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FOIMIIHWK HA CO®UNCKNUA YHUBEPCUTET ,CB. KIMMEHT OXPUICKHU*

SAKYJITET ITO MATEMATUKA 1 UH®OPMATHKA
~Tom 97

ANNUAIRE DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET‘IVNFOR.MATIQUE
Tome 97 :

HAYYHOTO HACJEJCTBO HA HOAHKAPE '
U CbBPEMEHHATA MATEMATUKA

EMIJT XOPO30B

The paper discusses the main contributions of Poincare to mathematics. On the basis
of his work on authomorphic functions, celestial mechanics and topology we trace his
enormous influence on modern mathematics.

B ncropuaTa Ha HayKaTa MMa HeronaM 6poli reHEH, KOMTO ca OCTAaBWJIK B Ha-
CIEACTBO 38 HOKOJEHUATA He CaMO U He TOJKOBa Sa6cTAmUTe CH Pe3yaATaTH, & npeny
BCHYKO HACOKHTE B PA3BUTHETO Ha HAYKATA, 38 AECETKH M CTOTHUM roaunu. B Mare-
MATHKaTa TOBa 6e3 chMHeHue Ca Hioron, Oitnep, Tayc, I‘a.noa, Prman... Cnokoitro
MOXKEM X8, HOCT&BHM B Ta3u pesuna u [loankape, ome nosede, Je He € JIECHO 18
ce NI0COYM MAaTEMATHK C,TIO-TOJIAMO BIHAHHE BbPXY ChbBPEMEHHATA MATEMATHKA OT
sero. [To-nony me ce onmraM sa naM HAKOM apryMEHTH B IOJKpeNa Ha Ta3d Te-
34, KaTO CH JaBaM CMETKA, Ye KOraTo Ce NWINe W FOBOPH IO [OBOA CTO M NETAECET
FOIWINHAHATA OT POYKAEHHETO MY, ABTOPLT MOXKe M Ja € NPHCTPACTEH.

Asnpu Tloankape ¢ He camo MaTeMaTHK, HO ¥ du3uk u dunocod. (B ckobu me
oTbenexa, Je To#t e yuyeHudT ¢ Balt-MHOro HoMmHanuu 38 HobesoBa Harpaza no
" ¢wuznka B nepuoga 1901-1912 roa, ) Tyxk, obaue, e ce cnpa CaMO BbPXY MaTeMaTH-
9ECKOTO MY TBOPYECTBO, HE CaMO HOPAJH ,,TUIICA Ha MSACTO , KOJIKOTO IIOPAJIM JIUIICA
Ha kBajmguKanus. SICHO e, OCBEH TOB&, Y& B TEKCT KATO TO3M HAYIHHTE ONHMCAHMS
‘e GbAAT ONPOCTEHH U HNOPbLPXHOCTHH, 38 KOETO Ce HAIABAM cnenna:mc'ru're na
nposmx'r pasbupane.
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€ CBbpP38HO [0 HAKAKAB Ha4YuH ¢ Audepenmmanaute ypapunenus. Ho obnacrra, B
xoaro paboru [loankape ne e , qudepennuanun ypapresna® . O6nacrra Ha Iloan-
Kape € OpOCTO HayKaTa — ¥ MaTeMaTnka u ¢usnka, u pmwiocopus. OnnreTe N8 Ce
pasrnexna [Toankape B eHH IJIACT MOXKe JIECHO Ja JOBeAe A0 npodaHH3ApaHe Ha
TBOPYECTBOTO MY. '

Hexka na ce pbpHa kbM aBTOMOp¢HENTE byHKIUA.

C HAKOJIKO JIyMH OCHOBHHTE HjieH, OT KOHTO Tpbraa [Toankape, ce CBeXKAaT A0
caepaoTo. Pasrnexxaame qudepeHnyalHO ypaBHEHHE OT BTOPH pef B KOMIIEKCHATS,
obnact

| y +p(2)y +q(z)y=0.

¢ parmonannn koebuuuentn. Heka y1(2z) u y2(2z) ca ase smueliHO He3aBHCHME pe-
LIeHHs] B OKOJIHOCT Ha HeocobeHa Touka 29 (T.., B KOATO KOe(hHIHEHTATE HAMAT
nomocu). MoxkeM Ja NpoIb/KaBaMe TE3M PellleHHs! N0 BCEKH I'HT B KOMIUIEKCHA-
‘ra obmact. MaTepecen e ciyuasT, KoraTo WeTAT OGHKAJS ocobena movukn z; M ce
‘BpbIIa B HeocoGeHaTa TOUKa Zo. JIBOMKATA JIHHEHHO-HE3ABHCHME PeleHns y) (2) u
y2(z) npemuHaBa B Apyra ABOMKA JMHeHHO-He3aBUCHME pemenns wi(z) u wa(2).
HocsnenanTe ce u3passBaT KaTO AHHEHHA KoMOuHaUMA Ha Y1(2) 7 Y2(2):

w@=an@+but @
w2(2) = yy1(2) + dy2(2) S | 3)

Ho orTyk cnenpa, 4e ornomenuero w = wy(2)/wz(z) e ,qpoﬁuo—mmeﬁna tbymamﬂ
Ha oTHOmeHHeTO Y = Y1(2)/ya2(2):

+
Ty+96

C Apyru aymm npu obakaisne OKosI0 0cOGEHAT2 TOUKA 2] BeJAMUHHATA Y. nIpe-
THpnaBa ApoOHO-nuHefina TpaHcopManmd. Bewykn TakuBa ApoOHO-THHEHHH
rpancopmaimu ofpasysar rpyna G, koaTo e quckperHa noarpyna Ha SL(2,C).
A cera na pasrnename dynknuara z(y), koaTo e obparna Ha y(z). fAcuo e, ye npu

cmana Ha Y ¢ w = I'(y) , kpaero I' e qpobro-/muetina Tpancdopmaims or rpynara
G. '

&
@

w =

Ha ToBa MACTO € moJIe3Ha AHAJIOTHS C NOHATHETO NEPHOAMIHA (DYHKLMA BbP-
Xy peanHara npasa. IIpm Hes, axo 3HaeM 3HaYeHHETO Ha (YHKIMATA B HHTEPBAJ
¢ XbJDKUHA €AWH [EepHO/, dJyﬂmmn'ra Ce BB3CTAHOBABA BbPXy NAjaTa mpasa. A
MMEHHO C ABIKCHUS C AbJ/DKHHA [IEPHOJS WIK KPaTHH Ha NIEPHOAR MOXEM Ja Mpe-
HacaMe rpadukaTa Ha PyHKOuaTa. CHIOTO BAXKHK 38 eUITHIANTE DYHKIHA, T..
JApoitHO-neproAnYHATEe MepoMepdHE DyHKIpH. 3aIN0 KA3BaM Te3d TPUBHAJIHU He-
ma? 3amoTo KiachT or dynknmn, orkpur or Iloaskape, e 06obmenne UMeHHO B
Ta3u mwiockocT. IIpean Tosa @yKc e CTHIHAI 10 TOBA, Ye HAKOH ByHKIHH, OOCTPO-
€HH Ype3 peleHMATa Ha JuHelrn nudepeHIMaIHE ypaBHEHUs OT BTOPH pex, 6n
TpabBAJIO fla MMAT CBONCTBOTO, Ye KO B APIYMEHTa UM HalpaBaM ApoOHO-JmHeHHA
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rpancdopManEs, NPHHAJIEXKAIIA Ha TOAXOMANA rPYNa, CBLp3ana ¢ aadepeHd-
anHOTO ypasHenue, GyHKimsTa He ce npomens. Ho kbae ca aedunupann, gaum ca
eNHO3HAYHM, KaXBH CBOMCTBA UMaT B JAp. 3a OyKc He e sicHo. .

[pu TbpcereTo Ha choTBeTHAA anajor [loankape crara 5o enpo 3abesexuTe-
HO OTKpMTHE — OpOOHO-IMHEHHATE TpanchopMaIMe, KORTO H3NPpamaT eaMHAIHAA
Kp®r B cebe cH, MOTAT [18. CE HHTEPHPETUPAT KATO deugrcenua 6 zeomempuama Ha
Jlobauesceru. Jio ToBa BCHIMHOCT HpocTo 3akmodenne [loankape crura 4pes pabo-
THTE CH NO KBaApaTHIHK (GopMu — T.e. IO Teopud Ha yucharal Iloankape naﬁnpa "
‘BHAJIOF Ha NOHATHETO , MHTEPBAJ ¢ XbDKAHa neprox” . Toit nonyyapa HaspanueTo -
dyndamenmanna obaracm (Bmx dur. 1, Ha KOATO BCeKH TPUBI'BIHEK € (byEnaMeH-
TaJma obnact).

KakTo npu npenacaHeTo Ha HHTEPBaJ BbP-
Xy peaJjiHaTa PaBa MOXEM Jig, IOy IHM [AaTa
npaBa 6Ges Ja HMa 3acTblBaHe Ha obpa3suTe
(ocBen B KpammaTa), TaKA M TYK UPH IpeHacs-
nero (HO cera B reomerpusTa Ha JIoBageBcku)
. Ha GyHIaMeHTaIHaTa 0618CT MOYKEM Ja NOKPH-
€M HAI'bJTHO eJMHMYHAA KPbr, HO 6e3 obpdsuTe
JAa ce 3acTbiBar. Tyk obage, 3p Pa3JI¥Ka OT IpPy-
OUTe OT AUCKPETHU JBEMKEHUS BbLDXY peajHa-
Ta NPaBa, JUCKPETHATE IPYIH HE Ce'ONpeNeiaT
necHo. Hemo mosede: ToBa € cieapamus npo-
6aieM, ¢ xofito ce connckpa Iloankape. Ho 3a
HEro HAMa Ja FOBOPH.

Taka ce NOABABACAHO OT YTKPHTHATA HA
[oankape - To3u meT B Xunepbomranara reomerpus Ha Jlobauescku. To nocu Ha-
asaHneTo Mozen Ha [loankape. B Hero npasuTe Ca MM JMAMETDH MM OKPBXKHOCTH,
NepHeHAUKYIAPHN Ha eUHUYHATA OKPBXKHOCT (dur. 2). . .

®ur. 1. EAMHMYHAAT KDPDBT,
pasbur Ha QyHIAMEHTATHA obnactu

D

Qur. 2. Mogen ra Iloankape

v

Hobpe e aa npanomus, Je ciex Jlobauesckn n npeau INoankape xmnepGoins-
- HaTa IeOMEeTPHs HAMa Ko¥ 3Hae KaKBO PaspuTHe. T e mo-CKopo eK30THIHa 06aacT.
- Hanporus, ¢ Monena sa Iloankape u ¢ n3cnenpannsta Ha [loanxkape (1 Korait) no
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asroMopdHN byHKONYU, TS CTaBa NEHTPaJieH 06eKT B MATEMATHKATA, KaK'bBTO € M
cera. :

Tyx cu cTpyBa Ja HPUIIOMHS TBOPYECTBOTO HA €{UH OT Hali-H3BECTHUTE XYJ0K-
aung Ha 20 Bek - Mayparc Emep. IIpeanonaram, e HAKOH OT Bac ca BIXKIAJIH
KONHS WIH MOXKe GM opMTMHaMM Ha HerosuTe pucyHku. Ho Moxe 6u He MHOro
3HaAT, e 3HaMeHUTaTa My cepus - Circle limit (rparuyHa OKpPBXKHOCT, BUXK HaOp.
[4]) e noBnusana umerHO oT Mozena Ha Iloankape (dur.3). dopu aymara ,nosBjms-
Ha* e HeToyHa — Emep e u3ywaBaJ ¢ Aeraityii MoJieia, BKIIOIHTEIHO H ¢ IOMOIITa
Ha n3BecTHHA MaTeMaTnK Kokcrep. PucyHkure ca npaBeHH ciles BHUMATEJHH Ipe-

‘cMaTaHUA Ha 6a3aTa Ha TO3M MOJEN.

XapakTepHoTO 3a TBOpUYecTBOTO Ha [loankape e,
Ye TOH He pemapa KOHKPETHO nocTaBenu 3aqa4n. [loan-
Kape W3CJleZiBa IPUPOJIATA, HCKa Ja pasbepe dunoco-
dusTa Ha cBera. KaTo npaBmio Tolt HsiMa XHTPOYMHH
pascbxxaenns. Jlopu KOHKpeTHUTE CH pe3yiaTaTd Toi
H3BJIMYA, CJIefi HAMUPAHETO Ha JNBYDKENIAs MEXaHHIbM
Ha sBJeAneTo. Taxa e u npu aBTOMOpdHATE GYHKIMH.
Cnen maMupaseTo Ha BpPB3KATa ¢ Xmnepbosmtina~
Ta reomerpus [loaHKkape CPaABHUTENHO JIECHO NOJIy4a-
: Ba BCHYKO OCTaHAJIO. ,

®ur. 3. Circle limite 1 Hexa pesiomupame. 3a nenure Ha aadepennuan-
HWTE YPABHEHASA € Pa3BUTa TEOPHS, OCHOBAHA HA KOM-

IUIEKCHUS aHaJIM3, TeODHATa Ha IPYNHTe, HeeBKIMAOBaTa reoMeTpus. Manomssanu
ca ujaen OT Teopua Ha yncnaTa. Oule B HayayoTO HA 3aHHMaHUATA cH [loaEkape
3abens3Ba, e aBTOMOpdHUTE DYHKIMM CA MHOTO M0JIe3eH HHCTDYMEHT B M3yda-
BAHETO HA PMMAHOBHTE MOBLPXHUHY (VAMBHTENHO e, de [loaHKape N0 OHOBA BpeMe
HMa HeocOGeHO rojiemy No3HaHHA B Ta3u obnact). Hanpumep ypes Teopmsra Ha
apToMopdbHUTE DYHKIAH Ce NONyHaBa eJIHO OT HOKa3aTeNCTBATa (roBa Ha IToanxa-
pe) Ha TeOpeMaTa 3a YHUGDOPMH3AIUATA. T

IlponecsT Ha TOBA o',rxpmne Ha Hoamcape 0 emc!) ‘BORPYIOHO OT camusa Hero
B kuurara My ,Hayka u mMeron®. Tam Tolt nox P aber MHOTO POJIATa Ha
HHTYHIUATA, Ha 6€3Ch3HATENHOTO B HAYIHOTO KaTO CaMOHa0IIO-
JEHHASTa MY [0 Te3M BBIPOCH €3 H3BbHPEIHO A
npes MrcTuTyTa no o6ma ncuxosorus B ITapmxk |

JlHec He MOeM Jia CH NpeJICTABHAM MATEMAT]
muu. OcBeH B TeOpMATa Ha PUMAHOBHTE IOBBHPXH
U BaKeH HHCTPYMEHT Ha TeOpHMATa Ha umuciata [2]. Teopnsara Ha Hpe,IICTaBﬂHHKTa
H& rpynd, HeHTPaJHa obJ1acT, NPOHU3BAINA NPAPOAC-MATEMATHICCKUTE HAYKH OT
ADATMETHKATA JO KBAHTOBATA XUMHUs, e IPAKTHIECKH HEeBB3MOXHa 6e3 Hes [3].

Ha ToBa MACTO CHI'YPHO € HOAXOASAIIO Ja Ce CIIOMEHE 3a e{HA OT Hali-rpaHHo3-
HHTE POrPaMH B MATEMATHKATA - MporpaMara Ha P. Jleurnenic, cebp3salia Teo-
pusATa Ha YHCJIATA, TEOPHATA Ha MPECTABAHUATA M, pa3bupa ce, aBTOMOPQHHTE

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 5-21. 9



bynxmmn. Hepb3MOXKHO € TYK Ja ce Jaje u Gerjia OpefcTaBa 3a CHUHOCTTA HIIM
3HaveHHeTo Ha nporpamara. Ho KaTo cTpaHHYeH apryMeHT 3a Ba)KHOCTTa ¥ IIe
cnomeHa, e ¢miacosuTe naypeatd — Bnamumup pundens (3a 1990) u Jlopan
Jlacdopr (3a 2002), ca YAOCTOHH C BHCOKaTa HAIPAJa MMEHHO 38 H3C/EABAHHS B
Ta3m obsiact.

" HanaeaMm ce cmoMeHATOTO J0 TYK Ja JaBa NOHe Gerya mpeicTasa 3a MACTOTO
Ha aBroMopdauTe DYHKIWH B MATEMATHKATA A MATEMATHIECKOTO ecTecTBO3HAHHE,

2. HEBECHA MEXAHWKA

»BB3MOXHO € KJIIOYBT KbM pa3bupaneTo Ha TBOpuecTBoTo Ha [loankape na aa-
BAT HErOBHUTE HleH B HebecHaTa MEXaHAKS H [O-CHEIHAJHO - B HpobyieMa 3a TpUTe
Tesa.“ Moxe 61 ToBa MHEHHE HA U3BECTHHS MCTOPHK Ha MaTeMaTukara JI. Crpoiik
[5] ma sByum mpeyBemudeno, HO TO moAdepTaBa IHPOKO BH3NPHETOTO MHEHHE 3a
dysaaMeHTaJIHHA XapakTep Ha uaeure Ha [Toankape B Tasu obnacr. Hama cpmpe-
Hue ob6ade, ye paborure Ha Iloankape B 3aavaTa 3a TPHTE TEJa Ca 3Hax<o‘m 3a
TBOPYECTBOTO MY. \

!

Hait-anpes me NPHNOMHS OCHOBHATS 33,a48. OBeKTHT Ha H3CACABAHE € ABH-
JKEHNETO Ha IUIaHETHTE, TEXHUTE CITTHALM, KAKTO ecTectsenu kato JIynara, Taxa u
uskycreenu. Ha no-nayyen esnk sajayara 3sy«m taka. Tpu maTepuanuu (T c me-
HyJIeBa Maca) TOUKH, Ranpamep CirbEne, 3ems i FOmuaTep, ce MBAKaT B IpOCTpaH-
CTBOTO NOA JeCTBHETO Ha CHJIATE HA NPUBINYAHE NIOM HM 10 3aKoHa Ha Hio-
TOH. Hcka ce na.ce onume gpuxennero. Tasn pasumae:lgncxyauomm e ¢ Caydalina
- 3a/a9aTa BCHINHOCT HAMA CTPOra GOpMYIMPOBKA. Macne,nqna’renme camu buxa
MOTJIH Jia 5 IOILIIBAT CIIOPeJl HHTEPECATE X CEIIMTE CH.

3a paaymka oT 337a4aTa 3a JBeTe Tela, HA KOATO BCHYKH mamxenna MoraT
Jia ce onMmaT AeTallnHO M KnacHUUMPAT, TYK HAMAPAHETO HA HAKOE NBIDKEHHE,
HaIPHMEp NEePHOJMIHO, Bede e rojsm ycnex. Jlo6pe e a ce orGenexn, de 33189874 -
ChADPXKa NPAKTHYECKH BCHIKA TPYAHOCTH NPHCBINY HA MEXAHMYIHN 331a4H U CIe-
HHMAJIHO Ha 3aaYH 33 MHOIO Tela. '

Karo npasusnio cnenuanmcTaTe canTaT 3a riapel peayrrar Ha I[loanxape B Tasu
06J18CT JOKA3ATENICTBOTO 33 HEUHTEIPYMOCT Ha 3a/Ja4aTA, 34 TPHTE TeNIs - HapAMeD
Baitepmpac. ToBa o3Ha4aBa, 4e BCeKH ONMT Aa ce HANHMAT (HOPMYJIH, ONMHMCBAIIK
JABHXKEHUSATa Ha ILIaHETHTe, € oOpeden Ha HeycnieX. To3m pe3ynTaT e nony4eH B pe-
3yATaT Ha (UM aHANH3 Ha PE3YJITATHTE Ha HErOBHTE nNpemmecTBeRuny JIHHAmMENT,
Bonun 1 Ap. (r1aBHO ACTPOHOMH), KOMTO NOJY4aBAT , pEIeHHATA" BLB BUJ Ha be3-
Kpaitne penose. [loankape noKa3Ba, 4e penosere ca pb.sxo,zmnm Hopa;m TOBA ‘TOl
CbCPe0TO4aBa BHUIMAHHETO CH BBDPXY npobiemn oT KadecTBefl XapakTep. OTKbAe
obage aa 3anoune? O Hal-npocToTO, Hail-eCTeCTBEHOTO, KaKTO e THIm4Ho 3a [Toan-
kape. ToBa ca nepuoAHMiHATE peleHAsd, OpH KOHTO IJIAHETATE CJIEJ H3BECTHO BpeMe

0 Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 5-21.






06JIaCTH C MHOTO IPUJICXKEHUS — CPEA TAX HAIIPHMED C& METEOPOJIOTHATA,, XHUMHYEC-
KaTa KHHETHKa H Jp.

OTKpHUBAHETO HA XA0Ca € CBBP3AHO C eIWH JPAMATHYEH eH30[ B HCTODHATA
H8 HayKaTa M B MHade JumeHus oT Gypuu cpburns xupoT Ha [loanxape. Ile cu
[03BOJA Ja IO PasKaXka, Thif KaTo € CBbP3aH C €[JHO OT OCHOBHHTE CHLIMHEHHS Ha
Hoaaxape M C €QHO OT OTKPHTHATA, KOUTO Aana'r obnnka H& CbBPEMEHHATa MaTe-
MaTuxa (ur. 4).

ITo noeon 60-rogpmenHaTa Ha Kpaisd Ha IlIBenua v Hopeerna Ockap 11 ce 06s-
BSIBA MEXKAYHAPOAEH KOHKYPC ,,3G 64%CHO OMKPUMUE 8 YUCTIUA MATNEMATNUNECKY
aHaAUS" — TOB& IVIACH c'bo6me1me'ro B crmcaHnero Heltubp or 1885 r. Bes aa orn-
BaM B nojpobHocTh me npunomus, e Iloankape e 6mi 065BeH THPXKECTBEHO 3a
e/l oT ABaMaTa nobenareny. ITo pernaMent craTanTe Ha noGeuTemTe TPA6BAIO
Ja ce yGIAKYBAT B €JHO OT Hali-ABTOPHTETHHTE MATEMATHYECKM CIHMCAHMUS IO OHO-
Ba BpeMe, a M 10 cera - Acta Mathematica. IIpu nogroroexara Ha cnucasueTo
3a DeyaT MJISIEAT NOMOMHUK-PEIAKTOP H NO-KbCHO M3BECTEH Maremfmx Engapx
OparMeH OTKPHBA HesiCHA MeCTa B TeKcTa Ha IloaHkape i My TH chobmasa. Cien
KaTO IONpaBs CHbOTBETHUTE TEKCTOBe obesnokoenmaT Iloankape mperyiexia’ QTHO-
BO CHYMHEHHETO M OTKPHUBA JIOCTa NO-CEPHOSHY T'PEIIKY € IPaMaJIHy [OCIeCTBHS.
Ipe3 ToBa BpeMe CHMAHMETO Bede € HabpaHO H JOPH NO-IOMO -\ orpaduden 6pot
KHIDKKH €3 Pa3upaTeHH Ha OTAeaHM cnenmasucta. Cpen Tsax ca tmenone're Ha XYy-
puTo — Battepmpac # Epmur, actponomnTe - I'uiiien n Hnu,nme,mr, Ma'remamume
Kosanescka, JIn. Tloanxape chobmasa HenpuaTHUTE nosmm na TpejiceaaTe1s, Ba
xypuro Murrar-Jlednep. Ilo. Monﬁa HA nocnezmna TOBA. 8 B TolHA Me;x,zxy
Tax. I npamara umar cepnoaxm npamne cpe TaX ¢ aaamem M MATHK
Kponexep wiu MacTUTHAT aCTPOHOM I‘mmea, mvrpex'rOp cxa:m oﬁcep~
BaTopus. 3a KPaTKO BpeMe, OKOJO 2 Mecena, Hoaaxape npaxg'utzecxn Hanﬁena HOB
TPYA C Pa3iIHYHA Hay4HH 3aKJIOYeHus. Horpelmmm TBBPACRUS Ha annmape ca
BOZENIM JIO M3BOAA, Ye TpH nuanemme JBIOKeHHS He Ce NOABABAT XAOTHYHM m
xenns. B nosara pepaxups ce ncmamsa rONSIMOTO OTKPHTHE Ha Tloankape — - Cbile-
CTBYBAHETO Ha Xa0C B ne'repMKHKparm cucTeMa, B CITyad OIMUCBAHA C OGHKHOBEHH
JAndepeHIAAIHE yDaBHEHUA. S S

Tloankape cam 3amnama nonom omeqamane Ha TOMa.: I];eﬂafra HaABALIABA
3HAYUTEIIHO NPEMHATS, 0]y CH orxpan Ockap II.

A enu30bT HANCTHHA OCTABA B IrbjIHA TaliHa HOBEYE OT CTO TOZMHM, 0 RAYAJIO-
TO Ha JIEBETJECeTTe IOJMHHA Ha 20 BeK, KOM&TO MIIAIATA MCTODHYKA HA HAYKATA
Jixyn Bapoy-Ipuitn OTKDHBa I'bDBHA BapHaHT Ha ToMa B Wmcrmryra Murrar-
Jlednep, KAKTO ¥ CHLOTBETHATS KOPECHOHACHIHS.

ITak mepmogmymmTe pemenns noeexaar [loaHkape X0 OTKPHTHSA, HA KOHTO €
CBHAEHO Jja UTPAAT OCHOBHA POJA B Pa3BATHETO Ha MATEMATHKATA H HA TeOpDEeTHY-
HaTd dusnka npes 20-ti Bex. Crasa BBIPOC 32 TONONOTHATA. A3 ITe KAXKA HEMIO 38
TONONIOTHATA MAJIKO TIO-HATATDK, & Cera HMCKaM Ja IPHIOMEHS JACTH OT Pa3chiKae-
ausn Ha [Toankape, ¢ XoMTO TOM HCKA Ja YCTAHOBH CHINECTBYBAHETO HA TIEPHOAAYHH
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peleHns B 3aa4aTa 3a TPHTE Tena. Cbe cbobpakeHnA OT MEXaHUKATa TOH CBeXK-
JAa 33J1a9aTa JI0 BbIIPOC 33 KPHTHYHATE TOYKH Ha GYHKIMA BbPXY ABYMEDHHSA TOD.
Beska rakasa GyHKums pa3bupa ce, ¥Ma HOHE €OMH MAKCHMYM H €JHH MHHUMYM.
Crnenosatenno, 3akmodasa [loamkape, ¢yHKupATa EMa H AOHe ABe WHQIEKCHH
TOYKH, KOeTO B KOHKPETHHS CIydali BOAU A0 4 nepHoauyun pemenus. Topa c6uro
pa3cbKaeHue OT ABa peaa c%m;pma I1030BaBaHE HA TONOJOr¥daATa Ha TOpa H IIO-
CIenuasHo

1) xapaxTepncrukara Ha QOitnep-Iloankape (3a Hest e cTaHe JyMa IO-I0JY);

2) eJleMeHTH OT 'reopnx'ra Ha Mopc, nocTpoena 30 TOIMHA NO-K'BCHO OT M.
Mopc, :
T.€. 0 OCHOBHU BBIPOCH OT nec'bs,na.nena'ra olxe Tomosnorug. A 3aeJHO ¢ IIO-
clieIHATa reoMeTpUIHA TeopeMa ( TOBa e nocjeaHaTa cTaTas Ha [loankape) ropaure
BBOPOCH BOAAT A0 CH3AaBAHETO HAa CHMILIEKTHYHATA TOIOJIOTHHA, 10ABKAa ce T0 ro-
JFHH TI0-K'bCHO CJIEH CEPHsl PE3yJITATH B XHIOTe3d Ha ADHOJJ, KaKTO u paborute
:ua ['pomos, ®avop, Xodep u ap. C apyru AyMH TYK cpemame OCBeH HeOeCHaATa Me-
XAHHKA ¥ cepust (hParMenTH OT Pa3/MYHH Pa3/iesIu Ha TONOJOTHATS — arebpuaHa,
audepennpania, cammiektayna. Ho KkakTo gecro cTapa ¢ paﬁo'm're na IToankape,
npn HEro 'rpymio ce o'me.nﬁ'r xonxpe'rnu obnactn.

, Enpn BBIPOC , JO KOHTO p;oc'mra'r KJIaCHITHTE .TIa.rpanxc 7 Jlannac e B’prOC'bT‘
ycTotraupa, i e CrpEvueBarta cucrema? Topa e THIMYEH BBIPOC OT TEMATHKATA Ha
3aJadaTa 3a TpUTe Teaa (TYK Te ca mosede). BoupochT Tpabea ja ce pasbupa Ka-
KTO B OOMKHOBEHHRS, T.e. HEMATEMATHYIECKH €3UK — NHUTA Ce JaJli IUTAHeTHTe HAMA
[13 #30SraT MHOrO Jajede OT CABHIETO, Jand HAMa A8 ceé DPHO/ILKaBAT TPOH3-
BOJIHO 6/M3K0 N0 Hero MM noMexxay cu. Hama Tpymmocr ja ce Jame M To4HATa
MaTeMaTH4ecKa (POPMYIHPOBKS — BLIAPOCHT € Al DeIUCHHUSTA OCTABAT B HAKAKBA
KOMIOAKTHa 0671acT Ha (ha30BOTO NPOCTPAHCTEO -BCAKO B CBOA. SHAMEHHTATA Teope-
Ma Ha Jlamac ka3Ba, ye CIrbHueBaTa CHCTEMS € YCTOHUMBA, aKO Ce. IipeHeBpersaT
KBaJPaTHTE Ha MacHTe. TOBa He MHOIO SICHO TEbDACHHE 03HaYaBa CiAeqHOTO. B 3a-
JAadaTa 3a TPHTE TeJjia JOI'bIHUTENHO Ce NPEINOIAra, e MACATa Ha eRHO OT TeJIATa
- CrbHIETO - € MHOTO NO-TOJIsIMa. OT Apyrure Macy (Ha nianerure). Hanpamep ako
Mmacata Ba CirbHIIETO € eAHHMIA, TO MACHTE Ha IUIAHETUTE Ca XHWISJHU 9acTH OT
exununaTa. PemrenusaTa ce 3anucsar ¢ 6e3Kpaliiy pefiose, B KOUTO yYaCTBAT MACHTE.
BesmrquugpTe, B KONTO MaCHTe y4acTBAT Ype3 KBAADPATHTE CH IPOCTO 3a9epPKBaMe.
Heticreurenno te (kBagparure Ha MacuTe) me Gbaat (3a CiapbHueBaTa cucTeMa)
MIJIHOHY ITbTH NO-MaJIKH OT eamuuua. JIpyr e BLIOpoCchT, 9e Te ca KoebuuuerTs
npejl u3pa3y, B KOHNTO YUIACTBYBA BPEMETO M KOTATO TO PacTe, npeHeOpernarure
YJIEHOBE €BEHTYJIHO C'bINO PACTAT. .

