards.

The co-spectrum of the structure 2 is the set of all lower bounds of the degree
spectra of A. Co-spectra are introduced and studied in [7].

The aim of the present paper is to study a generalization of the notions of
degree spectra and co-spectra for finitely many structures and to give a normal
form of the sets, which generates the elements of the generalized co-spectra in
terms of recursive ¥ * formulae.

In what follows we shall use the following Jump Inversion Theorem proved
in [8]. Notice that the jump operation """ denotes here the enumeration jump
introduced by Cooper [3].

Given n + 1 sets By, ..., By, for every ¢ < n define the set P(By,....B;) by
means of the following inductive definition:

(i) P(Bo) = Bo;

(11) Ifi < n, then r.P(Bo, R Bi+1) = (?(BQ ey Bi))/ & BH»I'

Theorem 1.1. Letn > k > 0, By, ..., By be arbitrary sets of natural numbers.
Let A C N and let Q be a total subset of N such that P(Bo, ..., B,) <. Q and

At <, Q. Suppose also that A £, P(Bo,...,By). Then there exists a total sel I
having the following properties:
(i) For alli<n, B; <, F';
(i) Foralli,1<i<n, F' =, F&P(By,....Bi-1)";
(i) £ =, Q;
(iv) A &, FM,

2. JOINT SPECTRA OF STRUCTURES

Let us fix the structures g, ..., An.

Definition 2.1. The joint spectrum of Ao, ..., %, is the set
DS(Ao,2Ay,...,%Uy,) ={a:ae DSAg),a’ € DS(Ay),....,a™ € DS(A,)}.

Definition 2.2. Let k < n. The k-th jump spectrum of g, ..., 2, is the set

DSp(Uo,... . Ay) = {a™ ra e DS(Ag,..., Ay}

Proposition 2.1. DS, (2o, ....2,) is closed upwards, i.e. if a® ¢ DS, (o,
.., Ay), b is a total e-degree and al®) < b, then b € DS, (g, ..., 2%,).

Proof. Suppose that a® € DS (2,...,2,), bis a total degree and b > al*/.
By the Jump Inversion Theorem 1.1 there is a total e-degree f such that:
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(1) a'¥ < £ for all i < k;

(2) £'%) =b.
Clearly, a < £ for i < n. Since a) € DS(2;) and £V is total, £ € DS(2),
i < n. Therefore f € DSy, ..., A,) and hence b = £ € DS (g, ..., A,). O

Definition 2.3. Let k < n. The k-th co-spectrum of g, ..., A, is the set of
all lower bounds of DS, (2o, ...,%A,.), i.e.

CSi(o,.. .. Ay) = {b:beD.&Vac DSy, ..., %)) (b < a)}.

Proposition 2.2, Let k <n. Then
CSr(Ag, .o UAp, o, Ay = CSi (o, -, Up).

Proof. Clearly, DSy (g, ..., Ay, ..., A,) € DSL(Ap, ..., %U) and hence
CSr(g, ... . Ap) CCSL (o, ..., Apy.. A

To show the reverse inclusion, let ¢ € CSg (g, ..., An), i.e. ¢ <alk foralla €
DS(p,...,AU,). Suppose that ¢ € CS; (™o, ...,Ar). Then there exist sets C' and
A such that d.(C) = c and d.(A) € DS(o,..., ;) and C £, A®) . Notice that
P4, A AWY =, A and therefore C £, P(A, A',. .., A®). Fix some sets
By,...,Byp_y such that d.(By) € DS(g41),...,de(Br_i) € DS(,). Applying

the Jump Inversion Theorem 1.1, we obtain a total set £ such that:
(i) Foralli <k, AW <, F4),
(ii) Forall j,1 < j<n—k, B; <, Fk+);
(ii) C &, FH,
Since the degree spectra are closed upwards, d.{F) € DS(2), i =0,...,n,
and hence d.(F) € DS(Up,....2A,). On the other hand, C £, F* and hence

c g CS(Up,....2A,). A contradiction. 0

Theorem 2.1. Let 4 CN. Then the following are equivalent:
(1) de’(‘4) € CSk(Q[O, cee 7911»‘)’
(2) For every k + 1 enumerations fo,..., fr,

A< P (™Aoo £ ()

Proof. Suppose that 4 satisfies (2) and consider a b € DS(Ug, ..., %), We
shall show that d.(4) < bk,

Let i < k. Then b'i) ¢ DS () and hence there exists an enumeration f; such
that bV = d. (f71(2;)). Clearly, do(4) < de(P(fo (o), - .., fr 1 (Ar))) = b

Suppose now that d.(4) € CSp(RAo,...,As) and fo,..., fr are enumerations.
Set B; = fi“l(Qli), i = 0,...,k. Towards a contradiction assume that A £,
PfeH(Ao), ..., £7H(Ay)). By the Jump Inversion Theorem 1.1 there is a total set
F such that: B; <, F, i <k, and A £, F*). Clearly, d.(F) € DS(2o,...,Us)
and d.(4) £ F%)_ So, d.(4) & CSp (N, ... 2Ag). A contradiction. O
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3. GENERIC ENUMERATIONS AND FORCING

3.1. THE SATISFACTION RELATION

Given k + 1 enumerations fo, ..., fx, denote by f the sequence fo...., f; and

set for i <k, P/ = P(fy1 (™ )....,fi‘l(Qli)).
Let Wo,...,W.,... be a Gddel enumeration of the r.e. sets and D, be the

finite set having canonical code v.
For every i < k, e and z in N define the relations f =; F.(z) and f ; =F,.(

by induction on i:
(i) szro F.(z) < (3)((v,z) € W, & D, C fy ' (Aa));
f ':i—f—l Fe(.l') — 30) <1’a$> € IV & (Vu € DL)(

u= 0,eu,mu>&f}:l F, (z,) Vv
Lew o) & f i —F. (xy) V

~ 2, fu) & Ty € fi:ull(mi—%l))):
(iii) f = ~Fe(z) <= fbél Fe(z).

From the above definition follows easily the truth of the following

(if)

e~

Proposition 3.1. Let A CN andi < k. Then
A< P &= @Fe)(d={z: [ F(o)})

3.2. FINITE PARTS AND FORCING

The forcing conditions, which we shall call finite parts, are k—tuples
7 = (10,...,7%) of finite mappings 7p,...,7, of N in N. We shall use the letters
5,7, p, i to denote finite parts.

For every i < k, e and z in N and every finite part 7 we define the forcing

relations 7 Ik, Feac) and T IF; =F.(z), following the definition of relations ”}=;”.

Definition 3.1.
(i) Tlko Fo(z) <= (F)((v,z) e W, & D, C 70_1(910));
Tl Fe(z) <= 3v((v,z) € W &

- (Vue Dy)(u=0,ep.zy) &TIF; Fo (z4) V
(&) w=(le,1,) & 7k =F. (2,) V
u=(2,z,) &z, € Ti:fl (2Ai21)));
(iif) 7k ~Fe(z) <= (Vp 2 7)(p Wi Fela)).
Given finite parts § = (dy,...,6) and 7 = (7p,..., 1), let
5gf <= 6 C 710,...,05 C 7.
(Sk), T = (To,...,T;J be

Proposition 3.2. Leti < k,e,z € N and § = (do,. ..,
finite parts :
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(1) 6 C 7. then 0 IF; (=) F.(z) = 7 IF; (0)Fo(2);

(2) If 6o = 70,....0; = 7, then & IF; (=) Fo(x) <= 7 Ik (4)F, ().

Proof. The monotonicity condition (1) is obvious.

The proof of (2) is by induction on ¢. Skipping the obvious case i = 0, suppose
that i < k and

Sl (Fe(z) <= Tl (0)F(2).
Let 7; = &;.j < i+1. From the definition of the relation Ir; 4 it follows immediately
that

Slriv1 Fo(z) <= Tlhip1 Fo(z).

Assume that § I,y =F.(z), but 7 ¥, =F.(z). Then there exists a finite
part p 2 7 such that pIb;; Fe(x). Consider the finite part i such that p; = pj
for j <i+1,and u; =46, fori+1 < j <k. Clearly, i 2 dand fi Ik, Fo(z). A
contradiction. [J

Definition 3.2. If 6 = (&,...,61), 7 = (70,...,7k) and i < k, define
(SC F <= § C1p,..., .05 CTl,(sl+]—Tl+1,...,5k:pk.
Let 7 IF¥ (=)F.(x) be the same as 7 IF; (=) F. () with the exception of
(ili) 71k ~Fe(z) <= (VP 2; F)(p IV Felx)).
As an immediate corollary of the previous proposition, we get the following
Lemma 3.1. For each i < k,e,x € N and 7,
Tl (Fe(z) <= T (0)Fe(z).

3.3. GENERIC ENUMERATIONS
For any i < k,e,z € N denote by Xlowy ={p:p ki Fe(2)}.
If f = (fo....,fr) is an enumeration of Ag, ..., %Ay, then
FCf <= 10Cfo,....7 C fr

Definition 3.3. An enumeration f of Uy, ..., Ay is i-generic if for every j < ¢
e, r €N,

VFCHBpe X, )FCp = (3T CHFeX],)

Lemma 3.2. (1) Let f be an i-generic enumeration. Then

fE:i Fa) & (37 C [)(7 I} Fe(2)).
(2) Let f be an (i + 1)-generic enumeration. Then

fEi~F(z) <= (37 C /)7 Iy ~Fe(a)).
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Proof. Induction on i. Clearly, for every f we have
fEo Fe(z) <= (37 C ))(F Ik Fu(x)).

From the definition of the relations k=; and |F; it follows immediately that if for
some enumeration f we have the equivalences
FEiF(a) &= (37 CHE I Fe(a))
and -
f P:i ﬂFe('r) N (371 g f)('f H_i _‘Fe(I»f
then we have also
fE Fo(x) <= (37 C )7 iy Fe(2)).
So, to finish the proof. we have to show that if for some 7 < k the enumeration
f is (i + 1)-generic and (1) holds, then (2) holds as well. Indeed. suppose that
f =i F.(z). Assume that there is no 7 C f such that 7 I-; ~F.(z). Then for
every 7 C f there exists a finite part 5 O 7 such that g lF; Fy(z). From the (i + 1)-
genericity of f it follows that there exists a finite part 7 C f such that 7 IF; F.(z).
Hence f F=; F.(z). A contradiction.
Assume now that 7 C f and 7 IF; =F.(z). Assume that f =, F.(z). Then we
can find a finite part 2 C f such that g lF; F.(z) and i D 7. A contradiction. O

3.4, FORCING K-DEFINABLE SETS

Definition 3.4. The set 4 C N is forcing k-definable on 2o, ... 2 if there
exist a finite part § and e € N such that

Tt €A < (I72 5)(? tFy Fe(x)).
Theorem 3.1. Let A CN. If A <. P(f5 " (o), ..., fir " (k) for all fo..... f

Proof. Suppose that A is not forcing k-definable on 2y, ..., 2. )

We shall construct a (k + 1)-generic enumeration f such that A £ fP{.

The construction of the enumeration f will be carried out by steps. On each
step j we shall define a finite part &/ = (83,...,8), so that § C &/, and take
fi= U]-(Ff for each i < k.

On the steps j = 3¢ we shall ensure that each f; is a total surjective mapping
from N onto N. On the steps j = 3¢ + 1 we shall ensure that f is (k 4+ 1)-generic.
On the steps 7 = 3¢ + 2 we shall ensure that A4 £ ?{.

Let 6° = (0,...,0). Suppose that ¢/ is defined.

CASE j = 3q. For every i, 0 <1i < k, let z; be the least natural number, which
does not belong to the domain of 6{, and y; be the least natural number, which
does not belong to the range of 6{ Let 6{“(:@) = y; and 6{“(.@) o~ 5f(r) for
T # ;.

CASE j = 3{e,i,2) + 1,4 < k. Check if there exists a finite part 5 D 67 such
that p Ib; F.(z). If so, then let 677! be the least such p. Otherwise let 611 = §4.
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CASE j = 3¢ + 2. Consider the set
C={r: (37 28)(F Iy Fy(2))}.

Clearly, C' is forcing k-definable on 2y, ..., %, and hence C' # 4. Then there
exists an z such that either 2 € A and 2 ¢ C orz € C and x ¢ A. Take 677! = §J
in the first case.

If the second case holds. then there must exist a p 2 7 such that pIky F,(x).
Let 4771 be the least such p.

Let 671 = §J in the other cases.

To prove that the so received enumeration f = U;67 is (k + 1)-generic, let us
fix numbers 7 < k. e,z € N and suppose that for every finite part ¥ C f there
is an extention p IF; F.(z). Then consider the step j = 3{e,i,z) + 1. From the
construction we have that 6% IF; F.(x).

Suppose there is a g € N, so that 4 = {& : f =4 F,(z)}. Consider the step
j = 3¢+ 2. From the construction there is an x such that one of the following two
cases holds:

(a) r € A and (Y5 D 8)(p Wy Fy(x)). So, &7 Ik =Fy(z). Since f is (k + 1)-
generic, = € A & f Wx Fy(x). A contradiction.

(b) 2 ¢ A & &/t Iy Fy(z). Since f is (k + 1)-generic, f ¢ Fy(z). A
contradiction. (J

4. THE NORMAL FORM THEOREM

In this section we shall give an explicit form of the forcing k-definable on o,
..., A sets by means of positive recursive X7 formulae. These formulae can be
considered as a modification of Ash’s formulae introduced in [1].

41. RECURSIVE ¥} FORMULAE
Let, foreachi < k, L; = {T}, ..., T%i;} be the language of ;. where every Tf is

an rj—ary predicate symbol, and L = Ly U---U L. We suppose that the languages
Lo, ..., Ly are disjoint.
For each i < k fix a sequence Xj...., X!, ... of variables. The upper index i

in the variable X! shows that the possible values of X! will be in |2]. By Xt we

shall denote finite sequences of variables of the form X¢, ..., X}

For each i < k. define the elementary Z;L formulae and the Zf formulae by
induction on i, as follows.

Definition 4.1.
(1) An elementary £F formula with free variables among X is an existential

formula of the form
EMANINE) WL T SN S )

m
where ® is a finite conjunction of atomic formulac in Lo with variables
among Y, ..., Y9, X0

' s L <
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(2) An elementary £, formula with free variables among X°,... X" is in
the form
Y0, IYViTIe(XO, . X YO vy,
where @ is a finite conjunction of ¥ formulae and negations of Y formulae
with free variables among Y9,. ) X0 "' and atoms of L;.; with
variables among X+, Y i+l ) B
(3) A X7 formula with free variables among X°, ..., X" is anr.c. infinitary dis-
_]unchon of elementary ¥ formulae with ﬁee variables among X0, ... X!
Let ® be a Z?L formula, i < k, with free variables among X°,..., X' and let
£, ...t be elements of N. Then by (%p,...,%;) = ®(X°/P,..., X'/T") we shall
denote that ® is true on (Ag,...,2l;) under the variable assignment v such that
1 ru 3 g
v(X0) =0, .. u(X?) = #. More precisely, we have the following

Definition 4.2.
(1) If @ =3y, .. 3Y20(X°vP,..., V%) is a & formula, then
(Ao) = ®(X/°) = Fs1... Fsm (Ao = TN/, VP /s, .., Y, sm)).

(2) If ¢ = 3Y°. . IYyHIgXO .. XFLYO VY and U = (¢ & o),
where (X, ..., XL YO, .., ) ) is a conjunction of ¥ formulae and nega-
tions of =} formulae and a(}”“, Xt is a COIIJuCthIl of atoms of L1,
then

(Qlo, S ,‘2[1'+1) 'Z @(‘?O/EO s ,‘i’i+l/l?i+]) <
350 3 (Ag, W) (X0, X E VO30 Y s &

( i+1) %: (\L+1/tl+l } z+1/—z+l>

4.2, THE FORMALLY K-DEFINABLE SETS

Definition 4.3. The set A C N is formally k-definable on Ay, ..., 2 if
there exists a recursive sequence {®}7(*) of X} formulae with free variables among
WO ..., W* and elements #°,...,#* of N such that the following equivalence holds:

TEA = Ao... W) ESDAVO/EO, W,

We shall show that every forcing k-definable set is formally k-definable.

Let for every i, 0 < i < k, var; be an effective bijective mapping of the natural
numbers onto the variables with upper index i. Given a natural number z, by X!
we shall denote the variable var;(z).

Let y; < y2 < ... < y; be the elements of a finite set D, let @ be one of the
quantifiers 3 or V, and let ® be an arbitrary formula. Then by Q(y : y € D)® we
shall denote the formula QYy ... QY] ®.
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Proposition 4.1. Let E = (Ey,...,Ey) be a sequence of finite sets of natural
numbers, where E; = {w}...., w{j}. Let 1 < k,z,e be elements of N. There exists

an uniform effective way to construct a £ formula @%‘e , With free variables among
O . 1k, where U"ji = L‘ar(w;), such that for every finite part 6 = (&9, ...,06),
dom(do) = Ep, ... dom(éy) = E,

(oo, ) | @, (WO 80(@"),.... WH /6, (@")) <= 61+ Fo(x).

Proof. We shall construct the formula @%_m by induction on 7 following the
definition of the forcing. ‘

(1) Let i+ = 0. Let V" = {v : (v,z) € W.}. Consider an element v of V. For
every u € D, define the atom II,, as follows:

(a) Ifu = (j,29... .,J:?.J,)., where 1 < j < ngp and all 29, ... ,.1'2]_ are clements of
Eq. then let I, = T7 (X7, .. .,X?});

(b) Let IT,, = X§ # X§ in the other cases.

Set I, = A cp, Il and q)%,e,z = Voyer Do

(2) Casei+ 1. Let V={v:{v,z) e W.} andv e V.

For every u € D, define the formula II, as follows:

(a) If u=(0,ey,xy), then let IT,, = (PiE,eu‘:vu"

(b) f u = (1,e,,x,), then let

O,=-[ \/  (yweE\E)...GycE\E)®y. , ],
E;DFEo...Er DE;

where E* = (Eg,...,El,Eiy1,..., Ey);

(@ Ifu={(2,2,), 0y = (.2}, 21), § < migq and it at e By,
then let IT, = T/HH (X[ ... XY,
J )

(d) Let Ty = ®gy 5 o A ~Pig; o In the other cases.
Now let I, = /\ueD,. I1, and set @giw = \/l,e‘, IT,. An induction on ¢ shows

that for every i the Ef formula (IJjE . , Satisfies the requirements of the proposition.(J

Theorem 4.1. Let 4 C N be forcing k-definable on o, ... 2. Then A is
formally k-definable on g, ..., Ay.

Proof. If A is forcing k-definable on o, ..., 2, then there exist a finite part

€A & (FFDHF I Foz) & (372 8)(FIF; Fo(z)).
Let for i = 1,....k, E; = dom(§;) = {w!,...,w} and let 6(w;) = tj-, j=1,...,7r.

Set £ = (Ey....,Ey). From the previous proposition we know that
(Ao, 20 E \/ 3yeE\E)E. (W1, W)

*

E*DE
(37 2 §)(dom(7) = E*)(7 IV} F.()).

&)

43



Then for all € N the following equivalence is true:

red = (Ap.. ... W)=\ e B\ Eyek., TR Tk,
E*DE

From here we can conclude that 4 is formally k-definable on 4o, ..., . O

o e

Theorem 4.2. Let A CN. Then the following are cquivalent:
1) de(A) € CSp(Rg, . ... A,), k< n.

( )

(2) For every enumeration | of ™g,.... A, A <, fP(foﬁl(‘Qlo). e f{l {24)).
(

(

)
3) A is forcing k-definable on g, ..., Up.
)

4) A is formally k-definable on g, ... ;.

Proof. The equivalence (1) <= (2) follows from Theorem 2.1.
The implication (2) = (3) follows from Theorem 3.1.

The implication (3) = (4) follows from the previous theorem.
The last implication (4) = (2) follows by induction on i. O
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DEGREE SPECTRA AND CO-SPECTRA OF STRUCTURES

IVAN N. SOSKOV

Given a countable structure 2, we define the degree spectrum DS(2) of 2 to be the set
of all enumeration degrees generated by the presentations of 2 on the natural numbers.
The co-spectrum of 2 is the set of all lower bounds of DS(RL). We prove some general
properties of the degree spectra, which show that they behave with respect to their
co-spectra very much like the cones of enumeration degrees. Among the results are the
analogs of Selman’s Theorem [14], the Minimal Pair Theorem and the existence of a
quasi-minimal enumeration degree.
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1. INTRODUCTION

Given a countable abstract structure 2, we define the degree spectrum DS()
of 2 to be the set of all cnumeration degrees generated by the presentations of 2 on
the natural numbers. The co-spectrum of 2 is the set of all lower bounds of DS().
As a typical example of a spectrum one may consider the cone of the total degrees,
greater than or equal to some a, and the respective co-spectrum which is equal to
the set of all degrees less than or equal to a. There are examples of structures with
more complicated degree spectra, e.g. [11, 8, 2, 7, 15]. In any case the co-spectrum
of a structure is a countable ideal and as we shall see, every countable ideal can be
represented as co-spectrum of some structure.

Here we shall prove some general properties of the degree spectra, which show
that the degree spectra behave with respect to their co-spectra very much like the
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cones of cnumeration degrecs. Among the results we would like to mention the
analogs of Selman’s Theorem [14], the Minimal Pair Theorem and the existence of
a quasi-minimal enumeration degree. These results are known in two versions in the
theory of the enumeration degrecs — above one fixed degree and above a sequence
of degrees, while our approach gives a unified treatment of both cases. Another
possible benefit is that the objects constructed in the proofs are elements of the
degree spectra or closely related to them, which gives an additional information
about their complexity.

Finally, our results pose some restrictions on the sets of degrees, which can be
represented as degree spectra. For example, using the existence of quasi-minimal
degrees, we obtain that if a degree spectrum posseses a countable base of total
degrees, then it has a least element. As a consequence of this, we get that for every
two incomparable Turing degrecs a and b there does not exist a structure 2 such
that DS(R() is equal to the union of the cones above a and b, answering negatively
a question apparently posed by Goncharov.

2. PRELIMINARIES

2.1. ORDINAL NOTATIONS

In what follows we shall consider only recursive ordinals a. which are below a
fixed recursive ordinal 7. We shall suppose that a notation e € O for 7 is fixed and
the notations for the ordinals «« < 1 are elements a of O such that a <, e. For the
definitions of the set O and the relation " <,” the reader may consult [12] or [13]. We
shall identify every ordinal with its notation and denote the ordinals by the letters
a, 3,7 and §. In particular, we shall write o < 3 instead of & <, 3. If a is a limit
ordinal, then by {a(p)}yex we shall denote the unique strongly increasing sequence
of ordinals with limit a, determined by the notation of «, and write o = lim a(p).

2.2. ENUMERATION DEGREES

Let A and B be sets of natural numbers. Then A is enumeration reducible to
B, 4 <. B,if A =T.(B) for some ecnumeration operator I'.. In other words, using
the notation D, for the finite sct having canonical code v, and Wy, ..., W..... for
the Gdédel enumeration of the r.e. sets, we have

AL B &= Vr(r e A = F({v,x) €W, & D. C B)).

The relation <, is reflexive and transitive and induces an equivalence relation
=, on all subsets of N. The respective equivalence classes are called enumeration
degrees. We shall denote by d.(A) the enumeration degree containing 4 and by
D, = (D, <,0,) the structure of the enumeration degrees, where 7 < * is the
partial ordering on D,, induced by ” <, ", and 0, is the least enumeration degree
consisting of all recursively enumerable sets. For an introduction to the enumeration
degreces the reader might consult Cooper ([6]).
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Given a set A of natural numbers, denote by A™ the set A & (N\ 4). The set
A is called total iff A =, AT. An enumeration degree is total if it contains a total
set. The substructure Dy of D.. consisting of all total degrees, is isomorphic to
the structure of the Turing degrees. Therefore we may identify the Turing degrees
with the total enumeration degrees.

The enumeration jump operator is defined in Cooper [3] and further studied
by McEvoy [10]. Here we shall use the following definition of the e-jump, which is
m-equivalent to the original one, see [10]:

Definition 2.1. Given a set A, let KY§ = {{z,z) : © € T',(4)}. Define the
c-jump A" of A to be the set (K9)*
The following properties of the enumeration jump are proved in [10]:
Let A and B be sets of natural numbers. Set B{®) = B and B\"*1) = (B(W)".
(J1) ¥ 4 <. B, then 4' <, B'.
(J2) Ais £%, relatively to B iff A <, (BT)".
Given an enumeration degree a = d.(4), let for every natural number n,
" = d,(A"). Notice that the jump is well defined on all enumeration degrees
and that it is consistent with the Turing jump on the total enumeration degrees.
For every recursive ordinal a the a-th iteration of the enumeration jump al®
is defined in a way similar to that one used in the definition of the a-th iteration of
the Turing jump, see [17]. Again it turns out that both definitions are consistent
on the total enumeration degrees.

2.3. DEGREE SPECTRA

We shall consider structures of the kind 2l = (N; Ry, ..., Ry ), where” =7 and
" #£ 7 are among Ry, . ... Ry

Enumeration of 2 is every total surjective mapping of N onto N.

Given an enumeration f of 2 and a subset of 4 of N¢, let

FHA) = {1, xg)  (Flan), o, fza) € AT
By f~Y(2) we shall denote the set f~'(Ry) ® -~ & f~'(Ry). In particular, if
f = Az.z, then f~ () will be denoted by D(2).
Definition 2.2. The degrce spectrum of A is the set
DS = {d.(f~'{()) : f is an enumeration of 2A)}.

If a is the least element of DS(Ql), then a is called the degree of 2.

The notion of degree spectrum is introduced in [11], where the first results
about degrees of structures are obtained. In [8] Knight defines the so-called jump
degrees of structures:

Definition 2.3. Let a < w{'®. Then the a-th jump spectrum of 2 is the set
DS, = {d.(f~HA))) : f is an enumeration of 2A}.
If a is the least element of DS,, then a is called the a-th jump degree of 2.
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There are two main differences between the standard definition of the notion
of degree spectrum of a structure considered in [11] and [8] and the one introduced
here.

First of all, in the cited papers the pullback f~*(2) of a structure is defined
by taking into account not only the positive part of the predicates, but also the
negative one. So the degree spectrum in the sense of [11] and {8] is equal to DS(2A™).
where

AT = (N.Ry...., Ry, ~Ry,....0Ry).
It can be easily seen that DS(21") consists only of total enumeration degrees. We
shall call structures of that kind tofal. More precisely,

Definition 2.4. A structure 2 is total if all elements of DS(2() are total.

The second difference is connected to the enumerations. In [11] and [8] the
degree spectra are defined by taking into account only the bijective enumerations.
while we allow arbitrary surjective enumerations. The choice of the class of enumer-
ations reflects on the notion of degree spectrum of a given structure. For example.
let A = (N;=,#). Clearly, if we define the degree spectrum of 2 by taking into
account only the bijective enumerations, then it will be equal to {0}, while if
we take all surjective cnumerations, then DS(2) will consist of all total enumera-
tion degrees. Fortunately, this difference does not affect the notion of degrec of a
structure. Namely, the following Proposition is true:

Proposition 2.1. Let f be an arbitrary enumeration of A. There exists a
bijective enumeration g of A such that g~ (%) <. f~H2A).

Proof. Let Fr = {{x.y) : f{z) = f(y)}. Clearly, EJT <. f1{2). Define the
function I by means of primitive recursion as follows:
h(0) 0,
h(n+1) pz[(Vk <n)((h(k), z) € Ep)l.

~
~

Set g(n) = f(h(n)). Now one can easily check that g is bijective and ¢~ () &
Ef = f1A). O

The main benefit of defining DS(2) by taking all surjective enumerations is
that it is always closed upwards with respect to the total enumeration degrees:

Proposition 2.2. Let g be an enumeration of A. Suppose that F' is a total set
and g7 (A) <. F. There exists an enumeration f of A such that f~1(A) =, F.

Proof.  Fix two distinct elements s and ¢ of N. Define the mapping f(z) as
follows:
g(z/2), if ris cven,

flz) ~<s, ifr=2z+1andz€F,
t, ifr=2:+1land z ¢ F.
Since 7=" and "#” are among the underlined predicates of 2. we have that
F <, f7HR).
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To prove that f71(A) <, F. consider the predicate R; of 2. Let us fix two
natural numbers x; and x, such that g{x,) >~ s and g{ay) >~ t. Let 2y, ... x, be
arbitrary natural numbers, Define the natural numbers yy.. ... yr, by means of the
following recursive in F procedure. Let 1 < j < ;. 1f z; is even, then let yja;/2.
Ifr; =22+ 1and z € F.thenlet y; = x,. Ifz; =224+ 1 and z ¢ F, then let
y; = ;. Clearly.

(rr,....m )€ f HR) <= (Y. ) € 9 (Ry).

Since g7 () <. F, from the last equivalence it follows that f=1(R;) <. F. So we
obtain that f~1(A) <, F. O

Remark. The requirement that the set F is total is necessary for the truth of
the proposition. Indeed. if the structure 20 were total, then for all enumerations f
of A the set f~1(A) would be total.

The results in [11] show that there exist structures, e.g. linear orderings,
which do not posses degrees. Further investigations in |8, 2, 7] show that for every
recursive ordinal « there exist linear orderings with a-th jump degree 0®, which
do not possess J-th jump degree for 7 < a.