Ioankape ce BpbIIa KBM Ta3# TEOPEMa B ChBbPIIEHHO APYyra noc'raﬂonxa, npo-
wanu3ama or Iloacon, KOBTO JoKasBa, Ye aKo Ce OCTABAT KBALPATHTE, HO Ce TpeHe-
6pernat Ky6oseTe, CrbHYEBaTA CHCTEMA € OTHOBO ycTolumBa. Tyk o6ade cMECHIBT
Ha JyMaTa ,ycroliuuBa“ e nocra paziudeH. Cera HOBOTO 3HaUeHHE €, Ye IJIAHeTHA-
Ta CHCTEMa BEYHO INE Ce BPbIa 6130 O CErallHOTO CH MOJIOXKEHHe, HO IIAHETHTe
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6uxa MOTJIH Zja Ce OTAAJIEYABAT KOJKOTO MCKAME MM Ja ce NpHO/DKaBaT Mpous-
BoutHO 6xmsko o CorpHnero mim noMexay cd. [Toankape JoKka3Ba faned Io-CHJIEH
peaynTar - 3aKiouenrero Ha Iloacon e BapHO 6e3 jga ce mpereGpersar KyGoBere
A KOMTO M Aa OWJIO cTemeHM Ha MacHTe. 33 CTOMHOCTTA HA TO3W Pe3y/ITAT lue
NPUNOMES, Ye B Haarpo6uaTa ped Ha [leHnese Tolt € eAUH OT MAJIKOTO CHIOMEHATH.
Tpunomesiikn HarpaiaTa Ha mBegckus Kpa [lensiese kaspa:

+1Ipes 1889 2. npu csobuenuemo xa pesyamama om cacmesanuemo Ppanyus
HAYNU C 20pdocm, e 3AAMHUAN MEDGA ... € Jaden Ha Ppanuysun, maad yuen Ha
35 200. 3a 6aecmawomo uscaedeane Ha YCMOUUUBOCTING HE CABHNEEAMA CUCTIEMA
u umemo wa Ioanxape cmana useecmuo naecaxade. ™

Cpexncrsara , ¢ kouto [Toankape nosnydaBa TO3H GIeCTHAIN PESYITAT HMAT Aalled
[I0-TOJISIMO 3HaYeHne OT camus pe3yirar. CTaBa BBIIPOC 3a 3HAMEHATATa TEOPEMa
Ha [loankape 3a BBL3BPBIIAHETO, KOSTO HMa TOPe-JOJYy CBHINOTO 3BydYeHe, HO 3a
TIPOM3BOJIHA MEXAHIYHA CHCTEM3, 2 ChINO H 38 TEOPHATA Ha HHTErDAJHATE HHBADH-
arrd. ToBa ca Bce 06IMOTEOPETHYHN PE3YJITATH, JIE2KAIIH B OCHOBATA HA €ProjuiHa-
Ta TEOPHUSA, BAXKHHA 338 CTATUCTHYECKATa (DABHKA, 38 XHAPOMEXAHHKaTa H T.H.

' BnpoueM BbOPOCHT 33 YCTORIHBOCT HA CIHHIEBATA CHCTEMA CE OKA34 JOCTA N0~
caoxer. Bpnpexn orpoMEOTO NpUABIKBaKe Kbypkamo ce Ha Iloankape, BBIPOCHT
Ha Jlarpamx u Jlansac tpabsame Aa Jaka 70 rogHHMA 38 A8 OOJYYH CPaBHHTENHO
yzmoBaerBopuTesien otrosop. To#t e gacT Ha Taka-HapedeHaTa KAM-reopus - mo
umenaTa Ha Kosmoropos, Aprong u Mosep. Konxpe'r:mm Pe3yNTAT OPHHAIJIEKH
Ha Torasa 25-roauimHua ADHOJLA ¥ W3Ka3aH ,Ha NPBLCTH [VIACH: C [OJISMa BEPOAT-

HOCT CJIbHYEBATa CUCTeMa € ycTolmBa — npubmispresso 0. 999
Y

Tacro cpbp3anu ¢ HebecHaTa MexaHuKa ca paboTure Ha l'Ioam(ape [0 JAHAMUY-
HY CHCTeMH UM KAYeCTBEHa Teopus, MO-TOYHO c'bs,ua,naégro #. Fimqus0 B KOHTEKCTA
Ha KAYECTBEHATA TEOPHS Ca TOJIAMa IACT OT H3CIEABAHHATA MY [0 HeeCHA MEXaHH-
KA — HaIPEMEp TE3M MO NEePUOIUIHY PelIeHHAs A cn'bpswnﬁe ¢ tax. Hanewe npean
Ioanxape e 6HJ0 ACHO, Ye NOBeYETO AUGMEPEHIVAIHY YPABHEHAS HE MOFAT JDa ce
pemaT B HUKAK'bB cMHCHI. CTaHANO e fcHO, Ye TpAGBa Ja ce u3ydJaBaT pelleHMsiTe.
6e3 na ce pemasar ypasHemaTa. Ho mpemmecrsenmuure My (Hampumep Bpuo u
Byxe) He ca mMasm yGenurennn npaMepn. BepoaTro 3amoro He ca 6mim HafcHO
KOe e TOBA, KoeTo Tpabra na ce usydana. [loaHkape € ycnsur Ja HaMepH yAMBHTEIHO
MPOCTH N H3KJIOIATETHO BaXKHI FeOMeTprYHN 066K TH — (pa30B IOPTPET Ha CHCTEMA,
¢neraseH oT Ga30BHTE KPUBH, T.¢. KPUBHTE 3a3AcHU OT PEIIEHMATa B [IapaMeTpn-
3upaHN C HE3aBUCHMATA IPOMEHIHBa, (,BpemeTo” ). 3a HeCUENMAIMCTHTE INe CIIOMe-
Ha, 9€ TOBA € H3y4yaBaHe Ha PEIIeHHATA B IAJIATA UM CbBKYnHOCT. M ThbKMO 321010
ce BbBEXI3 IeOMeTPUYHA KAPTHHA MOXKEM Ja FOBOPHM 33 TAXHOTO B3aMMHO Pasto-
naoxenne. Enug ronsaMa 4acT OT TE3W H3CACSABAHHS Cera € YACT OT 38XbIDKHTEJIHHS
MaTepuaj B 00y4eHHeTO 0 MATeMATHKA He CAMO 33 MATEMATHIM, HO U 3a IPEACTa-
BHTEI HA JPYTH €CTECTBEHH HAYKU, UHIKeHEDH MKOHOMUCTH B JAp.

Cpen nerafinure Ha (pa30BU#A IOPTPET HAl BAsKHUTE €A NOJIOXKEHUATA HA paBHO-
Becie ¥ OTHOBO DEpHoudHuTe pemenus. [Tocnenure ca H3TOYHAK Ha MHOTO XbJjI-
6oKH H MEOTO MPH/IOKHA B ACTUHCKHS CMHCDJT HA JYMATs, H3CNEABAHHUS — IEPAOTHY-

'HHTe JBIDKEHHUS Ce CPEHIAT Ha BCAKS KPAauka ~ K B MEXAHWKATA H B PaJMOTEXHUKATA

-~
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# B nKkonoMukaTa. Hanpumep paGoraTa Ha paJmosiaMIIaTa ce OIMCBa C YPABHEHHETO
Ha Ban zep Ilomx:

V+@+?)0+w?y=0

CroTBeTHaTa cHcTeMa HMa (a30B OPTPET NOCoYeH Ha Gur. 5.

Van.des Pl nonlinest oxcillalor

T T * Y —

W

25}

Wi
-

®ur. 5. Tpenrenns, onuceanu ¢ ypasuennero Ha Bau gep IToxn

Or Hero ce BIXKIa, 1€ eJHO OT PENEeHHSATA € YCTONYMB FPAHHEYEH Kb — H30IAPAHO
DEPHOJHYHO pellleHHe, KOeTo , IpHBIMIa* 6nmsxkure My pemenns. Exun or 3naMe-
HuTHTe HpobneMu Ha XHnGepT - MECTHANECETHAT € IOCBETeH MMEHHO Ha IEPHOAHY-
HWUTe peIleHHs U [I0-TOYHO Ha ,IpaHmyYHHTe IMKIM Ha IToankape* .
Hzcnespannsra B HebeCHATAE MEXAHMKA MMAT OWIE MHOLO CJIEJCTBAS ¥ BPB3KH.
e 3acerna u enma obnacr, CTOsMa He 4aK TOJKOBa 6imzko g0 TomonorudTa. Ilpm
- H3C/IeABAHETO Ha NpHEBATE H oTnusuTe Iloankape JOCTHTA JO 384a4ATA ¢ TAHTEH-
OHAJIHA KM 9aCT OT FPaHMNaTa HaKJJOHEeHa MPOM3BOHA 38 omepaTopa Ha Jlamiac.
CampsT TOM He € yCIan Ja DOCTHrHe ycnex B Hesi. Ho paGoraTa Ha CepHst yd4eHH
" B'bB BTOPATa NOJNOBAHA Ha 20 BeK 10 TO3M HpobeM CTEMY/Apaxa 10 H3BECTHA CTe-
HeH PasBUTHETO Ha TeopuATa Ha TceBAoEEPEHIMATHATE ONEPATOPH, TEOPHATA
Ha MHTerpaJjHHUTe oneparopd Ha Qypue, AeJRKATHA H CIOXHU 4CHEKTH HA XapMo-
HU9HAS aHaTu3. MHOro or Hait-BummWTe cnemmanuctu no YJIY ca JonpubeciH B
TOBa Hanpasienne - Banasse, Xsopmanaep, Eropos, a B no-mupok nnas - Cratts
U y9eHAIHUTE My,
VMecTHO e Ja ce CIIOMEHe, 4e GhLArapCKATA MATEMATHKA HMa JOCTOCH npu-
HOC B Te3u paspaborku. B cepus paboru axan, I1. ITonmsanos # HeroBaTa mxoma
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yCTaHOBNX8 BAaXXKHH DE3YNTaTH, OT KOHTO e CIIOMEHa CaMO HoCjieAHHs — Ha ITon-
HBAHOB H Ky'reB 3a ChIIECTByBaHe ¥ €AUHCTBEHOCT Ha BHCKO3HO pememle Ha Ta3Hu
33848 38 HAI'bJIHO HEJIMHEUHO €JIUNTHIHO ypaBHeHne.

'

3. TOTIOJIOTHSE

,BcHuxy pasnEYEN MLTHING, BBPXY KOHTO 83 HOCJIEZI0BATEIIHO Ce HaMUPaX, Me
BoZiexa kbM Analysis situs ( T.e. Tonmosoruara, 6.a.)“ - nume IToankape B cBOETO
»AHamUTHYHO pe3ioMe” . B yBoZa K'bM bpBATA CH CTATHUSA 1O TONOJOTHA TOBA Ha-
6moaenue e omucaso noapobHo. IToarkape n0COYBa TPH NPUMEpPa OT CBOETO TBOPYe-
CTBO, KOHTO MOTHBHDAT C'b3/JaBAHETO Ha TONOJOrEATa. [IhpBusT e oT ajrebpryunara
reoMeTpHud - KiacuUKaUaTa Ha KOMIUIEKCHE KPUBY ¥ noBbpxauan. CreasampsaT
[IpAMEp HPEACTABAABAT AUEPEHIHAIHATE YPABHEHAS U CHICIUAIHO — Te3H, KOHTO
onucBaT HeGecnaTa Mexanmka. Hakpas Iloankape nocousa mpobsieM oT TeopHsTa.
Ha I'DYNHTE — ONpeleisHe Ha KpaftHuTe WM ANCKPETHU I'PYNd, CbhbAbpXKAaIy ce B
oburuTe JMHEHHY TpyIH. .

Tononoruara ce 3aHUMaBa ¢ reome'rpnqnu CBOHCTBa Ha KDUBH, IOBbPXHUHH, I
T.H., KOTO OCTABAT HEU3MEHHH MY NeOPMAaIUs Ha NeOMETPHIHATE OGEKTH — IpH
pa3Tarasxe, orbBate, Ho 6e3 K'bcaHe uiH Jenere. ITpu Hesa HanpAMep OKpPBLIKHOCT U
TPHWBI"bJHEK Ca €4HO H CbIHO. ~ .

KaapaT, e Iloankape € H3MHCAWA TOHOJIOTHATA, 3AIMOTO He YMeeN 4B PUCYBa
~ oIlle K&TO YYeHHK NpPH Hero roprure QUrypH Grim TpyAHo pasmuanmu. A3 obage
MPENOPBYBAM Ha T€3H, KOUTO MUCJST TAKa Aa norne,zma'r PHCYHKHATE My CBbP3aHH
¢ aBroMopdEA GyHKIAH. N

" OcHOBHaTa 3371848 Ha TONOJIOrUATA € J1a &uacmbuuﬁpa reome}'pmnwre obexTn
C TOYHOCT A0 XOMeOoMOpdu3mu - OB Ca HMEHHO nocoqem no-rope JedopMaiun.
Bu 6u10 HecnpaBeAMBO 23 KaxkeM, de IToamkape e 3al09HaR OT OPa3HO MACTO, de
He e mman npemmecrsenmny. Takbs e Oitnep cbe 3azauaTta 3a Kvonmrcbeprckn-
Te MocToBe Wik opMynara Ha Ofnep, cebpaama 6pos Ha CTeHHTe, pLGOBeTe M
BbPXOBeTe Ha M3IrbKHAJIH MHOrocreHd. Takusa ca Puman u Bern, knacadumupann

ABYMEPHATE KOMIAKTHY NOBbPXHUHH. B'bnpexn TOBa € TPYAHO Ja Ce Kaxke, Je Te-
3¢ IIOCTHIKEHHS Ca NPEACTABILABAIA uocne.aona'renna, MaTeMaTHYeCKa JUCLAIIAHA.
»Ilopana ToBa npe;m Hoanxape TPAGBA J[3 rOBOPHM 33, IPEUCTOPHUSL Ha, a.nreépnq-
HATa TONOJIOTHA" Ka3Ba €, OT Hall-W3BECTHATE MATEMATHIM ¥ HCTODHII Ha Hay-
kara 2K. JIponomne. Honara.ne'ro Ha OCHOBHTE Ha CTPOMHA HAayKa C HeliHUTe OCHOBHH
nOHATHSA, DAKTH, 338%H ¥ T.H. 3AHOTBA C BHBEXKJAHETO HA CIIOMEHATOTO TIO-Tope
NOHSATHE XOMeOMOPGHIBLM Mexxzy ape MHoroobpasms. 3a IToankape THOC/IEAHOTO
' 03HAYABA MHOXKECTBOTO OT ChEMECTHH DEINeHAS HA CHCTEMA yPaBHEHHS, 3ajae-
" HU € [iaKA YRKIWH (@ yIOBJIETBOPABAIIY €CTECTBEHH YC/IOBHASA 33 Ja OTIOBAPH
MHOJXECTBOTO OT PEIIeHHs Ha HHTYMTHBHOTO INOHSTHE, KOETO MMaMe OT KPHBA H -
IIOBbDXHUHA). Wrannancxknsr matemarnk Beru e Bhpen TIpeas TOBa 1HCIa, KOUTO
OCTABAT HEM3MEHHH NPH XOMEOMODP(H3MH, T.e. IPEACTABIABAT TONOJIOTHIHA HHBA-
PHAHTH. Pa36npa ce npu Bern (u HeroBua npusTen Pmaaﬂ) TE3U NOHATHA Ca ,HA
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opbeT® - OPH TAX JHICBAT NOHATHSTA XOMeoMophu3bLM, MHOroobpasue. [loanka~
pe He caMo Ye KaBa ACHA JeHAHNMSA, HO FH JOMbJBA C OIE YHCIa-AHBAPHAHTH —~
KoedunpenTy Ha TOp3uA. U1 Balt-BacxHOTO - Cnexn [loankape Te3n dmcna MOXe Ja
ce MpecMSTAT 38 MHOT006pa3dsA ¢ IO-rONAMa Pa3sMEePHOCT. 1e3H, KOMTO MO3HAaBAT
no-106pe npeamera, 6uxa Ka3aJjd, Y€ BHIPOCHUTE YHCHA ce AedUHMPaT OT rPyIHTe
OT XOMOJIOTHH, OTTOBaPAMHE Ha MAOroobpasuero. Iloankape Huxbae He ynorpabasa
NOHATHETO I'PYITH OT XOMOJIOTHH, MAKAP Y€ [IPX BHAMATENHOTO YeTERE Ha HeroBuTe
CTATHM C€ BHXKJa, Ye IIOHATHETO € TaM - MPOCTO He € HapedeHo C TEe3H AyMH.

Meuoro roguan cneq [Toankape RUCKycuaTa Ha TeMa KOHf € BbBeJ IpyrsTe OT
XOMOJIOTHM HpOAB/IKaBa — Hanpumep Max/JIe#tn cMara ve Tosa e Iloankape, a Jpo-
Zode — obpaTrroTo. Cropes MeHe He e HY>HO Ja NPMIHCBaMe BCHYKO, JO KOETO ce
e noxocran [ToaHkape, Ha HErOBOTO EME - CTPYBa MH ce, 4e TOl caMusT 6u BB3pa-
3WI KATO UMaM NPeABHA KaK MEeAPO € Pa3iaBaJ npuoputeTd. BLB Beeku ciyvait
IToarkape HuK'bIE HE € W3NOJ3BAJ I'PyHoBaTa CTPYKTypa. BupodeMm To#t e BbBen
H APYro OCHOBHO NOHSITHE HA TONOJOTH#TA - (PYHIAMEHTANHATA IPYyNa, TO3H BT
¢ ToBa uMe. C TOBa TO MoJlara OCHOBATE Ha JPYT OCHOBEH Pa3fes Ha TOIOJOrH-
T3 — XOMOTONW4YHATa Tonosiorns. Eann 3abenexxnarenen npobieM CBbLP3aH C TOBa
MOHATHe € 3HaMeHmsT npobiseMm Ha [loankape. BaApHo U e 4Ye axo exHO MHOFO-
obpasune uMa XOMOTONHYEHNTE IPyrnu Ha cepats, To ¢ chepa? 3a pemennero Ha
MHOTOMEDHHUTe aHaJIO3H Ha TO3H mpobieM (T.e. 32 YETHPHMEDHH, NETMEPHH H T.H.
cdepn) ca najenu ase dunacobeku npevun- Ha C.Cumettn u Ha M. ®puaman. Ho
HCTUHCKHUAT fpobneM na [loankape e 3a TpumepHara cdepa u ToH Bce ome He e
pemen. Tolt e mocTaBeH B COMCHLKA Ha Hal-Ba)kHUTe MpobieMu 3a HOBHS Bek. 3a
pemenne'ro My neo'r,ua.ana cor3ganeauat Uncraryr Knett npenocrass Harpa',na orl
MITHOH Jonapa. !

B egna ot mbpsuTe KBHrH no Tonosorus C. JIed)men nmine ,,Moxce 611 B HATO
eJEH JA1 OT MaTeMaTHKaTa [IoaHKape He e OCTABIUI HO-HEM3IJIa/MO CBOA OTIIE-
4aTBHK OTKONKOTO B Tomonorusra“ . U ToBa ce orHacs 3a MaTeMarTmka, KOATO e
BbBes aBTOMOpdHATE DYHKIMH, CH3LAT € TEOPHATA Ha AHHAMWIHHTE CHCTEMH,
npeo6bpHAM e BbArieauTe B HeGeCHaTa MexaHMKa ... Jle#icTBATENHO, KaTO. Ce 3a-
[0YHE OT BbBEXK/JAHETO HA OCHOBHHTE NOHATHS M METOJATE 38 HPECMSATAHE UDE3
TPUABTYJIALHS, MUHE Ce Ipe3 Halt-T560KHTe CBOMCTBA Ha TPYIIHUTE OT XoMoJIoruy
H Ce CTUTHE Ji0 MSACTOTO, K'baieto [loankape IPEBb3X0XK A BCHIKH H3BECTHH MaTeMa-
THOY - Jja CBbPXKE Pa3nudHu 06/1acTH OT MATEMATHKATA C TONOJOTHATA [0 TaKaBa
CTemeH, 4e Jia He MOXe Ja Ce [OCOYH Kosi e OocHOBHaTa obmact. Ille cm mocmyxa
¢ npumepu. ITocosenara no-rope dopmyna na Oitep M3rvexxna enHo saﬁenexm»
TeHO KOMOMHATOPHO paseHcTso. I mumo moseue. M Maxap e omwT TO J8 ce
06001y He JIMTICBAT, TE Ca B Ha,ﬁ»no6pnx ciiyqall KpacHBH, HO He OTHBAIIH 'p;a.‘netxe
3abenexxu. ['panauosnoTo 06oGuieHne Ha TOBA NOHATHE, HANpaBeHo ot [loankape,
KOeTo Bede Hoch MMeTo xapakTepucruka Ha Oitnep-Iloankape, cera e LEHTPaJHO
[OHATHe He CaMO B TOMNGJIOTMATA, HO H B JueDEHIUANHATS [€OMETPHSA, Ch3Aa-
neHa naneq npeau Iloankape, anreOpadHaTa reoMeTpus, JUHAMUIHHTE CHCTeMH,

1BapoyeM MMa JOCTS CEPHOSHH OCHOBAHHS 18 CE cqm-a., He CKOPO Ta3H Harpajs e 6'5Ae
AaeHa.
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reopusita Ha anciaara... Camuar IloaHkape OTKpHBA, e Ta3u BeNMYMAa HE 3aBHCH
OT TPHAHTYNAIHMATA, HO MOXKe Ja Ce MpecMsATa Taka Kakrto e y Oimep. Ot apyra
crpana xakrepuctakara Ha O#tnep-Iloarkape 3a MHOrOOGpasme e paBHa Ha CyMaTa
OT WH[EKCHTE Ha 0COGEHUTE TOYKH HA KO J3 € cHCTeMa AdEpeHIMaNH ypaBHe-
HM#A BbPXy MHOroo6pasmero (ToBa € 3HaMeHuTaTa TeopeMma Ha Iloamxape-Xond).
Tosa cBbp3Ba xapakrepHcTakaTta Ha Ofuep-IloaHkape ¢ KauecTBEHATa TEOpHS HA
Mudepennpanaute ypasaenna. Ocsen TOBa Japa ynoGeH Ha4MH 3a NPECMATAHETO
), SR

- Hpyr upumep e TeopeMara 3a HyanHocT Ha [loaHKape, KOSTO TBbLDAM, TUCIATA
Ha Bern ¢ nomepa k u n — k cbBHaAAT 38 KOMOAKTHM MHOroo6pasus. Heiaure
ofoineHus ¥ AHAJIO3W TaKa Ca Ce IPOCMYKAJIH B ¢CbBPEMEHHATA MATEMAaTHKa, de He3
TAX TH TPOCTO ‘IIE ¢e BbpHE ¢ eauH Bek Ha3ak. Karo 3anodsmeM ¢ Teopemara Ha
Anemanm,p, Hpe3 BbBEXKIAHeTO Ha No-yaobHus , ABORHCTBEH" 0OEKT — KOXOMOJIO-
I'iH, ¥ BCEBb3MOKHATE TEOPEMH 38 AYAJIHOCT B aNreOpUIHATA TEOMETPHS M CTHTHEM
J0 HaYMHa Ha Pa3sChbXKIEHHe Ipe3 Aya.lmoc'm BCHYKO TOBa € IIIOJ Ha Ta3M ecTecT-
BeH peaym'a'r !

*

4. MATEMATVKATA HA IBAIIECETH BEK <\

IIpes 1900 r. rennaiHmsT CHBPEMEHHHK Ha Hoanxape ,Zlanim Xn}lGep‘r npex-
"craBsa npef Il cBeTOBEH MaTeMaTHYeCKH KOBIDEC CIHCHK OT npoﬁ.uenm, u3BeCTeH

cera KaTo ,,I'IpoGJIeMK Ha Xunbepr“ . Exna nen Ha Xunbept, KOSTO AMIM A OT
pa3nobpa3neTo Ha 0GTACTHTe, B xon'ro ca uocranexm upoﬁgxeMn-re e Ja mocrasu
SICHO BBIIPOCS

»---TIPEICTOR JIN Ha MATEMATHKaTa, HAKOTa TOBA, kgoefro o'maena ce cnyqaa c
ApyTHTe HayKH, HAMa JIH TS J1a Ce pa3najiHe Ha OTAeNHY SaCTHH HAYKH, OPEICTABH-
TeJIMTE Ha KOMTO €/1Ba Ce paa6upaT NOMeX/Y CH 1 Hopaju #OBa, BP'bIKUTE MexIy
KOHTO CTABAT BCE LO-MAJKO... " Xxmﬁep'r He OTroBaps Ha IOCTABEHMs BBOPOC, 2
Bb3KJIAKBA EMOLHOHAIHO ,,Aa He BAPBaM B TOBa U He ro nckam!“ D

CrpaxoBere Ha Xunbepr ne ca Geanoupenn. Pasnafanero Bee nosede XapaKTe-
PH3Apa MaTEMATHKATa OT OHOBA BpeMe. c 6ypno'ro # pa3sBUTHE [IDE3 ACBETHANECETH
BEK noc'renemio ce oOPMAT ronemu 1 TPYAHH 3a H3y4aBaHe oG.nac'rn asmebpuana
TeopnA A 9MCHIaTA, ,zmd)epemma.rma reomeTpns, asmweCpuyHa reome'rpnx, HeGecHa
MEXAHNKA, A4 He TOBOPHM 33 KNI4CHICCKHS aHAJINS. '

3aemno ¢ ToBa Obave BLPBH W JApyra TEHJEHUMS — Ha obeIMHABaHE Ha MaTe-
maTukaTa. C H3BECTHO ONPOCTABaHE MOXEM J8 KaxKeM, de TOBa CTABa KaTO HJIEH,
CPeACTBa W PE3YNTATH OT eIHH Da3fiel Cé NPEeHACHT B Opyru pasnenn. Hexa na
HOCOYMM NPHMEPA, KONTO ABIDKMM HA reHHd Ha PiMan - qpe3 pUMAHOBATA 13€Ta-
dysxnms ga ce H3cnEnBa pasnpeseseHAeTo Ha npoctrre wacas. Ho b obeaunsasa-
HETO HA HAYKATA He N0-MAJKa, & MOXe GH [O-roJIAMa PO Mrpae YMeHHETO Ja ce
HaMHApa. obm IPOM3X0J, Ha O0eKTH W3riIeX Ay A0CTa Pa3IIMIHH. |

,Hue TpafBa fa CbCPEAOTONMM CBOETO BHMMAHHE IJIABHO HE TOJIKOBA BLPXY
_CXOHCTBATa H PASJIHINATA, KOJIKOTO BbPXY Te3M aHAJIOTHH, KOUTO YeCTO Ce€ CKPHBAT
B m3ryexjamure pasmaus , mume Iloankape B kuurara cn ,,Hayxa m Meron® .
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Hexa cu cioMHAM Kak npaBUNHATA MHTEPHPETALHS Ha TPaHCPOPMaLHHTe, 3a-
naspamy asToMoprUTE DYHKIME KATO NPEHOC, [0 AHAJIOrHS (ZI0CTa HeoueBRHA)
HA IPEHOC 33 CJiydad Ha [EePHOMMYHH cbymumn, ro JIOBEXCAT IO OTKPHATHATA MY B
Ta3u 06IaCcT.

TNoankape e MOXKe 6 I'LPBUAT, KOUTO 3a/1MYaBa FPAHALATE MEXIY OTHCIAHATE
MaTeMaTHYecKHn muciumiuE (6e3 ga orpuyaM 3acayrure Ha Sko6u, Puman,
Kunaitn). Tott cBOGOAHO IPEXBBLPIIA HIEH OT eAHA 0OIACT B APYTa, JOTOraBa CIATAHA
3a CHBBPIICHHO pa3nmiHa. [IpejmBaneTo oTHBa JOTaM, Y€ Te CTABaT €NHE HAYKa.
HanpuMmep TpyaHO e Ja OnpeZenHM ‘Ha KO pa3fell’ HPUHAIJICKH LWUTHPAHATA [O-
rope TeepeMa Ha lloankape-Xond - Ha AudepeHnpaanTe ypaBHeHHS WM Ha aJ-
rebpuanara Tononorus. Y ma obnacrra, Hapedena ot C. Jlenr , mmams zema®
r.e. Judepermupymure MHOroo6pasus. Taka e ¢ aBromopduuTe QyHKIMH - TE Ca
AmdepeRIalIag yPaBHEHH, KOMIUIEKCEH aHAM3, reomerpnx, TeOpuA Ha 4mciaTa,
TeopHst Ha FPYIHATE... , .

Ho npeau BcHiKo BepOSTHO TPAGBA Ja OCOIMM A3KITIOUATENHATA KHTyHLmﬂ Ha
Tloankape, 3abensasan obGeauHABAINATA POJIS HA TOMOJOrUATA. A TOBA, Y€ TOHOJO-
rusiTa € obeAMHsiBaIA HAYKa, JIMYM OT CJEAHMS OKOJIOHay4deH apryment. Jlocra
nopede oT NOJOBMHATA MaTeMaTHy noxyunnu OniacoBcka Harpaja (MaTeMaTH-
yeckaTa ,H0Ges0Ba“ Harpasa) ca H3NON3BAJM CHIIECTBEHO TOIOJOTAIT2 B CBOHTE
PaBoTH WM POCTO ca AOUPHHECH 38 Pa3BUTHETO . _

Cunta ce, 4e CbBpeMEHHATa MATEMATHUKA Ce XAPAKTEPH3UPa [PeSH BCHIKO C
anre6pusarmuara cu. [Toankape me e asrebpmer (Maxkap Aa uMa dyHIaMeHTAIHR
paborud i Tam). [To cBos rauun na mucrere [loankape e ecrecTBoH3IMTATEN, PU3KK,
a Ha MaTeMaTHYeCKH e3UK - reoMeTbp. Ho ako npocieauM b Ha anre6pu3annsaTa
e ce yOequm BenHara, ue eqHa oT OCHOBHHTE KPa4KH, HanpaseHd oT Evmu Hrorep, e
JepUHANAATA Ha PPYITHTE OT XOMOJIOT'HH U ChIECTBEHOTO H3NIQI3BaHe Ha IPYNOBATa
CTPYKTYpa, HA{IpEMeD Ha M306paskeHns MeXy Pa3JIMYHHTE rPymH (xoMoMopdu3-
mu). Topa cufio 0GOraTABA TONOJIOTHATA H TS CKOPO CTABa MONIEH HMHCTDYMEHT B
MaTEéMATHKATS. BeposTHo mipeare (hyRIaMeHTaIIHA NPHIIOKEHHAS Ca IPH 060CHO-
BABAHETO ¥ DA3SBUTHETO Ha anrebpuunaTa reOMeTpus, KOSTO JOTOrasa € 6ura Jocra
HHTYHTHBHA HayKa. : ; : '

ITo-saTaThk HABAT QYHKIMHTE HA MHOTO KOMILIEKCHH npomenmBH, aacdepen-
ripaJHaTa reoMeTpHs. IIbmuaT TpuyMd Ha TOHONOTEATA HACTBIIBA, KOFATO TS CTa-
B2 OCHOBEH HHCTPYMEHT B TeOpHATa Ha uMchaTa Onaropapenue Ha A. Betin, A.
I'porennux, E. Aprun, Ix. Teiir u ap. 1 Ha Heltna 6a3a craBa ofequHenneTo it
* ¢ anrebpuanaTa reoMerpus. [Toxpait TOBa ce Ch3JaBaT HOBH MATEMATHIECKH JUC-
OHMUIAAR, CHINO EMAIH JO FOIAMA CTeneH obeXUHABANL XBDAKTep —~ TEOPHATA Ha
CHollOBeTe, XoMmosornanara ajrebpa, K-reopusara n np. o Toam mauwn yuacrue-
10 Ha IToankape B ¢h3JaBanero Ha (PYHIAMEHTA HA ChBPEeMEHHATS MATEMATHKA, €
pemaBailo - ¥ B ONpeJesisiHe Ha NEHTPANHWTEe HAIPABJICHHS Ha H3CICABAHUATA, U
B Cb3AABAHETO HA CLBPEMEHHHSA YHUBEPCAJICH €3HK, KOWTo obeannapa KJIacHIecKu
pas/ieJieHnTe reoMeTpHsA | anrebpa. ToBa, oT koeTo ce e cTpaxysan Xunbepr — pas-
IaJaHeTo Ha MATEMATHKATA Ha OTAE/HM HayKu — He cTaHa ¢daxT. B nurepsio ¢ equn

Ann. Univ. Sofia, Fac. Math. Inf., 9%, 2005, 5-21. ' 19



OT Hall-BHIHATE MATEMAaTHIH Ha u3MHHAMNS BeK — YKan-IInep Cep, Ha ppapoca 3a
nepenexTHBATe 3a obe/nHeHNe HA MATEMATHKATS, TOH oTroBaps - , Tosa Beue ce e
CAY9HIc® ¥ WIOCTPUDPA TBBPAEHHETO ch Taka. CTOMHOCTTA Ha pUMaHOBATA J3€Ta-
&yHkous B Toukata —1 e —1/12. TouHo TONKOBA € CTOMHOCTTA Ha XAPaKTEPHCTH-
kara Ha Oitnep-TToankape (op6udongnara) Ha rpynaTa oT HEJOYHCICHY MATPHIA
¢ gerepmunanta 1. Tora cayuaiino sm e? OxasBa ce, ye He. QakThT M8 XbIBOKO .
obomenne CRLP3BAIIO APYTH IPyNu U Apyra n3era-dynknuu. , Takupa prrpoch He
Ca TEOpMsl Ha YHMCJIATa, HATO TOMOJIOTHA, HATO TE€OPHs Ha IPYIHTE: Te ca [POCTO
MaTeMaTHKa.* 06061mana 3HAMEHUTHAT HH ChbBPEMEHHUK,

3aciayraTa 3a TOBA HAIIATA HAYKA J& OCTAHE €JMHHA, KATO HAMEDH YHMBEpCal-
HHE CPeJICTBa 3a pa3bupaHeTo Ha npobiemute i Upe3s obequusaBane Ha Te3n npobie-
MH, T.e. HRMUPAHETO Ha NMO-00IM NOCTAHOBKH, 8 OTTYK X 3a 6ypHOTO it pasButHe,’
OpHHALIEKNA Ha cepus Giecramm ymose. Ho muec Ges npeyBennmyueHme MOXeM Ja
KaxKeM, 4e cpeln Tax irbpey e Iloankape. Tyk cu cTpyBa ejMH LMTAT OT KHHMTATA
»11o e maremaTuxa“ . HelitHuaT aBTOp ¥ JOCTOCH HACIEAHAK Ha IIoaHKape B. 1.
ApHoJig Ka3Ba: -

Iloankape e cb34aTesl HA MATEMATHMKATA HA ABAJAECETHS! BEK.

e

JINTEPATYPA )
. H. Poincaré, Ouvres, Gauthir-Villars, 1916—1956. ‘
A, Ilyankape, O nayxe, Uan. Hayxa, 1990. ,
. Al Hyam(ape, Hsﬁpamme TPYIBI, I/I:m Hayxa, 1974, ) ‘ ‘ .
. B. Ernst, Der Zauberspiegel des M. C. Escher. Taschen - ‘
I. Kra, Aut.omorphxc forms and Kleinian groups, W.A. Ben_)amm Inc

s

G. Shlmura., Introduction to the anthmetxc theory of of automorphxc functions.
;Prmceton Umversxty Press.

7. . M. Tensdaag et sl., Oﬁoémexmue d:yﬂxmm, B. 6: Teoprm npe,mc'rannermﬁ "
apTOMOpdHBIE cbymcuml, Hspn. Hayxa, 1966

8. R, Langlands, 1967 Letter to Weil ( ¥ BCUGKH ,upym c'bqunemm H3 Heurnatmc) Ha
-azpec: hitp : //www.sunsite.ubc.ca/Digital MathArchive/ Langlands/intro.html

9. J; S. Crpoiix, Kparxuit ouepi ucropun matemarnxu, Hayxa, 1969. .
10. I ‘Birrth-Gre‘en,'PonCaré and the three body problem, AMS-LMS.
1L B . Apno.nng, Maubie 3HAMEHATENH 1 NPOBIEMBl YCTORYMBOCTH ABIKEHHS B Knac-
o cuqecxoﬂ 1 HeGecHON MexanuKe, Yen. Mam. Hayx, 18, 1963, No'6.

" 12. D. Hilbert, Mathematical problems. Bull. Amer. Math. Soc., 87, 2000, 407-436.

20 ~ ' Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 5-21.



13.

14.
15.
16.
17.

18.

19

P. Popivanov, N. Kutev, Viscosity solutions to the degenerate oblique derivative
problem for fully nonlinear elliptic equations, Compt. Rendus Acad. Sci. Paris
Math., 334, 2002, No 8, p. 661-666(6).

J. Dieudonné, A History of Algebraic and Differential Topology 1900-1960, Birk-
héuser.

S. McLane, Topology becomes algebraic with Vietoris and Noether, .J. Pure and
Appl. Algebra, 39, 1986, 305-307.

S. Lefschetz, Algebraic Topology, American Mathematical Society, 1942, 389 p.
http : //www.ams.org/online_bks/coll27/

An interview with J.P. Serre, Mathematical Medley, June, 1985.
http : //sps.nus.edu.sg/ limchuwe/articles/serre.html

G. Harder, A Gauss-Bonnet formula for discrete arithmetically defined groups, Ann.
Sci. Ecole Norm. Sup., 4, 1971, 409-455.

B. H. Apronpa, Yro raxoe MaTemaTHKa? MIIHMO, 2002.

Received January 15, 2005

Faculty of Mathematics and Informatics
“St. K1. Ohridski” University of Sofia

5, J. Bourchier blvd., 1164 Sofia
BULGARIA

E-mail: horozov@fmi.uni-sofia.bg

*

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 5-21. . { 21






FOMNIIHUK HA COPUNICKNA YHUBEPCUTET , CB. KJIUMEHT OXPUICKH *

@AK}’JITET N0 MATEMATHUKA U NTH®POPMATHUKA
Tom 97

ANNUAIRE DE L’UNIVERSITE DE SOFIA , ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 97

PROPERTIES OFb CO-SPECTRA
OF JOINT SPECTRA OF STRUCTURES

ALEXANDRA SOSKOVA

Two properties of co-spectrum of joint spectrum of finitely many abstract structures
are presented: a minimal pair type theorem and an existence of a quasx-mmxmal degree -
for the joint spectrum.

Keywords: enumeration reducibility, enumeration jump, enumeration degrees, forcing:
2000 MSC: 03D30

1. INTRODUCTION
i

Let 2 be an abstract structure. The degree spectru;n DS(2A) of A is the set o
all enumeration degrees generated by all presentations of 2 on the natural numbers.
In [6, 2, 5, 4, 9] several results about degree spectra of structures are obtained.

The co-spectrum of the structure 2 is the set of all lower bounds of the degiec
spectra of A. Co-spectra are introduced and studied in [9].

In [10] a generalization of the notions of degree spectra and co-spectra for
finitely many structures is presented - the so called joint spectrum and co-speci iiua.
A normal form of the sets which generates the elements of the co-spectrum of the
joint spectrum in terms of some positive recursive £+ formulae, mtroduced first in
[1], is obtained.

Here we shall prove two properties of the co-spectrum of joint spectrim of
structures - the Minimal pair type theorem and the existence of a quasi-mininal
degree for the joint spectrum.
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The proofs use the technique of regular enumerations introduced in {8], com-
bined with partial generic enumerations used in [9].

2. PRELIMINARIES

Let & = (N; Ry, ..., Ri) be a partial structure over the set of all natural num-
bers N, where each R; is a subset of N™ and “=" and “#” are among Ry,..., Rk.

An enumeration f of % is a total mapping from N onto N.

If A C N@, define

FHA) = {{z1...7a) : (f(z1)s- -, f(%a)) € A}.

Let 1) = f~H(R) @ --- & f(Ru).

For any sets of natural numbers A and B the set A is enumeration reducible to
B (A <. B) if there is an enumeration operator ', such that A =T, (B) By d.(A)
we denote the enumeration degree of the set A and by D, the set of all enumeration
degrees. The set A is total if A =. A*, where A* = A®(N\A). A degree a is called
total if a contains the e-degree of a total set. The jump opera.t;on “ denotes here
~ the enumeration jump introduced by COOPER (3].

Given n + 1 subsets By,...,Bn of N, i < n, define the set fP(Bo, ., B;) as
follows:

(i) P(Bo) = Bo; , : o

(it) If i < n, then P(By,. .. ,'B,'.H)('J)(Bo,\ ey Bi))' a‘kBi+l.
%

‘ ¢
3. JOINT SPECTRA OF STRUCTURES

Let 2o, ..., A, be abstract structures on N.
The joint sSpectrum of Ao, ..., Ay is the set

DS(%o0,%1,...,%,){a:ac DS(Ap),a’ € DS(My),...,a™ e DS(A,.)}.
For every k < n, the i-th jump spectrum of Ao, . .., A, is the set
DS(Ro,-..,%a){a® : a € DS(Ao, ..., %n)}.

In [10] we prove that DSk (Yo, - .. ,Ay) is closed upwards, i.e. if a®) € DSk (o,
., ¥p), b is a total e-degree and NCS < b, then b € DS, (%o, ...,%n).
The k-th co-spectrum of ™o, ...,A,, k < n, is the set of all lower bounds of
DSy (o, ..., An), ie.

CSi(Yo,-..,%n){b: b € D &(Va € DSi(Yo, ..., %)) (b < a)}.
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From [10] we know that the k-th Co-spectrum for k£ < n depends only of the
first k structures: ;

CSik(™o, - . ,ﬁ];, ces ,an)C.STk(%, vy k)

In [10] we give a normal form of the sets which generates the elements of
the k-th co-spectrum of DS(o,...,,), i.e. for every A C N the following are
equivalent:

(1) de(A) € CSk(%? A m‘n,)y
(2) For every.fo, ..., fr enumerations of Ao, ..., Ak, respectively,

A <e ?(f(;l(ﬁ())’ [ 1fl:l(mk))1

(3) A is forcing k-definable on 2y, .., xn;
" (4) A is formally k-definable on o,...,%,.

In Section 4 we shall recall the definition of the forcing k-definable sets on

Ao, - - -, Ap. .
The analog of the Minimal pair theorem, which we shall prove in Section 5, is
in the following form:

Theorem 3.1. Let k < n. There exist enumeration degrees f and g, elements
of DS(Uy,y,...,Uy,), such that for any enumeration degree a:

a<f® &a<gh = aecCS o, %1,...,%).

The proof uses the technique of the regular enumerations from [8], which we
will discuss in Section 6.
Given a set A of enumeration degrees, denote by co(A) the set of all lower
bounds of A. Say that the degree q is a quasi-minimal with respect to A if the
following conditions hold: '

() a & co(A);
(ii) If a is a total degree and a > q, then a € A;
(iii) faisa total'degree and a < q, then a € co(A).

The second property, we are going to prove in Section 7, is the existence of a
quasi-minimal degree with respect to DS(o, A1,+..,%An).

Theorem 3.2. There exists an enumeration degree q such that: -
(i) o' € DS(*;),...,q™ € DS(A,), ¢ € CS(Yo, N, ..., Ap);
(ii) If a is a total degree and a > q, then a € DS(%;%;, e 2An);

Ann. Univ. Sofia, Fac. Math. Inf, 97, 2005, 23-40. 25



(ili) If a is o total degree and a < q, then a € CS(Ap, Ay, ..., %n).

4. FORCING k-DEFINABLE SETS

Suppose that o, ..., A, are structures on N. Let fo,..., fn be enumerations
of Ao,...,An, respectwely

Denote by f = (fo,...,fa) and PLP(f5 (o), - - ., fi (M) for k =0,.

Let Wp,...,W,,... be a Goedel enumeration of the r.e. sets and D, be t;he
finite set havmg a canomcal code v.

For every i < n, e and  in N define the reIatlons f i Fe (x) and f = ~F.(z)
by induction on 1i:

() f o Fe(z) <= (Fv)({v,z) e We & D, C fo—l(illo));

f i Fe(z) <= Bv)({v,z) € W, & (Vu € D,)( §
. o u=(0,e4,7u) & f ki Fe () V
(i) - ~ ‘ u= (1, eu,2u) & F = Fe (Ta) V o

u = (2, xu) &z, € fi:;-](mi-i-l))); i '
(iii) f i ~Fe(@) <> [ Fe(a). |
If AC N and k <n, then S .
A< Pl = (Be)A={z:] }:MFe(x)})

The forcing CODdlthflS, which we shall call finite parts are n + 1- tuples Fo=
(70y- .., ) of finite mappings 75,...,7n of Nin N. We s ppose that an effective
coding of the finite parts is fixed, and by the least finite part with a fixed prqperty
we mean a finite part with a minimal code.

For every i < n, e and z in N and eveéry finite part 7 ‘we define the forcing
relations 7 I-; Fe(z) and 7 I-; ~F,(z) following the definition of relation ”}=;".

Definition 4.1. (i) 7k Fo(z) < (I)((v,z) € W, & D, C 75 (Ao));

Flkip1 Fe(r) & Fv((v,z) e W &
. (Vu € D‘u)(u = (O: €y, xu)& F iy Fe,.(zu) \%
() | = (1, €4, ) & T Ik —F, (24) V
u=(2,z4) &z, € "'5-11 (&i41)));
(i) 7 Ik ~Fa(2) <= (V52 (W F(2)).
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Given finite parts & = (do,-..,0,) and 7 = (79,...,7y), let
§CT &> 8C Toy...,00 C Tn

For any i < n,e,z € N denote X(e 7 = {p: plFi Fe(z)}.
If f = (fo,-..,fn) is an enumeration of Yo, ..., An, then

fgf = 170C fo,--yTn € fn.

Definition 4.2. An enumeration f of %o, ..., %y is i-genen’c if for every j < i,
e,t €N
vVF € H@3p € X(e )T E p) = (EI'r (= X(e z))

From [10] we know that:

() Hfisa k—genenc enumeration, then
Tl Fula) <= (3 € )7 e Felz).

2 If fisa(k+ 1)-genenc enumeration, then
| f t=k ~F @) <= (@rC f)(r Ik = Fe(x))-

Deﬁmtxon 4.3. Theset AC Nis fommg k- deﬁnable on g, ..., Ay if there
- exist a finite pa.rt ] and e € N such that

Sl z€A <= (3F 25T I Fe(z)).

Propos:tion 4:1. Let {XF},, k= 0,...,n, be (n+ 1)-sequgnces of sets of '
nafural numbers. There ezists an (n + 1)-generic enumeration f of o,...,An
such that for any k < n and for all.r €N, if the set X¥ is not forcing k- deﬁna,ble

on Ao, ..., An, then X” ﬁe

Proof. We shall construct an (n + 1)-generic enumeration f such that for all r
and all k = 0,...,n, if the set XF is not forcing k-definable, then X* £, ‘Pf Let
" call the last condxtlon an omitting condition.

The construction of the enumeration f ~will be carried out by steps. On each
step j we shall define a finite part & = (6,...,83), so that 8 C 8%, and take
fi = U;67 for each i < n.

On the steps j = 3¢ we shall ensure that each f; is a tot;al surjective iapping
from N onto N. On the steps j = 3q + 1 we shall ensure that f is (n+ 1) genenc .
On the steps j = 3q + 2 we shall ensure the omitting condition.

Let §° = (0,...,0).
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Suppose that 8/ is defined.
Case j = 3q. For every i, 0 <i < m, let z; = uz(r ¢ dom(6?)] and y; = pyly ¢
ran(d7)]. Let 67! (z;) = yi and 511 (z) = 6 (x) for z # z.
Case j = 3(e,i,z) + 1, i < n. Check if there exists a finite part p 2 &’ such
that g I; Fe(z). If so, then let ; 37+1 be the least such p. Otherwise, let §7+! = §J.
Case j = 3(e, k,7)+2, k < n. Consider the set X¥. If XF is forcing k-definable
on g, ..., A, then let 71 = 4§/,
‘Suppose now that X} is not forcing k-definable on Ry, ..., %, and let

C={=: (EIT 2 ) (F Ik F.(z))}.

Clearly, C is forcing k-deﬁnable on Ag,...,U,. Hence C # X k. Then there
exists an z such that either z € X¥ and:v¢C’ora:eCandx¢X’° Take
. 87+1 = §J in the first case.

If the second case holds, then there exists # 2 §7 such that 7 Iy F, (a:) Let
§7+1 be the least such 7.

In all other cases let 1 = §7.

" The so received enumeration f = Uj 67 is (n+1)-generic. Leti < n, e,z € Nand
suppose that for every finite part ¥ C f there is an extention 7 I-; F.(x). Gonsider
the step j = 3(e, 4, z) + 1. From the construction we have that §7+! ks Fe(z)-

To prove that the enumeration f satisfies the omitting ndmon, let the set
X* be not forcing k-definable on 2y, ..., %, and suppose that X* <, fP,f: . Then
Xk = {z: f =k F.(z)} for some e. Consider the step j = 3{e, k,r) + 2. From the
construction there is an x such that one of the following tvgo cases holds:

(a) z € X¥ and (Y5 2 8)(5 Wk Fe(x)). So, & Ik —~Fe(z).

Since f is (n + 1)-generic, and hence (k + 1)-geneie1c, r € XA& f i Fe(z). A
contradiction.

(b) z ¢ X¥ & 87+ I Fe(z). Since f is (k + 1)- g"enerxc fEr Fe(z). A
contradiction. [J

‘y\

5. MINIMAL PAIR THEOREM

First we need a modification of the “type omitting” version of Jump inversion
theorem from. [8]. In fact, one can see the result from the proof of Theorem 1.7
in [8]. But in this form it is not explicit formulated there. We shall postpone the
proof for Section 6, where the technique of regular enumerations will be discussed.

~ Theorem 5.1. Let By, ..., By, be arbitrary sets of natural numbers. Let {A},,
k=0,...,n, be (n+ 1)-sequences of subsets of N such that for every r and for all
k, 0 <k <n, A',‘ £e P(By,...,Bxr). Then there exists a total set F having the
following properties: ’ : »

(i) For alli<n, B; <. F9;
(ii) For allr, for all k, 0 < k <n, A¥ £, F(),
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Proof of Theorem 3.1. We shall construct total sets F and G such that
de(F) € DS(™o,...,%Uy), de(G) € DS(o,...,Ay) and for each k < n if a total
set X, X <. F*® and X <. G®), then d.(X) € CSk(No,...,%n). And take the
degree f = d(F) and g = d.(G).

First we construct enumerations fand h of Ay, ..., A, such that for any k < n
ifaset ACN, A<, fP,f: and A <, 'PL‘, then A is a forcing k-definable on 2o, ..., %,

Let go,...,gn be arbitrary enumerations of 2y,...,2%,. By Theorem 5.1 for
Bo = g5 (o), - - -, Bn = g5 (As,) there exists a total set F such that: g5 (o) <.
F,g7 (%) <. F vy 971 (A,) <. F™. Since DS(Mo, Ny, ...,Ay) is closed up-
wards, then de(F) € DS(Ao, 21, ..., %), ie. de(F) € DS(Ap),de(F') € DS(?;),

., de(F™) € DS(A,). Hence, there exist hg, h1, ..., h, enumerations of g, Ay,
., Ay, respectively, such that hy?(2) ::‘5 F, h;l(ﬁl) = F',...,h;1(,) =
" F®)., Notice that for each k < n, F®) =_ P,

For each k, 0 < k < n, let {XF}, be the sequence of all sets enumeration
reducible to ?ﬁ

By Proposition 4.1 there is an (n + 1)-generic enumeration f such that for all
r and all k =0,...,n if the set X¥ is not forcing k—deﬁnable then X* £, fPf

Suppose now that the set A <, ‘.Pf and A < ‘.Pk Then A = X¥ for some
T. From the omitting condition of f xt follows that A is forcing k—deﬁnable on

< An.

Now we apply Theorem 5.1. Let By = fo'(%0);- .-, Bnf7 (An) and Bn+1 =
N. For each k < n consider the sequence {A¥}, of these sets among the sets { X%},
which are not forcing k-definable on 2o, . . . , 2. From the choice of the enumeration
f it follows that each of these sets A¥, A" £Le fPf Then by Theorem 5.1 there is a
total set G such that: .

(i) For alli <n, f71(A) <. GW;
(ii) For all 7 and all k < n, A% £, G,

Note that since G is a total set and because of the fact that each spectrum is
closed upwards, we have that de(G) € DS(Mo),...,de(G™) € Ds (™), and hence
d (G) € Ds(ﬁo, am‘n)

Suppose now that a total set X X <. F® and X <. G, k <. From X <,
F&) and F) =, (P it follows that X = X¥ for some r. It is clear that X <, 'Pf
Otherwise, from the choice of G it follows that X €. G*). Hence X is forcmg
k-definable on 2A,...,A,. By the normal form of the sets, which enumeration
degrees are in CSi(2o,...,%n), we have that d.(X) € CSk(2o,...,%,). O

6. REGULAR ENUMERATIONS

We shall rerﬁind the notion of regular enumerations from [8]. Let By,...,Bn
be non empty subsets of N..
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' Finite parts are as usual finite mappings of N into N. The notion of i-regular

‘finite parts is defined by induction on i < n.
The 0-regular finite parts are finite parts 7 such that dom(7) = [0,2g + 1] and

for all odd z € dom(7), 7(2) € Bo.
Let 7 be a O-regular finite part. If dom(7) = [0, 2q + 1], then the O-rank of 7
|rlog + 1 - the number of the odd elements of dom(r). -Let B§ be the set of the
—--odd-elements of dom(r). If p is a O-regular extention of 7, we shall denote thls fact
~ by r Co'p. It is clear that if 7 Cg p and [T]o|p|o, then 7 = p. Let

Tl Fu(z) <= Fu({v,2) € We & (Yu € D,)(((w)o) = (u)1)),

7 ko ~Fe(x) <= V(o)(r Co p = p o Fe(z)).

Suppose that for some i < n we have defined the i-regular finite parts and for
every i-regular 7 - the i-rank |7|; of 7, the set B] and the relations = I+; F.(z) and -
7 Ik ~F.(z). Suppose also that if 7 and p are i-regular, 7.C p (we write T C; p)
and |7]; = |pli, then 7 = p.

Denote by X} lea) = {p:pis z—regula.r & plk; Fe(z)}.

For any i-regular finite part 7 and any set X of t-regular finite parts, denote
by (7, X) = pplr C;i p & p € X] if any, and pi(7, X) = pplr C; o], other’mse

Definition 6.1. Let 7 be a finite part and m > 0. The ¥inite part 4 i is called -
an i-regular m ormttmg extension of 7 if § 2; T, dom(s) = [0 g~ 1] and there exist
natural numbers go' < - -+ < gm < gm+1 = ¢ such that:

(8) 81g0 =15 “5, BRI

- (b) For allp <m, 5[Qp+1ﬂz(5f(9p +1), X(p PRY N W

oo § ,»V .

- Denote by K4 the sequence qg, ..., q,,.* Ifs and p are'two 1—regular m omlttmg' :
'extensaonsofra.ndJCp,thenJ s R (o
Let R; denote the set of all z-regula.r finite parts. leen an index IR by S‘ .
shall denote the intersection R; N T;(P(Bo, .. B;)), where T; is the j-th enumet— ,
ation opera.tor
“Let 7 be a finite part defined on [0,¢ ~ 1] andr>0 Then 7 is (z+1) regular
with (i + 1)-rank r + 1 if there exist natural numbers

0<no<_lo<bo<n1<h<b1<---<n,-;<l,»<b,}<n,~+1=q

such that 7[no is an i-regular finite part with i-rank equal to 1 and for all j,
0 < j < r, the following conditions are satisfied:

(8) 71l = pi(rl(n; +1),55);
(b) 'r[b is an z—regular 7 omlttmg extension of 7l;;

(c) 7(b; ) € B,.H,
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(d) 7Inj4+1 is an i-regular extension of 7[(b; + 1) with i-rank equal to |7]b;]; + 1.

Let B,y = {bo,...,b-}. By K7, we shall denote the sequence K 'rrflb "

Let for every {i + 1)- regular finite part T
7 lbip1 Fe(z) <= Fv({v,z) € W & (Vu € Dy)((u = (ew, Zu,0) & 7 IF; Fe, (zu))V
(u = (€u; Ty, 1) & 7 i —Fe, (T0))))-
Tl ~Fe(z) <= (V)1 Civ1 p= p Wit Fe(2))

Definition 6.2. Let f be a total mapping of N in N. Then f is a regular
enumeration if the following two COndlthIlS hold:

(i) For every finite part § C f, there exists an n-regular extension 7 of § such
that 7 C f.

* (ii) If i < n and z € B;, then there exists an i-regular extension 7 C f such that
z € 7(B]). ~

Let f be a total mapping on N. We define for every i < n,e,z the relatlon
f i Fe(z) by induction on i:

Definition 6.3. o '
(1) f o Fe(z) <= 3v((v,z) € We & (Yu € Dy)(f((u)o) = (u)1));
(ii)f Fit1 Fe(z) <= Fu({v,z) € We & (Vu € Du)((u = (ew, 24,0) &

f i Fe,(zu)) V (u = (€4, Tu, 1) & f B Fe, (wu))))

In [8] it is proven that for every regular enumeration f:

1- Bo Se f.

2. If i < m, then Biy; <. f ® P(Bo,-..,B;), and P(By,...,B;) <. f@, for
i1 <n. .

3. If ACN, then
A < f@ SN (F)A={z: f ki Fe(x)}-
4. For all i < n (for negation i < n),
f i ()Fe(z) & (3rC f)(r is i-regular & 7 It (=) F.(z)).
Notice that if f is a regular enumeration, then B; <. f®, i <n.
Given a finite mapping 7 defined on [0,g — 1], by 7 * z we shall denote the

extension p of 7 defined on [0, g] and such that p(g) =~ 2. We shall use the following
Lemma, proved in [8].
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Lemma 6.1. [8] Let Ag, ..., An—1 be subsets of N such that A; £. P(Bo, ..., B;).
Let T be an n-regular finite part, defined on [0,q — 1]. Suppose that |7}, =7 +1,
y€N, zg € By,...,2n € By and s <r+ 1. Then there is an n-regular extension p
of T such that: :

@) lpln=r+2; ‘ /
(ii) p(g) =y, 20 € p(BE), .-, 2n € p(BE);
(iii) fi<n and KOy = @b, ..., G5, .- . G, then

(a) p(a}) € As = plri —Fu(ql);
(b) plgt) & Ai = plk; Fuo(ql).

Now we turn to the proof of Theorem 5.1. Set By = Nand P(By,...,By41) =
P(Bo,...,Bn) @ Bnt1. By a regular enumeration f we mean a regular one with
respect to By, ..., By, Bnt1.

Proof of Theorem 5.1.

Let {A¥},, k < n, be seqences of subsets of N such that A* £, P(By,.,.., Bx).

We shall construct a regular enumeration f such that [ “omits” the sets A¥
for all 7, k < n, ie. A £, fR), \

The construction of f will be carried out by steps. At each step s we sha.ll
construct an (n+ 1)-regular finite part 4,, so that |s}n+1 = s+1 and'9; Cpy1 det1.
-On the even steps we shall ensure the genericity of f, i.e. conditions (a) and (d)
from the definition of i-regular finite part, and on the odd s‘;eps we shall ensute the

omitting conditions, the conditions (b), (c).

Let R,+1 be the set of all (n + 1)-regular ﬁmté‘q)arts and .S"""l = Rpt1 N
L;(P(Bo,. .., Bnt1)). Let 09,...,0n41 be recursive in iP(Bo, B,..H) enumera
tions of the sets Bo,...,Bn41, respectively.

Let 6 be an a.rbltrary (n + 1)-regular finite part with (n + 1)-rank equall to 1
Suppose that &, is defined.

Case s = 2m. Check whether there exists a p € S™*1 such that §;, C p. If
80, let d,41 be the least such p. Otherwise, let 6,41 be the least (n + 1)-regular
extension of 8, with (n + 1)-rank equal to |0s|n+1 + 1.

Case s = 2m + 1. Let |§5|ns1 = r+1 > s+ 1. Let m(p,e). We may
assume that e < m and then e < r + 1. Let go(m) = z,...,0n+1(M) = 2p41.
Set 70 ~ un(ds * Znt1,571). Let lryy = lh(m) and ¢f = lr41. For j < e, let
Tit+1 = Pn(Tj * O,X("j,q,.)) and g7y, = Ih(7j41). So, 7. and g’ are defined. Let

%

C={z:(Fr 27)r €Rn & T(q7) =z & T IFy Fe(q2))}.

Theé set C <, fP(Bo, .+Bn+1) and Ap ﬁe P(By, . ,,.H). Then there is an a
such that ' ‘
- , a€C&adg¢ApVagC&acAy. (6.1)

Let ag be the least a satisfying (6.1).
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Next we extend the finite 7. *ag to a finite part 7, so that 7 is an n-regular r+1
omitting extension of 79. Set br41 = lh(r). Now consider the sets AY, S, AR
By Lemma 6.1 we can construct an n-regular extension p of 7 such that

®) loln =Irln +1; |
(ii) p(br+1) = zn+1 and zo € p(BE),...,2zn € p(BL);
(iii) if k < n and Kf, =q§,...,qf,...,qfnk, then
(a) p(gf) € Af = plre ~Fe(gf);
(b) p(a¥) & Af = pIFk Fe(gB)-

Set 4541 = p.

- Let f =J ;5. From the construction it follows that f is a regular enumeration.
For every e,z, {7 : 7 € Rpy1 & 7 IFp41 Fe(z)} is e-reducible to P(Bo, ..., Bn4y1)-
From here, by the even stages of the construction, it follows that for all e, z,

[ Ent1 (O)Fe(z) <= (37 C )1 € Rnt1 & 7 lhppr (D) Fe()).
Since f is regular, we have that if k < n, then for all e and z,
fEr ()Fe(z) <= @rCfi(re Ri & 1 ki (2)Fo(z)).

Now suppose that for some k < n and p, AX <. f*¥). Then the set C¥ = {z
f(z) € Ak} is also e-reducible to f (k) Fix an e such that for all z,

fz)e Ak &= z€CF <= [ Fo(). (6.2)

‘Consider the step s = 2(p,e) + 1. By the construction, there exists a ¢& €
dom(d,+1) such that

(f(a5) € Ay = f bk ~Fel(as)) & (F(a8) & A5 = f b=x Fe(2))-

Clearly, 8s+1(qF) =~ f(¢F). Now assume that f(g¥) € A,, “Then 8,41 IF ~Fe(g).
Hence f |=x —Fe(gt), which is impossible. It remains that f(g¥) ¢ AP In this
case 6,,+1 Il-k Fe(qe) and hence I Ex Fe(gF). The last again contradicts (6.2). So
Ak Ze f

7. QUASI-MINIMAL DEGREE
Definition 7.1. Let Bo CN. Aset Fof natural'numbers is calléd quasi-
minimal over By if the following conditions hold:

(i) By < F;
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(ii) For any total set A C N, if A <. F, then 4 <. B,.

vThe Tfoll_owing theorem we shall prove in the next section using the technique
of partial regular enumerations.

Theorem 7.1. Let By,...,Bp,n > 1, be arbz'trary'sets of natural numbers.
There exists a set F having the following properties:

(i) Bo <. F;
(i) Forall1<i<mn, B; <. F¥,
(iii) For any total set A, if A <. F, then A <. Bo.