3. CO-SPECTRA OF STRUCTURES

Definition 3.1. Let A be a set of enumeration degrees, the co-set of A is the
set co(A) of all lower bounds of A. Namely,

colA)={b:be D, & (Vae A)(b <, a)}.

The co-set of the a-th jump spectrum of a structure A will be called a-th jump
co-spectrum of 2 and will be denoted by C'S, (). In particular, if « = 0, the set
C'S,(2) will be denoted by CS(R) and called co-spectrum of 2.

Evidently, for every A C D, the set co(A) is a countable ideal. As we shall see
later. every countable ideal can be represented as a co-spectrum of some structure
2L

Definition 3.2. Let A C N o < ’w‘lcl" and let f be an enumeration of 2. The
set A is called a-admissible in the enumeration fif A <, f~ 1)),

The set 4 is a-admissible in 2 if 4 is admissible in all enumerations of 2.

Clearly, an cnumeration degree a belongs to C'S,(2) iff a contains an «-
admissible set. Our close goal is to show that the a-admissible sets admit a char-
acterization in terms of the structure 2. Thus we shall obtain some information
about the elements of C'S,(21). Our characterization is a generalization of the one
presented in {3], where only total structures are considered. Another reason for
presenting this characterization here is that we want to obtain an upper bound of
the degrees in DS, (2(), which determine the elements of C'S,(2A).

Let us fix a structure A = (N: Ry, ..., Ry).
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3.1. GENERIC ENUMERATIONS

In what follows, we shall use the term “finite part” to denote arbitrary finite
mappings of N into N. The finite parts will be denoted by d, 7. p. etc.

Definition 3.3. Let a < «w{'™. An enumeration f of A is a-generic if for every
3 < o and for every set S of finite parts such that S <, D(2)") the following
condition holds:

GFrChAreSVEp2T)pgSs))

Proposition 3.1. Suppose that o < % and let f be an a-generic enumera-
tion. Then for every 8 < a, f~1(A) £. DA and hence f~1(0)) £, D).

Proof. Let 3 < a. Consider the set E = {{(z,y) : f(x) # f(y)}. Clearly.
E <, f71 (2. Assume that f~1(2) <. D(2A)?). Then the set

S ={r:(3z,y € Dom(r))((z.y) € E & 7(z) =~ 1(y))}

is enumeration reducible to D(2)'?) and hence there existsa 7 C f such that 7 € S
or (Vp D 1)(p ¢ S). Evidently, both conditions are impossible. [J

Corollary 3.1. If f is an a-generic enumeration, then d.(f~()!9)) does not
belong to CSg(A) for any 5 < a.
For every o, e and z in N we define the relations f =, F.(z) and f =, ~F(2)
as follows:
(i) f o Felz) il there exists a v such that (v,z) € W, and for all u € D,
F)A<i<k&u={zf,. . an) & (flxf).... . flz))) € R):
(ii) Let o = g+ 1. Then
fEa Fo(z) < (Fu)({v,z) e W, & (Vu e D)(
(u=1(0,eu.2.) & f 5 Fo, (z))V
(u={(1ew,2.) & f =5 2o, (Tu))));
(iii) Let o = lim a(p). Then
[ Ea Fo(z) < u){{v,2) € W, & (Vu € D)(
u = <puv€u:"17u> & f ’:a(pu) Feu (Iu>>);
(iV) f ':a —‘Fe('r) — f }?éa FE(I)‘
An immediate corollary of the definitions above is the following:
Lemma 3.1. Let A C N and let a < w§™. Then A <. f~HA)®) iff there
ezists an e such that A ={x: f =, F.(z)}.
For every a < wSK, e and z in N and every finite part 7 we define the forcing
relations 7 I+, F,(z) and 7 Ik, - F.(z). following the definition of *=":
(i) 7 kg Fo(z) iff there exists a v such that
(v,z) € W and for all w € Dy, u = (i, 2f,...,2%), 1 <i <k,
oY, .x) € dom(r) & (7(z)).....7(x))) € Ry
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(ii) Let a = 3+ 1. Then
Tl Folr) &= 30)({v.x) e W, & (Yue D)
(u={0,ey.2y) &TIF3 F. (2,))V
(u= (1 ey 1y &1lik; I, (Iu))>)§
(i) Let a = lima(p). Then
Tl Fo(r) <= (Fu){{v,a) € T, & (Vu € D.)(
u= <pu-, 61“217“,) &1 Wu(pu) Feu (-1"u>));
(iv) 7lra 2Fu(z) <= (Vp27)(plo Ful2)).

For every recursive ordinal a, e,z € N set X&_ﬂ ={p:plks F.(z)}.

Given a sequence {X,} of sets of natural numbers, say that {X,} is e-reducible
to the set P if there exists a recursive function g such that for all n we have
Xn =Ty, (P). Thesequence {X,} is T-reducible to P if the function An, z.xx, ()
is recursive in P.

From the definition of the enumeration jump it follows immediately that if
{X,,} is e-reducible to P, then {X,} is T-reducible to P’

Lemma 3.2. For every o the sequence { X2} is uniformly in o e-reducible to
STH)Y  and hence it is uniformly in o T-reducible to f~1(2A)la+1),
Proof.  Using effective transfinite recursion and following the definition of the

forcing. one can define a recursive function g(a,n) such that for every a, X0 =

rg(a.zl)(f_1(91>(a))' 0
The next properties of the forcing relation follow easily from the definitions
and the previous lemma:

Lemma 3.3. (1) Let o be a recursive ordinal, e,z € N, and let 7 C p be
finite parts. Then
Tlhe (M) F(2) = plby (7)) Fo ().
(2) Let f be an a-generic enumeration. Then
fEa Fe(z) < (37 C )1 ko Fe(2)).
(3) Let f be an (a + 1)-generic enumeration. Then
fEa ~Fe(z) & (37 C f)(7 ko ~F.(2)).

Definition 3.4. Let .{ C N and let a be a recursive ordinal. The set A is
forcing a-definable on U if there exist a finite part § and e,z € N such that

A={z: @ 208)(r IFa Fu(z))}.

Clearly, if 4 is forcing a-definable on 2, then 4 <, f=1(A)(®). The vice versa
is not always true. As we shall see later, the forcing a-definable sets coincide with
the scts which are a-admissible in Q.

The next proposition follows easily from the definitions:



Proposition 3.2. Let B = (N, R{....,R}) be a structure isomorphic to 2
and o be a recursive ordinal. Then every forcing a-definable on B set is forcing
a-definable on A.

Proposition 3.3. Let o be a recursive ordinal. 3 < « and let 4 CIN be not
forcing B-definable on . There exists an a-generic enumeration f of A salisfying
the following conditions:

(1) f <o 4% @ D)@

(2) Ifv < a, then f=H ()0 <, f= D))

(3) A £ fHV.

Proof. We shall construct the enumeration f by steps. At each step g we shall
define a finite part §,, so that §; C d,41, and take f = Uq d,. We shall consider
three kinds of steps. At steps ¢ = 3r we shall cnsure that the mapping f is total
and surjective. At steps ¢ = 3r + 1 we shall ensure that f is (a + 1)-generic and at
steps ¢ = 3r + 2 we shall ensure that f satisfies (3).

Let S denote the set of all finite parts. If & = & + 1, then for every natural
number n set Yy, = T (D)) NS, If o = lima(p) is a limit ordinal, then set
Yo = Ty (D)) N S,

In both cases we have that the sequence {}7,} is T-reducible to D(2)!*) and
consists of all sets S of finite parts which are cnumeration reducible to D(0)") for
some v < Q.

Let dp be the empty finite part and suppose that ¢, is defined.

a) Case ¢ = 3r. Let wo be the least natural number which does not belong to
dom(d,) and let sg be the least natural number which does not belong to the range
of d,. Set dy1(xo) = so and 01 () ~ §,(x) for x # xo.

b) Case ¢ = 3r + 1. Consider the set Y.

Check whether therc exists an element p of Y} such that ¢, C p. If the answer
is positive, then let d,41 be the least extension of §, belonging to Y. If the answer
is negative, then let ;41 = 4.

¢) Case ¢ = 3r + 2. Consider the set

Cr={z: (37 268,)(7 k3 Fr(z))}.
Clearly, C, is forcing 3-definable on 21 and hence C, # A. Notice that C. <,

D(20)% uniformly in r and d,. Therefore the set C,. is recursive in D(20)'*) uniformly
in r and d,. Let z, be the least natural number such that

2, €Cr &, €AV, €C. & v, € A
Suppose that z, € C,. Then there exists a 7 such that
8, C7T & 7lFs Frlz,). (3.1)

Let d,4.1 be the least 7 satisfying (3.1). If z. ¢ C'.. then set ,.1 = §,. Notice
that in this case we have §,1 k3 =F (z,).

From the construction above it follows immediately that f = [J, d, is e
reducible to AT & D(A)'*) and hence it satisfies (1).

52



Let v < a. Then there exists an e such that f~! =
Since [ is a-generic. we can rewrite the last equalm as f LA
fUT i, Fe(x))}. Therefore f~HR)) <, f & DO

It remains to show that A €, f~1 (). Towards a contradiction assume that
A<, FH) . Then there exists an r such that

A={a:f ks F(n)}
Consider the step ¢ = 3r + 2. By the construction we have
o @ A& 01 b3 Fro(z,) Va, € A & dgpq b =F(z,).
Hence by the genericity of f
r, A& fEsFle) Ve, € A& f =3 - (x,).
A contradiction. O

Repeating the proof above without bothering about the set 4, we get also the
following:

(o1
o) = (&

Lu/\
Imv

Proposition 3.4. Let « be a recursive ordinal. Then there exists an Q-generic
enumeration f such that f and f=1(2)'®) are enumeration reducible to D (),

Theorem 3.1. Let a be a recursive ordinal, 3 < « and let A C N be not
forcing 3-definable on A. Let Q be a total set such that AT © D) <, Q. Then
there exists an enumeration f satisfying the following conditions :

(1) The enumeration degree of f~1(2) is total;
(2) A g oty
(3) f7HEN'Y = Q.

Proof.  According Proposition 3.3 there exists an enumeration g of 2l such
that g <. Q. 9“1(9[)(&) <cQand 4 £, g~1(91)(3)'
From Jump Inversion Theorem [17] it follows that there exists a total set F
such that the following assertions are true:
(i) g7 (A) < F
(i) A £, F
(iv) F'o) =, Q.

By Proposition 2.2 there exists an enumeration f such that f~!}() =, F. [

Definition 3.5. Let Q be a total subset of N and o < w§. An enumeration
fof Ais a, Q-acceptable if f satisfies the following conditions:

(i) The cnumeration degree of f~1() is total;
(i) fHEn =, Q.
Theorem 3.2. Let a be a recursive ordinal, 3 < o and let A C N be not forcing

definable on A. Consider an enumeration g and a total set Q >, g~ (A)(*) @& AF.
There ezists an «, Q-acceptable enumeration f of A such that A £, f~1(A)¥).



Proof.  According Proposition 2.1 there exists a bijective enumeration s such
that 27 H(A) <. g7 (A). Denote by B the structure (NoA™H(Ry).....h ' (R},)).
Clearly. 4 is not 3-forcing definable on B and D(B) =, h~'(2). Hence D(B) ' <,
(. Let i be an enumeration such that the enumeration degree of i~ (B} is total.
(B =, Qand A £, i71(B)). Set f = Ae.h(i(2)). Then f~1(2) =, i~ (B).
Thus f is a, Q-acceptable and 4 £, f~1(2)¥). O

Corollary 3.2. For every total Q >, g7 H(0)(®) there emists an . Q-acceptable
enumeration of 2A.

Theorem 3.3. Let & be a constructive ordinal and 4 C N. Let 3 < a.
Consider an enumeration g of A. Suppose that Q >, g~ ()(®), Q is a total set
and for all o, Q-acceptable enumerations f of A we have A <, f~1 (). Then A
15 forcing B-definable on .

Proof. First we shall show that AT <, Q. Clearly, there exists an enumeration
h of % such that h is «, Q-acceptable. Then A <, h=1(2)(¥). By the monotonicity
of the enumeration jump we can conclude that

A<, N <, 0.

Since AT <, A’, we get that AT <, Q.
Assume that A4 is not forcing a-definable on 2. Applying Theorem 3.2, we ob-
tain an «, Q-acceptable enumeration f such that 4 £, f~1(R0)(®) A contradiction.

3.2. NORMAL FORM OF THE FORCING DEFINABLE SETS

In this subsection we shall show that the forcing definable sets on the structure
2 coincide with the sets which are definable on 20 by means of a certain kind of
positive recursive 2 formulae. This formulae can be considered as a modification
of the formulae introduced in [1], which is appropriate for their use on abstract
structures.

Let L = {T1,...,T}} be the first order language corresponding to the structure
. So, every T} is an r;-ary predicate symbol. We shall suppose also fixed a sequence
Xo,..., Xy, ... of variables. The variables will be denoted by the letters . 1711,
possibly indexed.

Next we define for a < w{'® the T} formulae. The definition is by transf-
nite recursion on a and goes along with the definition of indices (codes) for every
formula. We shall leave to the rcader the explicit definition of the indices of our
formulae, which can be done in a natural way.

Definition 3.6.

(i) Let a = 0. The clementary ¥ formulae are formulae in prenex normal
form with a finite number of existential quantifiers and a matrix which is a
finite conjunction of atomic predicates built up from the variables and the
predicate symbols Ty,.... T%.
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(i) Let a = 3 + 1. An elementary £F formula is in the form
LIV M(Ny XYY ),

where A is a finite conjunction of atoms of Zﬁ formulae and negations of
S; formulae with free variables among Ny, .... X}, Y1...., Y.

(iii) Let a = lima(p) be a limit ordinal. The clementary 4+ formulae are in
the form

vy 3V M(X, . Ny Yoo Y.

where A/ is a finite conjunction of Ea(p) formulae with free variables among
Ny, X Y Yo

(iv) A X ‘“* formula with free \ariables among Xy, ..., X, is an r.e. infinitary dis-
.]unctlon of elementary Y7 formulac with free \auablcb among Xi,..., X

Notice that the ¥ formulae are effectively closed under existential quantifica-
tion and infinitary r.e. disjunctions.

Let & be a F formula with free variables among TV, ..., W, and let t1,...,t,
be elements of N. Then by &% & ®(117/t1,..., W,./tn) we shall denote that CI> is
true on 2 under the variable assignment v such that o) = t1,.., (W) = t,.

Definition 3.7. Let A C N and let a be a constructive ordinal. The set A
is formally a-definable on 2 if there exists a recursive function g(z) taking values

indeces of VJ“ formulae @ ;) w ith free variables among Wi,..., W, and elements
Flovons .t of N such that for every element z of N the following equivalence holds:
r€d = A=, (W/t,... . /L)

We shall show that every forcing a-definable set is formally a-definable.

Let var be an effective mapping of the natural numbers onto the variables.
Given a natural number 2. by X we shall denote the variable var(z).

Let 41 < y2 < ... < yx be the elements of a finite set D, let @ be one of the
quantifiers 3 or ¥ and let @ be an arbitrary formula. Then by Qly :y € D)® we
shall denote the formula QY7 ... QY ®

Lemma 3.4. Let D = {w1,..., w,} be a finite and not empty set of natural
numbers and x, ¢ be elements of N, Lct a < WS, There exists an uniform effective
way to construct a ST formula ®% , . with free variables among Wy, ... W, such
that for every finite p(mt 8 with dom(8) = D the following equivalence is true:

Ak 0% (I /0(w),... . W /d(w,)) <= dlky Fo(z).

Proof. We shall construct the formula %, , , by means of effective transfinite
recursion on a following the definition of the forcing relation I-7.
1) Let a = 0. Let V= {v: (v,z) € W.}. Consider an element v of V. For
every u € D, define the atom II, as follows:
a) Ifu=(i,x¥,....2%). where 1 <i<kandall 2f,.... 2} are clements of
D. then let H“ =T(XP LX)
b) Let II, = 117 # 117 in the other cases.

[y
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Set Iy = A ep, Hyand @3 =V -1
2) Let o = 3+ 1. Let again V" = {v: {v.x) € .} and v € V", For everv
1 € D, define the formula II,, as follows:
a) If u=1{0,e,.x,), then let T],, = <I>D .
b) If u = (1,e,,ay), then let
I, = \/ GyeD \D)yo)\ I

DD
¢) Let I1, = <I>{0} 0.0 N *ﬂb{o} 00 in the other cases.
Now let IT, = /\ueD « and set &% =\ . HLu
3) Let o = lim «e(p) be a limit ordinal. Let V7 = {v: {v.x) € V. }. Consider a
v € V. For every clement v = (p,.e,..r,) of D, sct II, = @Z‘SJ.L
Set IT, = /\U€D wand @ o=\ 1

Au ecasy transfinite induction on « shows that for every a the ¥T formula
$9, . . satisfies the requirements of the lemma. [

Theorem 3.4. Let a < W& and let A C N be forcing a-definable on 2. Then
A is formally a-definable on 2.

Proof. Suppose that for all 2 € N we have
red &= (Ir D67k, Fola)).
Let D = dom(éd) = {uy,.... w,} and let 6(w;) =t;, i =1,....r. Consider a
finite set D* D D. B) the previous lemma
UE3ye DT\ D)dp. , (W /t.... W /L)
if and only if there exists a finite part 7 such that dom(r) = D*. 7 2 § and

Tk Fo(a).
Hence we have that for all z € N the following equivalence is true:

red e A= \/ yeD \D)ey. , (N1 /t.. T/,
D*2D
Set

=\ BweD\D)d., (W, .. 0.
D*2D
Clearly, for all x € N we have

zed & AR Py,

Hence A is formally a-definable on %. O
Evidently, every formally a-definable set is a-admissible in all enumerations f
of 2. So we have the following theorem:

Theorem 3.5. Let A C N and a = d.(4). Let a be a recursive ordinal. Then
the following are equivalent:

(1) a € CSa(A);
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A is forcing a-definable:
Ais formally a-definable:
A is a-admissible in all enumerations of A.

—
— 2
-z =

3.3, REPRESENTING THE COUNTABLE IDEALS AS CO-SPECTRA OF STRUCTURES

In this subsection we are going to prove that every countable ideal of enumer-
ation degrees can be represented as a co-spectrum of some structure.

Definition 3.8. Let 2 be a countable structure. The enumeration degree d
(K

is called co-degree of % if d is the greatest element of CS(21). If o <wi ™ and d is
the greatest element of C'S,. then d is called the a-th jump co-degree of 2.

Clearly, if d is the a-th jump degrec of a structure 2, then d is also the
a-th jump co-degree of 2. The vice-versa is not always true. For example, let
A = (N; <. =.#) be a linear ordering. It is casy to sec by a direct analysis of the
formally O-definable on 2 sets that the co-degree of 2 is 0. On the other hand,
there exist linear orderings without a degree, see [11]. From the results in [8] it
follows that the first jump co-degree of 2 is 0’ and again there are examples of
linear orderings without first jump degree.

Obviously. if a structure 2 has a co-degree, then C'S(2() is a principle ideal.
Building on results of Coles. Downeyv and Slaman [4]. we shall show that cvery
principle ideal of enumeration degrees can he represented as CS(G) from some
subgroup G of the additive group of the rational numbers Q@ = (Q: +. =. #).

Let us fix a non-trivial group G € @. Let @ # 0 be an element of G. For every
prime number p set

] _J k. if b is the greatest number such that p*la in G,
tola) = . if pFla in G for all k.

Let pg.pi.... be the standard enumeration of the prime numbers and set

SAG) ={. Yy j < hp )}

It can be easily seen that if @ and b arc non-zcro elements of G, then S,(G) =,
Sy(G). Let di = de(S,(G)), where a is some non-zero element of G

In [4] it is proved that for every total enumeration degrec a there exists a
bijective enumeration f of G such that f~!1() € a if and only if dg < a. Since for
every enumeration f we have that f~1(G) is a total set and dg < d.(f 1 (G)), we
get the following proposition:

Proposition 3.5. DS(G) = {a: a is total & a > dg}.
Corollary 3.3. C'S(G) ={b:b <dg}.

Proof. Clearlv. b € CS(G) if and only if for all total a > dg, a > b.
According Selman’s Theorem {14] the last is equivalent to d¢ > b. O

Corollary 3.4. The group G has a degree if and only if dg s total.



Corollary 3.5. ([1]) Every group G C () has o first jump degree.

Proof. Tt is sufficient to show that dj, € DS ((). Indeed. by the Jump
Inversion Theorem [16] there exists a total degree a > d¢ such that a' = d,.
Obviously, a’ € DS (G). [

It remains to see that for every enumeration degree d there exists a subgroup
G of Q) such that dg = d. Indeed, let D C N. Consider the set

S={(i.j):j=0vj-1&iecD}
It is cvident that § =, D. Consider the least subgroup G of  containing the set
{1/p} : (1.7 € S}. Then 1 € G and S1(G) = S. So. d¢ = d.(D).

Now let us turn to the representation of an arbitrary countable ideal I of
enumeration degrees. Without a loss of generality we may assume that there exists
a sequence by < by <--- < by ... of elements of I such that

acl < (3k)(a<by).
For every k fix a set By € by.

Consider the structure % = (N; G, 0, =, #). where G, is the graph of the total

recursive function ¢ such that ¢({z,y)) =~ (z + 1,y) and
o= {{z,y): O)(y=2kvy=2k+1& x € DB}
Proposition 3.6. CS(2) = I.

Proof. To show that I C C'S(2), it is sufficient to see that (Vk)(by € C.S(2)).
Indeed, let us fix a k and let f be an enumeration. Let f~YG ) = GY, f~ (o) = o/
and fix a natural number z, such that f(xz;) = (0,2k + 1). Then for every x € N
we have

v €Br = Gy Fy )G (wep) & GTyryo) & GHya1.y0) & ol (ya))-
Thus By <, f~1().
To prove the inverse inclusion, we shall show that if 4 is a formally definable

on 2 set of natural numbers, then 4 < B, for some k. Let us suppose that g is
a recursive function taking values indeces of ¥ formulae $ 42y with free variables

among Wy, ..., W, and t1,...,t; are natural numbers such that

€A = A= Oy (W /ty, 0 WL E).
Without a loss of generality we may assume that every ¢; = (0,1;), where [y, ... .,
are distinct natural numbers. Assume that [1,...,l; are the odd numbers among

l,....L,and let {; =2k; +1,1=1,...,s. Set k =max(k;.....k;). We shall show
that A <, By. Indeed, let us consider an elementary Ea“ formula

S =3V .. W MY Y W T,

where A is a finite conjunction of the atoms L;.....L,. We shall show that there

exists a uniform recursive procedure, which cither decides that 2 = S(W7 /4. ...
W./t.) or constructs finite sets of natural numbers E;... ., E, such that

A= SWy/ty.... W /1) <= E CBy &... & E, C By..
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Substituting all atomic predicates of the form G {Z.T) by T = o(Z), we may
assume that the predicate G . does not occur in S.

1. Check if all L; are of the form Z # T or o{p™(Z)). If there is an L of
the form Z # Z, then vield A = S(114 /41, .. .. W, /t,) and go to 6. Otherwisc. for
j=1....5set

Ey={niolxm (W) €{Lr.....Lp}}
and go to 6. If not all L; are of the form Z # T or o{¢™(Z)). then go to 2.

2. Remove all atomic predicates ¢ (W) = " (1V;). If there exists a predicate
of the form "1 (117;) = "2 (). where i # j, then yield 2L & S(W1/tq,..., W, /t,)
and go to 6. Otherwise go to 3.

3. Suppose that among Lq,..., L, there exists an atomic predicate L of the
form " (11) = "2(Z), where ny < na. Then & ¥ S(W1/ty,.... W, /t.). Go to
6. If no such L exists. go to 4.

4. Suppose that there exists an L which is of the form p"'(Z) = "2 (T),
where Z ¢ {1,.... 10} and ny > n». Remove L from the list and replace in
the remaining atomic predicates all occurences of Z by @2~ (T}, Go to 1.
Otherwise, check if there exists an L of the form ™ (T') = ¢"2(Z), replace it by
2"(Z) = ™ (T) and go to 3. Otherwise go to 3.

5. Consider the first L of the form o™ (Z) # ¢"**(T"), where max(ny,ny) > 0.
If the variables Z and T are distinct, then replace it by Z # T. If Z = T, then
if ny = ns, decide that % K S(Wy/ty,..., W, /t,) and go to 6. If ny # ny, then
remove L from the list and go to 1. If no such L exists, go to 1.

6. End of the procedure.

Using the above procedure, we may construct an enumeration operator I' such
that for all z

A ’: <I)g(_\r)(ﬂ'1 /fl, ey U'r/fr) — T & r(B;,)

Thus 4 <, By. O
4. PROPERTIES OF THE DEGREE SPECTRA
1.1. GENERAL PROPERTIES OFF UPWARDS CLOSED SETS

Definition 4.1. Consider a subset A of D.. Say that A is upwards closed if
for every a € A all total degrees greater than a are contained in A.

By Proposition 2.2 every degree spectrum is an upwards closed set of degrees.
In this subsection we shall prove some properties of the upwards closed sets of
degrees. The next subsection contains specific properties of thc degree spectra, i.e.
properties which are not true for all upwards closed sets of degrees.

Let A be an upwards closed set of degrees.

Notice first that if B C A, then co(A) C co(B).

Proposition 4.1. Let A; = {a:a € A & a is total}. Then co(A) = co(Ay).



Proof. A simple application of Selman’s Theorem {14]. Suppose that b €
co(Ay). Towards a contradiction assume that b & co(A). Then there exists an
clement ¢ € A such that b € ¢. By Selman’s Theorem there exists a total a > ¢
suchi that b £ a. Clearly. a € A;. A contradiction. [J

The next property can be obtained as an application of the Jump Inversion
Theorem (JIT) from [17].

Proposition 4.2. Let b be an arbitrary enumeration degree. Let a be a re-
cursive ordinal greater than 0. Set

Ab,a = {a:ae/{ & bga(a)}.
Then co{A) = colAp o).

Proof.  Obviously, colA) C co(An..). Assume that there exists a degree
¢ € co(Ap.o) \ co(A). Then therc exists an a € A such that ¢ £ a. By the JIT
there exists a total degree f such that a < f. b < £ and ¢ £ f. Clearly, f € Ay,
A contradiction.

4.2. SPECIFIC PROPERTIES OF DEGREE SPECTRA

Let us fix an abstract structure 1.

From Proposition 4.2 it follows that the clements of an upwards closed set
A with arbitrary high jumps determine completely the co-set of A, The next
theorem shows that the elements of the degree spectrum DS(A) with low jumps
also determine its co-sct C'S{2).

Let @ > 0 be a constructive ordinal and b € DS, (). Denote by A the set
{a:ac DSQ) & a'® =b).

Theorem 4.1. CS(2A) = co(A).

Proof. 1t is sufficient to show that co(A) C CS(A). Let ¢ € co(A) and let C
be a set in ¢. We shall show that C' is O-forcing definable on 2. Evidently. there
exists an enumeration g of 2 such that ¢~ 1(A)'® € b. Since a > 0, Q = ¢~ (A
is a total set. Let f be an a. (Q-acceptable enumeration. Then d,(f~1(%)) € A and
hence C' <, f~1(). So C is O-admissible in all a, Q-acceptable enumerations of 2.
By Theorem 3.3, C'is O-forcing definable on 2 and hence ¢ € CS(21). O

There exists upwards closed set of enumeration degrees for which Theorem 4.1
is not true. Indeed, consider two sets of A and B of natural numbers such that
B £, 4dand 4 £, B'. Onec may take an arbitrary B £, @ and construct the set 4
as a B'-generic set such that B £ 4. Let D = {a:a > d.(4)} U{a:a >d.(B)}.
Let A={a:ae D& a' =d.(B)}. Clearly, ifa > d.(.1), then a ¢ A. Therefore
d.(B) is the least element of A and hence d.(B) € co(A). On the other hand.
d.(B) £ d.(4) and hence d.(B) ¢ co(D).

Now we turn to an analog of the Minimal Pair Theorem for the enumeration
degrecs.

Given a partial mapping f of Ninto N, let fy = Ar.f(22) and f; = Az, f(22+1).
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Definition 4.2. An cnumeration f is splitting if the functions fq and f; are
enumerations, i.e. fg and f; arc surjective mappings of N omo N.

Obviously, if f is a <phttmo enumeration, then both fi ! () and f; () are
enwmeration reducible to Y.

Lemma 4.1. Let f be an a-generic splitting enumeration of 2. Then both fo
and fi are a-generic enumerations.

Proof. We shall show that fy is a-generic. The proof of the genericity of f is
similar. Let 3 < a and let Sy be an enumeration reducible to D{2)%7) set of finite
parts. Denote by S the set {7: 7 € Sp}. S <. Sp and hence there exists a 7 C f
such that 7€ SV (¥Vp 2D 1)(p € 9).

Clearly, 79 C fo and if 7 € S. then 19 € Sy. Suppose that (Vp D 7)(p € S).
Assume that there exists a u D 79 such that y € Sp. Notice that since p 2 79. we
have that for all z if 7(22) ~ y, then p(z) ~ y. Let

u(x/2), if z is even,
plx) ~ -

(). if x is odd.
Then 7 C p and pgg = p € Sp. So. p € 5. A contradiction. [J

Corollary 4.1. If f is an a-generic splitting enumeration. then d(;(fo‘1 ()t
and df(ffl(i’l))@) do not belong to CS3(2) for any 3 < a.