In fact, the set F from Theorem 7.1 is a quasi-minimal over By.
- Let the structures Yo, ..., A, be fixed.
Proof of Theorem 3.2. By [9], t;here is a quasi-minimal degree q, with
respect to DS(%g), i.e.:

(i) 9o € CS(Ao);
(it) Ifais a total degree and a > qg, then a € DS(y); S
(iii) If a is a total degree and a < qq, then a € C'S(%o). _ \\ ‘

~ Let By € N such that d,(Bo) qq, and fl, ., fn be fixed total enumerations
of 1,...,%,. Denote By = fi}(N1),...,Bn = = fr 1(2(,,) By Theorem 7.1, there
. is a quasi-minimal over By set F such that

() Bo<. F; N \

(ii) Forall 1 &<, fI1(A;) <o FO; S ":\,

(iii) For any total set A, if A <. F, then A <. Bg. » . _
We will show that q = de(F)is a quasx-mxmmal with respect to DS(QIO, A,
ie:

(1) q € DS(%) ,q(") = DS(ﬁn), q ¢CS(910,211, i’ln); 7
(ii) If a is a total degree and a>q,thena€ DS(% 2(1, S And;
(iii) If a is a‘total degree and a < q, then a € CS(o, s,...,Uy).

In order to prove (i), suppose that q € CS(2o). By Theorem 7.1, qy < q and thus
qp € CS(p). A contradiction with the fact that q, is quasi-minimal with respect
to DS(p). Then q ¢ C'S(Yo) and hence q ¢ CS(Ap, Ay, ..., Un).

For each i, 1 < i < n, the set F(®) is total and f7'(2;) <. F®. Since
any degree spectrum is closed upwards, it follows that d.(F®) € DS(), ie.
q¥ e DS(%) ‘
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For (ii) consider a total set X such that X >, F. Then d.(X) > qp. From
the fact that qq is quasi-minimal with respect to DS(%) it follows that d.(X) €
DS(%o). Moreover, foreach 1 <i < n, X% >, FO >, f71(2;), and X@ is a total
set. Then for each i < 1, de(X®) € DS(;), and hence do(X) € DS(Yo, .. ., An)-

For (iil) suppose that X is a total set and X <. F. Then, from the choice
of F, X <. Bo. Because q, is quasi-minimal with respect to DS(%o), it follows
that d.(X) € CS(¥p). But CS(o,...,An) = CS(Ao) and therefore d.(X) €
CS(o, ..., %). O

8. PARTIAL REGULAR ENUMERATIONS

Let By CN.

Definition 8.1. A partial enumeration f of By is a partlal surJectlve mappmg
from N onto N with the following properties: ‘ .

(i) For all odd , if f(z) is defined, then f(z) e"Bo;
(ii) For all y € By, there is an odd z such that f(z) ~

It is clea.r that if f is a partial enumeration of Bo, then Bg <e f since
y€By = (3n)(f(2n+1) y). '

Let.L¢N

‘ Deﬂnition 8.2, A pamal ﬁmte part T'is a ﬁntte mapping of N into NU {.L}
. s‘ucb that (Vx){z € dom(r) & zisodd =5 {r(z) = L vr{(z) € By)). -

If Tiga parnal ﬁmte part and f is & parttal enumeratxon of By, say that

Lo .C_ F o= (vz edom(,r))((,,.(z) L = f(z) is not defined )&
| | (r(z) # L= 7(z) = f(@)).

" ‘Let By, .. B be ﬁxed sets of natural numbers. Combmmg the t.echmque of
the regular enumeratxons with the partial (generic) enumerations on the 0-level for
By, we shall construct a partial regular enumeration f, which will be quasi-minimal
over the set By and such that B; <, f® fori < n.

) A O-regular partial finite part is a partial finite part T such that dom('r)
[o, 2q + 1] and for all odd z € dom(r), 7(2) € Bg or 7(2) =
Let BJ be the set of all odd elements 2 of dom(7) such that 7(z) € By. The
O-rank of 7, |7|o = ¢ + 1, we call the number of the odd elements of dom(r). If p
is a O-regular partial extention of 7, we shall denote this fact again by 7 Cq p. It is
clear that 1f T Co P and |Tlo]pio, then T = p "Let

T Il-p Fe(:z:) <=> Hv(('u 9:) e We & (Vu e D,,)(u = (s,t) & T(s) ~té&t 7& L)),
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7 Ik =Fe(z) <= V(p)(T Co p = plfo Fel(z)).

The definition of (i + 1)-regular partial finite part 7, the set B],,, the (i +1)-
rank of 7 and the relations T IF;,1 Fe(z) and 7 41 —F.(z) are defined in the same
way as in Section 6, the only difference is that instead of i-regular finite parts we
use i-regular partial finite parts. Notice that again if 7 is an i-regular partial finite
part, then 7 is a j-regular partial finite part for each j < i.

'Definition 8.3. A partial regular enumeration is a partial mapping f from N
onto N such that the following two conditions hold:

(i) For every partial finite part J C f, there exists an n-regular partial extension
7 of § such that 7 C f.

(ii) If i < n and z € B;, then there exists an i-regular partial finite part 7 C f
such that z € 7(B).

If f is a partial regular enumeration and i < n, then for every ¢ C I dom(&) C
[0,q — 1], there exists an i-regular partial + C f such that § C 7, and for every
z € [0,g — 1] if f(z) is not defined, then 7(z) = L. Moreover, there exist i-regular
partial finite parts of f of arbitrary large rank. ",

The relation f k=; Fe(z) is the same as in Definition 6? By mductxon on i
one could check that for any A C N, A <, fO) iff there exists'e such' that for all z,

€A &= f= Fe(a). ’
Lemma 8.1. Suppose that f is a partial regular enubzémtion. Then:
(1) For élli <n, fliFe(z) <= @rC f)(r z's"%{egular &7 Ik Fe(x))-
(2) For alli<n, f =i ~Fo(z) <= (3r C (5 is i-régular & 7 I ~Fe(2)).

The proof follows from the definitions by induction oh i as in the total case.
Let R; be the set of all 4-regular partial ﬁmte parts. It is clear that R; <. P;, .
where P; = P(By,.. n) ‘ -

Definition 8.4. A partial enumeration f is i-generic if for any j < ¢ and
for every enumeration reducible to P; set S of j-regular partial finite parts the
following condition holds:

EreNresvve2;T)p ¢ S)).

Proposition 8.1. Every partzal regular enumeration s (i + 1)- genenc enu-
meration for every i<n.

Proof. Let S be a set of z-regular partial finite parts such that S <. P;. Then
there exists an e such that S = R;NT'¢(P;). Consider an (i+ 1)-regular partlal finite
part 7 C f with (i + 1)-rank greater than e. From the definition of (i + 1)-regular
partial finite part it follows that there is an i-regular partial finite part ¢ C; 7, and
hence o C f such that o € Sor (Vp 2; 0)(p € 5). O
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Proposition 8.2. Suppose that f 13 a partial regular enumeration. Then:
(1) For each i < n, B; <. f®.
(2) Ifi < n, then f £ P;.

Proof. We know that By <. f. Let i < n. Suppose that for each j < i,
B; <. f(J'). Then P; <, f(i)_ .

Since f is partial regular, for every partial finite part & of f there exists an
(¢4 1)-regular partial finite part 7 C f such that § C 7, where if f(z) is not defined
and z € dom(r), then 7(z) = L. For each q denote by fI, the partial finite part
7 with dom(7) = [0,9 — 1], 7 C f, and for each = < ¢ if f(z) is not defined, then
7(z) =

Let

O<no<lp<bp<m<h<h< -<n <l <b<n4<...

be the numbers satisfying the conditions (a)—sd) flfom the definition of the (i 4+
1)-regular partial finite part 7. Clearly, if B/, = {bp,b1...}, then f(B +l) =
Bit1. We shall show that there exists an effective in f (""1) procedure which lists
ng, lo,bo, . .- in an increasing order.

Using the oracle f', we can generate consecutlvely the partial finite parts f[q
for g = 1,2.... Notice that f|ng is i-regular and |f[ng|; = 1, and it is the first
element of thxs sequence which belongs to R;. Clearly, ng = Ih(fng).

Suppose that ng, lp, bo, . . ., n, have already been listed. Since f|l, ~ p;(fI(n .+
1), 8%), we can find effectively in f¢+?) the partial finite part f|l,. Then I, =
Ih(f{l,). Next f{b, is an z-regula.r partial r omitting extension of f[l,. So, there
exist natural numbers Iy = g9 < -++ < ¢ < gr+1 = b,. Using the oracle f ('J") we
can. find consecutively the numbers Q0; - < - Qry @r+1-= br. By definition, f [n,.+1 is
an i-regular partial extension of f[(b, + 1) having i-rank equal to | f]b,|; + 1. Using
J', we can generate consecutively the partial finite parts f{(br +1+4), ¢=0,1,...
Then f] n,..H is the first element of this sequence which belongs to fR

Then B, , is effective in f¢+1) and B;y; <. FE,

To prove (2), assume that f <. P;. Then the set

S={r:1eR &(3-"3yl#yzéN)(T(z)"‘yl&f(x)"'yz)}

S <¢ P;. Using the fact that f is (i + 1)-generic, there is an i-regular partial finite
part 7 C f such that either 7 € S or (Vp 2; 7)(p € S). It is obvious that both of
these cases are impossible. A contradiction. [J .

Lemma 8.2. Leti < n and 7 be an 1-rcgular partial finite part with domain
[0,g—-1]. '

¢))] For every y € N, 29 € Bo,...,2i € B;, we can find effectively in P’ i1 an
i-reqular partzal extension p of T such that |pl; = |7]; + 1 and p(q) ~ Y,z €
P(BE); .-,z € p(BY).
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(2) For every sequence @ = ao, . .., Gm of natural numbers, one can find effectively
in P, an i-regular m omitting partial extension § of T such that §(K?) = a.

Proof. The proof is as in the total case [8]. By induction on i, (1) and (2) are
proven simultaneously. 0

Proof of Theorem 7.1. By Proposmon 8.2, it is sufficient to show that there
exists a partial regular enumeration f which is quasi-minimal over By.

We shall construct f as a union of n-regular partial finite parts d, such that
for all.s, 8, C;, 8,41 and |d,|, = s+ 1. Suppose that for i < n o; is a recursively in
B; enumeration of B;. .

" Let dp be a O-regular partial finite part such that |§o|, = 1. Suppose that
0, is defined. Set zp = 0o(3),...,2non(s). Using Lemma 8.2, we can construct
effectively in P/,_, an n-regular partial finite part p D, 6, such that |pfn|8sfn + 1,
p(th(4,)) = s and 29 € p(B),...,zn € p(BE). Set 8541 =

The obtained enumeration f is surjective on N and xt is a union of n-regular
partial finite parts. From the construction is obvious that for every 2z € B; there is
an i-regular partial finite part 7 of f such that z € B]. Hence fisa pa.rtla.l regular
-enumeration. By Proposition 8.1, f is (i+ 1)—genenc for each i < n. ‘

Then by Proposition 8.2, for ¢ < n, B; < f®). Moreover, fisa partxam-genenc
enumeration and hence By <, f. -

To prove that f is quasx-mm:mal over By, 1t is sufficidnt to dhow that fy
matotalfunctlonand¢< [, then ¢ <. Bo. Itmcleatthatfqranytot&!set,
A C N one can construct a total function ¢, v =. A Lety be a total function and

¥ =T.(f). Then L
o MeyeN( Fe«z, ) «»\3(@ y>\
o .Consxder the set _ , o '3

 S={p:pe szo & @on # 1 € N)(o o Fe«z,m)) Lok Fe((z,wm}

SmceSo <. By, wehavethat thereemstsao-reguhrpa:tiaiﬁmtepmm Q fkuch o
that either 7o € Sp or (Yp D0 70)(p & So). Assume that 7y € So. Then there exist
&,y1 # y2 such that f |=o Fe((z,¥3)) and f k=0 F.({z,y2)). Then "l'(ﬂ-') yand
() > y2, which is impossible. So, (Vp 2o To)(P & So)-
Let
51 ={p:p €Ro & (37 20 0}{(3é1 20 7)(362 Do T)
(32,11 # v2 € N)(r Co p & b1 Ikg Ful(z,31)) & 83 ko Fe((x;y2>) &
dom(p) = dom(é;) U dom(d;) &
(Vz)(z € dom(p) \ dom(r) = p(z) = 1))}

- We have that 5 <¢ By and hence there exists a O-mgular partla.l ﬁmte p&rt 'r; C f .
« such. that either '€ S; or (V;.z 3& Ti){p € S1). e

b
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Assume that 7y € S;. Then there exists a O-regular partial finite part 7 such
that 79 Co 7 Co 71 and for some 6; Do 7, 62 Do T and o, Y1 # y2 € N we have

01 ko Fe({zo, 1)) & 82 kg Fe({z0,y2)) & dom(m1) = dom(d;) Udom(&z) &
& (Vz)(z € dom(my) \ dom(7) = 71(z) ~ 1).

Let w(a:o) ~ y. Then f o Fe({Z0,y)). Hence there exists a p Do 1 such that
p ko Fe({zo,y)). Let ¥ # y1. Define the partial finite part pp as follows:

 Joi(z) if z € dom(dy),
po(@) = {p(:r) if z € dom(p) \ dom(dy).

Then 70 Co Po, 91 Co po and notice that for all z € dom(p) if p(r) ¥—5-then
p(z) =~ po(z). Hence po iro Fe({(zo,11)) and po o Fe((zo,¥)). So, po € So. A
contradiction. ,

Thus, (Yp)(p 20 11 = p & S1)-

Let 7 = 7 UTp. Notice that 7 C f. We shall show that

b(z) 2y <= (36 20 1) o Ful(z, ).

And hence ¥ <. Bp.

If ¢(z) ~ y, then f |=¢ Fe(z), and by Lemma 8.1 (Hp C f)(p o Fe(z)) and p
is O-regular. Then take § =7 U p.

Assume that 81 D¢ 7, 61 kg Fe ((x,yl)) Suppose that w(x) ~ yo and y1 # ¥yo.
Then there exists a 62 Do 7 such that 8 Ik Fe((z,y2)). Set °

(z) =~ 7(z) if z € dom(r),
PATIZNL ifz € (dom(sy) U dom(62)) \ dom(r).

Clearly, p 20 71 and p € S;. A contradiction. O
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1. INTRODUCTION

Let 4 = (B;P,...,Py) be a total countable relational structure. = Partial
enumeration of 2 is an ordered pair.(f, B), where  is a partial function from the set
of all naturals N onto B, B is a total structure over N and the mapping f | Dom( f)
Ba stmng homomorphism from B[ Dom(f) onto 4. An associate of a set A C B

(in the enumeration (f, B)) is a set W C N such that W 1 Dom(f) = f~ lk(A), ie.
_ she pullback f~1(A) is exactly the set W, restricted to Dom(f). Following [2], say
that the set A is relatively intrinsically 2“ (I8, arithmetical) if for every partial
enumeration (f,B) it has an associate that is £8 (II%, arithmetical) in B. This
is a typical implicit definition of complexity of a set A over an abstract structure
and a natural question that arises here is whether the set A could be described
also explicitely. And further, if such an explicite characterization does exist, is it
necessary to involve the whole class of partial enumerations in order to obtain it?
In other words, does there exist some smaller class of partial enumeratxons such
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that the fact that A has an appropriate associate in every enumeration in this class
yields the respective explicite characterization of A? »
Results that answer the last question can be found in [8], where £2-admissible
sets are considered (although in another context), and in [4], where a minimal class
of enumerations for the X9-admissible sets is obtained. Here we further extend the
investigations from [5), considering also relatively intrinsically IT2 and arithmetical

2. 'PRELIMINARIES

Let us fix a relational abstract structure 9 = (B; Pr, ..., Py), where B is at
- most denumerable and each F;,1 £i < m, is a total predicate of k; arguments on
B. The equality relation is not. supposed to be among the initial predicates of 2.

Definition 2.1. Partial enumeration (of the structure 2) is an ordered pair
(f,"B), where f is a partial function from the set of all natural nymbers N onto B
and B = (N;Q1,...,Qm) is a total structure in the signature of % such “that for
every 1 <i < m the equivalence “

%
(8

Qulz1,...,Tk,). <> I’;(f(xl),‘.v..,f(é:kiq'). L

holds whenever z3,..., 2k, are’in Dcvm( f) oy
The set Dom(f) is the domain of the enumeration ( f\%) Wef shall cIassnfy
the enumerations of 2 with respect to the complexity of kheir domains. .
Let D(B) be the atomic diagram of B8, more precisely
' ; ‘ \ ,
D(%) = {(iaxl’- . kane)lQi(ml" . wmki) =€) 1< S m},

where {...} is some effective coding of all finite sequences ‘over N, which, we shall
suppose fixed until the end of this work. (We shall identify the boolean constants )
true and false with 0 and 1, respectively).

: Dpﬁmtmn 2.2. The enumeration (f, 'B) is 20 ( H‘,{ ) iff the set Dom( f)is
.20 (I3 ) in the diagram D(B) of B.

Deﬁmtxon 2.3. The enumeration (f, ‘B) is anthmetzcal iff the set Dom( f).is
arithmetical in the dlagram D(‘B), ie. Dom( f) is 20 or IT¢ in D(m) for some
nzl , , v ‘
| Deﬁmtlon 2.4. Let A be a subset of B*. ‘The set W C N* is called an
associate of A (m the emxmeratlon (f,B)) iff the equlvalence ,,

(zla ,Zk) EW{'—'# (.f(zl) y.f(xk)) €A
holds for all zy,...,a in Dom(f).
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Obviously, if f is not total, the set A has many associates.

Definition 2.5. Say that a set A C B* is I2- (II3-, arithmetically) admissible
in (f,B) if A has an associate, which is 9 (TI3, arithmetical) in D(B).

Remark. If we stick to the terminology from [1] and {2], kept also in [6] and
[7], we should call the above sets relatively intrinsically T3, (M2, arithmetical) in
(f,B). We, however, will use the shorter term ”admlssxble” whlch come from the
LACOMBE’S notion of V-admissibility {3]. ' oo

Next we introduce X0 and I12, n > 0, formulas i n; a recursive fragment of the
language L, ., of . The definition is by simultaneous induction on n. For that
purpose to each formula we assign (at least one) index.

We assume that we have chosen some effective coding « of all atomic formulas
in the first-order language Ly of A, extended with the logical constants T and F
(denote it by L3, ) .Throughout the paper, we shall suppose also that some effectwe

enumeratlon Wo, Wl, . of all recursively enumerable (r. e.) subsets of Nis ﬁxed

Definition 2.6. (i) Every atomic formula & in L'Q"l is a £ formula with an
index (0,0, k(®)).

Every negated atomic formula —~® in Li is a ITJ formula. thh an index
(1,0,x(®)). ‘

Every finite conjunction $1& . . &<I>; of £ or H° formulas with mdlces Vlyeno, Uy,
respectively, is a A formula with an index (2,v1,...,u).

(ii) If every v € W, is an index of a AJ; formula ®Y, whose free vanablqs aa;e
among X3i,...,Xk, then

Ve
UGW4

isa B, formula with an index (0, n+1,e) (with free variables among X3, .. ; Xi).
If ¢ is ~¥, where ¥ is a £2, formula with an index (0,n + 1,¢), then ¥ is a
119, , formula with an index (1,n% 1,e).
Ifdis ¥1&... &%, and every ¥; isa T, or I, 0 < m<n+1, formula with
an index v;, 1 < j <1, then ® is a A, formula with an index (2,v1,...,v).

Definition 2.7. Aset A C B¥is 2 (11%') deﬁnable on A iff there exists
some T (I ) formula ® with variables among X3, ..., Xk, Yi,...,Y and elements
“t1,. .0yt Of B such that for every (si1,...,sx) € B* : :

(sl‘,..,,sk) €A &< % ‘= ‘P(Xl/sl,...,Xk/sk,K/tl,... ,Yz/tl).

Clearly, if a set A is £2 (II9) definable on 2, then A is T (II ) -admissible in
every enumeration (f, %) of 2. '
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3. SATISFACTION AND FORCING RELATIONS

In order to save space, from now on we shall consider only subsets of B. All
the results can be easily generalized for subsets of B¥ for arbitrary k > 1.

. Let (f,B) be an enumeration of 2. We first introduce a satisfaction relation
(f,B) k=n Fe(z). For our purposes, it is suitable to make a slight deviation from the
standard satisfaction relation for the £2 in D(B) sets (as it is in 8], for example).
Let U(e, z) be an universal function for the class of all unary primitive recursive
functions. Using the S3'-theorem, we obtain a recursive function h such that for
every index e '

Wh(e) = {U(e .’c)lm € N}

“ It is well known that a nonempty set W C N is r. e. iff W= Wi(e) for some
index-e. We shall suppose that the function h is fixed until the end of this work. It
will appear in the definitions of the basic notions of forcing and satisfaction relation.

We begin with the definition of the satisfaction relation |, which is by in-
duction on n. As customary, D, will denote the finite set with‘ canonical index
v,

Definition 3.1. Set | C N

(f,B)Eu <= Fidn..dnIe(1<i<mé& uL (i, 21, ..., %k, 6) &
‘ B Q‘i(wl’ szk,) = E),

(f,B) =1 Fe(z) <= F({v,x) € Whie) & Yu € Dy(f,B) = u)),

(£,B) Enia Fe(z) <= ({v,z) € Wi() & Vu € DyIdIy(u = (d,y, 0)&

(£,B) k=n Fa(y) V u=(d,3)1) & (f,B) [~ Fa(y))).

Put finally . K | \
(£,B) n ~Fe(z) = (f,B) bén"{" (2).

‘The next fact is & direct consequence of Proposition 3.3 of [8] and our, choice
of the satisfaction relation f=,.

- Proposition 3.1.. (i) If W C N is Z2 in D(B), then there egists an indez
e such that W = {z|(f,B) |=n Fe(z)}.

(i) IfW C N is I'I" n D(!B), then W = {z{(f, ‘,B) En ~Fe(z)} for some index
e. .

Definition 3.2. Finite part is an (m+ 2)—tuple
T=(froHr,ql,-- 1 qm),

where f, is a finite function from N into B, If,- C N, Dom(f)NH, = @, Dom(f,)U
H, ={0,...,1 - 1} for some ! € N and ¢],1 < i < m, is a partial predicate of k;
arguments on {0,...,! — 1} such that for every z,,...,zy, in Dom(f,)

) q:(zlv R ’mki)t g Pl'(f‘r(zl)’ e ’(f"'(zki))'
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The set Dom(f,) U H,, which isin fact the initial segment [0,!) of N, we shall
call domain of 7 ( Dom() ); l is the length of T (in symbols |7}). If I =0, 7 is the
empty finite part. We shall use small Greek letters to denote finite parts.

Below we introduce three types of binary relations between finite parts that
model in a different way the notion ”extention of a finite part”.

Definition 3.3. Let 7 = (f;, Hr,q],..-,q%,) and & = (fs,Hs,¢¢,...,65,) be
finite parts. Set

TC6 &= fCf&H CH&q{Cql&...&q},Cdf,
TLO &= 1C&f=f5 o
70 <= 71<0& H,=H;.

Clearly, these three relations are partial ordermgs We shall sometimes write 7 2
8,724, etc. for §d C 7,6 <7, etc.

Definition 3.4. The enumeration (f,B = (N;Q,.. ,Qm)) extends 7 (in
symbols T C (f,‘.B) )iff fr € f, H, C N\Dom(f) and T C Q; for every
i=1,. '

Next we deﬁne the forcing relation I, again by induction on n. Notice that

in the definition of I, —... we use the strongest numerical extention > instead of
the usual 2. This type of forcing is called a “starred forcing” in (8]

Definition 3.5.

The <<= Jidx ... 35,1 i<m&u=(i,z,...,%,,6) &
qz(a:ls e sxh) = 6)’
Tl Fe(z) <= 3u((v,7) € Wy) & Yu € Dy(T IF u)),
Tlh —Fe(z) <> Vp(p2 7= plf1 Fe(x)), v
Tlhny1 Fe(z) <= ((v,z) € W) & Yu € D,3d3y(u = (d,y,0)&
Tl Faly) Vu=(d,y1) &7 H- -'Fd(y))),
Tlny1 ~Fe(z) <= Vp(p 21 = pn Fe(z)).

Lemma 3.1. Let n > 1. For every finite part 7 -
(i) {(e,2)|7 IFp Fe(x)} is 0 32 set;
(ii) {(e,x)|r hn ~Fe(z)} is a IO set.

Proof. Straightforward induction on n. The crucial point here is that we
consider numerical extentions > instead of D in the definition of the forcing relation.

o
In what follows, we shall need the following notion of restriction of a finite part
T to & (for 7 2 §).

Definition 3.6. Let 7 2 4. Set
7|6 = (f5, H5 U (Dom(f-) \ Dom(fs)), a5l -+, q0)-

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 41-62. 45



It can be easily checked that 7|J is also a finite part and 7|6 > §
The next important property of the restrictions will be systematically used in
the sequel.

Lemma 3.2. Let 5‘ be a finite part. For everyn > 1:
(i) Y1 2 8(7 Iky Fe(z) <> 7|6 by Fe(z));
(i) V7 2 6(7 by ~F.(z) <> 7|0 by ~Fe(z)). .

Proof. Induction on n. The validity of (i) for n = 1 follows from the obvious
equivalence
Thu < 76 IFu

Assume that (i) is true for some n > 1. We shall show first that (u) is also

true for n and then, using this fact and the induction hypothesxs, will establish (i)
for n+1.

Indeed, take some 7 2 § such that 7 Ikp 2Fe(z). We have tp see that 'r|6 I
—F.(z). Assuming that this is not true, we will have that for some p > 7|s:
p k-, Fe(z). We have p > 'r]6 2 4, so by induction hypothesis p|é IFp F.(z) Now

consider the tuple

' ) (.f'raH \Dom(fr) qp’ ’qm) \ ]
Let us first check that p; is a finite part, Obvxously, Dom(f,) and H, \ Dom(f,)
are disjoint. Further, since f5 = f,, we have that H, N Dom(f.s) 0 and hence

Dom(f,) U (H, \ Dom(f,)) = (Dom(fs) U (Damoff) \ Dom(fs)))U
(H, \ (Dom(f,) \ Dom(f5))) = Dom(fa) UN, = Dom\fp) U H,,

which is an mltla.l segment. So, , : %
Dom( *) = Dom(gf) C Dom(f,) U H Dom(fm) UHp. ™
Finally, if 21,...,x, are in Dom(f,,) = Dom(f,), then

67 (1, .-, 2.) and ] (21, ..., 2k) = Bi(fr(21), .- -, fr(@hs))-

However, p > 7|6, hence ¢f 2 ¢7, so ¢/*(z1,...,Zk,) = ¢7(%1,.:.,Tk,) is defined
and is equal to P;(fr(z1),..., fr(zx,)), which is actually P;(f,, (zx), or Jor (Tk:)),
hence p; is a finite part indeed.

It can be easily checked that p1 > 7 and p;]6 = p|d. As we have seen above,
pld I-n Fe(z), hence p1d Iy, Fe(z). From here, using again the induction hypothesis
and the fact that ;1|0 2 &, we get p; Ik, Fe(z), which contradlcts the fact that
T by = Fe(z).

Conversely, suppose that 7|6 I, ~Fe(z) and towards contradiction assume
that 7 I}, —F.(x). Therefore there exists p > 7 with p Ik, F.(z). -We have
p 2 T 2 6, so by induction hypotbesis p|6 I+, Fe(x). Further, p|d > 7|8, which
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follows immediately from the fact that p > 7 2 §. However, 7|6 lFn ~Fe(z) and we
could not have p|d I, F.(z), which is the desired contradiction.

Let us now check the validity of (i) for n + 1. Indeed, we have that (i) and (ii)
are true for n, so

T lpg1 Fe(z) < 3v((v,z) € Wiy & Vu € Dy3d3y(u = (d,y,0)&
Tlkn Fa(y) V u=(d,y,1) & 7 IFq =Fa(y)))
<= ({v,z) € Wy(e) & Yu € D,3dIy(u = (d,y,0)&
7|0 Ik Fa(y)- V u=(d,y,1) & 7|6 IFn =Fu(y)))
& 7|0 lhpt Fe(z)O

Using Lemma 3.2, one can easilj get the monotonicity of the forcing relation.
Lemma 3.3. (i) 6lk, Fe(x) &7 20 = 1k, Fo(z);
(ii) 8y —Fe(z) &7 2 6 = 7, ~Fe(z).

~ Proof. Let us first see the validity of (ii). Suppose that 8 I-n —~F.(z), 7 2 4,
but 7 ¥, —Fe(x). Then for some p 2> 7,p by Fe(z). Since p 2 7 2 §, applying
Lemma 3.2, we get p|0 Ity Fe(z). This, together with the fact that plé 2 6,
contradicts the assumption 4 I, —Fe(z).

Now (i) is by induction on n. Dropping the obvious case n = 1, suppose that
(i) is true for some n. We have also that (ii) is true for this n, so

Oy Fe(z) <= Fv((v,z) € Whe) & Vu € D,3d3y(u = (d,y,0)&
dikn Fd(y) Vu= (d, Y, 1) & oy "Fd(y)))
= Ju((v,1) € Whe) & Yu € D, 3dIy(u = (d,y,0)&
Thn Fa(y)V u=(d,y,1) & 7k "'Fd(y)))
&> Tl FG(E) 0o :

Let us remind some basic notions from the forcing constructions machinery.

" Definition 3.7. (1) Let X be a set of finite parts. The enumeration (f, B)
meets X if (e X & 6 c (f,8)).

(i) X is dense in (f, iB) if V&6 C (f,B)3r 2 §(7 € X).

(iii) Let F be a family of sets of finite parts. The enumeration (f,B) is ?—genenc
if for every X € ¥ the following condition holds:

if X is dense in (f,B), then (f,B) meets X.
 Set Xk, = {7|r i Fo(2)} and let
Fo= |J Xk
e,mEN,lSkSn

We have the following Truth Lemma that brings together the forcing and sat-
isfaction relation. ,

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 41-62. 47



Lemma 3.4. Letn > 1. Then
(i) If (f,B) is H'n_'l-generic enumeration, then
(f,B) fon Fe(z) = 31 C(f,B)(7 Ik, Fe(z)).

(ii) If (f,B) is F—1-generic enumeration, then ,

Ir C (£, B)(7 Ikn ~Fe(2)) = (f,B) kon ~Fel2).

(iii) If (f,B) is Fn-generic enumeration, then

(£,8) k= ~Fe(z) = 37 C (f, B){r by, ~Fo(x)). |

Proof. Induction on n. It is straightforward that for every enumeration (f, %)
(f,B) =1 Fe(x) <= 37 C (f,B)(7 k1 Fe(z)),

hence (i) is true for n = 1. Now assume that (i) holds for an arbitrary.;n > 1. We
shall successively check that (ii) and (m) also hold for this n and after that — that
(i) is true for n + 1. \

Indeed, let (f,B) be S'n-l-genenc, T C (f,'8) and 7 IF, -er(:z:) Towards a
contradiction, assume that (f,B) j=x Fe(z). By induction hypothesis 35 C (f,B) :
d I, F.(z). Now denote by 7 U ¢ the tuple

(f'r Uf&aH'rUHJ;Q{UQ?,--"Q;U&#)-

Since T and § have a common extension — the enumeéragion ( f}%), it can be easily
seen that 7UJ is a finite part, too. We have 71U 2 7, 7146 2 4, and by Lemma 3.3
7U§ =y, —F(x) and at the same time 7U § |=, F.(z), which is impossible.

Now let (f,B) be F,-generic and suppose that (f, B) =, ~Fe(z). We'have to
see that there exists 7 C (f,B) such that 7 I+, —F.(z). Indeed, assume that for
every finite part 7 C (f, E), T ¥n ~Fe(z). This means that

VrC(f,B)3p 2 T(P ttn Fe(x));

in other words, X2 is dense in (f,B) However, X;‘x is in 9',. and (f, %) is Fp-
generic, hence (f,B) meets X7, i.e. there exists 7 C (f,'B) such that 7 € X7,
in other words, 7 I, F, (a:), accordmg to our choice of X' .. Now applying 1)
for n (notice that (f, SB) is Fn—1-generic, too), we obtain ( f, B) En Fe(m) —a
contradiction.

It remains to see the validity of (1) for n+ 1 Agam take some F,-generic
enumeration (f,) and suppose that (f,B) l=n+1 Fe(z). Hence there exists
(v, :z:) € Wh(e) Such that ‘

Vu € D,3d3y(u = (d,y, 0)& (f, %) I=n Fay) v u={d, 1) & (f,8B) =n ~Fa(y)))-
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Since (i) and (iii) are true for n, we have that for every-u = (du,¥u,€u) in D,
there is some 7, C (f,B) such that 7y lF, (=) Fy, (yu). Again 7 = U{7.|u € Dy}
is a finite part and by the monotonicity of the forcing relation, 7 i, (—)% Fy, (yu)
for every u € Dy, hence 7 [F4; Fe(z). )

The verification of the opposite direction of (i) is very similar — this time
use the validity of (i) and (ii) for our n and the monotonicity of the satisfaction
relation. Notice that in this direction of (i) it is sufficient to have F,,_1-genericity
of the enumeration (f,B) (as it is in the case of the relation 7 IF,, —~F(z), point
(ii)). We, however, will not need this refinement for the posxtxve case of the forcing
relation. O

4. NORMAL FORMS

‘Suppose that 7 = (fr, Hr,q],-..,q7,) is a finite part, x € N is the first not
in Dom(r) (i.e. = = |r]) and s € B. Then by 7 * s we shall denote the tuple
(9, Hry71,y...,Tm), where g is the function with a graph Gy, U {(z, s)} and for each
1 €1 < m, r; is the predicate with a graph

G U {(xli . 2T E)|(T1y .00 Th,) € Dom(g) & P:(g(zl)a e g(ZR)) = €}.
Clearly, 7 * s is a finite part, too. '

Definition 4.1. (i) Aset AC Bhasa L0 normal form if there exist a
finite part § and a natural number e such that for z = |8] the equlvalence

S€EA &> Jp(p2 6* 8 & plkn Fe(z)) (4.1)

holds for every s € B.

(ii) A set A C B has aII normal form if there exist a finite part § and a natural
number e such that for x = |4] the equivalence

8€EA &> dxs by —Fe(x))
holds for every s € B.

Clearly, if the set A has a £ normal form, then B\ 4 has a I normal form
and vice versa. ‘

Now we are in a position to prove a series of auxiliary propositions that make
a connection between the implicit notion of admissibility and the explicit notion
of normal form. Their proofs make use of generic enumerations and in essence
follow the general scheme used in such type of constructions (in particular, the
proof of Proposition 4.1 can be found in [8). We formulate and prove them here
not for the results themselves but rather for the precise constructions of the generic
enumerations in their proofs. In the next section we shall explain how to refine
these constructions, in order‘ to obtain the main results in this work. ‘
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Proposition 4.1. Letn > 1. If AC B is ©0-admissible in every enumeration,
then A has a £3 normal form. ,

Proof. Assume that A does not have a 3 normal form. We shall construct
an enumeration (f,B) (a refuting enumeration) such that A does not have a X2
associate in it. The construction of (f,B) will be carried out in steps. Using
induction on a, we shall define a sequence

To‘g’l'lg---g'ra‘g...

of finite parts such that the set A is not admissible in any enumeration (f,B) that
extends 7, for every a. We shall make three types of steps. The first type (when
a = 0(mod3) ) will ensure that s is onto B, the second type is for F,_;-genericity
and the third type of steps will guarantee that A is not admissible in (f, B).

Let us fix an enumeration s, 51, - . . of the elements of the basic set B. Set 79 to
be the empty finite part and suppose that we have built 73, for some a > 0. We are
going to explain how to define 73541. Let a = (e, z, j) and put k = min(j+1,n~1)
(sowealWayshavel<k<nforn>1andk—01fn_i) If k=0, set
Taa+1 = T3q (since in this case n = 1 and no genericity is needed), othggrmse ask
the question “Ip(p > T34 : p Ik Fe(x)?”. If yes, set Taa41 = p (take an arbitrary
p 2 T3a such that plkx F(z)), otherwise set 73541 = T3a. |\ ]

In order to define Tag+2, We will use the fact that the set A does not have a
0 normal form. Hence the equivalence (4. 1) is not true for § = 73,41 and e = a.
Thxs means that for z = |r3,41| there exists s € B such thpt one of the following
two conditions is true: Y

i) 8 € A, but for every p > T3a41 * 8 we have plfy, Fo(z);

ii) s & A, but there exists p 2> Tag+1 * s such tha P trn Fa(‘w).

In the first case put 73,42 = T3a+1 * 8, in the second case take an arbitrary p: p >
T3a+1 * 8 &p Ik, Fo(z) and set Tya+2 = p. Finally, set 'rga_,,s = T3442 * Sq.
Now define the tuple (f,B = (N Q1,.. ,Qm)) as follows: - el

f= Ufr..y

and for every 1 <i < m and (z1,...,2k) € N*:

_Jar (@, 2y, if 3alg (g, 2k,
Qlzr,- o) = {arbitrary, otherwise.

Obviously, (f, ’B)j 7, for every a. Since for every s € B there exists a such
that s € Range(7,), we have that Range(f) = B. The definition of the notion
of finite part guarantees that f is a strong homomorphxsm from B onto %, i. e.
(f,B = (N;Q1,...,Qm)) is an enumeration of A. Let us see now that (f,B) is
Fn-1-generic if n > 1. Indeed, take some X¥_, 1 < k < n, and suppose that X%,
is dense in (f,‘,B) ie Vr C(£B)3p 2 7: p Ik Fo(z). Take a = (e,z,k — 1)
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and consider the step 3a + 1. From the density of X%, it follows that for 7 = 73,
there exists p D Ta, such that p k-, F.(z). Hence, putting p* = p|Taq, we will have,
using Lemma 3.2, that px 2 73 and p* l; F.(z). This means, according to our
construction of {‘ra}a, that 73441 bk Fe(z) and 73441 C (f,B), 1. e. (f, %) meets
X%, hence (f,B) is Fp,;-generic.

Towards a contradiction, assume that A is £0-admissible in this (f,8). Hence
A has an associate W, which is £2 in %B. Therefore according to Proposition 3.1,
W = {z|(f,B) k=n Fo(z)} for some a. We have that for every x € Dom(f)

(£:B) kn Fa(z) <= f(z) € A (4.2)

Now have a look at step 3a + 2. If the case i) holds at this step, then for some
s € A we will have that T3a42 = Tag+1 * 8 and T3q42 by —Fy(z). By definition
T3g+2(Z) = 8 for T = |73441|, hence z € Dom(f) and f(z) = s € A. So according
to (4.2), (f,B) =n Fa(z). On the other hand, 73g42 IFn —F,(z), which, combined
with the F,,_;-genericity of (f,8) and Lemma 3.4, gives us (f,B) =n —Fu(z) —
a contradiction.

If it is the case ii) at the step 3a + 2, then we wilk have 73542 Ik Fa(z),
T3a42(z) = s and f(z) = s & A. On the other hand, since (f,B) is G‘n_l-genenc,
according to Lemma 3.4, (f,'B) =n F,{(x), hence by (42), f(z)=3€ A= agam
a contradiction. O

As a consequence we obtain the followmg proposition.

Proposition 4.2. Letn > 1. fAC B isII® -admzsszble in every enumeration,
then A has a II2 normal form.

Proof. Take an arbitrary enumeration (f,B) of Qt If Wisan associate of A
in (f,%), then, clearly, N \ W is an associate of B\ A in (f,%). Hence B\ 4 is
»2-admissible in (f,B) and, according to the previous proposition, B\ A has a £
normal form, therefore A has a II2 normal form. (1

Proposition 4.3. Letn > 1, A C B and for every enumeration (f,B) of U the
set A is £3- or I1S -admissible in (f,B). Then A has £ normal form or II3 normal
form (and hence the set A is 30 -admissible in every (f, B) or is II° -admzsszble in

every (f,B)).

Proof. We shall follow the proof of Proposition 4.1. Assuming that A does
not have neither £2 nor I1% normal form, we will construct an enumeration (f, B),
in which A does not have an appropriate (8 or II%) associate. We shall use four
types of steps here in order to define the sequence {7,},. The first three ones will
be just as in the proof of Proposition 4.1. At the steps 4a + 4 we do the following.
According to our assumption that A does not have a I1S normal form, we have that
there exists s € B such that, putting z = |744+3|, one of the following two cases
hold:

i).s € A, but 74g43 * s lfn ~Fg{2);

il) s € A, but Tya43 * 8 Ik, ~Fe(x).
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In the first case we have that for some p 2 74443 * 5 : p ity Fo(z). Put in this
case T4g+4 = p. In the second case put Tyg44 = Tag+3 * 8.

Now let (f,®) be an enumeration that extends 7, for every a € N. As we
have established in the proof of Proposition 4.1, (f,B) is F,_1-generic and 4 is
not X2-admissible in it. Let us see that A is not I13-admissible in (f,B) as well.
Assume the contrary and take a II set W that is an associate of A. According to
Proposition 3.1, W = {z|(f,B) l=n ~F,(x)} for some a. Consider the step 4a + 4.
If the case i) holds at this step, then 7yq44 IFn Fo(x) for & = |74g+3|, Taasa(T) = 8
and s € A. Since (f,B) is F,—1-generic, using Lemma 3.4 we get (f,B) k=n Fo(z),
hence z ¢ W, whereas f(z) € A - a contradiction. In the case ii) we put 74044 =
Tsa+3 * 8 with 74y 14 Ibp —Fy(z) and f(z) = s € A. Now again by Lemma 3.4 we
get (f,B) k=n ~Fa(z), hence z € W, whereas f(zr) =s ¢ A. O .

4

Proposition 4.4. Let the set A C B be arithmetically admissible in every
enumeration (f,B). Then there exists n > 1 such that A has £O or IS normal
form. ~ ' '

Proof. Assume the contrary. We generalize the idea used in the proof of
Proposition 4.3 in such a way that n is now a parameter of the construction. Again
we will make four types of steps. With the first type of steps (of the form da+1)
we shall ensure Fy-genericity of (f,B) for every n > 1; with the second and the
third types — that A does not have neither £2, nor H° associate in (f,B) for every
n > 1. The fourth type of steps will guarantee that the mapping. f = U fra 18
onto B.

Let 19 be the empty finite part, a.nd suppose tha.t. we, have const,ructed Taq for
some a. Let a = (e, xz,n). If there exists p > T4q : ip Fnt1 F.(z), put 74041 = p,
otherwise put 74441 = T44. In order to determine 74;*«*2, we repyesent aas {e,n—1)
for some e and n > 1 and use the fact that A does not have a 2 normal form. So
putting & = [74441|, we will have that there exists some 3 e B such that one of the
next two possibilities holds:

i) s€ A, but Vp 2 Tyat1 * 8, pln Fe(:c),

ii) s € A, but 3p 2 14a41 * 8, plFn Fe(2).

Set T4o42 = Tdat1 * 8 OF Tyaya = p if it is the case i) or ii), respectively.

At the step 4a + 3 with a = (e,n — 1) for some e and n > 1 we proceed in
a similar way, taking into account this time the fact that A does not have a m

“normal form and hence for & = |7442| there is an s € B such that:

i) s € A, but Taa40 * 8, ~F(z);

ii) s € A, but 14542 * s Ik, ~Fe(2).

If it is the case i), then for some p > T4o+2 * 8 we will have p I+, F.(z), so put -
T4a+3 = p in this case. In the second case put Tyo+3 = Tdo+2 * 8.

- At the step 4a+4 4 we put 74444 = T4a13 * S TO complete the proof, proceed
just as in the proof of Proposition 4.3. [1-

T
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- 5. THE MAIN RESULT

In this section we will introduce a step-wise refinement I}:n of the forcing re-
lation I, that will allow us to define more precise. construction of the generic
enumerations (f, B), built in the proofs of the propositions in the previous section.
As a result, we will obtain a refined versions of these propos:tlons that will bring
us to our final results.

The definition of I, will follow the step-wise enumeration of the sets W) by
the function At.U(e, t).

Set for brevity

7l Dy <= 7l-uforeveryueD,

and forn>1

7k Dy, <= Vue D,3d3y((u=(d,y,0)&r I};,, Fi(y)) v
(u=(dy,1) & 7 lIkn = Fu(y))))-

Let \z,i.(z); be a recursive function that returns the;zlth component of the
sequence with a code z (if it exists). So we have for n > 1:

7l Fa(z) <= J0((0,5) € Wage) & 7 a1 Dy) <=
3tI(U(e,t) = (v,2) & 7 lkn-1 D)) <= I(U(e,t)r = = & T tkn-1 Diy(e.ty)o)-
Definition 5.1. Put »
rE, Fe(a:) <= Io(to <t & (Uleto) =z & Thag D(U(e t))o )

The first ¢ with 7 II- F(z) may be thought of as the first step at which the
validity of 7.IF, Fe(z) is established.

Here are the main properties of the relation ll-,, that we will need.
 Lemma 5.1. (i) 7lrp Fo(z) <= 3t(r IFy, Fo(2));
(i) 7 Fn Fu(@) & ¥ >t = 7 Iy Fole);
(iii) T ¥ Fu(s) &2 7 = 5 s Fola);

(iv) The set {(e,z,t)|7 K, F.(z)} is recursive in ("1,

Proof. (i) and (ii) are straightforward; the proof of (iii) is by a routine induction
on n. In order to establish (iv), notice that according to Lemma 3.1 and the Post’s
theorem the set M = {(e,z,t)|(U(e,t))1 =2 & 7 lkn—1 D(y(e,1)), } is recursive in -
p(n=1 | hence the set {(e,z,t)|Fto(to <t & (e,,t0) € M} is recursive in §(*~1) as
well. O )

Let D(7) - the diagram of 7 — be the set {(i,z1,...,zx,,)lg] (z1,..., %) =
€,1 < i < m}. Clearly D(7) is a finite subset of N. .
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Definition 5.2. The code of 7 (in symbols, ||7||) is the canonical index of the
diagram D(t) of 7.

In fact, the code [|7]| of 7 does not code 7 completely since it preserves no
information about Dom(f,) and H,. We, however, will consider codes ||7|| only for
finite parts 7 such that 7 % 7o for some fixed 70. In such case, clearly, |7} identifies
completely 7. If ||7]| < ||d]|, we shall say that 7 is less than 4.

Let t € N. Denote by 7** the finite part

T=(fr, H-U{|7},..., 17| +t —1},q],...,00,)

Can gr). Clearly, 7+t > 7, [v*t] = |7| + t and |}7**|| = ||7||. The next simple
. observation will be of use when constructing special generic enumerations.
Lemma 5.2. Suppose that 36 2 7(d Iy, Fe(x)). Then there existt € N and p
t .
such that p = 7+t and p Ik, Fo(z). :

Proof. Let § IFp Fe(z) and § > 7. Then there exists 1o : § H—n F(z). Put
t = max(to, k), where k = |§| — |7, and consider the finite part p =% §H(E=K),
Clea.rly, pzdédz2randlpl =8l +t—k=|r|+t= I'r+‘1, hexece p 7 7. We have

é II- F,(xz), hence § M— F,(z) and, by monotonicity, p !P- F(z). D
Now put

ol e.2) = {mm{t|t >0& 30 75 u-,. Fu@))}, \if 36 > (6 Ika Fu(a)),
) | %‘s othe{mse,
w(r,n, e, z) = | P13t po(T, 0 €, 2)kep 3 r*“&p m‘e(x»}, if Ypo(r,m,e,2),
e -l : othervuse

Here by min{p|...} we mean the least finite part p with the respective property. -
Using Lemma 5.2, we easily get

36 2 7(6 by Fe(z)) == 'po(r,n,e,7) & lu(r,n,e, 7).

Let us notice also that, according to Lemma 5.1 and the fact that there exist finitely
many 8: § > T, both functions o and p are computable in §(*~1), ‘

Proposition 5.1. Letn > 1. If A C B is £0-admissible in every 0 enumer-
ation, then A has a 8 normal form. )

Proof. Assume that A does not have a ¥ normal form. We have to construct
a 12 enumeration (f,) in which A is not £3-admissible. The construction of the
enumeration (f, ) will follow the scheme, described in the proof of Proposition 4.1.
We will, however, be more careful at the positive cases of the steps k = 3a -+ 1 and
k = 3a + 2, i.e. when we put 7% to be an arbitrary p > 7..; with the respective
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property. Now we will choose this p more precisely. In addition, we will ensure
that every 7y is total, i.e. every ¢/*,1 < i < m, is a total predicate over Dom(y).
(In fact, the last requirement is not essential for our construction. We will support
it only to facilitate the proof that (f,B) is a II enumeration.)

If & = (fs5,Hs,48,...,45) is a finite part, let

* = (fa,Hé,Qh se ,VQm),

where ¢; 2 ¢f and gi(z1,...,zr;) = O whenever (z1,...,2x,) € Dom(8)¥ and
-1gd(z1,...,2x,),1 <i < m. Clearly §* 3 6 and § is total.

Now we are ready to explain how to define 7 for each step k. Indeed, assume
that 73, is defined. Following the construction, described in the proof of Propo-
sition 4.1, we present a as @ = (e,z,j). So putting k(a) = mm(] +1Ln-1)=
min((a)2 + 1,n — 1), we set

s = B(T3a, k(a), (a)o, (a)l)+, if 3p 2 730(p Fr(ay Flayo ((@)1)),
dat1 T3a, otherwise.

In order to explain how to proceed at step 3a+2, look again at the construction
in the proof of Proposition 4.1. At this step we have that at least one s € B with
some special property exists. (Take an arbitrary s with this property, for example
take the first one in the enumeration sg, s1,... of B). Since we will need to cite
this s in the future, let us denote it by r,.

w((T3a+1 *1a) T, n,a, |Taa4a| + )T, if 3p > (T3a41 *70) T,
T3g4+2 = ’ ' p i+, F, (|7'3a+1[ +1)
(T3a41 *7a)t, otherwise.

Finally, put 73543 = (73042 * 84)*.
Now set
f Uf‘n.v Ql U qi ,1_<_1$m.

The fact that A is not Eo-admwsxble in (f,) follows immediately from the
proof of Proposition 4.1. What we claim here is that (f,B) is a II enumeration,
ie. that Dom(f) is a II3 in D(%B), or equivalently, that N \ Dom(f) isT. e in
D(8)("~1), Below we will see that N\ Dom(f) is in fact r. e. in 8™~V @ D(SB)

“hence (f,B) is a I enumeration indeed.

Remark. Let us notice that we do not achieve more than we claim for the
complexity of Dom(f), since as is well known, for the F,-generic enumerations
(f,8), D(8)»~1) is Turing equivalent to §™~1) @ D('B). ,

Letl € N. Denote by a; the finite part (f|[0,1), (N\Dom(f))N[0,1),41,--.,qm),
where each g; is the predicate Q; of B, restricted to the interval [0,1). Clearly,
a; C(f,B) and « is total. The problem here is that we have at our disposal only
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the structure B, not the whole enumeration (f,8), so we cannot construct o;. We,
" however, can determine the finite part

Br=(8;[0,0))iq1, - -, qm)-
Clearly, f; is oq]0, hence, using Lemma 3.2, we get
. B H-,,’ F.(z) <= alb, Fe(x). (5.1)
From here for every p, e,z we get
oo, v, e,z) =~ uo(Br, v, e,z) & ﬁ(az,p, e,z) =~ u(B1,p, e,x).

Set
Hy=0, H,=H, \H, _, for k>0.

Clearly, Hy are disjoint and N \ Dom(f) = {J; Hi. Hence

e

z € N\ Dom(f) = 3k(z € Hy).

. Y
Let us look closely how the sets H, are constructed. We have Hs, éﬂ,

é _ JlImsalseooilol =1}, if p o p(7sa, k(a)’ka)m (@h)*,
3a+1 m, if —I!IL(Taa, k(a), (a)O‘) (a)i)’

v
Y

H3a 2= {|T3a+l| + 1, ey Ipl - l}a lf P o I‘((TSQQ:I * fa)+: n,a, IT30+1| + 1)+’
+ m, if _l![i((TBa-i-l rg)+, n, ’l73a+ll + 1)'

%

Clearly, z € N\ Dom(f) iff € Haa41 OF T € Hga}g. Consider, for example,
the set Haqy1 (the case with Haaqo is similar). Suppose also that Higpy: is not
empty. We have 734 C(f,B), 734 = oy for I = |734|, 80 if we knew the length of 734, -
we could compute ¢ = po(ay, k(a), (a)o, (a)1) = po(Bi, k(a), (a)o, (a)1), using the
oracles #*~1) and D('B). Hence (the canonical index of) Hsat1 ={|73al,. .., |73a|+
t — 1} would be computable in 0"~ @ D(B).

The problems here are two. The first one is that we cannot decide recursively in
91 @ D(*B) whether Hi, s # 0. The second problem is that we cannot compute
the length |7, |, using the oracles #~1) and D(B). So our idea is to start a recursive
in §»~1) @ D(B) procedure that for every a computes consecutive approximations
19,11,..., leading to the “real” length |7,|. Using the approximate lengths I2, we
will define finite sets H? that will be already recursive in #*~) ¢ D(%B). Not all
of the sets H are approximations of our sets Hq, but as we will see, their union
Ug,s HS comc1des with UsH,, i. e. with N \ Dom(f). The rest of the proof of
the proposition consists in precise definitions of these approximations and their
properties, and is gathered in the next four lemmas.
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We define by simultaneous recursion the functions g and t% as follows:
12, =0, I3 =k for every k € N,s € N,

=1 forevery k € N,

and for every k,s in N

(GH+1, il # 5T,
g+, xflk_l_l”+1&t’>0&k 2a&

1o+ = ' ap b ,B; p "'k(a) F(a)o((a')l)a
k ﬁ 2+, ifzs_1=z,:i}&t;>o&k_2a+1&
ti
ﬂ*"‘ plkn Fa(12),
U in the remamed cases,
(1, ifi_, #l;ﬂ,
0, ifzkl_z;tl&t >0&k=2a&
1+ = | » B P"‘k(a) Flay((a)1),
k 0, 1fz-’l_z;;t‘&t >0&k=2a+1&
ﬂ-Hh P "_ F, (lk)')
\tp+ 1, in t.he remamed cases.

Our first lemma establishes some basic properties of I} and t§.
Lemma 5.3. For everyk€ N ands€ N
(@) & <5
(ii) I <k+s;
@) <=0t =k+s+1;
(iv) B+t <k+s+1;
W tE>0=>L+t =k+s+1

Proof. Induction on k. The case k =01is by a stralghtforward mductlon on s.
Assume now that for some k >0

Vs(lk—l < ls+l & lk 1 < k-1 + 8 & (lk-—l < lsti = l’:-_.—_i =k+ 3), ) (52)

St Sk+s& (>0 +t)  =k+5)).

In order to establish (i) - (v) for k, we shall proceed by induction on s. For §=0
the only points that are not obvious are (i) and (iii). We consider the cases in the.
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definition of I}. 1 # lk_l, thenll =1l ;+1=(k-1)+1+1=k+1,
according to (5 2) Hence Il >0 =k, i e (i) and (iii) hold. IfI_, =1} _,,
but i} # 1§ (i. e. it is the second or the third case of the definition of i}), then
I} = l° +1) =19 +1 =k + 1, hence again (i) and (iii) are true. They are evidently
true if = 12.

Now suppose that the conditions (i) — (v) hold for some s. We are going to
check them for s+1. If I < Z*7, then by induction hypothesis for s, [f+! = k+s+1,
i. e. (ii) is true for s+ 1 We check similarly conditions (iv) and (v), using the fact
that (iv) and (v) bold for 5. To see that (i) and (iii) also hold for,s + 1, we consider
separately the cases in the definition of Ig*2. If Ig*] # 182, then l"’“2 I+ 4,
which is by (5.2) exactly (k~1)+(s+2)+1 = k+s+2 so we checked (i) and
(iii). for s + 1. The next two cases of the definition of [J*? are treated similarly to
the case s = 0. The last case of the definition is again obvious. O '

Clearly, the functions As.lj have finitely many different values (since they de-
pend on the switches in the values of As.l2, for m < k). This fact, combined with
the previous lemma, means that for every k there exists least Sk such that

Bl < - <P =13+ (5.3)

5,

The following additional properties follow directly or by an easy | mductxon from
the definition of [}, Lemma 5.3 and the choice of S.

Lemma 5.4. (i) 055 <8 <
(it) Sk =0=> Ly =k; \

(iii) Sk>0=¢>lk+1.—ls"+1; : ~ \ ‘ \
(iv) Sk >0= 1%, =10 - '
(V) B <18 & 8 < Sy = Im < KI(IE < I5); ‘ .

(Vi) 7 < SVm >k +1=13);
(vii) k<m =13 <18,

Put Ly = l ., :
Our next lemma makes connection between (the lengths of) the finite parts 7;.
and the function [§ (in fact, it clarifies the definition of this function).

Lemma 5.5. For every a € N we have that |r3a41] = Laa, |1'3.,+2| Lagy1
and |Taa+3| = Lags1 + 1.

Proof. We have by definition that |73a+3} = |T3a+2| + 1, hence we have to check
the first two equalities. We shall proceed by induction on a. Let a = 0. We shall
see in turn that {n1| = Lo and |72} = Ly (70| = O by definition).

Case 1. 3p 2 To(p H‘k(o) F(o)o((O)l)). In this case i1 = y(To, k(O), (0)0, (0)1)+
and the length |11| of 11 is T = po(70, £(0), (0)o, (0)1). Then clearly, I = 0,3 = s+1
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for s < T,and IT = 1T + I = T, tT = 0. Therefore I§ = T,t§ = 0 for s > T,
so Lo =T, i e. |ny| = Lo.

Case 2. ~3p > 1o(p IFr(0) Floy,((0)1)). Then by definition 71 = 79, the length
|r1} is 0, and in this case Ly = 0, too.

Let us now see that |72 = Ly. If [y = 0, then clearly l(n *19)*| = 1, hence
(m1 *10)* = a; and 73 is an appropriate extention of a;.

Case 1. 3p > (11 x1o)*(p by Fo(lr1| + 1)). Taking into account (5.1) and
the fact that [r1| = 0, we can rewrite equivalently this condition as 3p > fi(p IFx
Fy(1)), which is closer to the definition of I{ and #{. Clearly, |r2| = T + 1, where
T = pp((m1 * ro)*,n,0,1), and since in this case I§ = 0 for every s, using the
appropriate deﬁnitions, we notice that I{ = 1,t{ = s+ 1 for every s < T and
F=0"4¢71'=7T+1,tT =0. Hence f =T+ 1,¢{ = 0for s > T, so
Li =T + 1, which means that |7 = L

Case 2. =3p 2 (11 *10)* (p r. Fo(ln| + 1)), or equivalently =3p > Bi(p Ik
Fo(1)). It can be easily checked that in this case t =1 for every s, hence L; =1,
which is exactly the length of 7. ’

Suppose now that |r| = Lo > 0. We have Lo = I3°, hence (o1 < I5° and
59 = 159 + 1 = |ry| + 1. So |(11 * ro)t| = I{ and (r * ro)* is in fa.ct ﬂ15° Now
using this fact and having in mmd the respective definitions, proceedmg as in the
case |11 = 0, we see that || =

Now suppose that for some a the lemma is true. We have to check that |73544| =
Log+2 and |130+5| = L2ay3. Indeed, by induction hypothesis, |T3q43] = Lags1+1 =
l;ga"r;‘ + 1. We consider separately the cases S2q+1 = 0 (hence Laay; = 2a + 1)
and S2,41 > 0, and obtain that tf;_";; = lf:fl‘ + 1 = Lgg41 + 1, which is exactly
|3a+3]. Hence S0ty is in fact T3543. Now the condition Jp > Taa43(p IFr(a+1)

Flat1)o{(a + 1)1)), Whlch is used in the definition of 73,44, is équivalent to Jp >
ﬁs,a“(p Fr(at1) F(a.,.l)o((a +1)1)). If S2g42 = S2a+1, then such p does not

exnst hence Tagis = Tag+3, L2a+2 = Lgg+1 + 1, therefore )T3a+4} = Lggyo. If
S2a+2 > Sa2a+1, then Lygyo = 153 "‘“ l‘ggi"z‘ fzfé‘ However tzz‘_’,fz‘ is in fact
po(T3a+3, k(a + 1), (a + 1), (a + 1)1) (the verification is as in the case a = 0). So
Loot2 = 173043 + po(730+3, k{a + 1), (a + 1)o, (a + 1)1), which is, according to our
construction, the length of 73,14. In order to prove the equality Log43 = Irga+5|
we proceed in a similar way. [

Set

) e JUT -1 T < & Vm k(g == ),
TR T e, else.

‘Let us notice that (for k > 0) if Hf # @, then I{~1 = [2_,, hence the change
of the value of l;"l is due to the existence of an appropriate p > ﬂl;_x.

Since the function Ak, 5.3 is recursive in §*~1) @ D(8), the function H(k,s) =
the canonical index of Hj is recursive in pn-1) g D(B), too. Hence the set H =
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Uz ,Hk is r. e. in 9™V @ D(B). We shall see below that N \ Dom(f) coincides
with H, hence N \ Dom(f) is r. e. in §("~1) @ D(B), which will bring us to the
end of the proof of the proposition.

Lemma 5.6. N \ Dom(f) = Uy, Hj.

Proof. For the first inclusion, let us see that Higy1 = stg“ and H3gqo =
Hf;r;‘ We may suppose that Haqy1 and H3ay2 are nonempty. We shall consider
separately the cases a=0anda > 0. Ifa =0, then by Lemma 5.5, || = Lo = lf,s"
and since H; # 0, l > 0. Therefore ls° “1=... =1 =0, hence

HYe = {157 10 =1} = {0,..In| ~ 1} = Hy.

Sa2a.-1

If a > 0, again by Lemma 5.5, |734| = L2q-1+1 = l3;,27" +1. Now using Lemma 5.4
we get 152071 = [3%1 4 1 = |r3,] and 52~ = [$%~1, Hence 152~ = |r3,|, while
152 = |73g41)- So Hagyr = {I53+71,... 1522 —1}. If m < 2a, then I, = I5r for
every 8 > Sp,, in particular, for every s > Sga, hence H;: S — {ls"*‘ ls"‘ 1}
The verification of the equality Hag42 = H2a ! is similar. - ‘

Conversely, take some Hf # 0. Clearly 8 < Sk (otherwise 127! *’i I and
H} = 0). If s = Sk, as we saw above, HE = H3ayq or Hagya, ependli’ng on whether
k = 2a or k = 2a-+1. Suppose now that s < Si. We cannot claim anymore that H
coincides with some H,. We shall see, however, that H 2 C HS~ far some m < k
hence if z € H}, then z € N\ Dom(f) again. Indeed since Hf # #, we have
1271 < 12 and I$ < I7*. Hence, by Lemma 5.4, there exist,m < k and s’ such that
l”"‘1 = l’ We may suppose that m is the minimal one with this property. Using
the deﬁmtxon of H,:, we get that ' < s — 1 and s"¢ 1 > s 41+ k —m. From
the last equality, s’ + m > s+ k hence l’ =s+m>s+k= I§. On the other
hand s’<s-—1 ie. sf—1<s-1, sobyLemma54 !1,,"1 <l"‘ From here,
{1z -1} < lk -1} Usmg the minimality of m, one can easily get
that s’ is in fact Sm, hence {I£-1,...,1¢ ~1} = H5~. 0

We can apply this idea of reﬁned refutmg enumerations to the constructions
used in the proofs of Proposition 4.2, Proposition 4.3 and Proposmon 4.4. Thus
we obtain that the following is true: '

Proposition 5.2. (i) Let n 2 1. fACBis Hg-admz'ssz'ble in every II0
enumeration of A, then A has a 1IS normal form.