Proposition 4.3. Let f be an a-generic splitting enumeration of 2. Set fo —
A (f5HA) and £ = d(f71(R)). Then for every 8 such that 3 +1 < a,

col{fo" 7. 1,77} = CS5().

Proof Lot 3+ 1 < «. It is sufficient to show that if 4 <, fn ()19 and
A4 <o 709 then A is 3-forcing definable on 2. Indeed. suppose that there
exist g and e; such that

Vo)(z € A = foks F (2) & (v ed = fi s Fe(x).
Consider the set
S ={r:(3n)(ro ry Fo (x) & 71 b5 =F, (1) Vg IFs = Fey () & 1 Ik Fyy (@)}

Clearly, S is an enumeration reducible to D(21)?"1 and hence there existsa 7 C f
such that 7 € S or 7 has no extensions in S. Assume that 7 € S. Then for some
r we have that fo =5 Fo (x) & fi F3 ﬁFﬁl ) or fo By —F, (x) & f1 =5 Fe, (1),
which is impossible. So. there exists a 7 C f such that 7 has no extensions in S.
We shall show that
A={z:3p2m)lplrs Feu(x))}.

Let + € A. Then fy k5 Fe (x) and hence there exists a p C fo such that
p ks Fo.(r). Then 75 C fo and hence we may assume that 7o C p. Assume now
that for some z ¢ A there exists a p O 7o such that p kg F. (x). Then f; 3 Fo ()
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and hence there exists a g C f; such that g ik3; =F, (2). Again we may assume
that 7 C p. Now let

o) ~

plr 2y, if o is even,
w(ie/2)),  if 2 is odd.

It is easy to see that oo = p and oy = pu. Therefore 7 C ¢ and 0 € §. A
coutradiction. O

Theorem 4.2. Let a < w§% and let b € DS, (A). There exist elements fg
and 1 of DS() such that:

(1) £'® < b and £;'* < b;

(2) If 3 < a, then £ and £, do not belong to CS3(™A);

(3) If 3+ 1 < a, then co({fo'") . £;'9}) = CS5().

Proof.  Let g be a bijective enumeration of 2 such that d (g7 (){%) < b,
Denote by B the structure (N; g7 (Ry)... ., g HRy)). Clearly, D(B) =, ¢~ 1(B)
and for all 3 we have that DS3(R) = DS;3(B) and CS3(A) = CS;(B). Let f
be an a-generic splitting enumeration of B such that f~1(B)*) <, D(B)*. Set
fo = de(fovl(%)) and f; = d@(ff1 (B)). Obviously, fy and f; satisfy the conditions
(1) -(3).0

Again we have that Theorem 4.2 is not true for arbitrary upwards closed sets
of degrees. Indeed, consider the finite lattice L consisting of the clements a. b.
¢, aAb,aAc, bAc, T, L such that T and L are the greatest and the least
element of L, respectively, a >aAb,a>aAc,b>aAb,b>bAc.c>aAc
and ¢ > b A c. Since cvery finite lattice can be embedded in the semilatice of the
Turing degrees, see p. 156 of [9], the lattice L can be embedded in (D4, <) and
hence it can be embedded in (D., <). So we may assume that L is a substructure
of (D, <). Let

A={deD,:d>avd>bvd>c}l
Clearly, A is an upwards closed set of enumeration degrees. Assume that there
exist fo,f1 € A such that co({fo,f1}) = co(A). Let x9,x1 € {a,b.c} be such
that fo > xg and f1 > x;. Let X2 = min{xg.x1}. Then x5 € co({fo.f1}), but
X9 & co(A). A contradiction.

Now we turn to the third property of DS{2), showing the existence of enu-
meration degrees, which are quasi-minimal with respect to C'S(2).

Let L &N,

Definition 4.3. A partial finite part is a finitc mapping of N into NU {1}, A
partial enumeration is a partial surjective mapping of N onto N.

From now on, by d,p.7 we shall denote partial finite parts. Given a partial
finite part 7 and a partial enumeration f, by 7 C f we shall denote that for all x
in dom(7) either 7(z) ~ L and f(z) is not defined or 7(x) € N and f(z) ~ 7(x).
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Let A= (NFRy..... R;) be a structure and f be a partial enumeration. Given
a subset 4 of 7. let

F7HAY = {{eor) s g € dom(f) & (fan). o flrg)) € AL

Let f71() = f~Y(Ry) == f Y Ry). As we shall see later, it could happen
that d. (f~1(A)) € DS(A). On the other hand, next lemma shows that for every
partial enumeration f the enumeration degree of f~!(2) is "almost” in DS(2).

Lemma 4.2. Let X be a total set, let f be a partial enumeration and f~(A) <.
X. Then d.(X) € DS().

Proof. It is sufficient to show that there cxists a total surjective mapping g
of N onto N such that ¢g='() <, X. Let E; = f~1(" = 7). Cleatly, Ey <. X.
Since dom(f) = {2 : (z.2) € E;}. we get that dom(f) <. X and hence, since X is
a total set. dom(f) is r.e. in X. Let h be a recursive in X enumeration of dom(f).
Set g = An.f(h(n)). Then for every i, 1 <i < k, we have

97] (Ri) = {<nl seees nr:‘) : <h(nl)r R h<nri>> € fAl(Ri)}'

Thus ¢~ 1) <. X. O

Corollary 4.2. For every partial enumeration f the enumeration degree of
FHAY belongs to DS ().

Proof. By the Jump Inversion Theorem from [16] therc exists a total set F
such that f~HA) <, F and F' =, f~1()". Then d.(I") € DS(X) and, hence.
d.(F"y e DS, (). O

Corollary 4.3. Let f be a partial enumeration. Then d.(f~'()) is an upper
bound of C'S(2).

Proof.  Let a € C'S(A) and let A4 € a. Consider a total set X such that
FHA) <. X. Then d.(X) € DS(A) and hence 4 <, X. By Selman’s Theorem
14 A<, ). O

Definition 4.4. Let f be a partial enumeration of 2 and e,z € N. Then:

(i) f o F.(z) iff there exists a v such that (v.z) € W, and for all u € D,

Gl <i<k&u={i,ay.,...,at) & {zf. .. a2} Cdom(f) &
(Flab), ... Flah) € Ri);
(i) f o ~Fu(z) < o Ful2).

It is obvious that A <, f~!(A) iff there exist an e such that
(Ve eN)(z € 4 <= [l=0 Fe(z)).

Definition 4.5. Let 7 be a partial finite part and e,z € N. Then:
(i) 7 Irg F.(x) iff there exists a v such that (v.z) € W, and for all v € D,.
w=(.xzf.....oxr). 1 <i<k,

oy, .. coap edom(r) & (r(2f),....7(x})) € Ry

r
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(i) 7lkg =Fa(x) <= (Vp 2 7)(p Ko Folx)).

Definition 4.6. A subsct A of N is partially forcing definable on 2 if there
exist an e € N and a partial finite part ¢ such that for all natural numbers .

re€d < (T DH(rlkg Flr)).
Clearly. if 4 is partially forcing definable on 2. then A <, D().

Lemma 4.3. Let A C N be partially forcing definable on . Then d.(4) €
CSR.

Proof. Let g be an arbitrary (total) enumeration of 2. Consider a structure
B. which is isomorphic to U and such that D(B) <, ¢~ (). Then A is partially
forcing definable on B and hence A <. D(B) <, g~ H(A). O

Definition 4.7. A partial enumeration f is generic if for every enumeration
reducible to D{RL) set S of partial finite parts the following condition holds:

ErcfilreSVvp27)(p g S))

We shall list some properties of the partial generic enumerations omitting the
proofs, since they are similar to the proofs of the respective properties of the total
generic enumerations.

Proposition 4.4. (1) For every partial generic f, f~1(A) £. D(A). Hence
d.(f71(A) € CSR).

(2) If fis a partial generic enumeration, then

(Ve,z)(f o (M) Fu(x) <= (37 C fi{riro (0)Fe(2))).

(3) There exists a partial generic enumeration f <, D()" such that fhey
<, D(AY.

(4) If A <, f=H) for all partial generic enumerations f. then A is partially
forcing definable on 2.

Definition 4.8. Given a set A of enumeration degrees, say that the degree g
is quasi-minimal with respect to A if the following conditions hold:
(i) a & co(A);
(i) If a is a total degree and a > q, then a € A:
(iii) If ais a total degree and a < q, then a € co(A).
Notice that from (ii) it follows by Selman’s Theorem that every quasi-minimal
degree is an upper bound of co(A).
If for some d € D,, A = {a : a > d}, then a degree is quasi-minimal with
respect to A iff it is quasi-minimal over d.

Theorem 4.3. Let f be a partial generic enumeration of A. Then d,(f~1(2))
is quasi-minimal with respect to DS(A).
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Proof. It is sufficient to show that if ¢ is a total function and © <, f~1(20),
then d. () € C'S(2L). Suppose that ¢ is a total function and

(Va,y e N)(v(2) =y <= f o F.((x.y)).
Consider the set

So={p: @Bz, yr #y2)ptho Fel{z. 1)) & plio Fo((r,y2)))}-
Since Sg <, D(21), we have that there exists a partial finite part 7o C f such that
either 9 € Sy or (Vp D 70){p & Sp). Assume that 7q € Sy. Then there exist
T,y1 # y2 such that f o Fo((z.y1)) and f =o Fo((z,y2)). Then y(x) ~ y; and
() ~ y2, which is impossible. So, (Vp 2 79)(p &€ So).
Let
Sy ={p:(37 2710)(36 2 7)(3d2 2 7)(Fa,y1 #Fyo)(7 C p & Gy Ik Fo((2,41) &
32 ko Fo({z.y2)) & dom(p) = dom(8;) U dom(dy) &
(Vz € dom(p) \ dom(7))(p(z) =~ L))}.
Again we have S; <. D(21) and hence there exists a 77 € f such that either
n€Sior (VpDm)pdSy).
Assume 73 € S;. Then there exists a 7 such that 79 € 7 C 7, and for somic
61 27,0, D7 and x,y1 # 2 € N we have
O Ik Fo((z, 1)) & 8s kg Fo({,y2)) & dom(m) = dom(d;) U dom(dy) &
(Vz € dom{m) \ dom(7))(m (x) ~ L).

Let ©(zx) ~ y. Then f = F.({x,y)). Hence therc exists a p O 7 such that
plFo F.((x,y)). Let y # y;. Define the partial finite part pg as follows:

(z) ~ Si(x), ifz € dom(dy),
S plz), if z € dom(p)\ dom(dy).

Then 79 C po. 61 C po and for all = € dom(p) if p(z) % L. then p(z) ~ po(x).
Hence pg ko Fe({z,y1)) and pg Ik Fo({z,4)). So, po € So. A contradiction.

Thus, if p O 7, then p & S1.

Let 7 = 1 UTg. Notice that 7 C f. We shall show that

wlr) >y <= (38D )0 ko Fo({z, y))).

The left to right implication is trivial. Assume that §; D 7. d; Iko F.((z,y1)),
w(x) ~ yo and y1 # y». Then there exists a §, D 7 such that 8y kg F.({x,y2)). Set

(2) = (@), if x € dom(r),
plr) = i, if € (dom(d;) U dom(é,)) \ dom(7).

Then p 2 7 and p € S,. A contradiction.
Thus v is partially forcing definable and hence d.(v) € CS(2). O
As we have already pointed out, not every structure has a degree, i.e. it is not
generally true that the set DS(2) has a least element. The next theorem shows that
if 2 has no degree, then for every countable subset B C DS(2A) of total enumeration
degrees there exists an element a of DS(2) such that (Vb € B)(b £ a).
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Definition 4.9. Let A be a set of enumeration degree. The subset B of A is
called base of A if for every element a of A there exists an element b € B such that
b < a.

We need the following lemma, which can be proved by a minor modification of
the proof of Selman’s Theorem presented in [16}:

Lemma 4.4. Let Q@ C N and let {B}neo be a sequence of sets of natural
numbers such that (Yn)(B, €. Q). Then there exists a total set F such that
Q <. F and (Yn)(Bn £ F).

Theorem 4.4. Let A be a set of enumeration degrees possessing 4 quasi-
minimal degree q. Suppose that there exists a countable base B of A consisting of
total degrees. Then A has a least element.

Proof. Towards a contradiction assume that for every b € B we have b £ q.
Let Q € qand {B, :n € w} be a sequence of sets such that B = {de(By) 11 €
w}. Clearly, for all n, By £, Q. Let F be a total set such that Q <, F and
(Vn)(Bn £ F). Set f = d.(F). Then f is in A and for every b € B we have b £ f.
A contradiction. So there exists a b € B such that b < q. Since b is a total degree,
b € co(A). Therefore b is the least element of A. O

Corollary 4.4. If DS{2) has o countable base of total enumeration degrees.
then DS(A) has a least element.

Now it is easy to construct an upwards closed set A of degrees, which does
not possess a quasi-minimal degree. Indeed, let a and b be two incomparable total
degrees. Let A = {c:c >aVe 2 b}. Then A has a countable base of total
degrees, but it has not a least element. So, A has no quasi-minimal degree.

Corollary 4.4 remains true if we consider the more restrictive definition of
DS(2), which takes into account only the bijective enumerations of 2. Let

DS(A) = {de(f71(2)) : f is a bijective enumeration of A}.
Corollary 4.5. Let DS(21) have a countable base B. Then DS(2A) has a least

element.

Proof. According Proposition 2.1, if DS(20) has a least element b, then b will
be the least element of DS(2). So, it is sufficient to show that DS(2) has a least
clement. We shall show that B is a base of DS(2). Indeed, consider an element a
of DS(). By Proposition 2.1, there exists a d € DS() such that d < a. Clearly,
there exists a b € B such that b <d <a. [J

Finally, we would like to point out the following application of the existence of
a quasi-minimal with respect to DS(2) degree.

Definition 4.10. The structure B is called quasi-minimal with respect to 2
if the following are true:

(i) DS(B) € DS(A);

(i) CS(A) # CS(B);
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(iti) If a is a total degree in CS(B), then a € CS(A).
Theorem 4.5. There exists o quasi-minimal with respect to U structure.

Proof. Let g be a quasi-minimal with respect to DS(21) degree. Consider a
subgroup G of the group of the rational numbers such that

DS(G) ={a:ais total and q < a}.

Now (i) is obvious, (ii) follows from the fact that q € CS(G), but q € CS(2),
and (iil) follows from the quasi-minimality of q. O
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GENERALIZED TURAN’S GRAPH THEOREM

NIKOLAY KHADZHIIVANOV, NEDYALKO NENOV

Let G be an n-vertex graph and there is a vertex of G which is contained in maximum
number of p-cliques, but is not contained in (s + 1)-clique, where 2 < p < min(s, n).
Then the number of p-cliques of G is less than the number of p-cliques in the n-vertex
S-partite Turdn’s graph Ts(n) or G = Ts(n).

Keywords: complete s-partite graph, Turdn’s graph

2000 MSC: 05C35

One of the fundamental results in graph theory is the theorem of P. Turdn,
proved in 1941, [5]. It generalizes a result of Mantel from 1906, [4], saying that if a
graph on n vertices has more than n”/4 edges, then this graph necessarily contains
a triangle.

Turdn’s theorem was significantly generalized by Zykov in 1949, [6]. This gen-
eralization, unlike Turdn’s theorem, is not so popular. In this article we present,
a method to prove Zykov’s theorem and its extension, used by us for solving
similar problems (see {1], [2] and [3]). Let us fix some notations. We consider
graphs G = (V| E), where V is the set of vertices and E C (‘2,) is the set of edges.
If {u,v} € E, we say that the vertices u and v are adjacent. We call a p-clique
of G a set of p vertices, cach two of which are adjacent. The number of p-cliques
of the graph G will be denoted by ¢,(G), and the number of p-cliques containing a
vertex v by ¢,(v).

Let Gy = (V1. Ey), G2 = (W2, Ey),...,G, = (V§, E;) be graphs such that
1int; =0, 1% j. We denote by Gy + G5 + -+ + G the graph G = (V, F) with

V=1uWhu---uUV, and E=FEUE,U --UEUE,
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where E' consists of all 2-element subsets {u,v}. u € Vi, v € Vj, i # j.

Consider a graph with n vertices. If each two of them are adjacent, we denote
this graph by K, and if no two are adjacent - by K,. The graph K., +- -+ k& .
will be denoted by K (ni,...,ns). Obviously, K(ni,...,n,) is a complete s-partite

noted by T(n) and is called s-partite n-vertex Turdn’s graph. Clearly, Ts(n) = K,
for s > n.

Turédn’s theorem. ([5]) Let s and n be positive integers and G be an n-vertex
graph without (s + 1)-cliques. Then

e2(G) < ez (Ts(n))
and c2(G) = ¢ (Ts(n)) only if G = Ts(n).

Zykov’s theorem. ([6]) Let p, s and n be positive integers and G be an
n-vertex graph without (s + 1)-cliques. Then:

(a) ¢p(G) < ep (Ts(n)):
(b) if cp(G) = ¢, (Ts(n)) and 2 < p < min(n,s), then G = T,(n).
A special case of Zykov’s theorem is the following

Lemma. Let p, s and n be positive integers and 2 < p < min(n,s). Then

for each s-tuple (n1,na,...,n,) of nonnegative integers n; such that ny +na+-- -+
ns = n. The equality is possible only if K(ny,na, ..., ns) = Ty(n).

Proof. Suppose that nq,na,...,n, are such that ¢, (K’(nl, No,. .. ,ns)> is max-

imal. Let also n; = max{ni,na,...,ns} and ny = min{n;, no,...,n,}.
For 2 < p < min(s,n) we have

CP<K(n1,7l2,...,TLs)> :Z{Tlil ...Tlip|1§ 1 <ig < - - <ip < S}
=nins M + (Tll —I—ng)N+P,

where M, N and P do not depend on n; and ns and A > 0. Hence
cp(K(nl —~1,n9 + 1,713,...,715)) - cp<K(n1,n2,...,ns)> =M(n; —ng —1).

The maximality of ¢, (K(nl,ng, e 7ns)> implies n; —n2 < 1. From this inequality
it follows K(ny,na,...,ns) = Ts(n).
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Proof of Zykov’s theorem. Let vy be a vertex of the graph G which is
contained in a maximum number of p-cliques, i. e. ¢p(v) < ¢p(vg) for each vertex v.
Denote by A the set of vertices v of G, v # vg, such that both v and vy are contained
in some p-clique of the graph G, and by B the set of the remaining vertices of G.
Let {A) be the subgraph of G generated by A (the vertex set of (4) is 4 and two
vertices are adjacent in (A4) if and only if they are adjacent in G).

Each p-clique of G is either entirely contained in 4 or has at least one vertex
in B. Hence

p(G) < cp((A)) + D eplv), (1)
veEB
with equality if and only if each p-clique of G has at most one vertex in B. Obvi-
ously, ¢,(vg) = ¢p—1({4)) for p > 2, and since ¢,(v) < ¢,(vo) for each vertex v,

ep(v) < ep_1((A4)) for each vertex vin B and p > 2. (2)
If k=4 and p > 2, it follows from (1) and (2) that
ep(G) < p({A)) + (n = k)ep—1 ((A)). (3)

Equality holds in (3) if and only if it holds in (1) and (2), that is, when there are
no p-cliques with more than one vertex in B, and cach vertex of B is adjacent to
the vertices of each (p — 1)-clique of (4). In the special case p = s = 2, equality
occurs in (3) if and only if G = K(k,n — k).

We prove the inequality (a) by induction on s. The base s = 1 is clear, since
in this case G = K ,.

For the inductive step, assume that s > 2. Suppose first that p = 1. Then
c1(G) = e1(Ts(n)) = n. Let p > 2. If ¢, (vo) = 0, then ¢, (G) = 0 and (a) is obvious.
Let ¢;(vg) > 0,1. e. A # 0. Note that (4) does not contain s-cliques, since G does
not contain (s 4+ 1)-cliques. Applying the inductive hypothesis for (A4}, we conclude
that if | 4] = &, then

ep({A)) < ep(Ts-1(k)), (4)
epm1((4)) € ot (Tyoa (k). (5)

It follows from (3) — (5) that
ep(G) < ep(To 1 (R)) + (1 = K)ep1 (Tyoa (k). (6)

Set T = K,,_ + T,_1(k). Clearly,
ep(D) = cp(To—1(R)) + (n = k)ep 1 (Ts-1(K)). (7)
The lemma, applied to the graph I, yields
cp(T) < ¢p(Ti(n)). (8)

The inequality (a) now follows from (6) — (8).
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Passing on to {(b), let G be a graph with n vertices without (s + 1)-cliques.
2 < p < min(s,n) and
C])(G) — C;)<Ts(n))' (9>

We prove the equality G = T,(n) by induction on s. Note first that the equality (9)
implies equalities in (3} — (6) and (8). By the assumption 2 < p < min(s.n), the
minimal admissible value of s is 2.

The base of the induction is then s = 2; in this casc p=2. Let & be a
graph with n vertices without 3-cliques satisfying (9) for p=2. Then therc is
equality in (3) and, as pointed out above, ¢ = K(k,n—k). In view of this,
eo(K{k,n —k)) = c2(Ts(n)). The lemma implies K (k,n — k) = T5(n) and so
G =Ts(n).

Assume now s > 3 and that (b) holds for graphs without s-cliques. We start
the inductive step by noting that k > p — 1. Indeed, it follows from p < min(n, s)
that c,(Ts(n)) > 0, and (9) implies ¢,(G) > 0. Thus cp(ve) = cp1((4)) > 0.
which clearly yields & =4 > p— 1.

Now we prove that

(4) =Ty (k). (10)

The cases p > 3 and p = 2 will be treated separately. Let p > 3. Then 2 <p—1.
Also, p— 1 <min(s — 1,k). By the inductive hypothesis the equality in (5) im-
plies (10). We are left with the case p=2. If £ > 2, then p=2 < min(s — 1, k).
So, by the inductive hypothesis. the equality in (4) implies (10). If £ =1. (10)
holds trivially, because (4) = T, (1) = K.

Based on (10), we prove that G = I'. It follows from p — 1 < min({s — 1. k) that
each vertex of Ts_; (k) is a vertex of a (p—1)-clique. Since there is equality in (3), we
conclude that ecach vertex of 4 is adjacent to each vertex of B. On the other hand,
B does not contain adjacent vertices. Otherwise, two such vertices, together with
(p—2)-clique of 4, would form a p-clique containing two vertices of B, contradicting
the fact that there is equality in (3). Tt follows from this argument and (10) that
G="r.

By the lemma the equality in (8) yields I' = T5(n), and so G = Ts(n).

The proof of Zykov’s theorem is complete. Instead of ¢,y (G) = 0 we have
used the weaker condition ¢g,q(vg) = 0. Hence, this proof, actually. establishes the
following stronger statement:

Theorem. Let p, s and n be positive integers and 2 < p < min(s,n). Let vy
be a vertex of an n-vertex graph G such that cp(vo) = max{c,(v)|v € G} and vg is
not contained in an (s + 1)-cligue. Then the inequality (a) and the statement (b)
of the theorem of Zykov hold.

In conclusion, let us note that a direct counting argument for the p-cliques
of Ts(n) gives
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wheren = ks +v,0<v <s.

[e]
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BOUNDS ON THE VERTEX FOLKMAN NUMBER F(4,4;5)

NEDYALKO DIMOV NENOV

For a graph G the symbol G — (4, 4) means that in every 2-coloring of the vertices of
(5 there exists a monochromatic K4. For the vertex Folkman number
F(4.4;3) = min{]V(G)| : G — (4,4) and K5 ¢ G}
we show that 16 < F'(4,4;5) < 35.
Keywords: Folkman numbers, Folkman graphs
2000 MSC: 05C55

1. NOTATION

We consider only finite, non-oriented graphs, without loops and multiple edges.
We call a p-clique of the graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted
by cl{G).

In this paper we shall use also the following notation:

V(G) — the vertex set of the graph G

E(G) — the edge set of the graph G;

G — the complement of G;

G[X], X CV(G) — the subgraph of G induced by X;

G - X, X C V(@) — the subgraph of G induced by V(G) \ X;

Ne(v), v € V(G) — the set of all vertices of G adjacent to v in G

K, — a complete graph on n vertices;

C, - a simple cycle on n vertices;
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a(G) — a vertex independence number of . ie. o(G) = (@),

Let G and G5 be two graphs without common vertices. We denote by Gy + G
the graph G for which V(G) = V(G1) UV(Gy) and E(G) = E(G1) U E(Gy) U E".
where B = {[z,y] : 2 € V(G1). y € V(Ga)}.

k
Let Gy, ..., G be graphs, V(Gi) NV(G;) = 0,1 # j. We denote b U

the graph G for which V(G) U V(Gy), E U E(G

The Ramsey number R(p q) is the smallest. natural number 7 such that for an
arbitrary n-vertex graph G either cl(G) 2 p or a(G) 2 ¢.

2. VERTEX FOLKMAN NUMBERS
Definition 2.1. Let G be a graph and p, ¢ be natural numbers. A 2-coloring
VIG)=11UVe, 11Nl =0

of the vertices of G is said to be (p, ¢)-free if V7 contains no p-cliques and 1% contains
no g-cliques of G. The symbol G — (p,q) means that every 2-coloring of 1'(G) is
not (p, q)-free.

Define

Flp,q;s) = min{[V(G)| : G = (p,g) and cl(G) < s}.

Clearly, G = (p,q) = cl(G) 2 max{p,q}. Folkman [1] has proved that there
exists a gxdph G such that G = (p,q) and cl(G) = max{p, q}. Therefore

F(p,q¢;s) exist <= s> max{p,q} (1)

and they are called vertex Folkman numbers.
Obviously, Kptq-1 — (p,q) and Kpiq—2 = (p,¢). Hence

F(p,¢;s)=p+q—1,ifs>p+qg—1 (2)

By (1), the numbers F(p,q;p + ¢ — 1) exist only if p+ ¢ — 1 2 max{p.q} + 1.
For these numbers the following result is known ([3]):

F(p.gtp+q—1) =p+q—1+max{p,q}. (3)
For the numbers F(p,p;p+ 1) in [4] it has been shown that
3p—2< Flp,pip+1) S 2pH(e- 1) -1 (4)
In {7] it has been proved that
Flp.pip+1) < lple] =2, p23. (3)

For multicoloring vertex Folkman numbers see [9].



3. MAIN RESULT

By (1). the numbers £(3.3:5) exist only if s 2 4. For these numbers it is

known that
5. il s 26, according to (2);

F(3.3;8) =<8, if s=25, according to (3): (6)
14, ifs=4.
The inequality F(3,3;4) € 14 is proved in [6] and the opposite incquality

F(3,3;4) 2 14 is verified by means of computer in [10].
By (1), the numbers F(4.4:s) exist only if s 2 5. It is known that

7, if s 2 8, according to (2);
F(4,4:5) = ¢ 11, if s =7, according to (3); (7)
14. if s =6.
The inequality F(4.4;6) < 14 is proved in [8] and the inequality F(4,4:6) > 14
is proved in [3]. By (4), we have 10 € F(4,4;5) £ 81. From (3) it follows that

F(4.4;5) £63.
Our main result is the following

Theorem. 16 < F(4.4:5) < 35.

4. PROOF OF THE INEQUALITY F(4.4;5) < 61

Let V(C7) = {v1.....v7} and E(C7) = {{vi,vipa], 7 = 1,...,6} U {{v1, 0]}
Consider the set V] = {va,v3, 14,07} C V(C7). Define V; = o'"1(V}), i =1,...,7.

where o(v;) = viy1, 7 =1,...,6, and o(v7) = v1. We denote by I' the extension of
C'7, constructed by adding the new vertices u,....,ur, each two of which are not
adjacent and such that Np(u;) =V, 7 =1,....7. The graph T'; (Fig. 1) is a copy
of T such that the map vy —= v, up — ui,, k=1,...,7,is an isomorphism between
I and T;.

Proposition 4.1. ([6]) [; — (3,3) and ci(T';) = 3.

Proposition 4.2. Let G be a graph such that G — (p,p). Let V1 U5 be a
(p+1,p+1)-free 2-coloring of the vertices of Ky + G, where V(K») = {u,v}. Then
v €V oru,v € 15,

Proof. Assume the opposite, i.e. © € 1] and v € V5. Then (Vi \w) U (Vo \ v) is
a {p.p)-frec coloring of V(). which is a contradiction. [

Let G be a graph. The graph K, + G, where V(I{;) = v, is given on Fig. 2.






Consider the graph P with 60 vertices shown in Fig. 3, where I'y, Ty, I'3, T'y
are given in Fig. 1. We denote by @ the extension of P, constructed by adding the
4

new vertex b such that No(b) = J V(L).
i=1

Proposition 4.3. Q — (4,4) and cl(Q) = 4.

Proof. Since cl(T;) = 3,7 = 1,2, 3,4 (Proposition 4.1}, we have cl{Q)) = 4.
Assume that Q - (4,4) and let V; U3 be a (4, 4)-free 2-coloring of V{(Q). Without
a loss of generality, we can assume that b € V7. Let W; = V(T';) U {a;.b}. Since
Q[Wi] = Ko+ 1T and T; — (3.3), by Proposition 4.2 we have a; € V1, i =1,2,3,4.
Thus V7 contains the 4-clique {a;, a2, as, a4}, which is a contradiction. 0

Since |V(@)| = 61, Proposition 4.3 implies that F'(4,4;5) < 61.