(i) Letn > 1. Ifthe set AC B is £9- or II%-admissible in every I enumeration
of A, then A has X2 normal form or I'.[° nor‘mal form. ‘

(m) Let the set A C B be arithmetically admzsszble in every arithmetical enu-
meration of . " Then there exists n > 1 such that A has T2 or I normal
- form.
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In order to formulate our final results, we use a syntactical characterizations of
the sets that have £ (I12) normal form, obtained in (8], Lemma 6.3, namely, that
a set has a £ (112) normal form iff it is = (11°) definable on 2. This statement,
combined with the above two propositions, brings us to our final result.

Theorem 5.1. Let n > 1. Then the following is true:

0
(i)
(i)

, (iv)

If A C B is £%-admissible in every % enumeration, then A is £0 deﬁnable
on . "

If A C B is I3 -admissible in every II enumeration, then A is I3 definable
on 2.

If A C B is £2-admissible or I12 -admissible in every IIS enumeration, then
A is T2 definable or IS definable on A.

If A C B is arithmetically admissible in every arithmetical enumeration, then

‘there ezists n > 1 such that A is 2 or I3 definable on .

Let us notice that the class of all II2 enumerations in points (i) - (iii) of the
above theorem cannot be reduced anymore. Indeed, let us take a set A, which is
definable by means of existential £2 formula (cf. [8)], but is not £ definable on
A (it can be easily seen that such A does exist, if the structure % is interesting
enough). Clearly, A has a ©3 associate in every £ enumeration. Hence A is X0
admissible in every class of enumerations, that is included in the class of all 22
enumerations, and at the same time A is not £ definable on 2.

Ann.
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We prove a new normal form theorem for a special kind of expressible mappings in
operative spaces with iteration. As a consequence, this provides a large class of models
for the type-free implicative linear logic and a natural connection between operative
spaces and the systems of algebraic recursion theory based on the linear or affine
application which were studied previously.
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INTRODUCTION

Operative spaces are a special class of partially ordered algebras developed
in {2] for the purposes of the axiomatization of recursion theory. Recently, they
were shown ([8]) to give rise to a large class of combinatory algebras. There is,
on the other hand, an alternative to combinatory algebras - a kind of algebras
called ’type-free models of the linear logic’ below, since they can be regarded as

~models of a type-free version of the proof calculus for a Hilbert-styled system of a
suitable fragment of linear logic. The last algebras have a natural connection with
recursion theory and some other advantages which make reasonable the question
whether we can model them in a way similar to that in which combinatory algebras
were modeled in {8]. In the present paper we discuss this question and indicate a
large class of operative spaces (including the iterative ones in the sense of [2]) and
combinatory spaces in the sense of {4] in which the type-free models of the hnea.r

1Supported in part by the Bulganan Ministry of Educa.tlon and Science, oonttact No 1-1102
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logic ¢an be modeled. Some of these results were briefly mentioned in the last
section of [8]; in the present paper we give them a detailed exposition. As in the
paper [8], the last results will follow from a suitable normal form theorem for some
kind of expressible mappings in operative spaces with iteration. The normal form
theorem of the present paper can be regarded as a refinement of a normal form
theorem of Georgieva. [1).

The type-free models of the implicative linear logic and other partially ordered
algebras based on linear (otherwise called BCI-) application were studied previously
by the present author ([5, 6, 7]) for the same purposes of axiomatization of recursion
theory; but until recently no natural connection was known with other systems of
the algebraic recursion theory like operative spaces or combinatory spaces. The
normal form theorem of the present paper changes this situation since it enables *
one to define a natural affine (or otherwise BCK-) application in every operative
space with iteration. This opportunity is used in Section 3 below, where we show
how to model one of the most important application-based systems of the algebraic
recursion theory in such spaces, indicating in this way that the last, system comprises
the majority of the kinds of recursivenesses dealt with in the'theory of operative
spaces. N

%,

1. BASIC DEFINITTONS

An operative space, accordmg to [2}, up to some notatxonal modifications, is a
partially ordered algebra F with two binary operations \called multiplication and
pairing and three constants I,T',F', considered as 0-ary operatxons, which satisfy the
conditions (OS1) and (0S2) below. (Note that the dondition that F is a partially
ordered algebra includes the requirement that all operations of F are increasing
on each argument.) We use the following notations for thg operations in question:
the multiplication is denoted by juxtaposition and the result of applying, pairing
to the arguments ¢, € F will be denoted by [p,¥]. The conditions defining an -
. operative space F are the following ones:

. (O81) F is a monoid with unit I with respect to the multiplication;

(082) the identities xlp,¥] = [xp,x¥] , [P, ¥IT = p, and [p,4]F = ¢ are
satisfied for all elercents @, ¥, x of F. ‘

‘The operations of multiplication and paifing and the constants I,T,F are called
basic operations of operative spaces or, more briefly, basic OS-operations. We shall
denote by m* the standard representation F™T = F...FT of a natural number m
in arbitrary operative space F. We employ also the shorthand notation

[‘PO’ L1y 00y ‘Pm-l} = [‘Po; [‘ply --'[‘Pm—% ‘pm—l]:-']];,

80 we have the identities v
{‘PO:‘PI:---;‘Pm]i+ = @i
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fori <m -1 and
[‘PO;‘PI: ---,‘Pm]Fm = Ym

in every operative space.
For a unary operation I : F — F in an operative space F we shall say that
it is an iteration iff it satisfies the inequality '

LI(e)e < )

for all ¢ € F, and for all o, £ € F the inequality [, §]p < € implies a(p) < €.
Therefore the iteration I in F, if it exists, is uniquely determined by the fact that
for every ¢ € F the element I{y) is bound to be the least solution of the inequality
[I,€le < € with respect to &; in particular, it satisfies the corr/gsponding equality

1,X@)le = I(p)-

When the iteration I exists in the space F, we shall say that F is an operative
space with iteration; this notion is equivalent to the notion of G-space in [4] and
to that of an operative space satisfying the axiom (££) of Ivanov [2]. Hence every
iterative operative space in the sense of [2] is an operative space with iteration, but
the reverse is not necessarily true. Every operative space F in which the least upper
bound supB exists for every well ordered part B C F and commutes with the left
multiplication: psupB = sup{yz | z € B}, is iterative and therefore has iteration.
Another important and most commonly apearing class of iterative operative spaces
is that of continuous ones, i.e. those in which the least upper bounds of countable
increasing sequences exist and commute with all basic OS-operations.

In every operative space F with iteration the element O = I(F) is the least
element of F, and it satisfies also the equality O = O for all « € F. This follows
from the equality [o, §]F = £ by the definition of iteration. The last definition
implies also that the iteration is an increasing operation.

Let F be arbitrary operative space and B C F. We shall say for a mapping
f : F* = F that it is OS-expressible in B iff f can be defined by an explicit
expression constructed by means of the basic operations of operative spaces and
the elements of B as constants. Similarly, when the space F has an iteration,
the mapping f will be called OSI-expressible in B iff it can be defined by similar
expression, which may contain also the operation of iteration I. Instead of OS-
or OSI-expressible in' B mappings of zero arguments we shall speak also of OS- or

- OSI-expressible in B elements of F, respectively. We shall also drop 'in B’ when
' B is clear from the context or arbitrary.

2. NORMAL FORM OF SINGULAR MAPPINGS
An OSI-expressible (in B) mapping f : F* — F in an opeiative space F

with iteration will be called (B-)singular iff in the expression defining f all the
variables for the arguments of f occur exactly once. Moze precisely, the B-singular
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mappings of n arguments are those which belong to the least class O of operations
in F satisfying the following conditions:

0) O contains the identity operation in F of one argument;

1) O contains the basic constants I, T, F and the elements of B, considered
as operations of zero arguments;

2) for all two operations f and g in O of n and m arguments, respectively, the
operation k of n + m arguments defined by

h(fo» ---v&ﬂ—hﬂov seey "Im—l) = f(&Ov ooy fﬂ—l)g(mg ey nm—l)

is also in 0;
3) for all two operatlons fandgin O of n and m arguments r&spectxvely, the
operation h of n + m arguments defined by ’

h(fo, ooy gﬁ-—/hﬂOv ooy 7’m-l) = [f(fﬂ; ceey fn—l)s 9(7701 ey ﬂm—l)]
is also in O; | | o
. 4) for all operations f in O of n arguments the operation A of n arguments
defined by

hY

h(fo, wrén-1) = I(f({o’ ceesén-1)) %

is also in O; . '
5) for all operations f in O of n arguments and every bqectxon

p:{0,.,n~ 1} {0,...,.n -1}
!
the operatlon fp of n arguments defined by '

Fo(€oy errEn) —f(fp(O), rfz?&n—i)))

is also in O.
The main purpose of the present‘. section is to prove the following normzl form ‘
theorem for singular mappings. )
; Theorem 1. For every B-singular mapping f-F" ~ F in an operative space
F with iteration there is an element ¢ € F, OS-expressible in B U {0}, such that

F(€or o En1) = KT, 2% €0, .y (n + 1) Ena)@)T

forall €o,....6n-1 € F.

For that purpose we shall employ the technique of homogeneous systems in-
troduced by Skordev [3], [4]. Let F be an arbitrary operative space. Following
Skordev, we shall call a mapping f : F* — F left homogeneous iff it satisfies the
equality ‘

f(¢1901 sesy Wﬂ—l) = ‘Pf(”o, seey ﬂn—l) '
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for all ¢,99,...,9,—1 € F . Left homogeneous mappings f are easily seen to be
increasing on each argument since they satisfy the equalities

FBoseaBnct) = F(B0ses Bnmsl0F, oy [0y s Baca ™)
= [190,...,19n—1]f(0+,---1Fn_1)‘

By a homogeneous system we shall mean a system of inequalities of the form
®i(c, 2o,y 0oy Tn1) S T (2.1)

where i ranges over natural numbers less than n, ®; : F"j b s F are left homo-
geneous mappings of n + 1 arguments, o € F is a parameter, and o, ..., Tn—1 are
unknowns. The following fundamental result for such systems, up to nonessential
modifications, belongs to Skordev (3], [4].

Theorem 2. Suppose the space F has an iteration. Then the elements y;
defined by u; = ol(p)i*t , wherei = 0,..,n—1,
‘P = {‘POV"y‘Pn—hOL
and ¢; = ®;(T,1%,...,nt), form the least solution of the system 2.1 in F wzth
respect £0 %g,...,Zn-1, vEspectively, for alla € F.
~ Proof. (uo,---, in—1) is & solution of (2.1) since .
<I>,~(a,po, ----,Ilﬂn—l) = ¢I>,-(a, aI(<p)0+, ceeey aI(cp)(n - 1)+)
= a®i(1,1(p)0", ..., I(p)(n - 1)F)
= a['lv I(¢)]Q1(T, 1+1"--1n+) = a[Ir I(‘P)]‘P;
= al,LI(p)pit = ad(p)it = w;

and for an arbitrary solution (£o,-..,€n—1) of (2.1) with respect to zg,..,Zn—1,
respectively, define & = [£, ...,&n~1,0] ; then for arbitrary o € F we have

Ia’ﬂ(p = Ia’gn‘POv"a‘Pn-l’O] = Ha»ﬂ‘PO’"w[a’ﬂ‘toﬂ—l’o]
[, €)®o(T, 1%, ...,n %), ..., [, E]®p-1 (T, 1, ..., n ), O]
[@o(c, 0%, ... E(n — 1)), ..., Bu1(a, €0Y, ..., E(n — 1)), O]
[@ola, &0y -1 En—1)) ooy Pr-1(e, &0, ..., €n—1), O]
- < [601---:511——170] = fa ‘

whence by the definition of iteration al{p) < £ and

pio= al(p)yit < &t =g

il

il

il

forallz <n-10

Note that the last theorem 1mphes that the least solutions of homogeneous
systems in operative spaces with iteration are left homogeneous in the following
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sense: If (ug, ..., bn—1) is the least solution of a homogeneous system of the form
(2.1), then (Buo, ..., Bun—1) is the least solution of the system

®;(Ba,xg, ...y Tn-1) < T4

forall g € F.

Henceforth in this section we shall suppose that F is an operative space with
iteration.

Next we shall specify some kind of homogeneous systems, which we shall call
canonical. Namely, let £ = (£o,...,&n=1) € F™ and B C F; then by a (B;§)-
canonical system of inequalities we shall mean a homogeneous system of the form

ri(I):thxlgm"-aann-laxn+l’---;xn+m) S Ty, (2°2)

where i < n+m, Zo,...,Tn+m are unknowns and I',...,[ppm : F*H72 4 F
are OS-expressible in B left homogeneous mappings of n + m + 2 arguments. A
mapping f : F* — F will be called canonically definable in B iff there is a (B; £)-
canonical system of the form (2.2) such that the first member (corresponding to
o) of the least solution of (2.2) equals f(£) for all £ € F™. The systag of the
form (2.2) being homogeneous, the Theorem 2 applies to them, whence we obtain
the following . \ !

Corollary 1. Evefy (B; £)—canonical system (2.2) has a least solution whose
components p; (i <n—1) have the form

pi = X1, 2% o, oy (m + 1) ] )

for a suitable element v € F which is OS-ezpresszbl\"&n B\U {0}.
Proof. By Theorem 2 the least solution of (2.2) is glwen by

= I(p)i¥, -~
wherei <Snt+m,p = {‘pﬂy -""pn-i-mvols and
oi = Li(T,1%,2%, ..., (n+ 1) oy, (n +2)F, ., (n+ m + 1)),

Thence
= [L,2%¢&, .., (n 4+ 1)V éaalm,

where
v = Dy(T%T1%,1%, ., (n = )¥, F™, T(n+ 2)T, ..., T(n + m + 1)*).
Then defining v = [vo, ..., Yn+m, O], we obtain
v = [I,2%&,....,(n + 1)V ¢n_1]y

and the required representation of p;. O
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Corollary 2. Every canonically definable in B C F mapping f : F* — .7-' of
n arguments is representable of the form

f€o, - €nm1) = I({I,2*¢0, ..., (n + 1) na]M)T

for a certain element'); € F which ‘is OS-ezpressible in B U {0}.0

The last corollary shows that to establish Theorem 1 it is enough to prove that
all singular mappings are canonically definable. For that purpose it will be conve-
nient to introduce some more terminology about homogeneous systems. Consider
two homogeneous systems 2

Qi(Ia zO:-""xﬂ*l) <z (23)

and .
‘I’j(Ia Y0y -y ym-l) < Yi» . (24)

where i < n—1and j < m —1 and the variables z;,j; are supposed pairwise
different. Then the product of the systems (2.3) and (2.4) is defined as the homo-
geneous system of 1+ m inequalities, consisting of the inequalities of (2.3) and the
m inequalities

(20, Y05 oy Ym~1) < Yj- (2.5)

Similarly, the homogeneous system of n + m + 1 inequalities, consisting of the
inequalities of (2.3) and (2.4) and the inequality [xo,y0] < 2z , where z is a new
variable, will be called pairing of the systems (2.3) and (2.4); a.nd the homogeneous
system of n inequalities

q)i([I,x()],.’Bo,....,.’En-]) <z (2.6)

will be called iteration of the system (2.3).

Lemma 1. Suppose (po, ..., in—1) and (v, ...,Vm—1) are the least solutions
in F of the systems (2.3) and (2.4) with respect to xg,...,Tn-1 and Yo, .-, Ym—-1,
respectively. Then:

(a) the (n+m)-tuple (1o, ..., n—1, H0V0, -, HoVm—1) i$ the least solution in F of
the product of the systems (2.3) and (2.4) wzth respect to TQy iery Trim1s YOy -0y Yrm—1»
respectively;

( b) the (n’+m+ 1) tuple (#01 sy Hn—-15 105 <y Ym~1, Lu'Oa VO]) is the least solution

“in .7-' of the pairing of the systems (2.3) and (2.4) wzth respect 10 Zgy ..y Tno1,
Y0, -+ Ym—1, 2, respectively; and .

( c) the n-tuple (T(uo), [T, X(1o))pt1, ---, 1, I(po)]un_l) is the least solution in F

of the ztemtwn of the system (2.3) with respect to zp, ..., Tn—1, Tespectively.

Proof. The n-tuple (uo, .., un-l) satisfies the inequalities of (2.3), and by t.he
left homogeneity of ¥; the (m + 1)-tuple

(#O) MOVb, erey IJ'OVm--l)
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satisfies those of (2.5). Hence the (n + m)-tuple

(/"'01 vey Hn—1y HOVO) +++y MOVm—l)

is a solution of the product of the systems (2.3) and (2.4). Consider an arbitrary
solution (&, ..., €n—1, 70s ---» tm—~1) of the last product with respect to zy, ..., Zn-1,
40, -y Ym~1, Tespectively. Since (yo, ..., ppn-1) is the least solution of (2.3), we have
pi < & for all natural numbers i less than n. On the other hand, by Theorem 2 it
follows that (,uouo, : oVm—1) is the least solution of the system

(0 Yos s Ym—1) < ¥

with respect to yo, ..., ym—1, respectively; and from the inequality pg < & we
can conclude that (7o, ...,m—1) satisfies the last system. Therefore pov; < n;
for all j < m — 1, which proves {a). The proof of (b) is similar, but simpler
and straightforward, and we leave it to the reader. Finally, to prove (c), denote
shortly by ) the iteration XI(u); then using the equality [I, Ajuo = A and the left
homogeneity of ®;, we see that the n-tuple (A, [1, A]uy, ..., [I, A]tha=1) is a solution
of (2.6): o

Bu(11, MM 11, Nt s 1, Nptmes) = U, N8, s s i) < (1, N

Let (&o,...,&€n~1) be an arbitrary solution of (2.6) with respéct t0 Zg, ..., Tn_1, Te-
spectlvely Then it is & solut:on of the system. \

(|1, &), %0, ) Tno1) < T \

with respect to o, ...., Tn-1, respectively. But Theorem 2 implies that the n-tuple

([I”&J]l“h----’[1,',63]/&,...;)1 i oy

is the least solution of the last system. Therefore |I, §o]ﬂ\ < & for all i<n—1,
Whence [7,&]po < & and A = I(uo) < &, and finally [I, N < & .

Proof of Theorem 1. According to Corollary 2 it suffices to show that an B-
singular operations in F of n arguments are canonically definable in B; and this
follows from the fact that the class O of all canonically definable in B operations
in F satisfies the conditions 0) - 5) in the definition of B-singular mapping above.
Indeed, the identity mapping of one argument e(£¢) = £ is canonically definable by
the system of two inequalities ;£ < xg and I < z;. If b is a basic constant or
element of B, then b as an operation in F of zero arguments is canonically definable
by the system of one inequality Ib < o . Thus O satisfies conditions 0) and 1).
To see that it satisfies conditions 2) - 4), it is enough to note, respectively, that
- the product, the pairing and the iteration of canonical systems are also canonical
systems, and to apply Lemma 1. Finally, the class O satisfies 5), because a canonical
definition by a system of the form (2.2) of an operation f in F of n arguments can be
regarded as a canonical definition of the operation f, after a suitable permutation
of the variables zi,...,2n . O

%
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3. AFFINE APPLICATIONS IN OPERATIVE SPACES

The normal form Theorem 1 proved in the previous section enables us to define
in arbitrary operative space F with iteration a binary operation which has the
properties of affine application. Namely, for all ¢, ¥ € F define

(o) =11, 2+¢]s0)T ' CRY

We shall adopt the shorthand notation (@o -1+ ... - @Pn—1-pn) for the iterated appli-
cation ((...(¢0-®1) - ... - ¥n-1) - ¥n) and we shall also omit the external parentheses
in such expressions. In the case n = 0 the last notation should be interpreted as
wo. We have the following - ’

Corollary 3. Let F be an operative space with iteration and let f be a B-
singular operation in F of n arguments. Then there is an element ¢ € F, O5-
ezpmsszble in BU{OY}, which represents f in the sense that for all &,....4n—1 € F
we have

F(&0y-rbn1) = - Eo oo En-1.
Proof. Induction on n. The case » = 0 is trivial; suppose n > 1 and assume
the induction hypothesis for n — 1. By Theorem 1 we have an element o € F
OS-expressible in B U {0} such that for all {, ...,n-1 € F
F(€oresbnmr) = LT, 2%En1,3 60, s (n + 1)*€n—alpo)T.
Thence for the B-singular mapping f; : F*~! — F defined by
\ fl(&)t ey €ﬁ—2) = [T’ F7 T3+€0$ ey T(n + 1)+En—2]¢0

we have

.f(E'O’ '--1‘67:—’1) = I([I 2+£n—1]f1(£0’ ---;ﬁn—z))T = fl(&Oa""v €n—i) : §n—1:

and by the induction hypothesis applied to f; we obtain the required representatxon
of fO

Corollary 4. In an arbitrary opemtive apace F with iteration, the binary
operation defined by (3.1) is an affine application in F in the sense that there are
three elements A, C, K € F, OS-expressible in {O},such that for all o, ,x € F
we have

Aodp-x = @-(¥-x) (3.2)
C.(P.¢ = qp.(p’ (33)
K-o9p = o (3:4)

Moreover, there are two elements C.,,. D E F, OS-expressible in {O}, which satisfy
forallo,¥v,x € F the equalities

Co-¢(De-p-x)=9-¥-X (3.5)
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and o , :
| D, -9-x = [T%, Fx]. | (36)

Proof. The existence of A, C and D, satisfying (3.2), (3.3) and (3.6), respec-
tively, follows immediately from Corollary 3 since the right-hand sides of the last
three equalities are the values of suitable (-singular mappings. The same holds
also for K and (3.4), since we can replace ¢ with [ip,9%]T. The right-hand side of
(3.5) is also the value of a singular mappmg for the arguments @, ¥, x, whence by
Theorem 1 we have

pvex = I([I,2%0, 3%, 4*X|Co)T = (I, 2%, [3%,4¥][Tw, FX]|Co)T

for a certain OS-expressible in {O} element Cop € F, and we can deﬁne C. by the
help of Corollary 3 as an element of F satisfying

Ch -9 = I([I,2%p,[3%,49]Co)T

forall o, 4 € F.0O

The partially ordered algebras having one binary operation called aﬁglication,
five constants A,C,K,C, and D,, satisfying (3.2)-(3.5), and a least element O for
which D, - O - O = O were studied before by the present adthor uhder the name
of CLCA (cartesian linear combinatory algebras; [6], [7]). However, a more appro-
priate (for the traditions of algebraic recursion theory) terminology would be, for
instance, "applicative spaces’ instead of CLCA, and we shall follow this terminology
below. The applicative spaces were shown to provide a simple abstract algebraic
treatment of graph models of lambda calculus, which,can compyise all the basic re-
cursive algebra of sets of natural numbers under appropriate conditions (consisting
in a suitable strengthening of the supposition of -existenoe of least solutions of all
inequalities of the form ¢ - £ < ¢ with respect to £) and :gnch have a good variety
of models inspired besides the graph models also by continuous functionals; Scott
domains and others. Now the last corollary shows that applicative spaces admit
a still greater variety of models, every operative space with iteration in which the
equality [0, 0] = O holds providing such 2 model.

" Properly speaking, we obtained a functor & : OSI — AS from the category
OSI of operative spaces with iteration satisfying the last equality to the category
AS of applicative spaces (morphisms of OSI are the mappings preserving the ba-
sic OS-operations and the iteration, and the morphisms of AS are the mappings
preserving the application and the basic constants A,C,K,C,,D. and O), which
sends every object F of OSI to the applicative space ®(F ) described by (the proof
of) Corollary 4 (in particular, ®(F) has the same set of elements and the same
partial order as F) and every OSI-morphism f : 7 — F’ to the same mapping
f. This functor ® is obviously faithful, but it is a problematical question whéther
® is full, which amounts to the question whether the original basic operations. of
an operative space F € OSI are explicitly expressible via the basic constants and
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operations of the applicative space #(F); and the question of equivalence of the
categories OSI and AS is still more problematical.
A nice feature of the functor ® is that it preserves the storage operations in
the following sense. As it was shown in 7], the unary operation V in an applicative
" space A, which assigns to each element y of A the least solution V(y) of the
inequality D, -@-£ < £ with respect to £, has the properties of the storage operations
arising in semantics of linear logic, namely there are elements I, , M, ,Q.,K.,W, €
A, such that the equalities

L-V(p) = ¢ (3.7)

M, -V(p)-V(§) = Vie-9¥), (3.8)
Q.-V(p) = V3(p) = V(V(e)), (3.9)

Ko -9-V(p) = 9, (3.10)
W -¢-V(p)i= ¢-p-9p (3.11)

hold for all p, ¥ € A, provided the space A satisfies the conditions mentioned
above and specified in [6] and {7]. The algebra of proofs for the Hilbert-type ax-
iomatization of the fragment of linear logic restricted to the linear implication and
the exponential connective 'of course’ can be regarded, by the well known formulae-
as-types correspondence, as a typed version of the algebras with two operations -
(linear) application and storage V - and seven constants A4, C, I,, M,, Q., K., W,
satisfying (3.2), (3.3) and (3.7)-(3.11). Hence we use the term type-free models of
linear logic for the last algebras. Now the natural storage operation V defined above
in the applicative space ®(F) assigned to an operative space ¥ € OSI coinsides
with the natural storage operation in the last space, which is called translation (in
[2]) and is defined as the least solution of the inequality [T'p, F¢} < € with respect
to £ This follows immediately from the equality (3.6) of Corolla.ry 4 and is the
reason to say that ® preserves the storage operatlons

The type-free models of linear logic have various instances closely connected
with recursion theory; that is why they were introduced and used even before the
discovery of linear logic for the purposes of axiomatization of recursion {e.g. in
{5]). From purely formal point of view, they provide a substitute for the (models
of the) combinatory logic, which is easier to deal with, being based on the binary
operation of linear application. The last operation is more natural and easier to
model, and has the advantage of being free of the gross algebraic complexity of the
-basic laws for the traditional application operation of combinatory logic, replacing
them with some kind of generalized associative and commutative laws. The usual
combinatory logic can be easily modeled in the type-free linear logic- by defining
the application operation Q as follows: Q(p,¥) = ¢ - V(¥).

Now the results of [7] imply that for every object F of OSI the applicative
space ®(F) forms a model of the type-free linear logic with respect to the storage
operation defined as the least solution of the inequality D, - ¢ - £ < &, provided
the space ®(F) satisfies the conditions specified in [7], which is always the case
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for continuous operative spaces F. However, one can naturally construct models
of the type-free linear logic in a larger class of operative spaces (not necessarily
continuous), namely the iterative ones, as well as in all combinatory spaces in
the sense of [4] satisfying some weak suppositions of iterativity, by a direct use of
translation and other suitable storage operations. This we shall discuss in the next
section. :

4. STRONG STORAGE OPERATIONS IN OPERATIVE SPACES

Let F be an operative space with iteration and let $ be a unary operation in F.
We shall say that $ is a strong storage operation in F iff there are three elements
D, P, @ € F such that the equalities

$(p)nt = nty, ’ (4.1)
$(pv) = $(p)$(¥), ’ (4.2)
$(o.9)) = [Ble)8(¥)D, (4.3)
3(0)) = Q8(o)P, , ’ L (44
$(I(¢)) = I(D$(p)) N (49)

hold for all ¢, ¥ € F and all natural numbers n. A natura example of a strong
storage operation provides the operation of translation in iterative operative spaces,
which are defined ([2]) as operative spaces with iteration satlsfymg the following
addxtxonal axiom ‘ - .

(£) The.re is a unary operatlon @ (t,o) in F ca.lled tra.nslatxon, such that the
mequa.hty [Te, F(p)] < (), and the xmphcat?(m i \

(aF < 1/;a&[aTtp, Yr] <'7) :a‘?) <7
hold for all p, @, ¥, 7 € F. . . e

i Proposxtxon 1. In every iterative opemtwe space the operation of translation is
a strong storage operation such that the corresponding constants D,P and Q are
ezplicitly expressible by means of the basic operations, iteration and translation.

Proof. This is proved in [2]. Namely, the equality (4.1) for the translation
operation is Proposition 5.6 in the quoted book; the equalities (4.2), (4.3) and
(4:4) are Propositions 6.21, 6.36 and 6.40, respectively; and the equality (4.5) is
Proposition 6.37 in view of the expressions I(p) = [p]F = [¢p and {¢] = (I,K(y))
of the operations of iteration in the sense of the present paper and that in the sense
of {2] thh each other, which is easy to. check directly and which also occurs, for
instance, in (8], pp. 1739-1740. O

 Generally speaking, there are many other fixed point definable strong storage
operatlons in every iterative operative space, but the translation is one of the
simplest of them.
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Another important example of strong storage operations is provided by the
notion of combinatory space of Skordev [4]. Consider a combinatory space S =
(F,1,C,II,L, R, Z, T, F); we shall use the notations and the terminology concerning
combinatory spaces from [4), and we shall suppose that T,F € C, which does not
make an essential difference with the original definition in [4]. We shall call the
space S weakly iterative (compare with the notion of iterative combinatory space
from [4]) iff for all p, x € F the least solution [p,x] € F of the inequality
(x — &p,I) < ¢ with respect to £ exists, and for all @ € F the element afp,x] is
the least solution of (x — £y, ) < £ with respect to £ in F.

Proposition 2. Suppose in the combinatory space S the equality (L R) = 1
holds. Then there are elements G, Ty , F,, D, P, Q € F elementary in § such
that: the poset F forms an operative space Sy with respect to the same unit I and
a multiplication operation as in S, the operation [~,—] defined by

%] = (L — ¢R,YR)G,

and the elements T, and Fy as the basic OS-constants T' and F, respectively; and
the operation $ defined by $(p) = (L,pR) satisfies (4.1)- (4.4) in S;. Moreover,
if the space S is weakly iterative, then the operative space S, has an iteration and
(4. 5) also holds, i.e. $ isa strong storage operation in S;.

Proof. The proof makes use of the technique for combinatory spaces devel-
oped in [4] and [2]. More specifically, it is proved in (2] that the partially or-
dered monoid F is an operative space S. (called the companion operative space
of S) with respect to the pairing operation ¢,% — (L — @R,¥R) and the el-
ements T’ = (T,I) and F' = (F,I) as the basic constants T’ and F, respec-
tlvely, and the elements C = (LR — T'$(R), F’$(R)) P = ((L,LR),RR) and

= (LL,(RL, R)) satisfy the equalities (4.2)-(4.4) in S., replacing D by C (see
Proposmons 27.13, 10.12, 10.13 and 10.16 in [2]). Then define T, = PT'T’,
Fy = PF' and G = (LL — T'R,F'(RL,R)), and note that Proposxtxon 27.8in’
[2] combined with the supposition (L, R) = I implies the following fact:

(*) For all o, ¥ € F such that p(c,I) < ¥(c,I) for allc € C we have ¢ < 9.
Using this fact and the equalities ‘ |
GF.,.(c,I) = GP(F, (¢,I)) = G((F,c),I) F’(RL R)((F e),I) = F'(c,I)
Mwe obtain GFy = F', and similarly,
GT, = GPT'T' = GP(T,(T,I)) = G((T,T),I) = T'R((T, T),I) =

Hencé
[0, ¥lFy = (L RYRIGF, = (L - ¢R,YR)F' = 9,
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and similarly, [, ¥|T}+ = ¢, which shows that S is an operative space, the equality
xle,¥] = [xy, x¥] being obvious. Using again (*) and the equalities
$(e)e]) = (LeR)e]) = (c,p) = (D), (456)

which hold for all ¢ € F and ¢ € C, we can prove the equality $(p)Fy = F1$(y)
as follows:

$(¢)F+(ca I) = $(‘P)PFI(C1 I) = s(‘ﬁ)((Ls LR)1 RR)(E (C, I))
(L, pR)((F,0),I) = ((F,c),9) = ((Fic), D)y

= Fy(c,I)p = F18(p)(c, ).
Similarly, $(p)PT’ = PT'$(yp), whence
$(p)T+ = S(p)PT'T' = PT'$(p)T' = PT'(L,pR)(T,I)
= PT'(T,p) = PT'(T, D¢ = Ty

]

The equalities $(p)Fy = F..$(p) and $(¢)T4 = T4 imply (4.1)for the operative
space S,; and (4.2) and (4.4) are the same as in the compamon space S.. The
equality (4.3) follows from the same one in Sut N

S ) = S(L - eRURISG) = (L — S@RSWRICSG)
(6 SWIE ~ TR FLRICS(G) = ) SOID,

A

where -
- (L = TyR, FR)CH(G) = (LR — T+s<R),F4$(R))$(G)-T '

Now Supi)ose the combinatory space S is Weaklﬁxteratwe \To prove that the
operative space S} has iteration, it is enough to show that the companion space
S. has an iteration, as it follows easily from the deﬁmtloﬂ& of the pairing operation
m S+ We shall see that the iteration I, in S, can be defined by L(yp) = -R[(L —

T'R)ch\ LIT, ie. that for all ¢, @ € .7-' the element aI..(<p) is the least .

solutxon of
(L — aR,{R)p < £ : (47

with respect to £ in . Indeed, for all ¥ € F we have (L — [JR,L]YR,I) =
[JR, L], whence
[9R, LT’ = [8R, L}9.