5. IDENTIFICATION OF NON-ADJACENT VERTICES

Definition 5.1. Let z, y be two non-adjacent vertices in graph G. Then
G/l. xy denote the graph G', obtained from G by identifying = and y into new
vertex x * y, that is, V(@) = V(G ~z—y)U{exy}, ' —zxy =G -z -y
and Ng'(z xy) = 1\6( U Ne(y). Let M = {xy xy1,...,2p—1 *yg—1} and M =
M U{zy *yr}, where z;,y; € V(G) and [z;,y:] ¢ E(G). Then Gy = Gl/xk Y
where G' = G/ypr.

Proposition 5.1. Let G — (p,q). Then G/_M = (p,q).

Proof. 1t is sufficient to prove that G; = G/x1 xy (p,q). Assume that
G1 -» (p,q) and let V(G,) = V1 UV; be a (p, q)-free 2-coloring. Without a lost of
generality we can assume that 71 xy; € V1. Let V/ = (Vi \ {z1 *»1}) U {z1.u1 }.
Then V) U V3 is a (p, ¢)-free 2-coloring of V(G), contradicting G — (p,q). O

Let G1 and G5 be isomorphic graphs without common vertices and let the map
V(G1) 5 V(G,) be an isomorphism. Then for zy, ..., 7y € V(G1) we define:

Nio=A{zrxp(xy), ....zixplz)}, i=1,..., k;
é-:GIUGZ/\'. i=1,...,k

Vi = V(G \ {zr, .oz}, Va=VI(Go)\ {o(z1),...,0lzi) )
G'=GVi UN, G = Gi[Va U Ny

Proposition 5.2. e = [z; * p(z;), z; * p(x;)] € E(Gy) <= [zi.25] € E(G)).
Proof. If i = j, Proposition 5.2 is obvious. Let i # j and j > i. Clearly,
[z:,2,] € E(G,) implies e € E(Gy). Let [z;,z;] ¢ E(G1). Then [p(z),¢(z;)] ¢
E(Gs). Hence, [z;,z, * p(2:)] ¢ E(Gy) and [p(z;), z: * p(w:)] & E(G;). Thus,
e g E(G;). From e ¢ E(G ;) it follows e & E(Gy). O
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Proposition 5.3. (a) The graphs G' and G" are isomorphic to the graph G:
(b) cl(Gr) = l(Gy).

Proof. Define the map = : 17/(G1) = V(G') as follows:
a(v)=v, fvel], and =w(z)) = *x¢(r), i=1.... Kk
Obviously, 7 is a bijection. By definition of G', we have
[u,v] € E(G"), u,v e V] < [u,v] € E(Gy), (8)
[u,z; x pla;)] € E(G"), we Vi < [u,z;] € E(G}). (9)
By Proposition 5.2,
[ o)y (o)) = [ria)] € B(Gh). (10)

From (8), (9) and (10) it follows that 7 is an isomorphism between Gy and (.
Similarly, it follows that G, and G" are isomorphic. Since Gy and G5 are also
isomorphic, Proposition 5.3 (a) follows. Thus, we have

(G = (G = cl{Gy) = cl(Ga). (11)
The proof of Proposition 5.3(b) starts by observing that
ACTV(G) or A CV(G") for any clique 4 of Gy. (12)

Assume the opposite. Then there exist w,v € A such that v € 17 and v € 15,
By definition of Gy, [u,v] ¢ E(Gy), which is a contradiction. From (12} it follows
that cl(Gy) = cl(G') or cl(Gy) = cl(G"). This, together with (11), implies that
cd(Gy) = cl{Gy).

6. LEMAIAS
4
Consider the graph L = J T, where the graphs T'; are given in Fig. 1. Define:
i=1
M| ={ulxui, i=1,...,7}, M ={v] =vi v3*0vd}, M, =M UM

My={ulxul, i=1,....7}, MY ={v}~vi vdxvi}, My=2 UMY,
My = {vy vl vl svl}, MY = {0l vl x0d}, M= A4 UM

' 2 2 oy 2, .4 2,
My ={vixvs, visvl}, M ={2svi olx0l}, My=21uMy;

4

M= U M;.

i=1
Lemma 6.1. The sets M!, M!".i =1, 2, 3, 4, are independent in graph L/y;.
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Proof. Observe that {u!,..., ut} is an independent set in I'y and {u3,... u2}

is an independent set in I's. Thus, A/{ is an independent set in L/y7. Similarly, it
follows that the other sets M. M!" are independent in L/37. O

Lemma 6.2. cl (L/A,\[> =3.
Proof. Define

L'=TyuUls, L"=T3uUTs, Li=Lhy g,

Obviously,
I 1"
Ly=L vl (13)
Live=Lipr, U ag, (14)

Define the map V(I'1) 5 1(T'y) as follows:

2 2
POl ug

v i

Clearly. ¢ is an isomorphism between I'y and T's. Since M| = {u! % p(u}), i =
1...., 7} and My = {v] * p(e]), v} * o(vd)}, from Proposition 4.1 and Proposi-
tion 5.3(b) it follows that

ol (Ear,) = 3. (15)

Define the map V' (LI/M]) 57 <L'//g\,[2> as follows:

1 %3 2 ¥4 - -.

v vy, v =y, =230, T

1 2 ¥ 3 4 1,.2 % 3 4,

Uy R U] U] kU, Uy * VY > U4y ok Uy
2 ¥ ;

whru? St sud, =17

Obviously, ¢ is an isomorphism between LI/M1 and L”/A,[Q. Since
My ={vi =v(x]), i=3,...,6} and M;={v}x¢(]), i=3,...,6}

from (13) and Proposition 5.3(b) it follows that
7
cl (LI/M3 U M4> =l (L /Ml> : (16)

By (14) - (16), we have cl <L/ﬂ,[> = 3.
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7. PROOF OF THE THEOREM

1) Proof of the inequality F(4,4:5) 2 16. Let G be » graph such that G — (4. 4)
and cl(G) < 5, i.e. cl(G) = 4. We need to prove that ;V(G)| 2 16. Observe that
[V(G)} 2 F(4.4;6). Since F(4,4;6) = 14, [5], we have [V(G)] 2 14. From cl(G) = 4
and R(5,3) = 14, [2], it follows that a(G) 2 3. Let {v1.v2.v3} be an independent
set in G. Then G' = G — {v1, v, vz} — (3,4) and cl(G’) = 4. By F(3.4:5) = 13,
[8], we have [V(G")] 2 13. Hence, |V(G)| 2 16.

IT) Proof of the inequality F(4,4;3) £ 35. Consider the graph R = Q/;\,[, where
the graph @ is defined in Section 4 and the set 3/ is given in Section 6. Let
Ry = R—{a1,as,a3,a4}. Observe that

Ry = K, + Ly, where V(K;) = {b} and (17)
Ly is defined in Section 6.

By Proposition 4.3 and Proposition 5.1, we have R — {(4,4}. We prove that
cl{R) = 4. Assume that cl(R) 2 5 and let 4 C V(R) be a 3-clique of B. By
Lemma 6.2, cl (L/M/) = 3. Since Ny(b) =V (L/M>, this implies that b ¢ 4. From

(17), ol (L) = 3 and b ¢ A it follows that [1'(R1) N 4] £ 3. Hence,
AN {a1,as,a3,a4} 2 2. (18)
Observe that
Ngla1) N Ng(ay) = My U {az,as} = (M] U {as}) U (M U {as}). (19)

By Lemma 6.1, M; and M} are independent sets. Since M| N Ng(as) = 0 and
M{'NNg(ays) = 0, the sets M{U{as} and M{'"U{a4} are also independent sets. Hence
M;U{a3, a4} contains no 3-cliques. Thus, (19) implies that {a1,a>} € 4. Similarly.
it follows that {a;,a;} € A, Vi # j. This contradicts (18) and proves cl(R) = 4.
So, R — (4,4) and cl(R) = 4. Since |V(G)| = 35, we have F(4,4:3) < 35. O
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LOWER BOUNDS FOR SOME RAMSEY NUMBERS

NEDYALKO DIMOV NENOV

For the Ramsey number R(p1,...,pr}, 7 > 2. we prove that
R(plv,"",p7"> > (R(p]7p5) - 1) (R(p5+17"'3p7‘) - 1)7
s € {1,...,r—1}. This inequality generalizes a result obtained by Robertson (Theorem

1) and improves the lower bounds for some Ramsey numbers.

Keywords: Ramsey numbers

2000 MSC : 05D10

Let p; > 2,1 =1,...,r, be integers. An r-edge coloring x = {1,...,r} of the
complete graph of n vertices K,,, which does not contain a monochromatic K, in
color i for all ¢ € {1....,r}, is called a (py,...,p,)-free r-coloring. The Ramsey
number R(p;,...,pr} is the smallest integer n such that any r-edge coloring of K,
is not (p1,.... py)-free.

Robertson has proved in [4] the following theorem:

Theorem 1. Let r > 3. Foranyp; > 3,1 =1,...,r, we have

R(pr.....pr) > ((m = VR(p2,...,pr) — 1).

In the present note we shall prove the following stronger result:

Theorem 2. Letp; > 2, { = 1,...,r, be integers and r > 2. Then for any

R(py.....pr) > (R(Plv---,Ps) - 1)(R(Ps+1,-~»;0r) - 1)'
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Since R(p1) = p1, Theorem 2 is a generalization of Theorem 1.

Proof. Put t = R(p1,...,ps) — 1, 1 = R(pst1,....pr) — 1L and m = ¢, Let
V(I{,,) be the set of vertices of K, and let V(K ,,) = Ui‘:1 Vi. where |V;| = ¢.
Consider a (p, . . ., ps)-free edge coloring x1 = {1,...,s} of Ky and a (pst1,...,p,)-
free edge coloring x2 = {s + 1,...,r} of K;. Let V(K}) = {z1,...,z}. Define the
r-edge coloring x = {1,..., r} of K,, as follows:

1. x(u,v) = x1(u,v), ifu,v € V; for some i € {1,...,1};
2. x(u,v) = xo2(2, 25), fue Vi, v eV, i £ .

We need to show that x = {1,...,7} is (p1,...,p.)-free. Let K, < K,,. Two
cases must be considered:
Case 1. i € {1,...,s}. If V(K,,) C V; for some j € {1...., [}, then K,

is not monochromatic of color ¢ by the definition of x;. Otherwise, there exist
v/, v € V(K,,) such that v € Vj, v € Vi, j # k. Then x(v',v") > s +1 and
hence K, is not monochromatic of color ¢.

Case2. 1 € {s+1,...,r}. If there exist v',v" € V(K,,) such that v/,v" € V] for
some j € {1,...,{}, then x(v',v") < s. Hence K, is not monochromatic of color i.
Otherwise, |V (K,,)NV;| < 1,j € {1,...,1}. Wemay assume that [V (K, )NV;| =1
for all j € {1,....pi}. Let V(K,)NV; = v, j € {1,...,p;}. Then V(K,,) =
{vi,... v, }. By the definition of x», there exist zi,2, € {z1,...,2p, } such that

x2(zk, 24} # 1. Then x(ve.vy) = x2(2k, 24) # 1. Thus K, is not monochromatic of
color i. This proves Theorem 2.

Some ezxamples. The lower bounds for some Ramsey numbers given in [2]
have been improved by Robertson in [4]. In particular, Robertson has proved that
R(4,4,4,4,4) > 1372, R(5,5,5,5,5) > 7329, R(6,6,6,6) > 5346, R(7,7.7,7) >
19261.

Theorem 2 (s = 2) implies the following more precise bounds: R{4,4.4.4.4) >
2160, R(5,5,5,5,5) > 16129, R(6,6,6,6) > 10202, R(7.7.7,7) > 41617.

Remark 1. This note has been submitted for publication in Flectronic Journal
of Combinatorics. The editor-in-chief informed us that it is impossible for such a
paper to be published, since the main result (Theorem 2) is announced in [1].
According to [3], this announce is in Chinese and has no proof. Since [4] contains
a detailed proof of the special case s = 1, we find it appropriate to present a proof
of the general case.

Remark 2. Still better bounds for the Ramsey numbers than the ones given
above are announced in [3].
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Given any Boolean function, there is an upper bound of its depths with respect to
arbitrary complete sets of such functions. We prove the algorithmic computability of
the largest of these depths.

Keywords: Boolean function, complete set, Post theorem, maximal depth, algorithmic
computability
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1. INTRODUCTION

The depths of the Boolean functions are sometimes used for measuring their
complexity (especially in the case when parallel computations are considered). Ac-
tually, there arc at least two variants of the notion of depth. The difference comes
from the presence or absence of the possibility to use 0’s and 1’s “for frec” in the
computations. The first of these options is chosen for example in [1]. The notion
of depth is defined there in Section 1.3 through a corresponding notion of Boolean
circuit, and Section 1.4 shows that an approach through Boolean formulas would
vield the same values of the depths. The other variant of the notion, also current
in the literature, can be defined in a quite similar way, but without the possibility
to use the constants 0 and 1 as predecessors of the gates of the considered circuits.

The gates of each Boolean circuit have as their types Boolean functions be-
longing to some given set, which usually is chosen to be complete.! Therefore the

'In fact, the notion of completeness also splits into two ones - the weaker notion corresponds
to possible using of 0’s and 1's “for free”, whereas the stronger one corresponds to the case when
there is no such possibility.
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depth of a function f depends not only on f, but also on the choice of this set
of functions. When we compare the depths of two Boolean functions. the result
may also depend on the choice in question. For example, the implication has a
smaller depth than the equivalence with respect to the set consisting of negation
and conjunction, but the situation is the opposite with respect to the set, whose
elements are the constant 1, addition modulo 2 and conjunction (of course, if the
constants can be used “for free”, the constant 1 may be omitted from the second
of these sets). To get a complexity measure depending only on the function f, we
shall look for the depth of f in the worst case, i.e. in the case when the depth is
maximally large.

2. SOME DEFINITIONS

To avoid reasoning about Boolean circuits or Boolean formulas, we shall define
the notion of depth (and also of completeness) in another equivalent way. Suppose
0 is a set of Boolean functions?. We define infinite sequences Q0 Q1 Q)

and QP Q0 Q) of sets of Boolean functions as follows:

e Q9 is the set of all Boolean functions of the form
glry, . o) =2, n=1,2,3,.... k=1,2..... n

(the projection functions), whereas 01 consists of these functions and also
all constant Boolean functions;

e QU1 is obtained by adding to Q") all functions of the form

with f belonging to Q and g1, .. ., g belonging to Q) and Q'+ is obtained
similarly, but with a replacement of Q") by QU

We shall call the set § strongly complete if each Boolean function belongs to
Q) for some non-negative integer r. The set Q will be called weakly complete
if each Boolean function belongs to Q! for some non-negative integer r. Since
Q) Qb for all @ and r, any strongly complete set is also weakly complete.

Let h be a Boolean function. If € is a strongly complete set of Boolean func-
tions, then the smallest r such that A € Q) will be called the strong depth of h
with respect to (1, and it will be denoted by *Dq(h). Similarly, if 1 is a weakly
complete set of Boolean functions, then the smallest ~ such that & € QU will be
called the weak depth of h with respect to €, and it will be denoted by “Dq(h). We
not;& that[ ]SDQ(h) > YDq(h) for any strongly complete set £ {due to the inclusion
Qi c ol

2We shall consider Boolean functions only of a non-zero number of arguments. In particular,
the constants will be regarded as such ones too.
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There is an easy reduction of the notions of weak completeness and weak depth
to the notions of strong completeness and strong depth, respectively.

Lemma 2.1. Let Q be a set of Boolean functions, and let Q' consist of the
one-argument constants 0 and 1 and of all Boolean functions (including the ones
from Q) that have the form

AT AT '--/\In-f(COls--~7C0ko:Ilzclla-~-:CLA';sl'?a-~--,1'nacnlv---7cnkn)

with f in Q and ¢i; in {0,1}. Then Q= Q') forr=1,2,3,...
Proof. By induction on r [J.

Corollary 2.1. Let Q) be a set of Boolean functions, and let Q' be defined as
in Lemma 2.1. Then Q is weakly complete iff Q' is strongly complete, and in such

a case the equality
“Da(h) = *Da/(h) (2.1)

holds for any mon-constant Boolean function h.

Of course, the equality (2.1) does not hold for constant functions, since they
have weak depth 0 with respect to any weakly complete set {2, whereas their strong
depths with respect to the corresponding set ' will be equal to 1.

By a well-known theorem of Emil Post, the strongly complete scts of Boolean
functions can be characterized as follows: a set € of Boolean functions is strongly
complete iff there are in ) at least one function not preserving 0, at least one
function not preserving 1, at least one function that is not self-dual, at least one
function that is not monotonically increasing and at least one non-linear function.
Hence, by Corollary 2.1, a set Q2 of Boolean functions is weakly complete iff there
are in ) at least one function that is not monotonically increasing and at least one
non-linear function.

Remark 2.1. Whenever a finite strongly complete set Q of Boolean functions
and a positive integer n are given, one can consecutively find lists of all n-argument
functions in the sets Q") for r = 0,1,2, ... This can be done thanks to the fact that
only n-argument functions from Q') are used for the generation of the n-argument
functions in Q1. To find *Dq(h) for a given n-argument Boolean function A, it
is sufficient to carry out this process until one reaches for the first time a set Q")
containing h as an element. The weak depth of an n-argument Boolean function
with respect to a finite weakly complete set of Boolean functions can be found in a
similar way.

Although the number *Dg(h) depends both on the function h and on the set
Q, this number remains bounded for any fixed h. In fact, the inequality

Da(h) < 2% (2.2)
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holds for any strongly complete set Q of Boolean functions and any n-argument
Boolean function h. To see this. suppose € is a strongly complete set of Boolean
functions and n is a positive integer. Since there are only 22" p-argument Boolean
functions, 2% contains at least one of them, and Q™ is a subset of Q" *Y for any
natural number r, it is clear that QU1 \ QU7 contains no n-argument Boolean
function for some r less than 22", Obviously, all n-argument Boolean functions will
belong to Q) for such an 7.3

The fact we just indicated allows us to give the following definition: for any
Boolean function h, the largest of the numbers *Dq(h), where © ranges over all
strongly complete sets of Boolean functions, will be called the mazimal strong depth
of h and will be denoted by *D(h).

A quite similar reasoning shows that also *Dgq(h) remains bounded for any
fixed Boolean function h when 2 ranges over all weakly complete sets of Boolean
functions. For any Boolean function h. the largest of the corresponding numbers
“De(h) will be called the marimal weak depth of h and will be denoted by “D(h).

Example 2.1. The maximal strong depth of the negation function is equal
to 2. In fact, let h = Ax.Z. If Q is an arbitrary set of Boolean functions, then Az.z
is the only one-argument function in Q(°). Suppose Q consists of the constant 1,
addition modulo 2 and conjunction. Then Q is strongly complete, and the only
one-argument functions in Q1 \ Q% are the two constants, hence *Dq(h) > 2. It
remains to prove that h has a strong depth not greater than 2 with respect to any
strongly complete set of Boolean functions. To prove this, suppose that € is an
arbitrary strongly complete set of Boolean functions. By the Post Theorem. there
are functions fg and f1 in Q such that fo(0....,0) =1 and fi(1,..., 1) = 0. The

one-argument functions o
ho = Az folz,...,2), hi= Az fil(z,...,2)

belong to Q). Either some of them coincides with A or these functions are the two
constants. In the first case h belongs to 27, hence *Dq(h) = 1. In the second one
we may consider some function f in € that is not monotonically increasing (such
a function exists again by the Post Theorem). Then & can be obtained from f by
substitution of constants for all its arguments except for one of them. Therefore h
belongs to Q)| hence *Dq(h) < 2.

Example 2.2. The maximal weak depth of the negation function is 1. Indeed,
let i be again this function, and Q be an arbitrary weakly complete set of Boolean
functions. Of course, h does not belong to Q). Since there is a function in Q that
is not monotonically increasing, and h can be obtained from it by substitution of

3The set Q(0) contains in fact n different n-argument Boolean functions, therefore the above
reasoning actually proves the incquality *Dq(h) < 22" — n, which is stronger than (2.2} for
n > L. This small strengthening, however, is quite immaterial, since, as Todor Tsankov noticed,
the upper bound 22" can be replaced by another one which has a much lower order of magnitude.
(His reasoning makes use of the disjunctive normal form representation of the Boolean functions.)
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constants for all arguments but one, h belongs to Q'!. Thus the negation function
has a weak depth 1 with respect to any weakly complete set of Boolean functions.

Remark 2.2. It can be shown that *D(h) > “D(h) for any Boolean function h.
In fact. if we choose a weakly complete set € such that "Dq (k) = “D(h) and define
the set Q' as in Lemma 2.1, then Q' will be strongly complete and we shall have
the inequalities *D(h) > *Dq:(h) > *D(h).

The definitions of maximal strong depth and maximal weak depth of a func-
tion do not provide us with algorithms for computing these depths, because there
are infinitely many strongly complete and infinitely many weakly complete sets of
Boolean functions. The existence of such algorithms will be shown in the rest of
the paper.

3. ALGORITHMIC COMPUTABILITY
OF THE MAXIMAL WEAK DEPTH

We start with the case of the weak depths, because its treatment is much casier,
and we have a result in a more finished state for this case.
We shall use the following six weakly complete sets of Boolean functions:

Q= { A7, Azy.ay b,
O = {AeT, AzyaVyl,
Q3 = {Awyr—oyt,

Q = {Azyay}

Q= {AzyaVyl,

Qg

Il

{ ey =7}

Lemma 3.1. For any weakly complete set Q1 of Boolean functions some of the
sets 01, . Q3. Q4. 05, N6 is a subset of the set QL.

Proof. Let 2 be a weakly complete set of Boolean functions. Some nou-lincar
function f surely belongs to 1, and a two-argument non-linear function g can be
obtained from f by substitution of constants for all its arguments except for two
of them. The function g will belong to the set Q! and will have the form

glz.y) =zycar 2 by Sc,

where @, b, ¢ belong to {0, 1}, and “@" denotes addition modulo 2. Without a loss
of generality we may assume that a > b. If a = ¢ = 0, then ¢(z,y) = zy, and from
here. taking into account also Example 2.2, we see that 2, C QM. Ifa=0, c=1,
then g(x,y) = 7, hence Q; C QM. Ifa =1, b =¢ =0, then g(z,y) = T=F and
therefore Qg C QM. Ifa =1, b=0, ¢ =1, then g(z,y) = x =y, hence Q5 C QI
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fa=b=1, c=0, then g(z,y) = xVy, hence Q, C QU Finally, ifa =b=c=1.
then g(x,y) = Z Vy, therefore Q5 C QI .

Lemma 3.2. Let Q be a set of Boolean functions, and let Q' be any subset of
the set Q. Then U1 C QI forr=0,1,2,...

Proof. Induction on r (J.

Corollary 3.1. Let Q and Q' be weakly complete sets of Boolean functions.
and let Q' C Q. Then “Dq:(h) > “Dq(h) for any Boolean function h.

Theorem 3.1. For any Boolean function h we have the equality
YD(h) = max{"“Dq, (h),“Da,(h), “Da,{(h),“Da,(h), “Da,(h),“Das(h)}. (3.1)

Proof. Let h be an arbitrary Boolean function, and let d be the right-hand
side of (3.1). If Q is any weakly complete set of Boolean functions, then, by
Lemma 3.1 and Corollary 3.1, the inequality “Dgq, (h) > “Dgq(h) holds for some
i € {1,2,3,4,5,6}, hence d > “Dq(h). On the other hand, by the choice of d,
there is a weakly complete set © (some of the sets 2y, 2, Q3, 4, 25, Qg) such that
d="Dq(h) 0.

Since, by Remark 2.1, the right-hand side of the equality (3.1) is algorithmically
computable, the above theorem shows the algorithmic computability of the maximal
weak depth.

4. ALGORITHMIC COMPUTABILITY
OF THE MAXIMAL STRONG DEPTH

The algorithmic computability of the maximal strong depth will be shown by
means of an equality similar to (3.1), namely a finite class Q@ of finite strongly
complete sets of Boolean functions will be indicated such that

*D(h) = max{°Dq(h)|Q € O} (4.1)
for any Boolean function h. We shall call any such class O representative for *D.
Before we actually indicate a class that is representative for °D, we shall give

the easily provable analogs of Lemma 3.2 and Corollary 3.1 that will be used now.

Lemma 4.1. Let Q be a set of Boolean functions, and let Q' be any subset of
the set Q. Then Q7 C Q) forr =0,1,2, ...

Proof. Induction on 7 .

Corollary 4.1. Let Q and Q' be strongly complete sets of Boolean functions.
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and let Q' C Q1) Then D/ (h) > *Dq(h) for any Boolean function h.

To show that a finite class of finite strongly complete sets is representative
for °D, it would be sufficient to ascertain that this class has a property analogous
to the property stated in Lemma 3.1.

Lemma 4.2. Let © be a finite class of finite strongly complete sets of Boolean
functions, and let for any strongly complete set ) of Boolean functions there be
some subset of QY belonging to Q. Then Q is representative for *D.

Proof. We reason as in the proof of Theorem 3.1. Let A be an arbitrary Boolean
function, and let d be the right-hand side of (4.1). If Q is any strongly complete set
of Boolean functions, then, by the assumption of the lemma and by Corollary 4.1,
the inequality *Dq. (h) > *Dq(h) holds for some Q' € Q, hence d > *Dq(h). On the
other hand, by the choice of d, there is a strongly complete set © (some of the sets
belonging to ©) such that d = *Dq(h) O.

Having in mind the above lemma, we shall aim at indicating a class @ that
satisfies the assumption of the lemma.

For any m-argument Boolean function f, any positive integer n and any se-
quence ki, k. ..., ky of numbers from the set {1,2,...,n}, the n-argument Boolean
function g defined by

9(371-,172,~~-~117n) :f('rklvxkz-,“'a'r/\‘m)

will be called a projection instance of f (an n-ary projection instance of f). Clearly,
the relation of being a projection instance is reflexive and transitive. Obviously,
each Boolean function has exactly one unary projection instance. We note also
that, for any set Q of Boolean functions, the set Q) consists of all projection
functions and all projection instances of functions of Q.

As usually, Ty, 77, S, M and L will denote, respectively, the class of all Boolean
functions preserving 0. the class of all Boolean functions preserving 1, the class of
all self-dual Boolean functions, the class of all monotonically increasing ones and
the class of all linear ones. We define finite sets Tp', 731, ST, Mt and LT of Boolean
functions as follows:

o Ti1 is the set of the one-argument Boolean functions not belonging to T} (for
i=0,1);

e ST is the set of the symmetric two-argument Boolean functions;

o AT is the set of the three-argument Boolean functions ¢ satisfying the con
ditions ¢(0,0,1) = 1 and ¢(1,0,1) = 0;



o LT consists of all two-arguments functions not belonging to L and all three-
argument functions ¢ of the form

glr.y. 2y =rySyz ez =ar by S es=d
with coefficients a,b,c.d in {0,1}.

Obviously, C and C! have an empty intersection for C = Ty, Ty, S, M, L.
The existence of a class satisfying the assumption of Lemma 4.2 will follow
from the next four lemmas.

Lemma 4.3. Let C be the class Ty or the class T1, and f be a Boolean function
not belonging to C. Then the unary projection instance of f belongs to CT.

Proof. Obvious .

Lemma 4.4. Fach Boolean function not belonging to the class S has a pro-
jection instance belonging to ST.

Proof. Let f be an m-argument function not belonging to S. Then there are
ay,as, ..., a, in {0,1} such that

flar,ay, .. ..an) = flar,az,....a@n).
We define the function g by the equality
g(l‘lslﬁ) = f(‘T'Iq s Lhos s s Ty, )e

where
ki=a;+1,1=1,2,...,m.

Then g is a projection instance of f and the equalities
g(O’ 1) - f(al',ag'/' . "a771)7 g(]"/o) - f(a!@'," : '/m)

hold, hence g(0,1) = ¢(1,0) 0.

Lemma 4.5. Fach Boolean function not belonging to the class M has a pro-
jection instance belonging to MT.

Proof. Let f be an m-argument function not belonging to Al. Then there are
some j in {1,2,...,m} and some ai,...,aj-1,8j41,...,ay in {0,1} such that

f(al,...,aj_l,O,aJ-H,...,am) = 1, f(al,...,aj_l,l,aj+1,...,(z,71) =0.

We define the function ¢ by the equality

.q(ll’l,.l'g,373> = f(‘rkmwkza o Tx}\'rn)’
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where

oL =]
v (11‘—{—2, 1f1€{1,~]_1,.7+1‘7n}

Then g is a projection instance of f and the equalities

hold 7.

Lemma 4.6. Fach Boolean function not belonging to the class L has a pro-
jection instance belonging to L1,

Proof. To prove the statement of the lemma, it is sufficient to show, for any
integer m greater than 2, that each non-linear m-argument Boolean function not
belonging to LT has a non-linear (m — 1)-argument projection instance.

Let f be a non-linear m-argument Boolean function not belonging to LT, In
the case when m = 3, we may reason as follows. The representation of the function
f as a Zhegalkin polynomial has the form

flz,y,2) = aryz & biyz D bz D by S 12 & oy © 32 & d,

where a, by, b, b3, 1, 2, c3, d are fixed elements of the set {0, 1}, at least one of the
numbers «a, by. bo, b3 is not zero, and if by = by = by = 1, then also a = 1. For all
2,y. 7 in {0,1} we have

[z y.y) = (a= b S bg)ay & c 2
fle,y.x) = (a@ b &by)zy e (b Doy Be3)x @ cay S d,
( )

flz,z,z) =(ac b &b)ez & (bs B ep B e Degz D d.

If we suppose that all two-argument projection instances of f are linear, then we
shall have the equalities

adbsby=a8b&bs=adb Sby =0,

but they imply the equalities a = 0, b; = b, = b3, and this leads to a contradiction,
since some of the numbers a. by, b5, b3 is not zero. Now suppose that m > 3. We
again represent f(xi,x2,...,Zn,) as a non-linear Zhegalkin polynomial. We shall
show that its non-linearity will be preserved if we do an appropriate replacement
of one of the variables zi,xs,...,z,, by another of them. Clearly, the new non-
linear polynomial obtained in this way can be used for the definition of a non-linear
(m — 1)-argument projection instance of f.

Case 1. The Zhegalkin polynomial representing f(x1,za,...,Zm) contains such
a non-linear term T that some two distinct variables x; and z; are missing in T.
Then the replacement of z; by z; will leave the term T unchanged, and all other
terms of the polynomial will go into terms distinct from 7' - they will remain
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unchanged or will go into terms containing z; (depending on the absence or the
presence of z; in them). Therefore the polynomial in question will go again into a
non-linear Zhegalkin polvnomial.

Case 2. For any non-linear term in the Zhegalkin polynomial representing

term. The case splits into two subcases.

Subcase 2.1. There is a term T in the polynomial such that exactly one of the
variables T1,%2,...,Ty is missing in T. Let x; and z; be two distinct variables
occurring in T'. Then the replacement of z; by z; transforms T into a non-linear
term T with two missing variables, namely z; and the variable missing in 7. It is
easily seen that all other terms of the polynomial (if any) will be transformed into
terms distinct from 7. In fact, 7' could arise only from some term with exactly
one missing variable, and that term should not contain the variable missing in 7.
Hence the polynomial goes again into a non-linear one.

Subcase 2.2. The term T1z2 ...x.y is present in the polynomial, and no other
non-linear term is present in it. In this subcase any replacement of some of the
variables z1,xs,...,z,, by another of them will transform the polynomial again
into a non-linear one [J.

Let us define now a class O as follows: O has as its elements all sets {A\2.T, g. h},
where g € ST, h € LT, and all sets {)\x.0, \x.1, 9, h}, where g € Mt he L. Clearly,
O 1s a finite class of finite sets of Boolean functions, and, by the Post thcorem. all
these sets are strongly complete.

Lemma 4.7. For any strongly complete set ) of Boolean functions there is
some subset of Q) belonging to Q.

Proof. Let Q be an arbitrary strongly complete set of Boolean functions. By the
Post theorem and the preceding four lemmas, there are functions go, g1. g2, g3. 94
such that each of them is a projection instance of some function from (), hence
belongs to Q1 and the conditions go € To%, g1 € T, 90 € St g5 € M¥, gy € LT
are satisfled. If some of the functions gy and g; is the negation function, then
{A2.T, 92,94} is a subset of Q) belonging to ©. Otherwise, {Az.0,Az.1,g3. g4} is
such a subset. (J.

Theorem 4.1. The class O is representative for °D.

Proof. By the above lemma and Lemma 4.2 [J.

Of course, the algorithmic computability of the strong depth is shown by the
above theorem in a fully unpractical way, since the class © we defined is very large.

The result can be considerably improved, but this will be probably done in a further
publication.
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1. INTRODUCTION

A group G is said to be (2.3)-generated if G = (z,y) for some elements x
and y of orders 2 and 3, respectively. So far, (2,3)-generation has been proved for
a number of series of finite simple groups, for example A,, n # 6, 7, 8 (see [2]),
PSL.(q), ¢ # 9 (3], PSLs(q), ¢ # 4 (see [1]), and PSL4(q), ¢ odd [5]. In a note added
in proof to [5]. the authors mention that they have recently proved (2,3)-generation
for PSL,(g) also in the case of even ¢ > 2. As we have not been able to find a proof
in the literature and as our approach seems to be quite different from that of the
authors of [3], here we give a short proof of this fact. Thus we prove the following

Theorem. The group PSLy(2™) is (2,3)-generated for any m > 1.

2. PROOF OF THE THEOREM

Let G = SLy(q) = PSL4(q), where ¢ = 2™. It is well-known that the group
PSL4(2) = As is not (2,3)-generated, so we assume m > 1 in what follows.
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The group G acts naturally on a four-dimensional vector space 17 over the field
GF(q) with a fixed basis e;, €2, €3, es. Let w be a generator of the group GF(¢*)*
and a = w+ w? + W, § = Wit 4 ete® § @y = G107 Then o) 3.
v € GF(q) and ~ has order ¢ — 1 in the group GF(g)*. in particular - # 1 as ¢ > 2.
The polvnomial

FO = (F+w){t + 2Dt +wT) =1 + ot + 3t + -

is irreducible over GF(q).
Now, the matrices

0 av b 1 38 1 0 0 0
0 0 0 v 000 1
=11 8y 0 «a and =14 1 g g
0 ~1 00 00 1 0

arc elements of G of orders 2 and 3, respectively. Let

01 8 ay!

P 0 0 «~ 0
h 1 0 a 3vy7!
00 0 At

The characteristic polynomial of z is (¢ + ~7')f(#) and the characteristic roots
v w, wi w? of z are pairwise distinct. Then. in GLy(¢%), # is conjugate to
diag (v '.w.w’ w? ) and hence z is an element of G of order ¢* — 1.

Denote H = (z,y), H <G.
Lemma 2.1. The group H acts irreducibly on the space V.

Proof. Assume that 117 is a non-trivial H-invariant subspace of 17, Let first
dim™ =1 and W = (w), w # 0. Then z(w) = w, which vields w = pe; +ves +
(L4~ o+ ,B)V)eg + v tvey, pov € GF(q), p # 0 or v £ 0. Now y(w) = lw,
A € GF(g), A* = 1, which produces consecutively v # 0, A = ~~! # 1. whence
¥ 4+v4+1 =0, = 0,and a+8 = v%. Thisyields f(1) = l+a+8+v = v +~v+1 =0,
an impossibility as f(¢) is irreducible over GF{q).

Let dim 1" = 2. Then the characteristic polynomial of 2|, has degree two and
must divide the polynomial (t + ~~1)f(t), again contradicting the irreducibility of
7).

Lastly, let dim W = 3. The subspace U = (e1,€q,e3) of 17 is {z)-invariant.
Suppose that W # U. Then UNW is a 2-dimensional (z)-invariant subspace of
V", which (as shown above) is impossible. Thus W = U/, but obviously U is not
(x)-invariant, a contradiction. The lemma is proved. O

Lemma 2.2. Let M be a mazimal subgroup of G having an element of order
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q> — 1. Then M is the stabilizer of a subspace W of V with dim W =1 or 3.

Proof. Suppose false. Then the list of maximal subgroups of G [4] implies that
one of the following holds:

1M =¢%(g~1)(g + 1)

2) |M | =24(qg - 1)} if g > 4.

3) M| = 2% (g = 1)% (g + 1)%.

4) M| =2¢°(g - 1)(g+ 1)*(¢* +1).

5) M = SL4(qo) if ¢ = ¢ and r is a prime,

M| = qf(go — 1)%(go + 1)(gf + 1)(g5 + 0 + 1).

6) M = Spy(q). |M|=q"(g—1)*(¢ + 1)*(¢* +1).

7) M = SUs(qo) if ¢ = 5. | M| = q§(q0 — 1)*(g0 + 1)* (g5 + 1)(g5 — g0 + 1).
As ¢® — 1 divides [M] and as (¢* +¢+1.2(g+1)(¢°+ 1)) = 1, in cases 1), 2), 3), 4),
6) it follows that ¢ 4-¢+ 1 divides (¢—1)2, 3(g—1)°. (¢ —1)%, 1, ¢ — 1, respectively.
This is easily seen to be impossible. Similarly, in case 7) it follows that ¢3 + go + 1
divides go—1. In case 5), if r > 2. then (¢°—1,2(go+1)(¢3+1)) = 1 and hence ¢° -1
divides (qo —1)%(gZ +qo +1). This is impossible as (go — 1)*(g§ +qo + 1) < ¢§f —1 <
g3" —1=¢°—1. Lastly, in case 5) and r = 2, as (¢Z —go+1,2(qo — 1){(g§ + 1)) = 1,
it follows that g — o + 1 divides go + 1, which yields go = 2 and ¢ = 4. However,
then M 22 S1.4(2) = Ag has no element of order 43 — 1 = 63, a contradiction. The
lemma is proved. {J

We can now complete the proof of the theorem. Assume that H # G. Let M
be a maximal subgroup of G containing H. As M has an element z of order ¢° — 1,
Lemma 2.2 implies that A is the stabilizer of a subspace W of V' with dim W =1
or 3. But then W is H-invariant, which contradicts Lemma 2.1. Thus H = ¢ and
G = {(z.,y) is a (2,3)-generated group.
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INSTABILITY OF SOLITARY WAVE SOLUTIONS OF A CLASS
OF NONLINEAR DISPERSIVE SYSTEMS!

SEVDZHAN HAKKALV

In this paper the orbital stability and instability properties of solitary wave solutions
of a class of nonlinear dispersive systems are studied. By applyving the abstract results
of Grillakis et al. ([11]), we obtain the stability of the solitary waves.

Keywords: dispersive system, solitary waves, stability
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1. INTRODUCTION

In the present paper we consider the stability and instability of solitary wave
solutions (p(z —ct), v(z — ct)) for the following system of nonlinear evolution equa-
tions:

(1.1)

Mug + up + (wPrP*l), =0
Mui 4+ v, + (up+lup)z =0,

where u(z.t) and v(x,¢) are real-valued functions and A7 is a pscudodifferential
operator of order u > 1 (see (2.1)) and p > 0. This system can also be interpreted
as a coupled version of the generalized Benjamin-Bona-Mahony (BBA!) equation

Mug + (a(u)), = 0.

IPartially supported by MESC under Grant MM-810/98 and by Shumen University under
Scientific Research Grant 14/19. 03. 2003.
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Among the papers devoted to the stability of the BBM equation are [13], [14] and
[16]. When a(u) = u? and M = 1~ 85, it is obtained in [14] that solitary waves
are stable for all p. In [16] this result is extended for a more general class of
pscudodifferential operators.

Here, using the same lines of ideas as in [12] and [16}. we show that if p < p.
then solitary waves are always stable, while if p > p, there is a critical speed co

such that we have instability for ¢ < ¢¢ and stability for ¢ > ¢g.
System (1.1) has four natural invariants E(u.v) = 1 uP Py,
D

Viu,v) = % [u? +v° + uMu+vMelde, Li(u,v) = /udm, Luv) = /'vd:r.
Our analysis is based on the invariants E and V7, following the proofs of {16}, {11]
and [9].

This paper is organized as follows. In Section 2 we discuss the existence and
the asymptotic behavior of solutions of {1.1). In Section 3 we state our main
assumptions and prove the stability and instability results.

Notations:

o The norm in H*(R) will be denoted by || - ||s, and || - || will denote the norm in
L2(R).

o We denote .X® = H*(R) x H*(R). X = L*(R) x L>(R) and [|f]|x: = {[fI|Z +lgi}3
for £ = (f,g).

o N M 0
o 1\“_(](5) = Miug(f)v L= < 0 M ) ’

2. THE EVOLUTION EQUATION

We begin with a discussion of the existence and uniqueness theory of the initial
value problem associated with (1.1). The operator A{ has the form

Mu(€) = (1 +|¢]")a(e). 2.1)

We state the basic theorem which guarantees the existence and uniqueness of so-
lutions of (1.1) in H 7 (R).

Theorem 2.1. If up € X", then there exists ¢ unique global solution u of
(1.1) in C([0,00); X¥) with u(0) = ug. Moreover, the functionals E, V. Iy and I
are constant with respect to t.

Proof. In order to obtain the existence of weak solutions, we consider the

problem
w + du+ G(u) =0, u(0) = ug, (2.2

where
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(M, 0 o M9, (uPerth) 0
A= < 0 Alo, ) and G{u) = < 0 MO, (uPFoP) >

Equation (2.2) can be written as an integral equation

t
u=Uu + / Ut — n)G(u(r))dr,
Jo
where U'(t) is a (g group of unitary operators in X¥ generated by a skew adjoint
operator A4 with D(A4) = X¥ and up € D(4). We solve the integral equation by
the semigroup theory. Since X'V C L° x L°°, it is easy to show that u = G{u)
carries Y — 1" in locally Lipschitzian manner, where ¥ denotes a Hilbert product
space of D(A4) with the graph norm given by [lu]ly = ||u]/x+ + [|Aul|x.. By [15],
Theorem 6.1.4, for any ug € X' there is some 7" € (0, oc) so that a unique solution
u(-.t) with initial data ug exists for 0 < ¢ < T.
Multiplying (1.1) by (u,v) vields

This implies that u is bounded in X" and proves the global existence of a weak
solution u for (1.1).

The fact that £ and 17 are constants follows from the local existence. Finally,
if [1(uo.vo) and In(ug,vo) exist, then Iy (u(t),v(t)) and L(u(t),v(1)) do exist and
Ti{ug.vo) = L (u(t),v(t)) and Iy (ug, vo) = o (u(t), v(t)). This follows by integrating
each equation of (I1.1) over (a, b} and letting a — —o0, b — oo. This completes the
proof of Theorem 2.1. O

Consider the linear initial value problem associated to Eq. (1.1)

;\[Uf + Uy = 0
Mo, +v, =0 (2.3)
(U(O)U(O)) = (UO‘,UO) e X

and the related unitary group V(¢) which is defined by
V() flx) = Sex fa),
where §; is defined by the oscillatory integral
x P .
Si(z) = / et e,
—0C

Therefore the solution of Eq. (2.3) is given by the unitary group W (t) in X¥ defined
for ug = (ug. vg) by

Wity = (V(ug (), V(t)velx)).
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Theorem 2.2. Let u € XY N (LYR) x LY(R)) and let u(z.t) be the solution
of (1.1) with initial data ug. Then there exists 0 < n < 1 such that

sup |/~ ul(x, tyde| <e(l +1t"), (2.4

—x<Lz<Lx

where the constant ¢ depends only on ug.
To prove Theorem 2.2, we need the following lemma, which is proved in [16].

Lemma 2.1. Let S(t) be the evolution operator to the linear equation
(1 +A"0 +0x)w =0 (SH)w(0) = w(t)).

Then S(t) : HY M LY — L™ for all t > 0. Moreover, there exist 6 € (0.1) and ¢ >0

such that
u—1

|S(t)(L‘()‘X SCILH(?(\UJQM+H’U‘()Hy)7 g = 5
5

From Lemma 2.1 and Young's inequality for convolution we have
W (1) L~ wr~ < ct™"(Juolpiarr + [lugllxe)- (2.5)
Proof of Theorem 2.2. Let z(t) = 1V (t)ug. that is
L(?,z + OIZ = O, Z(O) = Up.
Then .
u(t) = z(t) - / Wit —7)L7 0, F(u)dr
Jo
¢
=z(t) -0, | W(t—7)L ' F(u)dr,

0

where F(u) = (uPoPtt uPtioP).
Let U(z,t) = [T u(y.t)dy and Z(z,t) = [*__z(y.t)dy. Then

Uty =2Z(t) - /t Wi(t—7)L7 ' F(u)dr. {2.6)
Jo

We estimate the two terms on the right-hand side of (2.6) separately. First, we
obtain from the equation for z(z,t},

t
z(t) = up — 9, / L tz(r)dr,
0

so that .
Z(T)=U, ~/ W(T)L*luodr
0
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with Up(r) = [:\ up(y)dy. Using (2.5), we have

t
|Z(2.t)] < fup|pixps +0/ (14 7) " %dr(| L o] 1w rr + L g xv)
JO

<e(l+ "L oo + 1L uo]|x),

where n = 1 - 6. Noticing that [[L™ ug]|x+ < ¢||ug]|x+. then
!
lZ(.’l?,f)‘ < C<1 t)”(‘uo‘lle‘ HUOHX”)-

Let P(x.t) denote the second term on the right-hand side of Eq. (2.6). Then by
(2.5)

(Pl{r.t)] < /t W(t—7) L F(u)dr
0

< / (1t =) 0dr( L Flu)lgspe + 1L F(w)]|xe).

1
Since X" C L* x L™ (v > 5) then |L™'F(u)|p 141 is bounded uniformly in

7 by a constant which depends only on ug. Next observe that [|[L7'F(u)|jx. <
(Juif. -+ 2l xv . Thus

[Pl ) <e(1+1)7.

This completes the proof of the theorem. [J

3. THE SOLITARY WAVE

We consider a smooth solution of (1.1) of the form (u(z,t),v(x, t)) = (p(z —
ct), v(x = ct)) = ®(z — ct) that vanishes at infinity. Substituting ® in (1.1) and
assuming that ¢, v, @', 0, " " — 0 as |(| = oo, we obtain

—cMp + o + PPt =0 (3.1)
—cAMy + 4 PP =0, '

From (3.1) we see that if E' and V7 represent the Frechet derivatives of E, V1,

then
El(‘?c!@'c) + eV (e ) = 0. (3.2)

Moreover. if H. is the linearized operator of E' + ¢V around &, namely

H, = E"(®;) + 1" (2) (3.3)
[ A+ (e— 1) = ppPtert? —(p+ 1)PuP
- —(p+ )PP e\ 4 (e = 1) — ppPtlyr-1
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then H.(J,pe, 0x10:) = 0.
We now establish our main assumptions on ®. and H,. under which we solve the
problem of stability and instability. They are as follows.

Assumption 1. There is an interval (¢1,¢2) C R such that for every ¢ € (¢, ¢2)
there exists a solution ®. = (e, v}, ¢ >0, © > 0of (3.2) in X¥"?. The curve
¢ — @, is C' with values in X"*!. Moreover, (1 + lf\)%% cL'x L'

Assumption 2. The zero eigenvalue of the operator H, is simple. I, has a
unique negative simple eigenvalue with an cigenfunction y.. Besides the negative
and the zero eigenvalues, the rest of the spectrum of H, is positive and bounded
away from zero. Morcover, the mapping ¢ — . is continuous with values in Xv
and (1+1€))2ye € LY x L', x1 >0, x2 > 0.

Denote

d(c) = E(®.) + cV{(P,).

After a differentiation with respect to ¢, we have

A(e) = (E'(@) + eV/(8.), T35 4 1(8) = V(0. (3.4

@'(6) = (V'(@, 50, (35)

Next we examine the relation between the convexity properties of the function
d(e) and the properties of the functional E necar the critical point @, under the
constraint ¥V = const.

Theorem 3.3. Let ¢ > 0 be fizred. If d'(c) <0, then there is a curve w — ¥,
which satisfies V(®,) = V{(¥,). &, = ., and on which E(u) has a strict local
mazimum at u = P..

Proof. Following the ideas of Souganidis and Strauss [16], we note that for
s,

G(w,s) = V(®y+sxe), G(c,0) =V(®)and F‘v(®“'+3XC)(C=O> = (V@) xe) =
s

(L®., x.) # 0. Therefore, it follows from the irhplicit function theorem that there
is a C'! function s(w) for w near ¢ such that s(¢) = 0 and G(w, s(w)) = V' (®,).

Next we define U, = &, 4+ s(w)y,. It is easv to be seen that TE(\I’LU)\H:C =0
du
and ‘
dl
—FEW,), _ = (Hy.y),
Tz E(We)me = (Hey.y)
dv ., d , _
where y = v | = %d)c + s'(c)x.. So it suffices to show that (H.y.y)< 0.
We have o 4 ;
¢
0= —V(Ty)jpee = (V' (Do), —
dw (%)) (e S dw |w=c
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= (L®.,y) = (Ld,, C—id~<I>C) + 5" (e)(LPe, ve)-
c

From (3.3), d"(¢) = —s'(¢){L®.. x.), therefore
(Heyy) =s'(e)(Hexe.y) ~ (LOcy) = d"(c) + 3’2(C>(HCX(:,-XC) < 0.
This proves the theorem. O

We continue our study by specifying the precise form in which stability and
instability are to be interpreted. Denoting by 75, s € R, the translation operator
7 f(2) = f(z + s) for all x € R, we define T(s)f = (r,f,7sg) for £ = (f,g). For
¢ > 0 consider the tubular neighborhood

U= {ge X” | inf g - T(s)0ullx- <<},

Definition 3.1. The solitary wave ®. is X" stable if for every ¢ > 0 there is
§ > 0 such that if ug € U, then (1.1) has a unique solution u(t) € C([0, 00); X*)
with u(0) = ug and u(t) € U. for all t € R Otherwise, ®. is called unstable.

The stability assertion (when d”(c) > 0) is a special case of [11], so that we
omit the proof. For the instability, we need a series of preliminary results which
can be proved as in the analogous cases of [9]. For this reason we only state them
without proof.

Lemma 3.2. There are an € > 0 and a unigue C! map a: U. = R such that
foruelU. andr € R:
(i) <u< + (J‘(u)):am(i’c) =0, a(q)c) =0;
()  au(-+r) =alu)—r;
0,0.(- - a(w)
(0,0;0:(- — a(u)))

(iii) a'(u) =
Next we define an auxiliary operator B which will play a crucial role in the
proof of instability. If y is as in Theorem 3.3, then (H.y,y) < 0 and (y,L®.) = 0.

Definition 3.2. For u € U,, define B(u) by the formula

(L, y(- — a(u)))

B(u) = y(- ~ au)) - ML"lai‘bc(' — a(u)).

Lemma 3.3. B is a C! function from U, into X”. Moreover, B commutes
with translations, B(®.) =y and (B(u), Lu) =0 for everyu € U-..

Lemma 3.4. There is a C' functional Y : D, = R, where D, = {v € U,
V(v) = V(®.)}, such that if v € D. and v is not a translate of @, then

E(®.) < E(v) + Y(V){E (v), B(u)).
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Lemma 3.5. The curve w — U, constructed in Theorem 3.3. satisfies
E(W,) < E(®.) for w #c. V{(¥,) =1V (P:) and (E'(¥.). B(V,)) changes its sign

as w passes through c.

Theorem 3.4. Assume that Assumptions 1 and 2 hold and d'(¢) < 0. Then
the solitary wave $, is unstable.

Proof. Let € > 0 be small enough such that Lemma 3.2 and its consequences
apply with U.. To prove instability of ®., it suffices to show that there are some
elements ug € X¥ which are arbitrary close to ®., but for which the solution u of
Eq. (1.1) with initial data ug leaves U, in finite time.

By Lemma 3.5. we can find uy € X* which is close to ®, and satisfies 1" (ug) =
V(®,), Fluy < E(®.) and {F'(ug), B{up)) > 0. For a fixed up, let [0,%,) denote
the maximal interval for which u(-, #) lies continuously in U.. It suffices to show
that t; < 0.

In view of Theorems 2.1 and 2.2 u has the following properties:

u € C([0,6:): X7), u(z,0) = u,

sup / u(z,f)a’z1 <eg(l+t"), t€[0,t),
r€R |J —x
sup [u(t)]|xv < .
te0ty)
Let us take 3(t) = a(u(t)), Y(x) = ["_Lylp)dp = [*_y(p)dp+ Ny(r). where
IO
N = € €| , and define
goe}
= / Y (a - 3(t))ulx, t)dz. (3.6)
J—0
Let H be the Heaviside functlon and v = f {z)dx. We note that by ‘—\ssump—
tions 1 and 2, [ (1 4|z I 2ly(z)|dz < oc and the function R(z) = [7_y(p)dp —

vH{(x) belongs to L x L?. Therefore we obtain from Eq. (3.6) 1at

A(t) = /00 R(z — 8(t))u(z, t)ydx + 'y/x> u(z, t)dz + /’>C Ny(xz — 3(t)ulz, t)dr.

J —o0 3t o0
Hence,
A1 < [Rlalluflxe + (el +87) + [N u]|x+ [lTu]fxe. (3.7)
Now m p J
g . u o du
S = o't S Ly + (Y- 5 )
= (= {y (= 3). Duja’(u) + V(- - ). 5
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= —(B(u). E'(u)).
As 0 < E(®,.) — E(up) = E(®,.) — E(u), Lemma 3.3 implies that

0 < Y(u)(E'(u(t)), B(u(t))).

Moreover. since u(t) € U. and T(®.) = 0, we may assume that T(u(¢)) < 1 by
choosing ¢ even smaller if necessary.
Therefore for all t € [0.¢1), (E'(u(t)). B(u(t))) > E(®.) — E{uy) > 0. Hence
for 0 <t < ¢4
d4
i > E(®,) — E(ug) > 0.
Comparing this with (3.7), we conclude that ¢; < co. [J

L

Lemma 3.6. One has d(c) = Voo, pe) + (A e, v0)].

). Then

t\D
> 8

Proof. For A > 0, let & (z) = $(-
E(®") +cV (%) :/[_F(cp*) + %qﬁmﬂdz
A Coam2 . Carxangh
:/{—F((I) )+ 5@ 4 S Ar ey

- //\{ F(<I>)+2<I> dz + AT “2/q>vubdz

Il
o =

Next we differentiate this expression with respect to A and evaluate it at A
observing that the left-hand side becomes zero, because E'(®Y) + cV'(d%)
Thus

0= /[—F(@) + - g2 + (1 - u)sz AH)dx,

so that
d(c) = /;C/(PA“(I)(LI

Theorem 3.5. Let Assumptions 1 and 2 hold:
a) if p <, then ®,. is stable for all ¢ > 1;
b) if p> p, there is a co > 1 such that ®. is stable for ¢ > ¢y and unstable for

1<C<C().

Proof. Using the homogeneity of M, we can write the solution ®. as

pla) = (c—-1)>

I\J\_
‘G
TN
TN
o
o
—
N
=
8
—
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where (21,11} 1s a solution of the system

) I AP bl
Mo+t —pep =0

/ i +1
Aty + 4 — ’5911) lb’f =0,

which is independent on ¢. Then

d{c) = %C |:/ e+ /T,n\“’u')}

where b = [ o1 A*p; + [ w1 A*¢y. Differentiating twice with respect to ¢ yields

11 L_»

; b 1.
d'(c) = (e — )5 T e (),

where g(¢) = (r+s+1)(r+s+2)* =2(r+ 1)(r+s+e+r(r+1). r=

1 1 .
— — =. Whether d"(c) is positive or negative depends on the sign of g(c). Thisis a

)

p l/L . . L .

quadratic function of ¢ with one negative and one positive root, since rir+1) <0
1 1.1 1

and 7+ s + 1> 0. We call the positive root ¢g. Since ¢(1) = (= — =)(= — =+ 1),
p pp o p

thenif p < g, d'(c) >0 forc>1,and if p > p, d’(c) <0 for 1 < e < ¢ and

d"(c) > 0 for ¢ > ¢g. Theorem 3.3 is proved. [
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ESTIMATES FOR THE SINGULAR SOLUTIONS
OF THE 3-D PROTTER’S PROBLEM

NEDYU POPIVANOV and TODOR POPOV

For the wave equation we study boundary value problems, stated by Protter in 1952,
as some three-dimensional analogues of Darboux problems on the plane. It is known
that Protter’s problems are not well posed and the solution may have singularity at the
vertex O of a characteristic cone, which is a part of the domain’s boundary Q. It is
shown that for n in N there exists a right-hand side smooth function from C™(Q), for
which the corresponding unique generalized solution belongs to C™(2\0), but it has
a strong power-type singularity. It is isolated at the vertex O and does not propagate
along the cone. The present article gives some necessary and sufficient conditions for
the existence of a fixed order singularity. It states some exact a priori estimates for the
solution.

Keywords: wave equation, boundary value problems, generalized solution, singular
solutions, propagation of singularities, special functions
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1. INTRODUCTION

We discuss some boundary value problems for the wave equation
Ou = Uy,zy + Upgay — Utt = f (1.1)

in a simply connected domain £ C R®. The domain

Q= {(z1,22,1): 0<t<1/2, t<Jat+23 <1—1t}
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is bounded by two characteristic cones of (1.1)

S1 = {(z1,a0.8): 0<t<1/2, \Ja?+a2=1—1}.
Sy = {(@aat): 0<t<1/2, \[a}+a3 =1}

and the circle Sq = {(z1,22,t) : t = 0, 7 + 23 < 1} centered at the origin
0(0,0,0). The following three-dimensional analogues of the plane Darboux prob-
lems are stated by M. Protter {27):

Problems P1 and P2. To find a solution of the wave equation (1.1) in 0,
which satisfies one of the following boundary conditions:

P1 ulg, =0 and uls, =0;

P2 uils, =0 and ulg, =0.

The corresponding adjoint problems are:

Problems P1* and P2*. To find a solution of the wave equation (1.1) in Q,
which satisfies the corresponding boundary conditions:

P1* uls, =0 and wuls, =0;

P2 uglg, =0 and uls, =0 .

For the recent known results concerning Protter’s problems see [25] and refer-
ences therein. For further publications in this area see [1, 2, 8, 13, 16, 19, 20].

Substituting the boundary condition on Sg by [us + ou]ls, = 0, one obtains
Problem P,, for which we refer to [11] and references therein. In the case of the
wave equation, involving either lower order terms or some other type perturbations.
Problem P2 in © has been studied in [1, 2, 3, 12]. On the other hand. Bazarbekov
[5] gives another analogue of the classical Darboux problem in the same domain
2. Some other statements of Darboux type problems can be found in /4, 6, 18] in
bounded or unbounded domains different from .