Using the last equality and writing shortly E for (L — F'R,T'R), we can check
that al.(y) satisfies (4.7) as follows:
(L' — aR,ol.(¢)R)p = (L — aR,aR[E¢R, LIT'R)p
(L — aR|EpR, LIT'R, aR)(L — F'R,T'R)p
aR(L — [EpR, LIT'R, I)\Eyp
= aR(L — |E¢R, L|(L — F'R,T'R)¢R, I)Ey
aR[EyR, L|Ep = aR[EpR, LIT' = al.(y).’
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Assuming that € is an arbitrary solution of (4.7) in F, we have as well

(L — (L — €R,aR)EyR, aR)
= (L d (L - aR,fR)QOR, aR) < (L — §R’ aR),

whence by the weak iterativity of S we obtain
aR[E<pR, L} < (L — £€R,aR)
and. '
al.(p) = R[EpR,LIT' < (L — &R, aR)T =,

completing the proof that I, is an iteration in S,. Hence the operation I, deﬁned
by I+(p) = Y.(Gy) is an iteration in S;. To establish the equality (4.5) for S,
we shall do thxs ﬁrst for S., namely we shall show that

$(L(¢)) = L(C8(¢))

for all p € .7-' Indeed, using the equalxtxes (4.3) (for S.) and $(1) = (L R) = I,
we have , ‘ , _ «

@ qR,s(I.«p))R)'cs@) (L —»“$(I)R,$(L(¢))R)C$(ip)‘

| = $(L - BL)R)) = $L),
which shows that L,(C$(y)) < $(L.(y)). To prove the reverse inequality, take an

arbitrary ¢ € C and note; by the help of the definition of the constant C and the
equalities (4.6), that .

cle,) = (LR - TS(R), FSR)eD) = (L T'( I)R; F(c,DR).
Then o ‘

(L = (c,I)R, 1~(C$(<P))(c,I)R)<P :
= (L = R, L(C8(p))R)(L — T'(c,)R, F'(c, I)R)<P
= (L — R, L(C$(¢))R)C(c, I}y

(L — R, L(C%(¢))R)C3(p)(c,I) = L.(C8(p)){c, 1),

whence, I, being iteration in F,, we obtain

(6 DL(p) < L(C8(p))(c, 1),

which by (4.6) and (*) implies $(1.(¢)) < L.(C$(p)) and completes the proof of
the equality $(L.(y)) = I,.(C$(<p)) The last one implies

$(L+(¢) = $(L(G<P)) = L(C3(Gy)) = L(C’$(G)$(<P))
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On the other hand
(L — R, YR) = [p,¢¥)(L — T4R,FiR)

whence
L(p) = Li((L — T4+R,FyLR)y)

for all ¢ € F, and
$(I+(s0)_) = L((L - T+R,F,R)CSG)8(¢)) = L.(D8(¢)) 0

Remark. The supposition (L, R) = [ in the last proposition was made for the
sake of simplicity ~ we could avoid it at the expense of some complications of the
exposition, especially in Section 2. On the other hand, this supposition is natural,
but no special reasons are discussed in the books [3] and [4] for its abandonment;
it seems it was abandoned just for the reason of its not being necessary for the
exposition presented in those books. The paper [9] however, combined with Propo-
sition 2 above, indicates a better exposition which can be simplified by adding the
supposition in question to the axioms. Also, the examples of combinatory spaces
occurring in the quoted books do not give reasons to consider the abanci'&mnent of
(L, R) = I as essential for the scope of the theory: all of tlegm have more or less
obvious varidnts in which the last equality is true. C

Now, returning to the general case of operative spaces, we have the following

Corollary 5. Suppose F is an operative space with iteration, and § is ¢ strong
storuge operation in F with corresponding constants D, P, Q € F satisfying (4.1)-
(4.5). Then the poset F forms a model of the type-freg linear logic with respect to the
application operation defined by (3.1), the operation $‘as the sto\mge V, and certain
constants A, C, I,, M,, Q., K. and W, which are OS‘-éiEpressibleA in {D, P,Q,0}.

~ Proof. The existence of A and C satisfying (3.2) and (3.3) is established in
Corollary 4. By Corollary 3 there is Iy € F OS-expressible in {O} and such that _
¢ = Iy for all ¢ € F, whence by (4.1)

o = N[, 200)T = X(1,8(0)2*]00)T,
and taking I, to represent the unary singular operation fo defined by
fo(€) = I, 2+ Jo)T
in the sense of Corollary 3 we obtain (3.7). By (4.2),(4.5) and (4.3) we have as well
V(e ) = $((L,2+yle)T) = LDI$(I), $(27)8(¥)] D8())$(T)),

whence the element M, representing the binary singular operatioﬁ f1 defined by

fil&n) = ADIS(), $(2+)MDES(T))
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in the sense of Corollary 3 satisfies (3.8). Similarly, the equality (4.4) shows that
the element @, representing in the sense of Corollary 3 the unary operation f;
defined by f2(&) = QEP satisfies (3.9); and to satisfy (3.10) we can obviously take
the constant K from Corollary 4 for K,. Finally, by Theorem 1 we have an element
Wo € F OS-expressible in {O} such that I([I,2+¢,3%n,4*(|Wo)T = £-n.-( for
all ¢, € F. Then
1/) PP = I([Iv 2+¢) 3+‘P1 4+¢]W0)T = I([Iv 2+¢’ $(‘P)[3+, 4+HW0)T1
and taking W, to represent in the sense of Corollary 3 the binary singular operation
f3 defined by ' '
: fa(€,m) = L1, 2%¢, n[3%, 47 |Wo)T

we obtain (3.11). O

.Properly speaking, the last corollary yields a faithful functor ¥ from the cat-
egory of operative spaces with iteration and strong storage operation to the cate-
gory of type-free models of linear logic; but, as with the functor @, the questions
of whether ¥ is full and of existence of equivalence of the last two categories are
open.
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BALANCED VERTEX SETS IN GRAPHS
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Let v1,. .., v be a B-sequence (Definition 1.2) in an n-vertex graph G and vy41,...,vn
be the other vertices of G. In thispaperweprovethat if v1,...,vy is balansed, that is

—(d(v1)+ +d(Vr)—-(d(91)+ -+ d(va),

and if the number of edges of G is big enough, then G is regular.

Keywords saturated sequence, balanced sequence, generalized r-partite gra.ph, gen-
eralized Turan's graph ‘
2000 MSC: p5035

1. INTRODUCTION

e(G) = IE(G)] the number of edges of G;
 G[M] - the subgraph of G, induced by M, where M C V(G);

I'c(M) —the set of all vertices of G adjacent to any vertex of M;

dg(v) = |Tc(v)| ~ the degree of a vertex v in G;

K, and K, - the complete and discrete n-vertex graphs, respectively. -

Let r be an integer. A graph G is called r-partite with partition classes V;,i =

,rif V(G) = WU...UV,, VNV, =@ for i # j and the sets V; are independent

sets in G. If every two vertices from different partition classes are adjacent, then
G is called complete r-partite graph Let G be an n-vertex r-partite graph with
partition classes V; and p; = |Vi[,i = 1,...,r. Obviously, dg(v) £ n — p;, for
any v € V;,4 = 1,...,7r and dg(v) = n— p. if and only if G is a complete r-
partite graph. The symbol K(p1,...,p,) denotes the complete r-partite graph
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with partition classes V4,...,V; such that [V;| =p;,i = 1,...,7. If py,...,p, are
as equal as possible (in the sense that |p; — p;| < 1 for all pairs {i,j}), then if
p1+...+pr=n, K(p1,...,pr) is denoted by T,.(n) and is called r-partite n-vertex
Turan’s graph. Clearly

e(K(p1,. caDr)) = Z{p.'pj I,]- <i<j<r} )
Thus, if p; — p; > 2, then
C(K(p1 -1 yp2 + 1‘p31 ’pr)) "3(K(P1,P21 ’pr)) =p1- -1>0

This observation implies the following elementary proposxtlon we make shall
use of later: :

Lemma 1.1. Let n and r be positibe integérs. Then the inequality
e(K(p1,-..,pr)) < e(Tr(n))

holds for each r-tuple (p1, . .., pr) of nonnegative integers p; such that py +..tpn =
n. The equality occurs only when K(py,...,pr) = Tr(n). %,

%

Let W4,..., Vr_1 be partition classes of T,_1(n),2 < r < g. Then T;_1(n) is r-
partite graph with partition classes V4,...,V;—1,{@}. Since 2 <r < n, Tr—1(n) #
T,(n). Thus, from Lemma 1.1 it follows that

e(Tr-1(n)) < e(Ty(n)) . S

Let V(G) = {v1,...,v,}. We call the graph G ‘rgulaxj, if |

de(n)) =dg(n) =...= d(;(v,.j\i

A simple calculation shows that ‘ o
(M2 -ud)(r-1) | (v | :
e(Tr(n)) = o + l 2) (12)

wheren=kr+v»,0<v<r-10 o
Definition 1.1 Let G be a graph and v3,...,v, € V(G) be a vertex sequence
such that ' o ‘
v € Tg(vy,. . ¥i-1), 2S4S

Define Vi = V(G)\I'g(n1), V2 = Fa(vl)\PG(Uz), Vs = FG(vlavz)\PG(v:i)
Vr—] = rG(”l; ,01‘*2)\1‘0(”1'—1)) Vi" = PG(‘UI; 7”1"—1)

Deﬁmtlon 1.2 The sequence of vertices v1,:..,Uy in a graph G is called S-
sequence, if the following conditions are satisfied: v; is a vertex of maximal degree
in G, and fori>2, v € I‘G(vl, .,v—1) and

’dg(v;) = max {dg(v){v €Tg(vy,...,%-1)}

82 ~ ' Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 81-95.



Definition 1.3 Let G be an n-vertex graph and vy, ..., € V(G). Then the

sequence vy, ..., v, is called sat;urated 1f
2e(G
L dotm) + ..+ dofwr)) > 2.
This sequence is called balanced, if
2e(G)

—(dc(vx) +...+da(vr)) =

Obviously, if G is regular, then any vertex sequence in G is balanced. Let .
V(G) = {v1,...,vn}. Then

23(0) = %(da(‘vl) + ...+ dg(vn))

2e( )

d(v) > ——=

for some vertex of

for any vertex of maximal degree in G. Thus, if d(v) =

maximal degree in G, then G is regular.
Let r and n be positive integers,2 < r < n. Define

n(r-1) n

f(h’r)*/ nz(ft 1) | 2rw

2r  2r(r—1)

ifn= O(nwd r);

ifn=v(modr),1 vr<r-1.

It straigl{tforwa.rd to show that

f(n,r) > (r( 2)?)2 r>2

(r - 2)n?
2(r-1)

~ Since “———=— > f(n,r — 1), we have

fln,r=1)< f(n,r),2<r<n (1.3)
Our main result is the following theorem: '

‘Theorem 1.1 (The Main Theorem). Let G be an n-vertez graph and r be a
_positive integer, 2 < r < n, such that e(G) > f(n,r). Let for some s, 1 <s<r,
there exists a balanced f-sequence UL,y Vs € V(G). Then G is regular.

Example 1.1. Consider the graph G shown in Fig.1. The B-sequence {v1,vs}
is balanced because

—(da(vl) + dG(‘Uz)) L

Obvxously, G is not regular,
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Fig. 1.

-'2. GENERALIZED r-PARTITE GRAPHS

Definition 2.1. ([2]) An n-vertex graph G is called generalized r-partite with
partition classes V;,i = 1,...,r, f V(G) =V U... UV, VNV, =2,i+# j and
dog(v) < n—p; for any v € V;,i = 1,...,r, where p; = |V;|. If dg(v) = n —p;
for any v € V;,i = 1,...,r, then G is called generalized complete r-partite graph
with partition classes Vi,...;V;. We call G generalized Turan’s r-partite graph if
G is a generalized complete r-partite gra.ph with pa.rtmon classes V4, ..., V,. and
|pi — pj| < 1 for all pairs {3, j}. | AR

Proposition 2.1. Letr and n be natural numbers, 1dr < Let G be an
n-vertex graph, such that

gy < = n 1)"veV(G) S

Then G is generalized partzte graph. T \
V(G =Wu.. uV,,V,-nV‘j:.z,z'\géj
and[ j<|V|<[ ] i=1,.

From d(v) < (T rl)n =n-2it follows that d(v) < n - [' 1, Vv € V(G).

Thus d(v) < n—|Vi|,WweV,i= 1 .,7, and G is generalized r—partxte graph
with partition classes V4,...,V,.. O o ;
Observe that, if n = 0(modr) and d(v) = u —;l)n, Vv € V(G), then G is

generalized r-partite Turan’s graph. :
We shall make use of the following result:

Theorem 2.1. ([2]) Let G be a genemlzzed r-partite graph wzth partition
classes Vi, .. . Vi, where [Vi| =8, i=1,...,r. Then

e(G) < e(K(p1,..-,pr))-

The equality holds if and only if G is generglized complete r-partite graph with
partition classes V4,...,Vr.
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Theorem 2.2. ([2]) Let G be a generalized r-partite graph and |V(G)| = n.
Then
e(G) < e(Tx(n))
and equality occurs if and only if G is generalized r-partite Turan’s graph.

Example 2.1. Consider the graph K3 + C5 = Kz — Cs. Obviously, e(K3 +
Cs) = 23 < e(T4(8)) = 24. This graph is not generalized 4-partite graph. Assume
the opposite, i.e. that K3+ Cs is generalized 4-partite graph with partition classes
V'ilvv-ZrIlfiy Va. Let V(K3)) = {'01,02, 113}- If v € V.ﬂ then from d(vt) =7<8~ 'V.“l'
it follows that [Vj| = 1, i.e. Vj = {v;}. Thus, we may assume that V; = {v;},i =
1,2,3. Hence, V4 = V(Cs). Let v € V(Cs). Then d(v) =5 > 8 — |V4| = 3, which is
a contradiction. : :

3. B-SEQUENCES AND GENERALIZED r-PARTITE GRAPHS. |

We shall use the following:

Theorem 3.1. ([2]) Let v1,...,vr be a B-sequence in an n-vertez graph G,
which is not contained in an (r + 1) clique. If V; is the i-th stratum of the stratifi-
cation induced by this sequence and p; = |V} (see Definition 1.1), then o

(8) G is generalized r-partite graph with partition classes Vi, .. V,, ol

(b) e(G) < e(K(p1,-..,pr)), and the equality occurs if and only ifGisa
generalized complete r-partite graph with partition classes Vy,...,V;;

(c) e(G) < e(Tv(n)) and we have e(G) = e(T.(n)) only when Gisa genemlzzed
r-partite Turan’s graph.

The proof .of the theorem 3.1, gwen in [2); actually estabhshes the following
stronger statement:

Theorem 3.2. ([2]) Let vy, ..., v, be a B-3equence in an n-verter gmph G such
that - : ; _ e e
dG('Ur)_ <n- lI‘G(,vl, [N ,ur-l)‘

Then the statements (a), (b) and (c) of the Theorem 3.1 hold.

~ Denote by ¥(G) the smallest integer r for which there exist a ﬁ-sequence
V1,y+.., Uy T 2> 2, in n-vertex graph G, such that

dc('u,) <n—{Telw,...,vr1)l

Theorem 3.3. Let G be an n-vertez. graph and e(G) > e(Tr(n)). Then w(G) >
r and Y(G) = r only when G is e generalized r-partite Turan’s graph.

Proof. Let 9(G) = s. By Theorem 3.2, e(G) < e(Te(n)). Thus e(Ti(n)) <
e(Ts(n)). From (1.1) it follows that s > r. If s = r, then e(G) = e(Tr(n)).
According Theorem 3.2, G is a generalized r-partite Turan’s graph. {J

The following lemma generalizes the Proposition 2.1. }
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Lemma 38.1. ([3]) Let G be a graph and vy, - ., v be a B-sequence in G such
that ' b1
dvi)+...+d(w) < —(C-E—-)-ﬁ, for somel <k<r. (3.1)

Then G' is a generalized r-partite graph. If mequahty (3.1) is strict, then G is not
generalized r-partite Turan’s graph.

Denote the smallest integer r for which there exists a a g-sequence vy,...,v,
in n-vertex graph G, such that

dg(m) +.. +dc(vr)<(7‘—1)n ? 32)

by £(G).

Theorem 38.4. Let G be an n-vertez graph and e(G) > e(Ty(n)). Then&(G) >
r and £(G) = r only when G is generalized r-partite Turan’s graph.

Proof. Let §(G) = s and let vy, ..., v, be a S-sequence in G,'such that
; dg(v1)) +...+dg(v,) < (s—1)n  ° ° \

. By Lemma 3.1 (r = k = s), the graph G is generalized\r-partite. According
to Theorem 2.2 e(G) < e(T (n)). Thus, the inequality e(G) > e(T,-(n)) implies
e(T,(n)) > e(T-(n)). By (1.1) we have s > r. ;
Let s = r. Then &(G) = ¢(T(n)) and from the Theorem 2.2 it follows tha.t G
isa generahzed r-partite Turan’s graph. 0

: N\ \
" 4. SATURATED AND BALANCED £-SEQUENCES

The following results were proved by us: ; K

=

Theorem 4.1. ([3]) Let G be an n-vertez graph and vy,.. ., v, be a B-sequence =
in G, which is not balanced and not saturated. Then G is generalized r-partite graph,
which is not a generalized r-partite Turan’s graph. Thus e(G) < e(Tx(n)).

Theorem 4.2. ([3]) . Let G be an n-vertex graph and let vy, ..., v, be a B-
sequence tn G, v 2 2, which is not balanced and not saturated. Then

d(vs) + ...+ d{ve_1) < i"—‘;l-)in.

' InAthis’sectior‘x' we improve Theorem 4.2.

Theorem 4.3. Let G be an n-vertez graph and vy, ..., v, 7 > 2 be a B-sequence

in G, which is not saturated but vy,...,v0—1 i3 satumted Then
. ; —1)2 L
d(vi) +...+ d(vr-1) < g—;—)—-n : (4.1) .
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If there is equality in (4.1), then:
(a) v1,...,v, is balanced;
(b) n = 0(modr) and G is a generalized (noncomplete) r-partite graph with
partition classes V{,...,V/,, such that |V]| = et i=1,...,r and
r-—1

d(v) = —-—-—n Vv € U |74

f=1

_1)2
2¢(G)r (r-1) n’ VoeV!;
n r

d(v) =
(r - 1)?n2 r-1
2t

' ’('r - l)n‘2 n
< < 7
n<e(G) < 2r 2r

(c)
. fr—1>%n .
Proof. Since (r—2)n < ———incase d(v1))+...+d(v-1) < (r—2)n the
mequahty (4 1) holds. Therefore, we shall assume that
dwn) + ...+ dwer) > (r—n. (4.2)

Let Vi be the - stratum of the stratification, induced by sequence vy, ..., .
Obvxously, v €V, i=1,...,rand

V(G)-%U...UV,,V,-ﬂV,:@,i;éj. - (4.3)
Since V; € V(G\I(w), i = 1,-.. ,"r — 1, we have |
Vil <n—d(w),i=1,...,r—-1. (4.4)
It follows from (4.3), (4.4) and (4.2) that

r-1
|V,1 =n— Zm >y d(w) - (r—~2)n > 0.
i=1 i=1

Thus V; #.@. Let V! be a subset of V; such that

r-1 ;

V7= d(v) - (r - 2)n. , (4.5)

i=1
Define W = V(G)\V{. By (4.5) we have,
r—1 ’ \ '
W] =" (n—d(vs)). (4.6)
=l : ,

_ Since V; CW, i=1,...,r — 1, from (4.3), (4.4) and (4.6) it follows that there
exist disjoint sets V', i =1,...,r -1, such that V;'C V! C W and |V}/| = n—d(w;).
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Since V; C V/, we have v; € V/, i = 1,...,r — 1. From (4.6) it follows that
r—1 ’ ) )
W = U V/. Hence,

=1 s . .
V(@) =VU..uV,V/nV/=@,i#j . (4.7)

g

‘Observe that ‘ ‘
V/\Vi ¢ V, = [(uy,..., 1) € D(v1,..., vi-1)

and V; C T(vr,...,vi_1). Thus V! C D(v1,..-,%-1), i = L,...,r — 1 and d(v) <
d(v;), vo € V!, i = 1,...,7r — 1 From the inclusion V;/ C Vr it follows that
d(v) < d(vr), Yv € V.. So we have v :

d(v) <d(v), weV,i=1,...,r . (4.8)
" By (4.7), we have

2(G) = Y diw)= Y dw)+...+ Y d(v).

veV(G) veV! ‘ veEV! \

. Letd(w) =di, i=1,..,r From |[V/| =n—di, i = {,....5 — 1, (48) and
(4.5) it follows that ' .

r—1

2(G) < Zd.;(n &)+ (Zd. —(r - 2)n) » . (49)
=1 f=]
The equality in (4.9) occurs if and only if \ \
d(v) = d;, Vv € V.’, i=1,. ﬂ
let o =dy+...+ df-l. We have,atd" 2e(G) because the sequencei
" v1,...,Vr is not saturated. Thus, '
2re(G)

d, < < e (4.10)

By the Ca.ushy-Schws.rz mequahty (Ex,y,) < }: 2 3~ y?, applied to x; =
d,, ¥i =1, we have

r-1

Y a2 > (4.11)
i=1 ,.' .
and the equality holds if and only if d; = ... = d,'..;. We obtain by (4.10) and

(4.11)

2¢(G) < no — —-+-—+(o (r 2)n )(2re(G’) )
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This inequality is equivalent to: -
Ze(G) (-

n—ro) < ((r —1)*n-ro). - (4.12)

The equality in (4.12) occurs sxmultaneously with the equalities in (4.9), (4.10)
and (4.11), i.e. when e

d(v) =d; =dy, VveV,,z—l L,r—1land (4.13)
dm=¢*?ﬂm o, Ve V.
Since v3,...,v,-1'is satufated, we have
. o > Ze(G)‘
r—1 n

‘ ~1)2
Thus, (4.12) is equivalent to the inequality o < -(-7-'——-;—)——" The inequality (4.1)
is proved. -
. It remains to examme the case of the equahty in (4.1). Assume, that
_(r- 1)2n ‘
r

" Then n = O(mod r) and the equahty holds in (4 12), i.e. (4 13) is reahmd: -
me (4 14) amd (4. 13) it folluws tha.t o

i

(4 14) .

dv)=dy=...= d,._1’~= (r ";1)"’ voe Vi, ,,= L,...,r=1 . (415)

and

o 2 SR
d(v) = dr = mrfG) ( rl) yYve V’ : S (418)
;B'y (4.15) and (4.16) it folloﬁréothat

di+...+d _ 2(C)
-  n

de vy, d8 bala.nsed Since vy, ... ; Up-1 is:saturated, we have

. di+...+dps N ZB(G) o di+...+d,

r-1 - n- ‘ r

: Hence d, < d; = I'——:—En;Thus

| e e
dv) =dy < *—=m, vEV,. @1
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R , sl - ' ~ “

Since [V/|=n—di,i=1,...,r—1and |V/!| = ¥ d; — (r —2)n, we obtain by -

, =1 :

(4.15) :
o | |V.'|=’-‘- i=1,...,r

Thus from (4.15) and (4.17) it follows that G generalized (noncomplete) r-

partlte graph w1th equal partite classes V{,..., V. ’
So, (a) and (b) are proved. It remains to prove (c). The number g——:—l—)ﬁ is
integer, because n = O(mod r) and consequently from (4.17) it follows that

(r=1n ~n
d,.< Py 1

. Since v1,..., v, is balanced, by thi‘,‘s‘inequality ahd (4.f5) we have
| r—1)2 -1
(r=1Vn  (r=1)n

2(G) _di+...+d, P —— =1 (r_1n-1

n oo r ) _‘ . o ‘ _ A r .
( 1) 2__"’ . ' w i

Thus, e(G) £ ~— o T g N

Since vy € Pe(v1,...,Vp-1), d(v,.) > r- 1 From this mequahty and (4.16) we '

conclude that ( 1) .
. ’ ‘ 1' - '
e(G) 2 > o= n.

The proof of (c) is over and Theozem 4 3 xs proved. D v
Corollary 4.1. Let G be ann-vertexgmph an{r be mte er, 1 <r <n Let

' e(G) Z e(Tx(n)) and for some 3, 1 < 8 < r there*ezists a balanced ,B-sequence
9,:..,0 € V(G): Then G is regular. -~ "i

Pmof We prove thls corollary by mductxon ons. Thebases=1is clear, since
d(vl) = G) implies that G is tegular o
Let s> 2. Since d(vl) St d(v,)

d(v,) it follows that - °
Cd(o) + ... +d(ven) 2e(G‘r')
. ‘ 8-1 2 n ‘
e Uy, ., Usay IS balanced or saturated. We prove that vy; ..., v, is balanced.
Assume the opposite. -
" Since vy,...,v, is not saturated, by Theorem 4.3 +

l)n
K

2?@, , from d(m) > d(vg) > ... >

dw) + ...+ d(ve- ,)/<( @)

By Lemma3.1,Gisa generahzed s~part1te graph. From Theorem 2.2 it follows
e(G) < e(T,(n)). :
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Thus, we have e(T,(n)) < e(G) <ke(T,(n)) Since s < r, (1.1) implies that
s ='r and e(G) = e(T,(n)). Accordmg to Lemma 3.1, there is equalxty in (4.18).

Thus, Theorem 4.3 implies that n = O(mod s) and ¢(G) < -(——-2—;—)2— - -2n—s. This
12 '
contradicts the equality e(G) = e(T,(n)) = -(——-}-)2—,

So, v1,...,Vs—1 is balanced. By inductive hypothesxs, G is regular and the
proof of Corollary 4.1'is over. 0

: 5. PROOF OF THE MAIN THEOREM

We prove that G is regular by induction on s. The base s = 1 is clear, since
d(n) = 2¢(G) implies that G is regular.
 Let s > 2. Fromd(v) ... 2 d(v,) it follows that

d(vy) + ...+ d(vs-1) > 2e(G)
s—-1 = :

“Hence, v1,...,0,—1 is balanced or saturated. We prove that v;, Loy Vgiy i8
balanced. Assume the opposite. Then ‘

do)to tdoes) (2@ g
l s—1 n (5'1)

By Theorem 4.3, the mequahty (4.18) holds. If there is equahty in (4 18) then, :

acéording to Theorem 4.3, n = O(mod s) and (G) < -(——-;1—)—2- - 211- = f(n, 8).
But f(n,s) < f(n,7), because s < r (see (1. 3)) Therefore, e(G) <'f(n,r) w!nch ls :
a contradiction. Assume that (4.18) is strict.

Case 1. n = 0(mod s). Since (4. 18) is strlct it follows that

d(v1)+ +d(v._1)<—-—s—1)—'-';-1,"" - (52)
From (5. 1) and (5.2) it follows that ' R
=
e(G) < ( ,2:1;)n ( ) < f(n,s).

By s < r and (1.3), f(n,s) < f(n,r). Hence &(G) < f(n,r), which is a
contradiction.
Case 2. n=v(mod s), 1 < v < s=1. Since (4.18) is strict, we have -

d(m) F oot d(ver) < [(‘9 1) n

I= V(n'_")is_l) ivs-2) (5.3)
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. From (5.1) and (5.3) it follows
. (6) < f(m,9) < f(n.1),
which is'a contradiction. -
The Main Theorem is proved.
Remark. If n = O(mod r), then f(n,r) < e(Tr(n)) =

in this case the Corollary 4.1 follows from Main Theorem Let n = v(mod r),
1<v<g ", - 1. From (1 2) it follows that

1) _vr-v)

2(p
u Therefore,

’ e(T-(n)) = et - (54)
The equality (5.4) 1mphes, that if
Cu(r=v) < , o
o 2r(r—-1)" -

ie. n> (n—v)(r-1), then f(n,r) < e(Ty(n)). Hence, if n > (r —'«Q(r -1),
Corollary 4.1 follows from the Main Theorem. . ‘ .
: N

6. a—SEQUENCES IN GRAPHS .

Let G be a graph and vi,...,% € V(G). DefineTo = V(G) and Ty =
Fg(vl, AR R 1 R “1 In our articles (4] and {S we introduced the following
concept:. - L1 e
- Definition 6 1. The sequence vl, ,vr €V(G) is called a—sequences 1f v €
P1_1 ‘and v; has maximal degree in the gtaph G[I‘,..l] i ,T. |

a-sequences appears later in [7-10] under the name ”degree-greedy algonthm
and in [11] under the name ”s-stable algorithm”. , :

The following result was proved by us:

Theorem 6.1. ([2]) Let vy, .. Uy be a a- -sequence in an n-vertex graph G,
which is not contained in an (r + 1)-glique. If V; is the i-th stratum of the strat-
ification induced by this sequence and p; = [Vil, i = 1,...,r (see Definition 1.1),

then e '
" (a) G is generalized r-partite graph with partition classes V4,...,V, and

eG) S e(K(pr,..,pr)); (61)
(b) There is equality in (6. 1) only when G = K(py1,...,pr).

The proof of Theorem 6.1, ngen in [2], actually establishes the followmg state-
ment :
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Theorem 6.2. Let vy,...,v, be an a-sequence in an n-vertex graph G such
that . '
d(v) <n—|Tp_q], Vv € 'ro. - (62)

If V; is the i-th stratum of the stratification induced by this sequence and p; =
Vil, i=1,...,r, then

(a) G is generahzed r-partite graph with partition clas.ses Vi,..., ¥V, and in-
equality (6.1) holds; '

(b) There is equality in (6.1) only when G is generalized complete r-partite
graph with partition classes Vi, ..., V.

Denote by ¢(G). the smallest integer r for which there exists an a-sequence
v1,...,vr € V(G), such that (6.2) holds.

Theorem 6.3. Let G be an n-vertex graph, such that e(G) > e(Tr(n)), 1 <
r < n. Then ¢(G) > r and <p(G) = r only when G is generalized r-partite Turan’s
graph. ’ .