Protter [27] formulated and studied these three-dimensional analogues of the
Darboux problem on the plane 30 years ago - in 1932. Nowadays, it is known
that in contrast to the Darboux problem in R?> the 3 — D Problems P1 and P2
are not well posed. The reason for this is that the adjoint homogeneous Problems
P1* and P2* have smooth solutions and the linear space they generate is infinite
dimensional as one could see in Tong Kwang-Chang {29], Popivanov, Schneider [24],
Khe Kan Cher [20] and Popivanov, Popov [26].

Lemma 1.1. (see [13]) Let p, ¢ and t be the polar coordinates in R®: z; =
pcosy, To = psing. Let us define the functions

k 2 _ 42\n—3/2—k—i
n E / t(p -1 )n
Hk (p7t) = Af pn_zi (12>
i=0

and
)n—l/'Zfl\'fi

. g (07 =1
Ei(p,t) = ZBi n—2i ’
i=0 P
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where the coefficients are
(k—i+1)in—1/2—k~—1i)
7'(7’1 — Z)L

AR = (=1)

?

and
. (k=i +1)in+1/2 -k —1d);

?'(7? - ?j){,
with (a); ;= a(a + 1)...{a +i —1). Then forn € N, n > 4, the functions

\}.”‘1(/)71‘, ©) = Hl(p,t)cosng  and V" (p.t,0) = Hi(p, t) sinng
are classical solutions of the homogeneous Problem P1* for allk =0,1, ..., [;—LJ -2,
and the functions

U",:l‘l(p,t,;;) = E](p.t)cosny and U’:’Z(p,t,p) = Ef(p,t)sinne
are classical solutions of the homogeneous Problem P2*

forallk =0,1,..., [n g 1} - 1.

A necessary condition for the existence of classical solution for Problem P1
(Problem P2) is the orthogonality of the right-hand side function f to all functions
V' (p,t, ) (respectively U"A’f‘i). To avoid an infinite number of necessary condi-
tions in the frame of classical solvability, we need to introduce some generalized
solutions of Problems P1 and P2 with eventually singularity on the characteristic
cone ¥y, or only at its vertex 0. Popivanov, Schneider in [24] and [25] give the
following definition:

Definition 1.1. A function v = w(z( x2,t) is called a generalized solution of
the Problem P1 in Q if:

D ueCH{MO),

2) the identity

“|50\o =0, “151 =0

/ (Ugwy — Up, Wy, — Ugy Wy, — f10) dxidzadt = 0
Q
holds for all w € C*(Q). w = 0 on Sy, and w = 0 in a neighborhood of Ss.

Garabedian [10] proved the uniqueness of a classical solution of Problem P1.
Popivanov, Schneider [25] proved the uniqueness of a generalized solution in
CH(O\O). 1t is known (cf. Popivanov, Schneider [25], Aldashev [1]) that for every
n € N, n > 4, there exists a smooth function

fn(xhl'?:t) = f%(p/t) COS”‘P E Cn_Q(ﬁ)?
whose corresponding generalized solution of Problem P1 near the origin O behaves
like 17, where r = (2 + 2} + t*)1/? is the distance to the origin. The same
phenomenon appears in the case of a more general boundary condition P, (see [11]).

These singularities of the generalized solutions do not propagate in the direction
of the bicharacteristics on the characteristic cone. It is traditionally assumed that
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the wave equation, whose right-hand side is sufficiently smooth in {2, cannot have
a solution with an isolated singular point. For results concerning the propagation
of singularitics for operators of second order we refer to Hérmander [15, Chapter
24.5]. For some related results in the case of the plane Darboux problem see [23].

Further, we study the Problem P1 only in the case when the right-hand side
function f is a trigonometric polynomial of order {:

l
flanaa,t) = [0+ 3 (Flphcosng + f2(p Hsinng) . (13)
n=1

In this case Popivanov, Schneider [25] proved the existence and uniqueness of
a generalized solution u(zy,xo, t) of the corresponding problem. We already know
that u(zi,z,t) may have power type singularity at the origin. More precisely,
there arc solutions that have the growth of r'~! at the point O. In this paper
we will prove some existence and uniqueness results for Problems P1 and P2 and
study the behavior of the generalized solution around the origin. Let us denote the

weighted uniform norm

| fallf = Z Ogtlgggl_z pleit1/2pasiy )
la|<g: 1=1.2

analogous to the weighted Sobolev norms in corner domains (see [21], [14]). Denote
as usual 2§ = 2 for z > 0, and 27 = 0 for z < 0. Then the main results are:

Theorem 1.1. Let us suppose that f(x1.xa,t) € CU=Y+(Q) has the form (1.3)
and that

/Vk”vi(;ghgpz,t)f(zl,rg,t)dand:zrzdt =0 (1.4)
Q

for alln =2,3,..,1;i =12k =0,1,.., [g} — 1. Then there exists an unique

generalized solution u of Problem P1 . Moreover, u € C'H{=4+(0\0) and for
every ¢ > 0 it holds the a priori estimate
uer, 20,0l < Cort/Ifollf + Coer |15
{t/2]
+C3r/? |Inr| Z | f2ull{ok—ay, 3
k=1 (13>
=l

+Ci Y M farst ok,

k=1
where Cy . depends on &, but all the constants Cy, Cs ., C3 and Cy are independent
on the function f.

Theorem 1.1 gives an a priori estimate of the generalized solution. Now the next
Theorem 1.2 provides an a priori estimate for the generalized solution and clarifies
the significance of the above orthogonality conditions (1.4). In other worlds, for any
couple (n, k) the corresponding condition ”controls” one power-type singularity.
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Theorem 1.2. Let s € N be such that 2 < s <1 . Suppose that f(xy,29,t) €
CU=Y+(Q) has the form (1.3) and satisfies the orthogonality conditions (1.4) for
any couple (n,k) such that n.k € NU{0}, 2 < n <, n~2k > s+ 1 and
i = 1,2. Then there exists an unique generalized solution u of Problem P1 such
that: w € C* =D+ (Q\O) and the estimate

]
utay, 22, 0] < Crm DN il (1.6)
k=0

holds. If we suppose additionally that there are m,p e NU {0} and j =1 or 2 such
that 2 <m <l.,m-—2p=s and

/";n‘j(il'l,lm t)f((IJl,.’Cg, t)d.Tl({fE-_gdt ;é 0, (17)
Q
then in some neighborhood of the origin one has
lu‘jﬂ!SE ('7“1,‘1:2)’ 2 C(l% + l‘g)i(s—l)/‘z , € > 07 (18)
where
27 27
u}n|52(.171,x2) = / ul,_,,. cosmp dp, ufnk% (z1,20) := /u{izm sin my de.
0 0

To illustrate the dependence of the singularity of the generalized solution on
the orthogonality assumptions, let us consider the following table:

Table 1. The orthogonality conditions and the order of singularity

l -1 -2 [—3 m 4 3 2
‘/14 % o V ‘/02 1
2 o VOS’Z
3 ‘/04,1
m—2p—1 S (Al
I—4 S S Ol
i =20
-3 v o A
[—~2 o \"'01—1”
1-1 Vi
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Observe that both ¥"" and V% are located in the n-th column and
(n — 2k — 1)-st row of Table 1. Thus, V' form the right most diagonal, the next
one is empty — we put in the cells "diamonds” o, Vl”‘i constitute the third one,
and so on. The first column designates the order of singularity of the generalized
solution.

Theorem 1.1 asserts that the generalized solution of Problem P1 is bounded
if the right-hand side f is orthogonal to all the functions V"' from the table.
Theorem 1.2 specifies that (if [ > 2) the singularity of the generalized solution is
no worse than 1% if f is orthogonal to Y”k"‘i from the triangle under the (s — 1)-st
row. In other words, the functions from the k-th row of the table are "responsible”
for the generalized solutions with behavior r~* near the origin O.

The present paper is a generalization, extension and improvement of the results
obtained in [26]. It consists of an introduction and five consecutive sections. Section
2 is devoted to the solutions of the homogeneous adjoint Problems P1* and P2*.
In Section 3 are formulated the 2 — D boundary Problems P12 and P13. shortly
related to the 3 — D Problem P1. The main technical results are established in
Sections 4 and 5 — we study the hehavior of solutions of 2 — D Problems P12 and
P13. In the last Section 6 we give proofs of Theorem 1.1 and Theorem 1.2 based
on the results of the previous two sections.

2. PROPERTIES OF THE SOLUTIONS HY AND E¥

First, we will present three different ways to introduce the solutions of the
homogeneous adjoint Problems P1* and P2*. The functions H}' and E! could be
found in Khe [20] in the form

tpnA2k~3(1 _ t‘Z/pQ)n»'Zka/QF(n _ A —k: 3/2 t2/p2>
and

pTHTH A2 T B E (n —  —ki 128 ),
where F' is the hypergeometric Gaus function.

On the other hand, one could obtain H'(p,t) and E}(p.t) by differentiation
of Ef(p,t) with respect to ¢.

Lemma 2.1. (see [13, Theorem 4.2]) The functions HJ'(p.t) and EQ(p.t),
defined in Lemma 1.1, satisfy

3}
_Hzl(f)t) = 2(n — k- I)EE«&—l(p:t)a

ot
5}
5Lk (0 1) = 20k —n + 1/2)H{ (p. 1)

and they represent some derivative of Ef(p,t) over t:

Hrpt) = — 0™ §>2H1 (p? — )12
kAT (2n — 2k — 1)ap11 \ Ot P ’
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n _ (_1)k a 2k (pl _tz)n,1/2
£ = g () ().

Remark 2.1. This procedure of differentiating the function E}' (or T/VO"'i) with
respect to t will (as in Lemma 1.1) produce solutions V" and W' of the equation
(1.1), but for & > n/2 the smoothness at the point O will be lost.

Remark 2.2. The solutions of the adjoint Problem P2* (P1*) given in Lem-
ma 1.1 are not orthogonal. For example, one could check this out for I'V(;l‘i and
WM. Tt is sufficient to show that

/21—

= | [ Esto.0Ex (o, oot 20,
0 t

In fact, Lemma 2.1 implies 92E}/0t*(p,t) = cE}(p,t) for some constant ¢ and
therefore
1/21—t¢

cK = / /EO 8t2 (p t)p dpdt

121
Ef(p.1— 1- d
/ p) at S (p1=p) pdp - //(
]/) 0 t
because Ef{p,t) > 0 and 0E]/dt(p,t) < 0 for t < p.

2
> p dpdt <0,

Remark 2.3. The functions H}}{p,t) and E}{p,t) are linearly independent.
Indeed, suppose that some linear combination of these functions is zero. Then from
Lemma 2.1 it follows that EJ as a function of ¢ is a solution (for a fixed p) of a
homogeneous linear differential equation with constant coefficients. Therefore Ef
must be a finite sum of quasi-polynomials of ¢, which obviously is not true.

A basic tool for our treatment of Protter problems are the Legendre functions
P, (see (3.8) below). Some properties of the Legendre functions P, one can find in
[9]. The next lemma plays a key role in the last section.

Lemma 2.2. Let us denote

¢
v e (&S
e = [ (S0

n

-1
Ifv=n—1/2, then it hold: (a) for i =0,1,..., {U 5 }

hy_ai-2(€:7) |5:92¢;,7:a;_r =} p'*H (p.1)
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1 (b) fori=0.1,..|=

and (b) fori=20.,1,... b}
e) %) v n 1/2mn

<5§' - 56) huff_’i(évn) l§=([)+i)/2:r7:(p—»t)/2 = di p1' Ei (/)t)7

where the constants ¢}, d # 0.

Proof. (a) We will calculate the integrals h{(&,n) using the Mellin transform.

given by
>
/ta 1f
0

and the Mellin convolution "o, defined by

:jf@

Recall that the relation between both is (see [22, formula (1.2)])
(fog)(s)=f"(s)g7(5)- (2.1)

To apply the last formula to hy(£,n), let us introduce new variables r.y and z

defined by
£ /n vy | s
Ve =4[ = = 2fy= ——+ —=; z= .
NG \[ﬁ\ﬁ RN Vén

Then we have )
&n + s° Yy s
2= 5 ==y Jy— Lt
s(€+n) VS v

d(?ﬂ) _C{ \/—57—] i S B s —~ ;2'
ds  ds \ s m sy
f+w/* “)—1—2 -1y — 1+ V)
WVy—Vvy-1) —-1= y—l(\/y— — V)
when s = /&7, we have y = 1, and y =z for s = £ or n . Substituting in hj, we
find

oC

k1 . 0 ’
i) =5 [ (5-1) 2 (2) =02 (wae vim e
0 + ’
V- VTG

Now we are ready to use (2.1) and formulae (11.13(4)), (2.10(4)) from [22] - ap-
plying the Mellin transform over z (here "~ means "transforms into”):

0 1 F(~9)F(2 s) .
(m“mp”(\/.?t)Hr(l J;T(1+5—-s)
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and therefore

T (M) T (- 1E — )
(A5 -9)r (1+——5)
To find the inverse image of the right-hand side, denote as usual by g the
Riemann-Liouville fractional integral (derivative) of order a:

(2.2)

Igy f(2) /ft)aift)a Ydt, a > 0;

13, f(2) = fla);

N d [a]+1 N
Ig 8 flae) = (15)) 1f(l’):: (Eﬁ") (l {}f>( ), a>0.

Under these notations, the right-hand side of (2.2) is the Mellin transform of the

function . vis . e

7 v4l N ETe _ktu+s e

WCI) 2 [0+2 (ZE 2 (I‘V1) )

)

Indeed, using (2.2.(4)), (1.10) and (1.4) from [22], for k < v — 1 we find
vl kovt? k4v+3 vok—1 v—Fk+1 f(—lf;ﬁ *S)F(Jﬁﬁ —8)

r 2 I, " 7 7 (z—-1),° r = E :
oo (o =17 ) ( 2 >r(1.7v_s)r(1+g-s)

Hence, taking k = v — 2i — 2, for some constants C,; we have

. . d\ , i1/2
WY o, 2)z T2 = O, 2" <£> (I—W—l/z(;c - 1)j1/~) .

Let us now return to the variables p and ¢ :

v—2i1—1

Lv-2im1 R (d/dz) i(~'\y+i7]/2(' - 1)i+1/2)

< €+ n)2>‘”/’”1 <<5 _ n)z>z'+1/':-~1
& &n

y=2in) p? v/t £ i+1/2—)
_t d/,/ A —&{)
(0* ) ZJ: J <(p2—t3)> <(p2—t~)>

= Y djt(p? — )i gt
j+1<z

= ()"

I

)lle/Q—j—i

-Za pn2=1]3




In order to determine the coeflicients a}, one could notice that from the definition

of hy the function
t p—t
p PR L, (B;— 82—> sin ny
satisfies the wave equation. Therefore, after substituting in the equation. we find
a; = apAj and
— v Pt t 14 —t vprny
1/7hu 2i-2 (T, —2—> =a{H(p.1).
(b) Let us find the functions (8/8¢ — 0/0n) hl_y;(&. 1), wherei = 0,1, ..., F] :
Notice that for ¢ > 1, due to Lemma 2.1 and (a),

0 d
~1/2 n n nipn
P <8£ 877) v— 21(5 77) Cl atHl l(p t) CL Ez (pt)

Only the case 7 = 0 has been omitted, i.e. we need to calculate

o 9\,
(a_é - 5};) hu(&”)

Therefore we consider the function

. k—v42 k43 v—k—1
k+1 4L 2 - 2
2" T (z-1), ,

8t O+
where k = v and }
=y 2= (- )
pr—te
That is
6 Y-z 2 a v v41 "{ e _1/9
ot CC 1>+1/>:52 e /T 2r -1, dr
- 0
0 ‘ 9
= 5;01/—%-12*1/—1 /TVV__(T _ 1) 120 — 2—1/41pl/+11,—[/-—%($ » 1)_1/20_f
1
— 9-v—1, v+l (p° = tz)y+3/2 (p* - tz)l/z 2tp? o (p% —t%)”
= ,0 p2y+3 t (pz . t'3)2 - pV .

Hence for v = n — 1/2 we conclude that

-1/ 0 g _ (p2 _ t?)n 1/2
1/2 9 On ? = 1/2 — s = o A
P <a§ 817) hz/(§= 77) P Cn p,,l_2/2 CHED (p i’) D

3. SOLVING PROBLEM P1

In terms of Theorems 1.1 and 1.2 it is sufficient to study the Problem P1 only
when the right-hand side f of the wave equation is simply

Flpit0) = filp.t) cosnp + f2(p.t)sinmp, n € NU {0},
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Then we seek solutions of the wave equation of the same form:

w(p.t, o) = ul(p,t) cosnp + u(p.t) sin ne.
Thus Problem P1 reduces to the following one:
Problem P12. To solve the equation

1 n?

(Un)pp + ;(Un)p - (Un)z‘f - ‘/;;un = fn (3-1>
in 0 ={0<t<1/2;t<p<1-1t}CR® with the boundary conditions
P12 u,(p.0)=0for0<p<land up(p.1-p)=0for1/2<p<1.
Let us now introduce new coordinates

e (32)
and set
v(&n) = pPunlp,t) 5 glén) = p'2 falp.t). (3.3)
Denoting v = n — %, one transforms Problem P12 into
Problem P13. To find a solution v(§,7n) of the equation
viv+1) (3.4)

T et
in the domain D = {0 < € < 1/2; 0 < n < £} with the following boundary
conditions:

P13 w(£€) =0for £€(0,1/2) and ©(1/2,n) =0 for n € (0,1/2).

Problems P12 and P13 have been introduced in [25], although the change of
coordinates £ = 1 —p—tand n = 1 — p + ¢ is used there instead of (3.2). Of
course, because the solution of Problem P1 may be singular, the same is true for
the solutions of P12 and P13. For that reason, Popivanov and Schneider [25]
have defined and proved the existence and uniqueness of generalized solutions of
Problems P12 and P13, which correspond to the generalized solution of Problem
P1. Further, by "solution” of Problem P12 or P13 we will mean exactly this unique
generalized solution.

Remark 3.1. Notice that even when the right-hand side function f,(p,t)
belongs to C* (Qp), the corresponding function g(€,7) = p'/2 f.(p,t) in (3.4) belongs
to C*(Q\O), but its derivative may not be continuous at the origin O. At the
same time, when the solution v(€,n) of Problem P13 is bounded, the solution
un(p,t) = p~?v(€,n) of Problem P12 may be singular.

Nevertheless, we will solve Problem P13 instead of Problem P1. We can
construct the solution of the Problem P13 using two different methods. First,
following Popivanov, Schneider [25], one could use the equivalent integral equation

£=3 n=to
v = [ [ (A Dven soten)ae 53

§=&o N=n0
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and construct the solution as a limit of a sequence of successive approximations
U™ defined by

e

n=_&

(&, m0) / / (€. ), (3.6)
E=Ep N=1p0
=3 p=¢
T (€0, m0) / / ( UMEn) + g(@n)) dndé.  (3.7)
£=&0 n=n0 € * ’7
On the other hand. notice that the function
(=& —m)+26m + 2@7)
R(&,m,&n) =P, 3.8
(&,m.&m) ( GEENET) (3.8)

is a Riemann function for the equation (3.4) (Copson [7]). Therefore. we can
construct the function v as a solution of a Goursat’s problem in D with boundary
conditions ©(1/2,1) = 0 and v(£,0) = ©(£) with some unknown function (£).

which will be determined later:
1

v(€,n) = (&) + / (61)55—1?(51 0,&, m)dé — //R Semy € n)g(ron)dmdé.

3
(3.9)

Now, following Aldashev [1], the boundary condition v(£,§) = 0 gives the equation

1 1

2 2

G(E) = p(€) + /(a)aél V<§;>d@=—/¢'(&)R(é>d& (3.10)
3 13

for the function ¢(&), where
£

51771 +£ I
//Pu( §1+771)> g(&m)dmdé:. (3.11)

€0
According to formulae (35.17). (35.28) from [28], the integral equation (3.10) is
invertible and we have

B ) d [, (5_1 > Gla)

Finally, due to ¢ 1/2) G(1/2) = 0, it follows

1

(&) =G(8) + /P’ @) gl)d& O (3.12)
13

o]
[NE
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4, THE CASEn = 0,1

Using the sequence {U"'} defined by (3.6), (3.7). we have the following

Lemma 4.1. Let 0 <z < 1 and suppose that |v(v + 1)| < (1 +¢). Then the
solution U(E,n) of the integral equation (3.5) in D satisfies the estimate

UM< CE—n(€+n) sup [g,
where the constant C' depends only on v and ¢.

Proof.  The key point in the proof is the estimate for the integrals:

=

n=

(& —m)(E+n)~"2dndé

£=E&o N=10
5:% n=E&o
= [ [ et = 2nte ) anae
§=&o =10
2 11 B om 1
= / <E(€O ) - E(E +n)7F = 1 +E(fo )+ 1 +€(§ + 7))'“5“]> dn
%50 )
< / <_j(€o +n)7F = (Co + 1) ‘"l> dn
o
7 l-¢ 2¢
o
_ 1 1-= 28
Ce(l+e) (&0 + o) +:‘(1—5—:5)(§(H—7]())
1 I3
RS (€0 = o) (&0 + m0) ™"

For the function U®) we find

sup [U o<1 3 (& —m)sup lgl < (& —mo) (€0 +10) 77 suplgl.

Now, because of

lJ[..-

[CESREREITENS / / ety (W = U) e m) dnde

(E+n)?

§=So =10
lv(v +1
e(l+¢)

(U = U5 &, )| < 0 (6 — o) (€0 + o) 7 suplgl.

if take a := , we have by induction
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Indeed, using the calculations of I., we find that

z}—}—l .
(U1 - U (6. m0)] < / / ) >+« ‘(£~f7)51[1)p\91d77d£
£=Ey =m0 Hl)

< oF (& — o) (& o) T S%P lgl.

Finally, we arrive at the estimate
k

U+ (g5, m0)) < Z ((U““) — UMY (& m0)
i=0

k
<37 g —0) (G0 + o) " sup g
i=0
1— ak+2) .
= 020D ey — e + ) suplal
(1-a) D
which, together with (4.1), shows that if & < 1, the sequence {U"} uniformly
converges to a solution U(§,7) of

£=% n=¢o
Utom = | / (”("” (en) + g€, n)> dnd.
£=So M=No

Even more, it holds the estimate

1 _
U ml < (€—m&+n)"suplgl. O
(1-a) D
Now, for n = 0 or 1 we have v = ~1/2 or 1/2, respectively, and we will apply

Lemma 4.1 with suitable €.

Theorem 4.1. For the solution un(p,t) of Problem P12 with right-hand side
function fn € C(Qo) the following a priori estimate holds:
(i) for the case n =0

luo(p, t)] < Cp*'* max|p*’” fol
Qo
with constant C, independent of the function folp, t):

(ii) if n = 1, then for every 6 > 0 there exists a constant Cs, independent of
the function fl(p, t), such that

luy(p.t)] < Cap“‘sr%ax PR AE
Q

Proof. Notice that when n = 0 and n = 1 we have |v(v + 1)| = 1/4 and
lv(v+1)| = 3/4, respectively. Therefore one could apply Lemma 4.1 for the solution
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v(&.n) = U(&.n) of Problem P13 with ¢ = 1/4 and € = 1/2 + §, respectively. The
assertion follows from the relation (3.3):

1) =
lu(p, t) 5 g

t p—t . . .
o1y <p+ P >’ < Clpime1/ max |g| < CpY/?~¢ max|p"/2 f|.0
D Q0

5. THE CASE n > 2

In this case, unlike the above approach, the behavior of the solution is studied
in [26], using the properties of the Riemann function (3.8), given by Legendre
functions P,. Let us remind some of these results here. For the function v(&,7n),
defined by (3.9), (3.12) and (3.11), it is not hard to see that v(£,0) = ¢(£) may
blow up when £ tends to 0. Nevertheless, one could control the growth of

1

(86
19) .~£/Py(§> g (5.1)

with the help of the following lemma:

Lemma 5.1. (see [26, Lemma 3.1]) Let v > 1 be a real number with integral
part [v] and fractional part {v} = v — [v] # 0. Suppose that G € C*=2+(0,1/2],
|G < A8 K for k= 0,1,...,[v ~ 2], for some constant A, and

/g"*’f*QG@)dg =0 for i=0,1,.., {" '2‘ 1} : (5:2)
0]

Then the function 1(€), defined by (5.1, is CV1=1(0,1/2]. More precisely, there is
a constant C, independent of G(§), such that:

() 1)) < CAE  4f [V] is an odd number;

(i) [1(¢)] < CAe =Y if [u] is an even number.

Besides, Lemma 3.2 from [26] asserts that each of the orthogonality conditions
(5.2) actually "controls” one power-type singularity of the function I(¢):

Lemma 5.2, Let v > 1,{v} # 0, and p be a nonnegative integer, p <
(v —1)/2]. Suppose that G € C2P~1+(0,1/2], |G*(€)] < AP-WITI=k for | =
0,1.....,(2p = 1) for some constant A, and

/5”‘2i‘26(§)d§ =0 Jori=0,1,.,p—1. (53)
0

Then the estimate
|[(§)’ < 01146_(1’*217-—1)
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holds for some constant C1, independent of G(§). Moreover, if

/ P2 GE)dE £ 0, (5.4)
0

then
[1(&)] > Coe 271

for Cy > 0 and sufficiently small £.
In other words, one has to impose some conditions on the right-hand side g of

Problem P13 to secure certain behavior of the solution v. In fact, the definition
(3. 11) of the function G(€) gives the equality (see [26])

e /e
/5“ 226 (E)de = // /f” i (ég:i)) dé) g€, m)dmdé;.

It shows that one needs orthogonahty of g to the functions hY”_,; , defined in
Lemma 2.2. As a result we are able to prove the following

Theorem 5.1. (see [26, Theorem 4.1]) Let n € N, n > 2. Suppose that g €
CnH+(D\O), |D¥g(&,n)] < A7l for Ja] < (n — 4)+, and the orthogonality
conditions

w13
[
Ny

// S(E,mg(€, n)dndé =0 fori=0,1,.. {ygl} (5.

are satisﬁed_wzth v =mn—1/2. Then the solution v(§,n) of Problem P13 belongs to
Cn=9++1(D\O) and satisfies the following estimates:
(i) if n is an even number, then

(g, m)] < CAE n&l;
(ii) if n is an odd number, then
(& m)] < CAEY?.
In both cases the constant C does not depend on the function g(¢,n).

In the same way one gets the following theorem, which corresponds to Lem-
ma 9.2:

Theorem 5.2. (see [26, Theorem 4.2]) Let p be a nonnegative integer and p <
[(v —1)/2]. Suppose that the function g € C2r=2+(D\O), |D%g(€.n)] < Ae I~
for la] < (2p—2), and

2
//hi_ai;g(é,n)g(f,n)dndf=0 fori=0,1,...p— 1. (5.6)

0 0
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Then the estimate

(€, )} < CAg=v=2e— D) (3.7)
holds for some constant C. independent of the function g(&,n). Moreover, the con-
dition

§
//hZsz_z(é,n)g(&n)dndﬁ750 (5.8)

implies that the lower estimate
[0(€,0)] > g~ 27 (5.9)
holds for some constant ¢ > 0 and sufficiently small €.

All these preparations and Lemma 2.2 lead us to the following estimate for the
solution of Problem P12:

Theorem 5.3. Suppose that n € N, n > 2, fu(p,t) € CI+(Q\0), and
there is a constant A such that |pl*FY2Df (p, 1)) < A for |a| < (n —4),. Let
also there hold the orthogonality conditions

/21/ [ ) fnlp.tipdpdt =0 fori=0,1,.. [Z]—l. (5.10)
0 t

Then the solution u,(p,t) of Problem P12 satisfies:
(1) lun(p,t)] < CAp?|Inp|  if n is an even number;
(i) |un(p,t)| < CA  if n is an odd number.
In both cases the constant C does not depend on the function f,(p,t).

Proof. Let us define the function g(€,7) = p*/* f.(p, 1), where £ = (p +1)/2,
n = (p~t)/2. Then the estimates for f, imply that g satisfies |D¥g(¢,n)| < CA¢~ Il
for la] < (n — 4). The orthogonality conditions, due to Lemma 2.2, yield

/ / BY —aya(Esm)g(€, ) dnde = C / / HE (0, folp, ) pdpdt =

Now Theorem 3.1 gives the required estimates for the solution v{(£,7n) of Problem
P13, given by (3.9), and u = p~'/?v is the solution of Problem P12. O

Using the similar arguments, we get the corresponding result for the case when
not all of the orthogonality conditions (5.10) are fulfilled:

Theorem 5.4. Let n,q € NU{0}, n > 2, ¢ < [g} — 1. Suppose that the
function f, € CRI=2+(Qp\0), |D° fr(p, )] < Ap~1el=172 for |a) < (2¢ — 2), and

31—
/ / (p. ) fulp,)pdpdt =0 fori=0,1,...,q - 1. (5.11)
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Then for the solution u,(p,t) of Problem P12 the upper estimate
lun(p,t)] < CAp~In2e- 1) (5.12)
holds, where the constant C is independent of f.{(p.t). If we suppose also that

1

2

/ / Hp. 1) falp,t)pipdt # 0. (5.13)

then the lower estimate
lun(p, p)| > cp= (72971

holds for ¢ > 0 and sufficiently small p.
Proof.  We again define g(&,7) = p'/2fn(p,t) and we prove the theorem ap-

plying Theorem 5.2 for v = p*/?u and g instead of Theorem 5.1 as in the proof of
g

Theorem 5.3. O
Finally, Theorems 5.3 and 5.4 show that every solution of Problem P12 is a

linear combination of at most [g—] fixed singular solutions:
n n
Lemma 5.3. Forn > 2 there exist [2] functions vi(p.t), 1 =0,.., [5} -1,
such that for every generalized solution u,(p,t) of Problem P12 with some right-
hand side function f, € C'""Y+(Q) the equality
ORa
unlp,) = Y civh(pt) + wip,t)
i=0
holds with some constants ¢; and some bounded function w(p,t) dependent on
un(p, t).
Proof.  Let u,(p,t) be the generalized solution of Problem P12 with some
right-hand side function f,(p,t) € C*=9+(Qy). In general, u, has a singularity at
the origin O. Let k be an integer, 0 < k < [g] -1, and f,gk)(p,t) be the projection

of f, on the linear space Lyj, of functions, orthogonal to the functions H? for
i=0,1,..k

Lin = f(P-,t)i/%

0

Hi'(p, ) f(p,t)pdpdt =0 fori=0,1,...k

1-t
i
t

Then f, — Z a’”H” f,(f) € Ly, with some constants aff such that

1=0

t

51—
//H Fp pdpdt =0, 7 =0,..k,
t
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1.e.

NI

k
zaf//H” p, t)H[ (p, t)pdpdt = //H pst) fn(p. ) pdpdt

1=
0
for j = 0,1,....,k. This system has an unique Solutlon for constants af . To show

51t
this, suppose that the rank of the (k x k)-matrix with elements f f HH} pdpdt

is less than k. Then there are numbers Sy, J1....,8k such that at 1<‘ast one is not
zero and

k3o

Z‘Bi// HH(p,t)pdpdt =0 for j=0,1,...k

=0 o
or

3 1t L,
/ / Hlp.1) <Z 3in-”(p,t)> pdpdt =0 for j=0,1,... k.
t

Therefore Z 3:H" = 0 in Qq, which is impossible, because the functions H{" are
i=0
linearly independent in view of Remark 2.3.
Let us denote by vl (p,t) the solution of the Problem P12 with a right-hand
side function H'(p,t), and by ey (p,t) the solution with a right-hand side function

fﬁk)(p, t). Then we have for u, the representation

: :al,l/?’l +u7? *

When k < [g] — 1, Theorem 5.4 gives the estimate

k) (p,1)| < Cp~In—2h=%),

while for k& = kg := [g] — 1 Theorem 5.3 shows that the function w := 1L$1k°> is at

least bounded. O
6. PROOF OF THE MAIN RESULTS

We arc now ready to prove Theorem 1.1 and Theorem 1.2 (see Introduction).
Proof of Theorem 1.1. When the right-hand side function has the form
!

F= 1.t + 3 (o, t) cosnp + f2(p. ) sinng)

n=1
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one could construct the unique generalized solution u{zy,x2,t) as
1

u=uj(p.t) + Z (u;(p, t)cosng + ul(p.t)sin ne) . (6.1)
n=1

where the functions u! are solutions of Problem P12 with right-hand side function

fi e CU=1+ (). First of all, we use Theorem 4.1 to estimate the functions u}.

ol 2,
uy and uy:

lug(p.t)] < Cp'/* mﬁ'dXIﬂl/Qfél < Cr i folls,s
0

|ui (p, 1)] < Cap*‘sr%aXlﬂ”'szl < Cir ™1l Alls
o]

For the case n > 2 we apply Theorem 5.3 with the constant 4 = an[“*nk’”*‘
Because of the identity

1

/ / HZ (p, )fn(p t)pdpdt = /1/ (11712,15)]‘(1"1,:@, t)dxidzadt =0, (6.2)
0
the orthogonality conditions {5.10) are fulfilled. Therefore, if n is an even number,

ul| < Codp'P|np| < CL' 2 ||| fallf .,
while
lu‘ | < Cn A= C”I]f””(n 4) 4

if n is an odd number. Finally, summing up all these 1noqua1itios, we find

!
ul < Juh] + Z (luhb+ 1l) < Cor I folls + Cosr L f1ll3
n=1
[1/2] [54]
+Cyr! /21 |nr|2um|1u 0, +Ci Z || Forr I 0

Remark 6.1. Notice that the orthogonality condition / T/'k"'ifdxld:rzdt =0

0
for a function f with the representation (1.3) is imposed only on the function
fi(p,t) and has no influence over the other functions f, (p,t) from (1.3) with indices

(m,7) # (n,1).
Proof of Theorem 1.2. We use again the representation (6.1). For n = 0
and 1 we have respectively

lugl < Co 1 folls < C'r =+ folly

and
ut} < Crppp™ PlANE < Cr A
- . n-—s+1
because s > 2. For n > 2 we apply Theorem 5.4 with ¢ = — and
4
A = |[fall34—2. Now, the identity (6.2) shows that the orthogonality conditions
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. -s+1
hold for n — 2k > s+ 1, te. for all & > 0 such that ¢ — 1 > {Z——l1 -1>
2k +2
[ 5 } — 1 = k. Thercfore
up | S CAp™ "L <l | Fullfy ey S C Tl ey
. . . n—s+1
because depending of parity of n we have —n + 2 — +1=—-s+1or
n—s+1 . .
—s+ 2, and 2 — |- 2=n-s—1orn—s-—2 These give the required
upper estimate for the solution u. For the second part of the theorem. let us notice
. - s+ 1
that when m — 2p = s, the corresponding number ¢ is ¢ = {i—{—-} = p. Thus,

the lower estimate in Theorem 5.4 gives

—m—+2g+1 — —-s5+1

[u%zll:DJ Z cp cp

which completes the proof. [
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AND ITS APPLICATION
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A new approach to establishing generalized Taylor’s expansions is used to prove the
trigonometric analogue of the Taylor’s formula. We derive point-wise estimates of
the error in the trigonometric interpolation and approximation by convolutional linear
opcrators.

Keywords: Taylor’s formula, trigonometric interpolation, convolutional operators
2000 MSC : 42A15, 42A85

1. INTRODUCTION

We consider the function spaces Ly[—m. 7], 1 <p < oc, and C*|—m, 7], where

’ a.e., fl nreL[ ]}7

Lif-m. 7]l ={fR—=R: flz +27) = f(
C'l-mml={f e CR): flz+2m) = flz

(z)
)}
normed, respectively, with the usual L,-norm over the interval [—m, 7] for 1 <p <
oo, denoted by || - [-m, 7], denoted by

In a recent paper (see [1]) we have introduced a new modulus of smoothness,

which describes the rate of the best trigonometric approximation. It is defined by

L‘“?(f?ﬂp = r— lﬂ

0<

nT=12,..
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where _—
SOEDY (~1>“<2rk‘ 1>f(l‘ +((2r = 1)/2 - k)h)
k=0

is the symmetric finite difference of order 2r — 1,

Froa(fox) = /K,l flx —t)dt

and
r—1 (I" 1)

Z(QJ o= e

1<h<-<lj<r—1

It is shown in [1] that for the rate of the best trigonometric approximation
EL(f)p = infer, ||[f — 7ll,, Tn being the set of all trigonometric polynomials
of degree at most n, we have

Er(f)y <Gl (fin™),, n>r—1, (1.1)
and
WI(fy <CE S T EL(), 0<i<t ()
P 1<k<1/t r

Moreover, we have w! (f; t)p = 0 if and only if f € T,_;. In that sense the new
modulus of smoothness describes the rate of the best trigonometric approxima—
tion more precisely than the classical one. The modulus of smoothness wI(f: tp
possesses propertiecs similar to those of the classical one, as it is shown in [1}

Let L, : Ly[-m, 7] — Lil-m 7], 1 <p < oo, or Ly : C*[-7,7] = C*[—m, 7],
be a bounded linear operator that preserves the trigonometric polynomials of degree
n. Then the well-known Lebesgue inequality

If = Laflly <A+ L NET(f)p
and the Jackson-type estimate (1.1) imply
= Lnflly < CoL+ ILal) o) (Fin 1)y, n>7 -1

Similar estimates, using the classical periodic modulus of smoothness, are known.
For instance, G. P. Nevai has proved in [3] the following generalization of a result
of S. M. Nikolskii:

17 = tafll < 27w (f5 ) () + Ol fin™)c),

where t,, f € T}, interpolates the 27-periodic continuous function f in the equidis-
tant nodes & = (2_pn,...,25), 2 = 2k7/(2n + 1), k = —n,...,n, and A\, (Z) is
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the Lebesgue constant for the trigonometric Lagrange interpolation. For similar
estimates in uniform norm, concerning the approximation by the partial sums of
the Fourier series, one can refer to [2] and [4].

The trigonometric analogue of the Taylor’s formula will allow us to derive
a point-wise estimate of the error f(z) — Ln(f.z) for a smooth f. We need to
introduce several notations to state that result. We define the differential operators

Dj:<%>2+j21, i=1,2,..., (1.3)

where I is the identity. We also put

d

En :Dn"'D_>
+1 ]dl,'

Dy =Dy D

Duw =Dy Dy1Dyyr---Dy, k=1,...,n
Let us observe that D19 = 0, g € C*"*[a,b], if and only if g € Ty, in [a,b]. The
following trigonometric analogue of the Taylor’s formula holds true (see [3, §10.8]).

Theorem 1 (Taylor’s trigonometric formula). Let f € C* (AL, where
A, is any of the intervals [c,c + 0], [c = 8,¢] or [c = 6,c+ d] for c € R and § > 0,
and let also

k—1
melfre) = "Of '+ QZ T

x [(k*D Doaxfle) = Duofle))cosk(z ~c) + kDpif'(c)sink(z —¢)]. (1.4)
Then 7.0 f € Th. o fey =), s =0,1,...,2n, and for v € Ac we have

F(2) = melfia) + Wﬁ / (1= cos(z — )" Dar (1) d. (L)

Let —7 < zp < --- < Tgp < 7 be arbitrary nodes. Let us denote by to(f, )
the unique trigonometric polynomial of degree n, which interpolates f in those
nodes. Then the theorem above easily implies a point-wise estimate of the crror
flz) — t,(f,z) for a smooth function f.

Proposition 2. Let f € C*" -7, 7]. Then

f(I) - tn(f,a:) = 7—1-((—2”1_71)” /-/ﬂK(I,t)57l+1f(t) dt, T € [_W,W},

where
2n

K(z,1) = (1 - cosl{x ~ )4 ])" = > (1 — cos{(ws — t)4]) " tnk()

k=0

and (z — t); = max{z —t,0}.
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The contents of the paper are organized as follows. In Section 2 we collect few
auxiliary results, which are necessary for the proof of the Taylor's trigonometric
formula. presented in Section 3. Finally, in the last section we derive point-wise
estimates of the error in the trigonometric interpolation and in the approximation
by convolutional linear operators.

2. AUXILIARY RESULTS

Let [a,b] be a finite interval such that 0 € [a,b]. We define the convolutional
operator, known as Duhamel’s convolution, & : L1[a, b] x Li[a,b] = L;[a.b],

f®g) = /O Flz — tyglt)dr.

It is easy to verify that it posscsses the properties:
L feg=g&f:
2. fe(g+h)=feg+fah
3. fe(g®h)=(f®g)®h

Next we introduce a number of notations. We put @, (x) = sinnz, n =1,2....,
and @, = & - &R, &, = &, & 1 &)n = ¢, ® L The propositions bellow
contain some of the properties of ®,,, ¢, and ¢, but first we prove the following
stimple lemma.

Lemma 3. Any function of the form
flz) :cac+a0+2(ak cos kx + by sin kx) (2.1)
k=1

has at most 2n + 1 zeroes in [—m,7), counting the multiplicities, that is, x,1.cosx,

sinz,...,cosnz,sinnr is an extended Chebyshev system in [—w. 7). Hence. for
any choice of —m < 11 < -+ < Ty < 7 and positive integers vy, ... . vy with
vy + -+ vy =2n+ 1 there exists only one function of the form (2.1) with o fized
¢ for which xy, is a zero of multiplicity vy, k=1,...,m.

Proof. It is enough to prove the first part of the statement. We follow a
standard argument assuming the opposite and making use of the well-known Rolle’s
theorem. So, let us assume that f(z) has at least 2n + 2 zeroes in [—#, 7), counting
the multiplicities. Then f’(z) has at least 2n + 1 zeroes in [—7,7), counting the
multiplicities. But f’(z) is a trigonometric polynomial of degree n and therefore
it has at most 2n zeroes in [~, ), counting the multiplicities. This contradiction
verifies the statement of the lemma. O
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Proposition 4. We have
N D, @, =nd,1 and Dn@1 = n@n 1 forn=2, 3.... :

(ii) ,(x) = ¢psina(l —cosa)?™ L where ¢, = m n="12..;
~ 1

(i) ®,(x) = m(l —cosa)’;

(i\') = ”‘ + ; bk sin ka,

where {bui} is the unique solution of the linear system

i kbnk = “l'v
k=1

> kb =0, s=3,5,...,2n-1.

Proof. The first statement of the proposition follows by differentiation of the
recursion relation ®, = ¢, & ®,,.1. Namely, we have

142 1N\2 7
<(—> ®,(x) = <—(-> / sinn(z —1)®,-1( dz‘—n——/ cosnix — )@, (t) dt

dx de/ [,
=nd,_(z) - n’ / sinn(x —t)P,_1(t)dt
Jo

=n®,_1(z) - n ®,(x).

Thus we have got D,%, = n®,_1. If we put e1{x) = z, then %,l = %,1 %1 =
., 2181 =>,%e;. Therefore &, satisfies the same recursion EclationAas ®,, with
®,(r) = z — sinx instead of ®;(z) = sinz. Hence we get D, &, = nP,_;. This
completes the proof of (i).
To verify (ii), we consider the sequence of trigonometric polynomials
. _ n

Po(z) = cpsinz(l —cosz)* !, ¢y = @i n > 1.
We shall show that it satisfies the same recursion relation as @, in (i) and P,(0) =
0=®,(0), P,(0) =0=®/(0), n >2. Hence, as P, = ®;, we have P, = ®p, n >
2. Forn>2

P)l(z) = ¢, (sinz(1 - cos )" 1"

2, 9 9
=cpsinz(l —cosz)" "7 (n” —3n+ 1+ n”coszt).



Consequently,

D,P,(z) = P!(z) + n? P,(x)
=¢psinz(l —cosx)"?(n* —3n 4+ 1 +n’cost)

+nc,sinz(l — cosxz) !

n—2

cn(2n® = 3n 4 1)sinz(1 — cosx)

n—2

= nep—1sinz(l — cos x)
= ”Pn-—l(l’)'

We get (iii) by integrating (ii). R

It remains to verify (iv). From (i) it follows D, 419, = n!. Consequently.
@n(x) = z/nl+as + > l(ank cos kx + by sin kx) for some constants app.byy.
Assertion (iii) implies that @, is an even function, therefore &, is an odd one.
This implies that <I> () =z/nl+ Zk:l nk Sin kx for some b, € R. Next we have
<I>’ (0) = @,,(0) = 0, which implics

It is easy to see that @55)(0) =0, s =2,...,2n — 1, as well. For s even this is
obvious. For s odd we can verify it, for instance, by induction on n. For n = 1
the statement is trivial as we have shown above. We assume that 5(;{;)(0) =0, s=

-»2n — 1, and shall verify it for n + 1 in the place of n. We differentiate in z
the equdhty Dpi1®ris (z) = (n+ 1)@,1(2) and get fors=1,...,2n —1

(1) + (n+1)%8) (2) = (n + 13 (a).

Then, putting z = 0, we get 5531(0) = 0 consecutively for s = 3.5,.... 2n + 1.

which is what we had to show. Now

Zmnk:o, s=3,5...,2n—-1,
k=1

follows from @{9)(0) =0,s5=3,...,2n—-1(n > 1). In passing, let us note that the
linear system
n l
Z kbny, = Ty
n!
k=1

> kb =0,5=35,...,2n—1

has a unique solution due to Lemma 3. This completes the proof of (iv). O
The following representation of ®,(z) has been pointed out to the author by
K. G. Ivanov.
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Proposition 5. The following formula holds :

d,(z) = %(I—Z&%&smx(l—cosr)“l). (2.2)

Proof. We just write for n > 1

€T z
Jn(z) = / sin?"tdt = —/ sin?" 1 tdcost
0 0

T
= —sin"* ' zcosz + (2n — 1)/ cos® tsin?(" ) ¢ gt
0

"

= —sin® 'zcosz + (2n — 1)/

xT
sin? Yt dt — (20 — 1)/ sin®™ ¢ dt.
0 0

Therefore
Jo(z) = =sin®" L zcosz + (2n — 1)1 (2) — (2n — 1) Ja(2).

Hence we get the recursion relation

1 2n—1
Jnlz) = —%51112”‘1 TCOST + n2n Jao1(x), n>1

Consequently, noting that Jy(z) = z, we get

— A
n—1
~Z 2n-1)2n-3)---(2n—-20+1) sinQ”*?"lxcosx)
~ (2n-2)2n—4)---(2n-2)
L @n=D1 1 iy
_ %((QTQ)HQJ_ 5sm rsin 2z
_ n n—-1 N‘ _
~_ (@n -1 (2n — 21 = 2)! Slnz(n~!—l)xsin2x>
2020 - 21 & (20 - 21 ~ 1)!
(2n -1 (2n— )-~ 2n-1)
— (Qn)” (l‘ — Q(Qn_ 1)” sSin zsin 2z
1= (2n— 21— 2)!
I el LU CO IS SRS )
5 ; T sin zsin 2z
1 (2 -2 -2
_(2n 1)~-(E_l usm 2(n~1~ stlex)
)l 24 (2n -2~ 1)1
_ (2n -1 1 (2k=2)1 2(k=1)
(2! (x—§ (k- 1" ISlU?w)
k=1
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(2n — 1! Ien (k=1 Skl e 20k}
- W(T ) WZ sin zsin 21)
k=1

(2n — D! ~ (k-1) .
= W(QI—ZW(1~COSQU sm2.z:).
k=1

Thus we have shown

Jn(z) = % (2.1: - i ((QLk:‘ll»))% sin 2z(1 - cos 21:)""1) (2.3)

To finish the proof, we just write

x/2

1 T gn+l /2 )
0] = 1-— O dt = ——————r in“"tdt
n(@) = g 1)1!/0 (1= cost) (2n = 1)!!/0 S

2n+1

Hence, making use of (2.3), we get (2.2). O
Let [a, b} be a finite interval such that 0 € [a,b]. In [1] we have proved that
Fr : Cla,b] = Cla,b] can be represented in the form

Fo= Ay Ap,

where the bounded linear operators 4; : Cla,b] — Cla,b], j = 1,2...., are defined
by

A= 1@+ [ - nred, =12
0
In the above mentioned investigation we have also shown the following assertion.

Proposition 6. The bounded linear operator A; is invertible and
T
‘4;1(97'1') =g(z) - j/ sinj(z — t)g(t) dt.
0

Hence

for g € C*[a, b} with g(0) = ¢'(0) = 0.
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3. THE PROOF OF THE TAYLOR’'S TRIGONOMETRIC FORMULA
Now we are ready to prove formula (1.5).

Proof of Theorem 1 It is enough to prove the assertion of the theorem for
¢ = 0. Hence it will follow for any ¢ € R by translation. Let 7(z) = ag + a1 cosz +
bysinz + - - + a,cosnz + b, sinnz be the unique trigonometric polynomial of
degree at most n, which interpolates f in z = 0 with multiplicity 2n + 1, ie.,
TH0) = f61(0) for s = 0.1,...,2n. Using

Djcoskr = (j> — k?)coskz and Djsinkz = (j* — k) sin kz,
we get

(n)2ag = Dpor(0) = Do f(0),
(n— k) (n+ k)!a N (n!)?

(=1)k1 e e+ ap = Dnp7(0) = Dup f(0), k=1,...,7,
. —k)! ! ~ ~
(_1)k71 (n—')_QiiL)bk = anTI(O) = anfl(o)a k= 1: ceay T

Hence 1,0(f,z) = 7(z).
It remains to consider the remainder r,,(z) = f(z) — Tno{f, z). Let us put for
the sake of brevity

z t ton
F(z) = /o </0 (/0 Dy f(tansr) dt2n+1> e dtz) dty.

Obviously. F € C*""1(Ay) and F19(0) =0, s = 0,1,...,2n. Now r, () = f(z) -
Trnol(f. J:) 1mphes Dn+1rn( ) = n+1f( ), T € Ag. V\e have proved in [1] that

(Fag)®" Y = Dpyyg, g € CTHAY).

Therefore (d/dz)*™* 1 F, (rp,z) = Dupyirn(z), € Ao. Hence, making use of
r,(l (0)=0, s=0,1,...,2n, we get F(ry,x) = F(z), & € Ay, that is,

Ay Apr, = F. (3.1)
Proposition 6 states for g € C?(Ag) with g(0) = ¢'(0) = 0 that
) a2
Simple calculations yield for g € C%(4) with g(0) = ¢'(0) =0
(B ®9)" =2 ®g", (3.3)
and for any g € C(Ay)
dp @9(0) = (2 ®¢)'(0) = 0. (3.4)



Now (3.1) and (3.2) for j = 1 imply
flz"'fln?”n = {1 @F” :q)l @F”.

Next, applying again (3.2) (for j = 2), using (3.4) (for k = 1), and then (3.3) (for
k = 1), we have

®

1
Ag - Apry = FY = @ & P

®

Y1 ® P2

Proceeding in this way, we finally get

1 )
Tn = —qun ® F(Zn)' (35>
n.
To finish the proof, we write
1 T t .
7'n<l'> =3 <@n<m - 7l)/ Dn+1f(5) d5> dt
n. N O 0
1 x t -~
. </ Dt f(s) ds> 4%, (z — 1)
n: Jo 0
1 T ~
= - (I)n(:r - t)Dn+l.f<t) dt
n! Jo

1~ -
_,q)n ® Dy f(2).
n!

This completes the proof of the theorem as Proposition 4 (iii) states ®,(z) =
1/(2n — D1 ~ cosz)™. O

Remark 7. An estimate of the remainder. (Again we discuss the case ¢ = 0.)
The mean value theorem implies

Dny1f(&) [° n |
rolz) = mh/o (1—cost)™dt, = € Ay, (3.6)

where €, € Ay depends on z. Hence

HEIH—lfHoc(AO)
@l < =G T

/ (1- cost)”dt’ , T € Ag. (3.7
0

Now, using the simple inequality 1 — cosz < z?/2, we get

|I‘27‘L+1

Irn(z)] < ,Hﬁnﬂfﬂx(gow z € Ao. (3.8)

2n+1)
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4. APPLICATION

Formula (1.5) can be uscful in expressing the error in approximation by linear
operators that preserves trigonometric polynomials up to a given degree. Indeed, let
Ly : Cl=m. 7] = C[-=,7) besuch that L, f = fif f € T, and let f € C?"H[—x,7].
Then we have

f - Lnf = ([ - Ln)"'nfa (41)
where ) R
ra(foz) = m/c (1 —cos(x —t))" Dy f(1) dt
for some fixed ¢ € [—m, 7].

Let —m <29 < -+ < 23, < 7 be arbitrary nodes. Then, as it is known, there
exists a unique trigonometric polynomial ¢, (f. z) of degree n such that t,(f,z) =
flxe), k=0,...,2n. It can be represented in the form

2n
ta(fom) =D flan)tar (), (4.2)
k=0
where
2n T 1.
| }—[‘# sin —
J=0.j#k
ton() = L5 . (43)
H sin Tk
44 2
=077k
Now the considerations in the beginning of this section and (1.5) with ¢ = —7 easily

yield Proposition 2. That proposition implies the following estimates of the error
f(z) —t,(f,x) for smooth functions f.

Corollary 8. Let f € C*""l—r 7). Then we have for z € [—7, 7]

N 7(2)] D fllo .
() 110) = tn ()] € gl Dm0 - (= )]

where
2n 2n T T -1
_ . Ty — X
M(x):z:( H sm—2—~]~> .
k=0 \j=0.j#k

. e P p@ B fllse |z a0z
(@) [£(@) = talf. )] < a(n—1H12n -1 ) 2 s

for nodes —m+a<zog < - <zop <w—a, a € {0,n).
Proof. The assertions of the corollary follow easily from the estimate

(1 = cosf(z — £)4])" = (1= cosl(zx — 1)])"]
< 02" cos|(ax — t)4] — cosl(z ~ £)4]| (4.4)



and the relation

r+arr —2t 0 rp—u

—25si sin . t< Ty,
sin 5 5 <X Tk,
ST —t
QSinzl \ rr <t <z, 3
cos[(ry —t) 1] —cos[(z—t);] = 2 , (4.5)
5 Il —
—2sin? -k , r<t<uxp
0, t>x.rg.

Now (4.4), (4.5) and the inequality |sinz| < [z] imply

[(1 = cos[(x — t)+])" — (cosf[{zy — ) ])"] < n2" Yo — 24,
therefore, using again the inequality | sin z| < |#| and the fact that Z;lo tar(z) = 1,
we get for any x and ¢

2n
Kz, t)| <n2™! Z o — x|t (2)] < 027 (@) |z — a0 - -F T — T2l
k=0

Hence assertion (i) follows. To verify (i), we just have to notice that if =7 +a <
To < -+ < Ton < T —a, where a € (0,7), and z € [—, 7], then

. T — Ik I x
sin ———— s
-t " . TR —t
sin —— < g , v <t<z, and sin A. < g L <t < g
2 Sin—é 2 Sini

> 2/l o] < 7/2,

These two cstimates, (4.4), (4.5)
vield for z € [, 7} and any ¢

n2"mw r—zx
|(1 = cosl(z — ). ])" = (cos[(zx —t)])"] sin 5 k E ,
a
which, on its turn, implies for z € [~7, 7] and any ¢
2n
. n2™m A 8
i[‘/ (Ivt)l S a Sl { ltnk(x)‘
k=
n2"wu(z ) . T I — Ton
= sin - |sin ————1.
a 2 2

Hence assertion (ii) follows. [

Remark 9. Our conjecture is that for any fixed 2’ € [~n, 7] the kernel K (z'. 1)
does not change its sign in [~m,7]. If that is true, then the mean value theorem
implies the Lagrange-type estimate

5n+1f(§7:)

flz) —tu(fiz) = (n])?

w(z), z€[-7.7]



where f € C?" " [—x. 7], and
n

w(r) =a +ap+ Z((Lk cos kx + by sin ka)
k=1

is the only function of this form, which vanishes in the nodes {x}3", and has no
other zeroes in [—m, 7). Actually,

2n

wlr)=2— Eazkt“k(z).
k=0
Let the bounded lincar operator L,, : C*[~7, 7] — C*[—7. 7] be of the form
L (f.r)=M,x* f(z):= / Myla =) f(t) dt, (4.6)

where M,, € Li[—n.7]. For any fixed t € [—7, 7] we define the 27-periodic function
pt : R — R by

pr(x) =1 —cos|(x — 2kx — t)4], € [(2k - V)7, (2k + )7), k € Z.
It is quite easy to verify the following assertion.

Proposition 10. Let f € C*" [~ 7] be 2m-periodic. Let also the bounded
linear operator L. defined by (4.6), preserve the trigonometric polynomials of de-
gree n. Then

1

f(l") - Lrl(faI) = m

[ ) = M g @)D 0.
Proof. Making use of formula (1.5) with ¢ = —= and changing the order of
integration after that, we get easily the estimate

1 w

n!(2n - I /Aﬂ(1 — cos(z — )4 )" D1 f(1) dt

_ WT::W /Jr Mz —1t) </ (1 —cos|(t — 1L)+})715,1+1f(u) du> dt

il

= = L, (0t =00

T

- Mp(x —u)(1—cos[(u—t), )" du) ﬁnﬂf(t) dt.

-

fla) = La(fz) =

Thus the proof is completed. O

Immediately, Proposition 10 yields
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Corollary 11. Let f € C*"*[—m, 7] be 2m-periodic. Let also the bounded lin-
ear operator L, defined by (4.6), preserve the trigonometric polynomials of degree
n. Then

s

1~ Ll € gy 1Ml 1Dl

i
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In the paper the important question on existence of strong M-bases is considered. A
new kind resolution of identity is introduced. Based on this resolution, necessary and
sufficient conditions for existence of strong N-bases are determined. As a consequence,
the existence of strong M-bases in certain Banach spaces is shown.
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1. INTRODUCTION

Strong M-bases are natural generalization of Schauder bases in separable Ba-
nach spaces. It is known that not every separable Banach space possesses a
Schauder basis. In 1994, Terenzi proved that every separable Banach space has
a strong M-basis ([10]). The concept of strong M-basis was transfered into non-
separable Banach spaces and its properties were studied by G. Alexandrov ([1]).
The existence of strong M-basis in a nonseparable Banach space X leads to more
detailed information about the space. For example, it implies the existence of an
equivalent local uniformly rotund norm on XX ([2]), which has a considerable impact
on the geometry and topology of the space. A classical example of a Banach space
which possesses a strong M-basis is the space C[0, ] of all continuous functions on
the interval [0, o] ([1]).



In this paper we introduce a new kind resolution on a Banach space. Using
this resolution, we determine necessary and sufficient conditions for the existence
of strong M-bases in nonseparable Banach spaces and apply them to obtain the
existence of strong M-bases in certain classes of nonseparable Banach spaces. The
question for the existence of strong M-bases is considered also by Deba P. Sinha
([9]). Note that our results arc more gencral and they are announced earlier, on an
International Colloquium ([3]).

Let us mention some basic notations used throughout the paper. If a is an
ordinal, | a | represents its cardinal number. If 4 is a set, | 4 | denotes its cardinal
number. w is the first infinite ordinal. The density character of a topological space
X (dens X) is defined as the first cardinal number A such that there is a dense
subset A of X with | 4 |[= A. If F is a subset of a Banach space X, linF is the
linear span of F and [F] denotes the norm-closed linear span of F. Throughout
the paper X denotes a Banach space and X* denotes its dual space. Recall that a
Markushevich basis (M-basis) of X is a biorthogonal system {z;. fitier CX x X*
for which [{z;}ies] = X and {fi}ies is total (i.c. fi(z) = 0 for all i € I implies
z = 0). An M-basis of X is said to be a strong M-basis of X if

every z € X belongs to [{ fi(z)z;}ier]- (1.1)

A linear operator P : X — X on a Banach space .X is said to be a projection on .Y
if P2 = P,. The concept Projectional Resolution of Identity (PRI) is well studied
and PRI’s are constructed on some classes of Banach spaces (]5,6,11.12]). A PRI
on X is a collection {P, : w < « < p} of continuous projections of X into X', where
w1 is the smallest ordinal with cardinality | p |= densX and for every a € [w. ] the
following is satisfied:

(1) Pozpﬁ = PBPO' = sz'n(_a.B) for every Je€ [w.,p};

(i) P, = Idx;

(ili) densPo(X) <ja|;

(iv) there exists a constant C' such that || P [|[< C for all 3 € [w. ul;

(v) U{P341(X) : w < 3 < a} is the norm-dense in P, (Y).
Note that the classical concept PRI requires ||Py|| = 1 for all & € [w,v]. but for
the present purpose it is sufficient to have all the projections bounded by the same
constant. By [6, p.236], if {Pa :w < a <p}isaPRIon X with ¢ =1, then

every z€X belongs to [{P,z} U{(Ps1 — Py)r: w <8 <v}l (1.2

It is not difficult to see that (1.2) is valid also for a PRI with C' # 1. Condition
(1.2) plays a basic role for the results in the next section. That is why. a new kind
resolution based on this condition is introduced there.

At the end of this section we recall the definitions of the spaces used in
Section 3. A Banach space X is said to be Weakly Lindelof Determined { WLD) if
there exist a set I and a limited linear one-to-one operator T : X * — [2(I), which
is weak-pointwise continuous. A Banach space X is called Weakly Countably De-
termined (WCD) if there exists a countable collection {K, : n > 1} of w”-compact
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subsets of \'"* such that for every € X and every u € X7\ X there exists
an ng such that x € K,, and v ¢ K,,,. A Banach space X is said to be Weakly
Compactly Generated (WCG) if there exists a weakly compact subset 17 of X that
spans a dense linear subspace in X. For any set 1,3 (I) denotes the subset of
[0,1)F consisting of all functions {z(i) : i € I} such that z(i) = 0 except for a
countable number of i's. Let K be a compact set. Then K is said to be: Eberlein
compact if K is homeomorphic to a weakly compact subset of some Banach space
X: Gulko compact if C(K) is weakly countably determined; Corson compact if
it is homeomorphic to a compact subset of 37 (I) for some I; Valdivia compact if
there exist a set I and a subset K, of [0, 1]1 Such that K is homeomorphic to K
and Ry N5 (1) is dense in K.

2. NECESSARY AND SUFFICIENT CONDITIONS
FOR THE EXISTENCE OF STRONG M-BASES

Since condition (1.2) is important for our main theorems, we replace some of
the conditions in PRI's definition and consider the following kind of resolution:

Definition 2.1. Let X be a Banach space and v be an ordinal with cardinal-
ity | v [= densX. A Semi-projectional Resolution of Identity (SPRI) on X is a
collection {F, : w < a < v} of continuous projections of X into X such that:

(i) PaPs; = PgP, = Pyiinta.3y forevery a, 3 € [w,v];
(i) P, = Idy:
(iil) densP,(X) < densX, Va € [w,v);
(iv) every € X belongs to {P,z} U{(Psi1 — P3)z: w <3 < v}l

As was observed above, every PRI on X satisfies (1.2) and hence it is a SPRI on
Y. One could expect that not every SPRI is a PRI, but a concrete example is not
known vet.

The following theorem determines conditions of a resolution on a Banach space
X, implying existence of a strong M-basis on X:

Theorem 2.2. Let v be an arbitrary ordinal number and let {Py : w < a <
v} be a collection of continuous projections of X into X, satisfying the following
conditions:

()ijvpdpo“ min(a.3): VQ/JJE[WI/)

(ii) each z€ X belongs to [{P o} U{(Psr1 — P3)z: w< 8 < v}
If there exist strong M-bases of P,(X) and of all (Pay1 — Po)(X),a € [w,v), then
the space X has a strong M-basis.



Proof. Denote Ty = P, and T, = Pat1 — P, for a € [w.v). For every
a € {0} Ufw,v) let {x8, fe}ier, be a strong M-basis of T, (X). For each a €
{0}Uw, ) and each i € I, define the functional F* € X" by the formula F2(z) =
fE(Toz). We will prove that the system {z%, FYac{oyulww).icr, 18 a strong M-
basis of X. Condition (i) implies that the bounded operators Ty, a € {0} U [w,v).
are projections which satisfy

T.T5 =0, Yo # 8, (2.1)

where O is the null operator of X*. Thus

wr 1, fa=73andi=y7,
F; (lf):{

0, otherwise,

which proves the biorthogonality.

Fix now an arbitrary = in X. For every a € {0} U [w,v),
T,z € [{fﬁ’(TaI)o:?}iela]

By condition (ii),
T e [{Tax}ae{()}u[w.u)]- (2.2)

Therefore
€ {FM@)20}] e poyoonier” (2.3)

It follows from (2.3) that the family {F{*}ae{ojupw.v).ier, 18 total. [

By the result of Terenzi ([10]), asserting that every separable Banach space
possesses a strong M-basis, the next corollary is an obvious consequence of Theorem
2.2.

Corollary 2.3. Let {P, : w < a < v} satisfy the assumptions of Theorem
2.2. If the subspaces Po,(X) and (Pot1 — Pa)(X), a € [w,v), are separable, then
there exists a strong M-basis of X.

Note that for some classes of Banach spaces the existence of a PRI implies the
existence of a resolution satisfying the assumptions of the above corollary. Namely.
by [6, p. 236], if every element of a given class P of Banach spaces admits a PRI
{P,} such that all (Pay1 — Pa)(X) belong to P, then for a given X € P with
dens X =| pu | there exists a collection {Q : w < v < u} of projections of X into
X satisfying the SPRI’s properties and such that Q. (X) and all (Q,+1 — Q4)(X)
are separable. Note that the same assertion can be proved in case the assumption
"PRI" is replaced by "SPRI". The next theorem gives sufficient conditions for
the existence of a strong M-basis in each element of a given class of nonseparable
Banach spaces.
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Theorem 2.4. Let P be a class of Banach spaces such that for every X € P
there exists a SPRI {Py : w < a < v} on X such that (Pay; — Pa)(X) € P for
every a € [w.v). Then each X € P has a strong M-basis.

Proof. We proceed by transfinite induction on the density character of X.
If dens X = |w|, 1.e. if X is a separable spacc. then X has a strong M-basis
({10]). Let now dens X > [w| and let us assume that every space Z € P with
dens Z < dens X has a strong M-basis. Let {P, : w < a < v} be a SPRI on X
such that (Pay1 — Po)(X) € P for every a € [w,v). Then all the subspaces P, (X)
and (Pas1—~P,)(X), a € [w.v), have a strong M-basis by the induction hypothesis.
Now, applying Theorem 2.2, we obtain that X has a strong M-basis. [

An obvious consequence of the above theorem is the following

Corollary 2.5. Let P be a class of Banach spaces such that:

1) P s a hereditary class (i.e. if X € P and Y is a subspace of X, then Y
also belongs to P);

2) each X € P admits a SPRI{P, :w < a < u}.
Then each X € P has a strong M-basis.

Theorem 2.2 gives sufficient conditions for the existence of strong M-bases. Tt
turns out that properties (2.1) and (2.2) of the bounded projections 7, are also
connected with necessary conditions for the existence of strong M-bases:

Theorem 2.6. A Banach space X has a strong M-basis if and only if there
exist a set of ordinals J and a family {Ta}aey of continuous projections of X into
X. which satisfy the following conditions:

(1) ToTs is the null operator on X for every o # 3;
(i) every £€X belongs to the norm-closed linear span of {Tot}ocs;
(iii) there exists a strong M-basis in To(X) for every o € J.

Proof. It follows as in the proof of Theorem 2.2 that the existence of bounded
projections {Ta : X' = X'}aey, satisfying (i)-(iii), implies the existence of a strong
M-basis of X. Vice-versa, let {z;, f;};cr be a strong M-basis of X. Since every set
can be well ordered [7], order I and let v be the ordinal number of this order. For
every a € [0,v) define the operator T, : X — X by Th(z) = fu(z)ze, Yz € X.
Then the family {74 }acjo.,) satisfies conditions (i)-(iii). O

Note that the above theorem remains valid if condition (iii) is replaced by

(iii") all To(X) are separable/finite dimensional.

It would be interesting to find out whether there exists a Banach space which
possesses a strong 1 -basis and does not possess a PRI. In case such a space exists,
it would mean that the resolution used in the above Theorem 2.6 is more proper
than PRI when strong A/-bases are considered.



3. EXISTENCE OF STRONG M-BASES IN CERTAIN CLASSES
OF NONSEPARABLE BANACH SPACES

Since every PRI on a Banach space X is a SPRI on .X, Corollary 2.5 remains
valid if PRI is used instead of SPRI. Based on this corollary, the existence of strong
M-bases in some classes of Banach spaces is obtained.

Proposition 3.1. If X s either a WLD, a WCD or a WCG-space, then X
has a strong M-basis.

Proof. Tt is known that the class of all WLD-Banach spaces is hereditary and
every WLD-Banach space admits a PRI ([4])). Thus, Corollary 2.5 implies that
every WLD-Banach space has a strong M-basis. If X is a WCD or W(CG-space,
then X is a WLD-space ([4]) and therefore has a strong M-basis. [

Proposition 3.2. If K is a compact either of Valdivia, of Eberlein, of Gul’ko
or of Corson, then there exists a strong M-basis of the space C(K).

Proof. Let K be a Valdivia compact, {h : w < a < i} be the PRI on
C(K), constructed in [6, p.256], and P be the class of all spaces C(V7), where 175
are Valdivia compacts. Observe that all subspaces (Paq1 — Pa)(C(K)) from this
construction belong to P. Therefore, by Theorem 2.4, there exists a strong M-basis
of C(K). The rest follows trivially, keeping in mind that if K is a compact of
Eberlein, Gul’ko or Corson, then K is a compact of Valdivia ([6, p.253]). O

As it is well-known, there exists an orthonormal basis in every separable Hilbert
space. Concerning nonscparable Hilbert spaces, let us mention, for example. the
space of all almost periodic functions of Bor and the set {eM}, which is a complete
orthonormal system for this space ([8]). The next proposition proves the existence
of a strong M-basis in every nonseparable Hilbert space.

Proposition 3.3. Every Hilbert space has a strong M-basis.

Proof. Let H be a Hilbert space and u be the smallest ordinal with | u [=
densX. Fix an arbitrary dense subset {z3}1<3<y in H. For every a € fw, ] let
Lo = [{z3}3<a) and P, be the orthogonal projectional operator on L,. Then the
family {Pa}aefw,) is @ PRI on H. Finally, apply Corollary 2.5 to the class of all
Hilbert spaces. U
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DINI DIRECTIONAL DERIVATIVES

VSEVOLOD I. IVANOV

In this paper we show that the upper Dini directional derivative of an radially upper
semicontinuous function has the same lower bounds as the lower Dini directional deriva-
tive, and that the second-order upper Dini directional derivative of an radially upper
semicontinuous function, which satisfles some additional assumptions, has the same
lower bounds as the second-order lower Dini directional derivative. A second-order
complete characterization of a convex function is obtained in terms of the second-order
upper Dini derivative and of the first-order one. These results are extensions of the
respective theorems of L. R. Huang and K. F. Ng.

A second-order Taylor inequality is derived.

Keywords: nonsmooth analysis, lower bounds of Dini directional derivatives, lower
bounds of second-order Dini directional derivatives

2000 MSC: main 49J52, secondary 90C25, 26A27, 26B25

1. DINI DERIVATIVES

A lot of derivatives of the nonsmooth functions are introduced mostly for the
purpose of optimization. The Dini derivatives play a key role among them.

In the sequel E is a real normed vector space, the real finite-valued function
f is defined on the open set X C E. The set of reals is denoted by R, and
R =RU {+oc} U {—00}. Consider the following generalized directional derivatives
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of f at the point z € X in the direction u € E:

fi(@;u) = limsup T F(z + tu) — flz)),
t10

fllzu) = lirgénft"l(f(:c + tu) — f(z)).

They are usually called respectively upper and lower Dini directional derivatives.

The following theorem claims that the upper Dini directional derivative of an
radially upper semicontinuous (radially u.s.c. for short) function has the same lower
bounds as the lower one.

Theorem 1. Let X C E be an open conver set, and f: X — R be a radially
w.s.c. function. Suppose that u € E, and o € R. Then the following implications
hold:

filziu)>a, Ve X = fllziu) > a, Ve X, (1.1)
filziu)>a, VoeX —> flz+tu)— flz) —at 20, (12)
VreX,Vt>0 provided that 2z +tu€ X.

Proof. Assume that f}(z;u) > « for all z € X. If a = —oc, then the claim is
obvious. Let @ > —o0, and § be an arbitrary number such that 3 < a. Suppose
that ¢ € X is fixed. There exists a sequence ¢, of real positive numbers, converging
to 0, such that

t (f(z + tau) — f(z)) > 8. (1.3)
Consider the function

U(t) = fz+ tu) — fz) = Bt
which is defined for all t > 0 such that = +tu € X, and the set

A={t€(0,00) | z+tue X, ¥(t) >0}

It is clear that t,, € A4, and inf A = 0. We show that A is an interval with the right
endpoint
b=sup{t € (0,00) |z +tu € X}.

Indeed, suppose that there exists ¢ € R, satisfying 0 < ¢ < b, ¥»(c) < 0. Since ¢ is
w.s.c., then by the generalized Weierstrass theorem there exists a global maximizer
¢ of 1 over the closed interval [0,¢c]. It follows from (1.3) that there exists ¢ € A
such that 0 < t < ¢. Hence %(€) > () > 0, and 0 < £ < ¢. According to the
necessary maximality condition, v/, (¢;1) < 0. On the other hand.

W (&1) = filz +&uu) - 8> a—-5>0,

which is a contradiction. Consequently, b is the right endpoint of A. and A is
an interval. For all sufficiently small ¢ > 0 we have ¢t *(f(z + tu) — f(z)) > 3.
Therefore f' (z;u) > 8. Since § is arbitrary such that 4 < a, then f' (z;u) > a.
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The converse implication of (1.1) is obvious.

We shall prove the inequality (1.2). Since b does not depend of 3, we have
t= (f(z+tu)— f(z)) > 3 for all 3 and t such that 8 < a, ¢t > 0, z + tu € X. Since
3 is arbitrary, then (1.2) holds. O

Example 1. The following example shows that the assumption f to be radially
u.s.c. cannot be dropped in Theorem 1. Consider the function f : R — R such that

fa) = 0, =z is rational,
= 1, otherwise.

The number 0 is a lower bound of the upper Dini derivative, since filz;1) >0 for
all z € R If o is irrational, then f! (z;1) = —oo.

Example 2. The following example shows that the assumption f to be radially
u.s.c. cannot be dropped in Theorem 1 even in the case when the function is lower
semicontinuous (l.s.c.). Consider the function f: R — R such that

fz) = 0, x is irrational,
B _I/Q', T = (p/Q)a p, qare integers'

The number 0 is a lower bound of the upper Dini derivative. The number v/2 is an
endless decimal 1,4142... The sequences 1, 10, 10?, 10%, 10%,... and 1+ 2, 14 +
2, 14142, 1414+ 2, 141424 2, ... correspond to the value of this number. Denote
them respectively by ¢, and p,. It is obvious that

-1/q -1

flv2:1) < lim inf < lim inf .
B V2 E>V2 p, g — integers (p/q) — \/— n—oe po - qn\/ﬁ

Since —1 < p,~2-¢,v2 < 0, then ~1/(pn—qnv/2) < —1/2and f' (v2;1) < —1/2.

Now we show some applications of Theorem 1.

The following result is a direct consequence of the Zygmund’s lemma (see, for
example, Penot [7, Lemma 1.1]). Some of its proofs can be found in Diewert 3,
Corollary 4 and 5], Giorgi and Komlosi [5, Theorem 1.13] and references therein.
See Scheffler [9, Lemma 4.1], too.

Corollary 1. Let ¢ : [a,b] = R be an w.s.c. function. If
@' (2;1) > 0 (¢ (z;1) > 0) for all z € [a,b),

then ¢ is monotone nondecreasing (strictly monotone increasing) on [a,b).
Proof. Let ¢! (z;1) > Oforallz € [a,b),and @ < 7; < z3 < b. Choosing a = 0,
it follows from (1.2) that ¢(z2) > ¢(z1), since the function ¢ can be continued in

a constant manner to the left of the point a to obtain an open interval, where the
right upper Dini derivative is nonnegative.
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Assume that ¢/, (z:1) > 0 for all z € [a,b). Using the arguments of Theorem
1, by choosing 8 = 0, we get that (1.2) will be strict with a =0, L.e. ¢ is strictly
monotone increasing. O

The following statement is well known (sec, for example, Giorgi and Komlosi
[5, Theorem 1.10]), but our proof is shorter.

Corollary 2. Let ¢ : [a,b] > R be an w.s.c. function. If the function

plb) — ola)

ht) = olt) - pla) = 7(t =), where v =L

assumes a global minimum over [a,b)], then there exists an intermediate point t,
such that ' (t1;1) <.

Proof. Suppose the contrary that ¢/, (t;1) > v for all t € (a,b). Therefore,
W (1) = ¢/ (t;1) —y > 0 for all t € (a,b). According to Corollary 1, A is strictly
monotone increasing on (a,b). The function h is u.s.c. Since h{a) = h(b) = 0.
by the upper semicontinuity, h(t) < 0 when ¢ € (a.b). Then h cannot assume a
minimal value over [a,b], which is a contradiction. [J

The following is a well known version of the mean value theorem. Similar results
arc proved in Demyanov and Rubinov [2, Theorem 1.3.1], Giorgi and Komlosi 5,
Corollary 1.9], Penot [7, Proposition 1.3] and references therein.

Corollary 3. Let ¢ : [a,b] = R be an w.s.c. function. Then

o(b) — p(a) > m(b—a), where m= inf o (z1).

a<z<b

Proof. Denote g(t) = p(a +t) — p(a) —mt. It is defined and u.s.c. for all
t € [0,b—a]. Since g/, (t;1) = ¢/, (a+t;1) —m > 0 for all ¢ € [0,b—a), by Corollary
1, g is monotone nondecreasing. Therefore, g(t) > g(0) for all ¢ € {0,6—a). Since g
is u.s.c., then g(b—a) > limsup,_,,_, g(t) > g(0). Hence, p(b)~¢(a)—m(b—a) > 0.
O

2. SECOND-ORDER DINI DERIVATIVES

There are several ways to define second-order Dini derivatives. One of them is
the following. Consider the function f: X - R, where X C E is an open sct. We
define the second-order upper Dini derivative of f at z € X in the direction u € E
and the lower one as follows:

(@yu) = limsup 2t 72 (f(z + tu) — f(z) — tf (z;u)),
£40
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fzyu) = lirgénf 207 (fla + tu) — f(®) — tf (z;u).

We call f upper and f” lower in consistence with the first-order derivatives.
but Example 1 shows that the inequality f"(r;u) < fi(x;u) may be violated
for some z € X, u € E. If z is rational, then file:l) = oc, fl(a:1) = 0.

Ha:l) = —oce. f(z;1) = 0.
The following theorem is connected to Theorem 1.

Theorem 2. Let X C E be an open conver set, and f : X — R be a radially
u.s.c. function. Suppose that u € E, o € R, and filau) + fi(z;—u) > 0 for all
x € X. Then the following implications hold:

Yz >a, Ve eX = fl(zu)>a, Ve X; (2.1)

iz >0, Ve X = flz+ ) - f(@) - f] (zw) > 0.5,
VreX,Vt>0suchthatz +tue X.
When f is directional differentiable everywhere, i.e.

filziu) = fL(ziu) = f'lau), Ve e X, Vu e E,
then the converse implication of (2.1) holds.

Proof. The case when o = —oc is evident. Assume that a > —oc and
Y(ziu) > a for all z € X. For arbitrary fixed 2 € X and 8 € R, satisfying
3 < a, consider the function

U(t) = flo+tu) — flz) —tfi(z;u) - 0.58¢%,
which is defined for all £ > 0 such that z + tu € X, and the set
A={te 0 )| z+tueX, ¥(E) >0}

Then 4 = (0,6), where b = sup{t € (0,oc) | z + tu € X}. Indeed, it follows from

Y(z:u) > B that there exists a sequence of positive numbers ¢, converging to 0,
which satisfy the inequality ¥(t,) > 0. Hence inf A = 0. Let there exist ¢ € R such
that 0 < ¢ < b and ¢(c) < 0. According to the inequality 1(t,) > 0, there exists
t € (0,c)N A. By the upper semicontinuity of ¥, there exists a global maximizer ¢
of ¥ over [0, ¢]. Since w(€) > ¢ (t) > 0, then 0 < € < c. On the other hand, we have

L&) = filz + Eusu) — fi(zu) — B¢,

V(& -1) = filz + &u; —u) + [z u) + BE

We conclude from the necessary maximality condition that ¥, (&v) < 0 when
v = +1. Using the hypothesis of the theorem, we get

0> Gh{E 1) + ¢ (€ -1) = fl(e + Eusu) + f (@ + Eui —u) > 0.
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} = 0. According to the second-order necessary maximality con-

Therefore ¢/, (&:1
) < 0. We continue

dition, v/ (&1
W& = flla+Euu) —3>a—-3>0,

which is a contradiction. Consequently, A = (0,b). Since b does not depend of 3.
22(fla + tu) = F(@) — tf(xiu) > 3

for all £ € (0,b) and for arbitrary 8 < a. Thus,
Jla+tu) = f(@) -t (x0) > 0.50F,

and

277 (f(x +tu) = flw) — tfL(z;u) > 272 (f(a + tw) — f(z) —tfl(ziu) > a

for all t € (0,b). Then taking the limits, as t — 0, we get that f"(z:u) > a.
In case when f is directional differentiable everywhere, one easily gets the
converse claim to (2.1), since

i) > fi(zu), Ve e X, YVue E. O

The following theorem is a necessary and sufficient condition for convexity.

Theorem 3. Let X C E be an open conves set, f : X — R be a radially u.s.c.
function. Then f is convex iff the following conditions hold together:

filzu) + fi(z—u) >0 forallz e X, u€E, (2.2)
Yzu) >0 forallre X, ueE.

If inequalities (2.2),(2.3) hold, and (2.3) is strict for allz € X, u € E. then f is
strictly conver.

Proof. Tt is obvious that each convex function satisfies inequalities (2.2), (2.3).
Conversely, suppose that (2.2}, (2.3) are fulfilled. Applying Theorem 2 by choosing
a = 0, we obtain that

flz+tu) — f(z) > tfl(z;u) for all t such that 0 <t < b, (2.4)

where b = sup{t € (0,00) | z + tu € X}. It follows from (2.4) that for all 2’ € X,
y' € X, X €[0,1] the following inequalities are fulfilled:

f@) = f@ + Ay —a") 2 Afi(a’ + Ay —2):2’ =), (2.5)
f) =@+ Ay ~2)) > A =N @+ Ay -2y - o). (26)

By using (2.2), we infer from (2.5) and (2.6) that
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(1= NF() + M) = fa + Ay — ') >
ML=N(fLE@+ Ay — a2 —y)+ fL + Ay =)y —2')) > 0.
Therefore f is convex.
The strictly convex case is similar. We must take only § = 0. Then it is seen
from Theorem 2 that inequality (2.4) will be strict. [

Theorems 2 and 3 are extensions of Theorems 1 and 2 in Huang and Ng [6],
where they are proved in the case when the function is locally Lipschitz and regular
in the sense of Clarke [1]. But inequality (2.2) is not used in Theorem 2 of Huang
and Ng [6]. A locally Lipschitz regular function always fulfills it.

Remark 1. For example. some classes of functions, which satisfy inequality
(2.2), are the Gateaux-differentiable, quasidifferentiable in the sense of Pschenich-
nyi [8], or locally-Lipschitz regular in the sense of Clarke [1] functions. Another
functions, which fulfill this condition. are all ones such that the upper Dini subdif-
ferential

of(x) :={cE" | {{u) < fl(r;u)VueE}
is nonempty for all z € X. The functions of the first three classes from above are
directional differentiable.

The following is an application of Theorem 3, and it says when a second-order
Taylor inequality holds.

Theorem 4. Lei o : {a,b] = R be an u.s.c. function. Assume that
(@) + ¢l (2 -1) >0, Ve (ahb).
Then o(b) — p(a) — (b—a)y (a:1) > 0.5m(b — a)?, where

m =min{ inf of(z:1). inf of(z;-1)}.

Proof. Consider the function
g(t) = pla+1t) —¢la) — ¢!, (a;1) — 0.5mt>, t € [0,b — al.
It is clear that for all t € (0.b — a)
gitl) = (a+ 1) = ¢ (a; 1) —mt,

g (t=1) =\ (a+t:—1) + ¢/ (a: 1) + mt.

Therefore,
gyt ) +gl(ti-1) =l (a+ 1) + ol (a+t;-1) > 0.

Since
glt:l) =¢lla+t1)—m >0,
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giit;=1)=¢(a+t:=1)—=m >0,

then, by Theorem 3, ¢ is a convex function on (0,5 — a). Hence, there exists the
directional derivative ¢'(t; 1) = ¢/, (t; 1) for all t € (0,b—a). It is easy to verify that
there exists ¢/ (0; 1) and it is equal to 0. Using the upper semicontinuity, it is casy
to show that g is convex on [0,b — a].

Suppose that 0 < t < s < s+t < b— a. By convexity of g, the following
inequalities hold:

9(5) < Sg(f) + (1 = Dhgls + 1),
g(t) < Lg(s) + (1= Lyg00).

s s
Consequently, 17 (g(¢) ~g(0)) < t7Y(g(s+t)—g(s)). Taking the limits as ¢ — 0,
we get that 0= ¢/ (0;1) < g/ (s;1) = ¢g'(s; 1) for all s € (0,0 — a). By Corollary 1.
¢ s monotone nondecreasing on [0,b — a). Using the upper semicontinuity, we get

glb—a)> limsup g(s) > g(0) = 0,

s—b—a,s<b—a

which completes the proof. O

Similar, but different results to Theorems 3, 4 are derived by Ginchev and the
author [4] in terms of other lower derivatives.
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LETTER TO THE EDITOR

TURAN’'S THEOREM AND MAXIMAL DEGREES

NIKOLAY KHADZHIIVANOV and NEDYALKO NENOV

The number of the edges of a graph G will be denoted by e(G), and the
subgraph induced by the neighbours of the vertex z — by G,. For the n-vertex
r-partite Turan’s graph T,.(n) we define (T, (n)) = t,(n).

B. Bollobas in [1] and [2] considered the following simple algorithm to construct
a large clique in a graph G: “Pick a vertex z; of maximal degree in G; = G, then a
vertex 3 of maximal degree in G = G,,, and so on. The algorithm stops with z;
if 7; has no neighbours in G;”. In [1] this algorithm was called the degree-greedy
algorithm.

B. Bollobas in [1] proved the following results:

Theorem 2 (see also Theorem 3 in [2]). Let G be a graph with n vertices and
tr(n) +a edges, where a 2 0. Let z be a vertex of mazimal degree d. Then e(Gy) =

tr_1(d) + a, and the inequality is strict unless n —d = [QJ Lcand G =Gp+ Ko_g.
T
Theorem 5 (sec also Theorem 6 in [2]). Let G be a graph with n vertices
and least t.(n) edges. Then either G = T.(n) or else the degree-greedy algorithm
constructs a clique of G of order at last r + 1.

The aim of this note is to draw attention to the fact that:

1. Theorem 2 is a special case of Proposition 1, p. 235 in [3] ({4) = G, for
some vertex x of maximal degree), because the case a = 0 of Theorem 2 is obviously
equivalent to Theorem 2.
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2. The degree-greedy algorithm found by B. Bollobas, A. Thomason and
J. Bondy in 1983 is a fact published in [4], p. 119. by N. Khadzhiivanov and
N. Nenov in 1976.

3. Theorem 5 coincides with Corollary 1 from [4], p. 121.

4. Theorem 3 in [1] is not correct, because A(T,(n)) # (r —k — 1)s + p.

5. In the proof of Theorem 5, given in [1] and [2], equalities G, = T,_a(n — k)
and G = T,_1(n) are not correct.
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