Proof Let ©(G) = s and ,...,v, be a-sequence in G, such that d(v) <
n— Ty, Yo € Tys. By Theorem 6.2 and Theorem 2.2, we have e(T,(n)) <

e(Ts(n)). From (1.1) it follows s > r. If s = r, then ¢(@) = &(Ty(n)). According

to Theorem 2.2(c), G is generalized r-pamte Turan’s graph This completes the
proof of Theorem 6.3. [
~ Let'v,...,u, be a-sequence in graph G, and G;q = G[I‘,_l] i=1,.
whereI';, i = 1 ., — 1.are defined above. Deﬁne (

*dc(vx),d'z=dc,(vz), sy = dg,_, (vr).

Theorem 6. 4 Let G be an n- vertea: graph and V1.0,V be a- sequence in G,
such that for some s, 1 <s<r, ,

,d,,+,,+d;4((;)_<r;s))_ o

Then G is generalized r-partite éfdph.

- Proof. We prove Theorem 6.4 by induction on s. The induction base is s = 1.
From (6.3) it follows that df < r

— l)n. Since dy = dg(v1) and v; has maximal

degree in G, we have d(v) < (r‘—rl)n, Vv‘e V(G}. By Proposition 1.1, G is
generalized r-partite graph.
Let s > 2 and suppose, that assertion is true for s — 1

‘ dl r.—.l r—s
" A< L -
Case 1. d2+...+d.—,_1(( 2 ) ( 2 ))

Obviously vy,...,vr be a-sequence in G; = G[['¢(v1)]. By inductive hypo-
thesis, we may assume that G, is generalized (r — 1)-partite graph with partition

Ann. Univ. Sofia, Fac. Math. Inf., 97,2005, 81-95. 93



cla‘s’ses'\Wg,.‘ .. Wy Thus, G is generalized r-partite graph with partition classes
= V(G)\Fg(n), Wa,..., W;.

Gusen drordr B (32 (7))
From (6. 3) it follows that : :
ar((3)-() 20 (3)
Hence —

O
2 - 2) \2 ) IR
dlsrA,whereA—-l;l- T r-—l)_ e S (6.4)
r—1\\ 2 2 ;
Note that A = r — 1. Thus, by (64),wehaved’ —(r-—l). Hence d(v) <
n(r 1)
r

,» Yv € V(G). By Proposxtlon 2.1, G is generalized r-pamte grapj‘:: In)
TheOreym 6.5. Let G be an n-vertez graph and vy,. .., vy, be a-sequence in G,

such that ke(C ’ ;,
» d’l++d;‘_<_._c;1(:...). !

Then G is generalized k-partite graph. o '

Proof. If k = 1, then d} < 22 ( ) ance e(G) Z\dl‘ , it fd.llows that d} = 0.

Thus, E(G) = & and G is l-partite graph g ’i
Let £ > 2. Then - N

dy+...+d, < —d.

ke(G)
—

2

g (k=2 & (k-1
72+"'+d"$ 2 k-1\ 2 )

N : ) . . k : R , K
- From this inequality and e(G) < ﬂ,( it follows that

Since vy, ..., vk is an a-sequence in Gy = G|['g(v1)], by this inequality and
Theorem 6.4 (with 7 = s = k — 1), it follows that the graph G; is generalized
(k — 1)-partite graph. Let Wa,...,Wy be partition classes of G;. Then G is

" generalized 'r-partlte graph with partltmn classes W; V(G)\Te(v1), Wa,..., W;.

<
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Let G be a graph of order n > 2 and nj,ny,..,n; be integers such that 1 < n3 <
nyg<.<ngandny+nz+..+ng=n Letfori=1,.,k A C K, where K, is
the set of all pairwise non-isomorphic graphs of order m, m = 1,2,... In this paper
we study when for a domination related parameter g (such as domination number,

1 mdependent domination number and acyclic domination number) is fulfilled u(G) =
(Ut =1 < Vi, G >) for all vertex partitions {1, V2,..,Vi}, k 2 2, of a vertex set of G
'such that < V;, G > is isomorphic to some a member of A, i = 1,2, .., k. In the process
several results for acyclic domination vertex critical graphs are presented Results for
independence number of double vertex graphs are obtained.

Keywords: domination number, acyclic domination number mdependent domination
number, independence number, double vertex graph

2000 MSC: 05C69, 05C70, 05C75

1. NOTATION AND DEFINITIONS

For a graph theory terminology not presented here; we follow Haynes, et al.[8].
All our graphs are finite and undirected with no loops or multiple edges. We denote
the vertex set and the edge set of a graph G by V(G) and E(G), respectively. The
subgraph induced by § C V(G) is denoted by < S,G >. We denote by K, and
K, complete graph on n vertices and its complement. If n > 3 then C, is a
connected 2 - regular graph of order n. P, is a tree of order m and diameter m — 1,
m > 1. By K, we denote the set of all pairwise non-isomorphic graphs of order
s, s 2 1. A subset of vertices A in a graph G is said to be acyclic if < A,G >
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contains no cycles. A subset of vertices I in a graph G is said to be independent
if < I,G > contains no edges. The independence number Bo(G) is the maximum
cardinality of an independent set in G. A dominating set in a graph G is a set of
vertices D such that every vertex of G is either in D or is adjacent to an element
of D. The domination number ¥(G) of a graph G is the minimum cardinality
taken over all dominating sets of G. The independent domination number i(G)
(acyclic domination number v,(G)) of a graph G is the minimum cardinality of an
independent dominating (acyclic dominating) set of G.

Throughout this paper, let a property P of graphs be given and u(G) be a
numeral invariant of a graph G defined in a such a way that it is the minimum or
maximum number of vertices of a set S C V(G) which has the property P. A set
with property P and with u(G) vertices is called a u - set of G. A vertex v of a graph
G is p - critical if p(G — v)i # u(G). The graph G is p - critical if all its vertices
are p - critical. Much has been written about the effects on a parameter(such
connectedness, chromatic number, domination number) when a graph is modified
by deleting a vertex. p - critical graphs for u = 4,1 was investigated by Brigham
et al.[4] and Ao and MacGillivray (see [ 9, ch’ 16]) respectively. Firther properties
on these graphs can be found in [6], [7], [8,.ch.5], [9, ch. 16], [10].

In this work, by a partition of a graph G into k parts, k > 2, we mean"”a family
A = {G1,Gs, .., Gi} of pairwise disjoint induced subgraphs of G, with L UE,V(G)) =
V(G)and 1 < [V(G1)| S [V(G2) £ .. £ |V(Gk)l We denot by G[A] the graph

i-lG‘ . ¢

Let .G be a graph of order n > 2 and n;,nz, . i be mtegers such that 1 <
n; <ng < .. < ngand ny +ng+..+ng =n. Let 4; CKy,,i=1,..,k. We say that
a partition A = {G},Gy,. ,’Gk} of G is of type [A1, A3, , ., Ax] if G is isomorphic
to some a member of A;, i = 1,..,k. The set of all pytntmns of a graph G whxch
are of type [A1, Az, , ., Ax] will be denoted by Fg (A1, Aa,) -, Ag).

For a graph invariant y and a family {A;, 42,, ,Ak} where A; € Ky,, i =

1,..,k and 1 £ »;. £ ny < .. < ng it is important to chara.ctenze/study the. graphs
G with g(G) = u(G[A]) for all A € Fg (A1, Az, ., Ak). . |

We proceed as follows. In Section 2, we deals with critical vertices in-a gra.ph
with respect to the acyclic domination number and give a necessary and sufficient
condition for a graph to be y,- critical. In Section 3 we study when u(G) = u(G[A])
for all A € Fg (A1, A2,, ., Ax) for some families {A;, Az,,., Ar}. -

2. ACYCLIC DOMINATION NUMBER |

“The concept of acychc domination was mtroduoed by Hedetmeml et al. [1 1. In
this section some properties of critical vertices with rwpect to v, will be given.

Theorem 2.1. Let G be a gmph of ordern »2andu,v € V(G’)
(x) Let ha(G v) < 7.,(G)

08 Ann. Univ.”Sofia, Fac. Math. Inf., 97, 2005, 97-104.



(i.1) [15]) If uv € E(G) then u belongs to no 7, - set of G —v;
(i.2) If M is a v, - set of G — v then M U {v} is a 7a - s¢t of G;
(i3) [15] %(G - v) =%(®) - 1;

(i) Let 7(G —v) > 7(G). Then v belongs to every 7o - set of G;

(iii) If ¥a(G — v) < %a(G) < 7a(G — u) then wv ¢ E(G);

(iv) If v belongs to no Ya - set then Ya(G — v) = 1%(G).

Proof. (i) For reason of completeness, we shall give here the proofs of (i.1) and
(i.3).

(i.1): Let uv € E(G) and M bea v, -set of G—v. fue M t;hen M will be
an acyclic dominating set of G with |M| < 7,(G) - a contradiction.

(i-2)and (i.3): If M is a , - set of G —v then (i.1) implies that M; = M U {v}
is an acyclic dominating set of G with [Mj| = %(G -v)+1 < 'y.,(G) Hence M;
i5 a7, - set of G and 7,(G — v) = 7(G) — 1. .

(ii) If Mis a 7, - set of G and v ¢ M then M is an a.cycllc dominating set of
" G — v. But then v,(G) = |M| 2 74(G — v) > 7,(G) and the result follows.

(iii) Let %6(G — v) < 74(G) and M be a v, - set of G —v. Then by (i.2),
‘MU {v}is a ya-set of G. Let v, (G —u) > 7a(G). Now (ii) implies that u € M and
by (i.1) - uv € E(G).

(iv) By (ii), 7(G ~ v) < 7(G). Assume 7a(G — v) < 7a(G). It follows
from (i.2) that M U {v} is a 7, - set of G, where M isa 7, —~set of G~ v - a
contradiction. [J , C

\, Theorem 2.2. Let G be a graph of order at least two. Then
(i) [3, 10] G is v - critical if and only if 7(G — v) = 1(G) ~ 1 for all v € V(C);

~(ii) (Ao and MacGillivray (see the bibliography in [9, ch.16])) G is i - critical zf
and only if z(G v) =i(G) — 1 for all v € V(G).

Ana.logqusly result is valid and for v, - critical graphs.

. Theorem .2.3. Let G be a graph of'ordei' n > 2. Then G is a v - critical
graph if and only if 7,(G — v) = 7,(G) ~ 1 for all v € V(G).

Proof. Necessity is obvious.

Sufficiency: Let G be a 7, - critical graph. Clearly for every isolated vertex
v € V(G), ¥a(G—v) = 7a(G) — 1. Hence if G is isomorphic to K, then 7,(G—v) =
Ya(G) — 1 for all v € V(G). So, let G have a component of order at least two, say
Q. Because of Theorem 2.1 (iii), either for all v € V(Q), 7a(Q —v) > 7a(Q) or for
all v € V(Q), (@ — ) < 7a(Q). Suppose, for all v € V(Q), 7a(Q — v) > 7a(Q)-
It follows by Theorem 2.1 (ii) that V(@) is the unique acyclic dominating set of Q.
Since V(Q) is an acyclic set then Q is a tree which implies 7,(Q) = v(Q) = |V(Q)|
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- a contradiction with the well known Ore’s theorem [12] that for every connected
graph H of order at least two, y(H) < [V(H)|/2. O

Theorem 2.4. Let G and Gy be two connected graphs both of order at least
two with V(G1) NV (Ga) = {z}. If ¥(G1 — 7) < 7a(G1) and ¥a(G2 — 7) < 72(G2)
then ¥o(G) = 1a(G1) + Ya(G2) — 1 and 7,(G — =) = 7.(G) — 1.

Proof. It follows from Theorem 2.1 (i.2) that there exist a v, - set U of G and
a Y, - set Uz of G2 such that x € U;NUs. Hence U; UV is an acyclic dominating set
of G of cardinality v,(G1) + 7. (G2) — 1. So we prove 7.(G) < 7. (G1) +7a(G2) — 1.

Let M be a vy, - set of G and M; = M NV(G;), i = 1,2. There exist three
possibilities: '

(*) z & M and M; is an acyclic dominating set of G;, 1 =1,2;

(**) = & M and there are 1, j such that {z,j} = {1, 2}, M; is an acyclic dominating
set of G; and M; is an acyclic dominating set of G; — z;

(**%) z ¢ M.

If (*) holds, then 74(G) = |M| = |M1| + |M2| 2 7.(G1) + 7a(G2) - a contradiction.
If () holds, then 7(G) = |M] = |Ma| + |Ma| > 7a(G1) +7a(C — ) = 7a(G1) +
Ya(G2)—1. If (***) holds then v, (G) = |M| = |M1|+|M2|—-1 2 7a(G1)+7%(G2)-1.
Thus we have 7,(G) = 72(G1) + 72(G2) — 1.
Clearly 7, (G —1x) = 1,(G1—2)+7,(G2 — =) and by Theorem 2.1 (i.3) it follows
Ya(G ~ &) = 7a(G1) + Ya(G2) — 2. Hence 14(G — z) = 7(G) — 1.0

Corollary 2.5. Let G be a connected graph with blocks Gy, G2, ..,Gy. If the
all G1,Gs, ..,Gy are 7y, - critical then ¥(G) = X 17.(G;) —n+ 1.

Proof. We proceed by induction on the number of blocks n. The statement is
immediate if » = 1. Let the blocks of G be G1,Ga, .., Gn, Gn+1 and without loss of
generality let Gp1 contain only one cut-vertex of G. Hence Theorem 2.4 implies
that v,(G) = 7a(Gn+1) + 7(@) — 1 where Q =< UL, V(G;),G >. The result now
follows from the inductive hypothesis. O

It is not possible to characterize « - critical graphs in terms of forbidden graphs
as it is shown in [3]. We shall prove a similar result for 7, - critical graphs. We need
the following example which is analogous to the one used in the proof of Theorem
6 in {3].

Example 2.6. Let G be a graph. If v,(G) > 3 then let' T = G, otherwise
T =GUK;UK;. Let V(T') = {v1,v3,..,,vq}. Define the graph H as follows:
V(H) = UL {vi,ui,w;} and E(H) = E(G)U{viu;, uswj, wv; |1 < 4,5 <n, j #1}.
It is straightforward to verify that no two vertices dominate H. Hence v,(H) > 3.
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But by the definition of H, for each i = 1,2,..,n, {u;,vi,w;} is a dominating and
independent set (hence and an acyclic set) of H. So, v,(H) < 3. Thus v,(H) = 3.
Clearly {u;, vi} is a v, - set of H —w;, {us, w;} is a -y, - set of H —v; and {w;, v;} is
a Y, - set of H — u;. Therefore H is a -, - critical graph and G is its own induced
subgraph.

From the above example we immediately have:

Theorem 2.7. There does not exist a forbidden subgraph characterization of
the class of v, - critical graphs.

3. PARTITIONED GRAPHS

We begin with the family {A; = K1, A2 =K1} and g € {7, Ya, i}
From Theorem 2.2 and Theorem 2.3 we immediately have:

Theorem 3.1. Let G be a graph of order n > 2 and p € {v,%,,t}. Then
w(G) = u(GlA]) for all A € Fe(K1,Kn-1) if and only if G is a p - critical graph.

Now, let us consider the family {K1,K1,Kn-2}, n 2 3 and p € {v,7,,1}-

Theorem 3.2. Let G be a graph of order n > 3 and p € {¥:%ai}. Then
WGY = u(GlA)) for all A € F(K1,K1,Kn-2) if and only if G = K.

Proof. Clearly if G = K, then u(G) = u(G[A]) for all 4 € Fg(K1,K1,Kn-2).
So, let we have u(G) = u(GJA]) for all A € Fg(K1,K1,Kn—2) and suppose G # K.
Note that if H is a graph of order at least two and u € V(H) then pu(H —u) >
u(H) — 1, which follows from {3, 5], [9, ch.16] and Theorem 2.1.(i) for p = 7,
= { and p = <, respectively. Choose z,y € V(G) to be adjacent and let A=
{2}, (W}, V(G) ~ {2 y}}. TEu(G —) > w(G) then w(G ~ {z,3}) > w(G —2) 1>
p(G) — 1 which implies u(G[A4]) > 1+ 1+ u(G) —1 > u(G). Hence p(G —z) =
#(G) — 1 and therefore if M is a u - set of G — = then M does not dominate x
in G. Hence y belongs to no u - set of G — z. But if a vertex u of a graph H
belongs to no p - set of H then pu(H) = p(H — u), which follows from [5, 13],
[14] and Theorem 2.1 (iv) for p = <, p = © and p = 7, respectively. Therefore
w(GlA]) = 141+ p(G—{z,y}) = 24+ u{G—1) = 1+ u(G), which is a contradiction.
0

The next family is {{P2},Kn—2}, n > 4 and again p € {7, y4,1}.

Theorem 3.3. Let G be a pu - critical graph of order n > 4 and size at least
1, where p € {V,%q,t}. Then u(G) = p(G[A)) for all A € Fa({P2}, Kn-2).

-Proof. As we have seen, u(G — z) = p(G) — 1 for all z € V(G). By the proof
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of Theorem 3.2, if yz € E(G) then y belongs to no u - set of G' — z which unplies
w(G — {z,y}) = u(G — z). Hence if zy € E(G) and A= {{z,y}, V(G — {z,y})}
then w(GA]) = 1 + u(G — {z,3}) = 1 + w(G — ) = p(G). O

Let G be a graph of order n > 2. The double vertez graph Us(G) of G is
the graph whose vertex set consists of all 2-subsets of V(&) such that two distinct
vertex {z,y} and {u,v} are adjacent if and only if |{z,y} N {u,v}| = 1 and if
z = u, they y and v are adjacent in G. The concept of double vertex graphs was
introduced by Alavi et al. [1]. For this class of graphs, there are many results about
regularity, eulerian, hamiltonian, and bipartite properties of these graphs. For a
survey of double vertex graphs see [2]. Here we deal with the independence number
of double vertex graphs.

Theorem 3.4. Let G be a graph and V(G) = {v1,v2,..,vn}, n > 3. Then
Bo(U2(G)) < BF21Bo(< {Vk+1,Vks2, - Un}, G >).

Proof. Let for each k € {1,2,..,n ~ 1}, Vi = {Uk41,Vk+2.-Vn}, Wi =
{{vk,v;Hk < 7 < n}, He =< W, G > and Q¢ =< Wi, U2(G) >. Certainly
{Qn-1,Qn-2,..,Q1} is a partition of Us(G). For all k € {1,2,..,n — 1} define the
map m, : Wi — Vi by me({wk,v;}) = v;, where j = k+ 1,..,n. Clearly =y is
a bijection and if k < j < n, k < s < n, j #s then {vg,v;j}{vk,vs} € E(Qk)
if and only if me({vk, v;})me({ve,vs}) = vjus € E(Hy) which follows by the def-
inition of the double vertex graph. Then the graphs Qi and Hj are isomorphic,
k=1,2,..,n — 1. Combining this with the well known fact that if T is a graph
and e € E(T) then Bo(T — €) > Bo(T) [8], we obtain Fo(U2(G)) < Bo(UpZ1Qk) =
£h2160(Qk) = B2 fo(He)- O

Corollary 3.5 If G is hamiltonian graph of order n then Bo(Ux(G)) < [n?/4].

Proof. Let vy, 03, .., Un, v1 be a hamiltonian cylle in G. Since Hy =< {vg41, Vk+2
,-1Un}, G > has a spanning subgraph isomorphic to P, then Theorem 3.4 im-
plies B(U2(G)) < TRZ1Bo(Hk) < TpZ1Bo(Pa-k). Clearly Bo(Ps) = [s/2] for all
positive integers s. Hence Bo(U2(G)) < £7Z1[(n — k)/2]. It is easy to see that
Siiil(n~k)/2] = [n?/4]. O

In the next theorem we will find Fp(Ua{(Cy)).

Theorem 3.6. Bo(U2(Cy)) = |n?/4].

Proof. By the definition of double vertex graph it immediately follows that the
set M = {{vi,Viz142-} EV({U2(Cp)) |1 <i<n—-1,0<r<(n—i-1)/2} (ris
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an integer) is independent. Hence Go(U(Cy)) > (M| = Z23 [(n —4)/2] = [n?/4].
The result now follows because of Corollary 3.5. O

{The(;‘em 3.7. BQ(UQ(C-,,)[AD = Fo(U2(Cy)) for all Ac FU2(C,L)({P1}7{P2},
AP,

Proof. Let V(Cy) = {v1,v2, ..,un}, E(Cr) = {v1v3,v203, .., Un—1Vn, Upv1 } and
for k =1,2,.,n~1: Qi =< {{vx,v;}]k < j < n},Ux(Cy,) >. By the proof of
Theorem 3.4 we have that A= {Qn-1,Qn-2,..,Q1} is a partition of Uy(C,) and
for k = 1,2,..,n—1, the graph Q. is isomorphic to Hx =< {vk+1, Vk+2, -, Vn}, Cn >.
But obviously Hy, is isomorphic to P,_x. Thus we obtain A € Fy,(c,)({P1}, {P2}, .-
,{Pa-1}). Now, choose an arbitrary Be Fy,(c,)({P1},{Pz},..,{Pn-1}). Hence
Bo(U2(Ca)lB]) = 5274 Bo(Pr) = S223fo(Pai) = P2 (n — k)/2] = [n3/4] =
Bo(U2(Cr)). O

4. OPEN QUESTIONS

We close with a list of open problems and questions.
1. Which graphs are =y - critical and +, - critical (or one but not the other).
2. Characterize/study those graphs achieving equality in Theorem 3.4,

3. Characterize/study the all graphs G with u(G) = p(G[A]) for all A €
Fo({Ps},Kn—s), s > 2 where p € {V,7%,1,..}.
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1. INTRODUCTION

A group G is said to be (2, 3)-generated if G = (z,y) for some elements z and
y of orders 2 and 3, respectively. This generation property has been proved for a
number of series of finite simple groups. Concerning the projective special linear
groups PSLy(g), (2, 3)-generation is known in the cases n = 2, ¢ # 9 ([4]), n = 3,
q # 4 (see [1]), n =4, g # 2 ([7], [8]; for even g also proved independently and later
in {5]), n > 5, g odd, g # 9 ([2], [3]), and n > 13, any ¢ ([6]). The present paper is
another contribution to the problem. We prove the following

Theorem. The group PSLs(q) is (2, 3)-generated for any q.
We note that our approach is quite different from that in [2].

2. PROOF OF THE THEOREM

Let G = SLs(q) and G = G/Z(G) = PSLs(g), where ¢ = p™ and p is a prime.
Set @ =(¢° —1)/(¢g—1)and d = (5,¢— 1) = (5,Q).

Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 105-108. 1056



We first look for elements z and y of G of respective orders 2 and 3 such that
the element z = zy has order Q. Choose z in the form

1 0 -1 00
0 -1 0 00
z=|0 0 -1 0 0 (z €G, |z| =2 for any A, p,v,£ € GF(q))
0 A 4 10
0 v ¢ 01
and
010 0 1
0601 0 1
y=]100 0 1 (y € G, |y =3).
000 -1 -1
000 1 O
Then
-11 0 0 0
0 0 -1 0 -1
z=zy=}1-1 0 O 0 —1
g 0 A -1 d+pu-1
E 60 v 1 v+§

The characteristic polynomial of z is
f20) =P+ @Q-v—-t*+ Q- A—p—v =2+ (v —p)tP+ (At pu+v+£E-1)t—
Let w be an element of order Q in the group GF(q®)* and
Ft) = (¢ =)t Wt =)t ~w )t —w?) =
2 —att + 8t —4t? + 6t — 1.

Then f(t) € GF(q)[t] and the roots of f(t) are pairwise distinct (in fact, the poly-
nomial f(¢) is irreducible over GF(q)). Now choose A, p, v, £ so that

2—v-—E€=—-0,2-A~pu—v-2=03, v—pu=—y, A+pu+v+€—-1=4
ie.
A=-2a-8—-v-2, u=a+fB+v+d+1l, v=a+f+é+1, E=-P-6+1

This implies f,(¢) = f(t). Then, in GLs(¢®), # is conjugate to diag(w,wq,qu,qu,wq4)
and hence z is an element of G of order Q).

Now, in G, Z, 3 and Z = T are elements of orders 2, 3 and Q/d, respectively,
and H = (Z,7) is a subgroup of order divisible by 6Q/d We claim that H = G.
To prove this, we make use of the subgroup structure of G.

The irreducible subgroups of PSLs(g) are classified in [9] and [10]. This readily
implies that if M is a maximal subgroup of G then one of the following holds.
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that

1) [M] = ¢'(g - 1)(¢® — 1)(g* - 1)(¢* - 1)/d.

2) [M| = ¢"%(g — 1)(¢* - 1)*(¢® - 1)/d.

3) |M| = 120(qg — 1)*/d if ¢ > 5.

Y M= Zgy. 5.

5) M = PSLs(qo) . Z(4,r) if ¢ = ¢} and 7 is a prime.
6) M = PSUs(qo) if ¢ = g¢.

7) M = PSOs(q) if ¢ is odd.

8) M = Es2.SLo(5) if ¢ = p = 1 (mod 5).

9) M = PSU4(2) if ¢ = p = 1 (mod 3).

10) S PSLy(11)ifg=p>3,p=1,3,4,5,9 (mod 11).
11) M =My, ifqg=3.

It can be easily checked (directly or using Zsigmondy’s well-known theorem)
the only maximal subgroup of G' whose order is a multiple of Q/d is that in

4), of order 5Q/d. This implies that no proper subgroup of G has order divisible
by 6Q/d. Hence H = G and G = (Z,7) is a (2, 3)-generated group.

Ann
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Using the algebraic structure of cyclic codes an efficient method for the determination
of the weight distribution of the cosets of cyclic codes is presented. As an illustration
of the method weight distributions of the coset leaders of all ternary cyclic codes of
lengths up to 14 are calculated.
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1. INTRODUCTION

Cyclic codes form an important subclass of linear codes. These codes are
attractive by two reasons: first, encoding and syndrome computation can be imple-
mented easily by employing shift registers with feedback connections and second,
because they have well known algebraic structure, it is possible to find various meth-
ods for decoding them. To be able to evaluate the performance of a cyclic code for
some application we have to know the exact values of all its basic characteristics
among them covering radius, coset leaders and coset weight distributions.

Using an exhaustive search covering radii of some binary and ternary cyclic
codes are determined in [1}, (2], [3], [4], [5], [6], [7]. In this work we suggest a
method for efficient calculation of the complete coset weight distributions of cyclic
codes.
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2. COSETS OF CYCLIC CODES

Let C be a cyclic [n, k] code over the finite field of g elements F; = GF(g) and
let the generator polynomial of C be g(z) with the degree deg(g9(z)) =n—k. By V
we will denote the n-dimensional vector space over Fy;. Then themap o : V - V
will be the cyclic shift of the words of V

U(aOa ay;,az,... ,an—l) = (an—la ap,ay,- .. van—Z)-

Theorem 2.1. Let C be a cyclic [n, k] code with the generator polynomial
9(z) = 2" K4 gp_ 12" K14, 4 g12+g0 and leta = (ap, a1, . ..,an—k-1,0,...,0)
be a vector from the space V. Then the following two cosets coincide:

ala)+C=r+C,
where r = (0’0'0)0'11 o 1an—k—2107 v ,O) h an—k—l(gOagla ceeyOn—k-1, 0, .. aO)

Proof. Let us consider the standard correspondence between a vector from V
and a polynomial from the ring of the polynomials Fg[z]

v =(V0,V1,...,Vp_1) = 0(x) =v0 + V1T + ...+ vp_1z"" L.

If C is a cyclic code with the generator polynomial g(z) of degree m = n — k, then

it is well known that
b€ a+C & g(z)|(b(z) — a(z)).

Let a = (ag,01,...,8n—k-1,0,...,0) be a vector of V. Then
b=o(a) = (0,a9,0a1,-..,a0-k-1,0,...,0)

and its corresponding polynomial is

b(z) = o(a)(z) = za(z) = aox + a1 + ... + @n_g_12"F.
The remainder of the division of b(z) by 9(z) = 2" ¥+ gn-r-12"*"1+.. 4 g1+ g0
is
r(z) = b(z) — an-k-19(z) =

n—k-1

=z +a122 + ... 4 Gp 0% — k1 (Gnk—12" g1z + g0)

and its corresponding vector is
r= (O)CLO)ala' --»an—k—ZaO;--wO) —an—k—l(g()agla‘ .. agn—k—laov---vo)-D

From the well known fact that if two vectors a and b belong to one and the same
coset of the code C' then their corresponding polynomials have the same remainders
by division by g(x) we can conclude that we will get one representative from each
coset if we take all vectors of the type

a = (ao,al,...,an_k_l,O,...,O).
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Let the parity check matrix of the code C be in the form H = [I,_x|B]. If
a = (ap,@1,---,8n-k-1,0,...,0) is a vector from V then its syndrome is s(a) =
Ha! = (ap,a1,..-,8n-k—1)". According to Theorem 2.1 we have o(a) +C =r+C
and therefore

s(o(a)) = (0,a0,a1,...,8n—k-2) — Gn—k-1(90,91, - -+ In—k—1)-

Therefore from the syndrome of a word of V' we are able to compute the syndromes
of all its cyclic shifts.

3. ACTING OF THE CYCLIC GROUP ON THE COSETS OF A CYCLIC
CODE :

Let G =< o > be a cyclic group generated by o. The group has n elements.
Lemma 3.1. Let C be a cyclic [n, k] code and a € V. Let B = {o(z)|z €
a+ C}. Then B is a coset for the code C and B = o(a) + C.

Proof. o(a+c1) —o(a+ ) = o(a) + o(c1) — o(a) — o(c2) = o(c1 —¢c2) =
= 0’(03) eC.d

It follows from this lemma that we can consider the action of G over the set
of all cosets of the code C in the following way o(a + C) = o(a) + C. By this
action the set of all cosets is partitioned to non intersecting orbits O(a + C) =
{o%(a) + C}t = 0,...n — 1} and the length of each orbit (i.e. the number of the
different cosets) is a divisor of n. All cosets belonging to one and the same orbit
have one and the same weight distribution. We can obtain one representative from

each coset of one orbit by taking the vectors a = (ag,a1,...,0n-%-1,0,...,0);
¢(a) - (0-,0'010'17 ey On_k—2, O’ e 10) - a"n—k—l(g()vgl$ e 1gn—k—1701 . 70) and
#*(a),...,¢" (a). If the last k coordinates of the vectors a and b are zeroes

then they belong to the cosets from one and the same orbit iff there exists s such
that b = ¢°(a).

4. COSET LEADERS WEIGHT DISTRIBUTIONS OF TERNARY CYCLIC
CODES WITH N < 14

Using the results from the previous sections we have calculated the coset leaders
weight distributions of some ternary cyclic codes of small lengths. For the calcula-
tions we have used the definition of the covering radius of a code as the weight of the
coset leader of greatest weight. For a code in a standard form a vector of each coset
can be found by generating all the vectors of the form (a,0,...,0), a € GF(3"F).

——

k
Then the number of steps required to find R(C) by an exhaustive search is pro-

portional to n3™. If we check only one coset from each orbit we can considerably
reduce the required time. More precisely, if we have s different orbits the number
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of steps will be n3%+2 and this number is less then n3™ because s < n — k. . The
time complexity can be additionally decreased if we take into the consideration the

fact that all vectors of weight less than or equal to t = are unique coset

2
leaders. So, we have to check only vectors of greater than ¢ weights.

The classification from [6] was used as source for all ternary cyclic codes of
lengths up to 14. The results (a list of the nonequivalent ternary cyclic codes of
length up to 14, the roots of the generator polynomials and the coset leaders weight
distributions) are presented in the Table below.

Table 1. Coset leaders weight distributions of ternary cyclic codes of length < 14

No|n | k]d | Roots | Coset leaders weight distribution

1. {4 312 |2 o) =2

2. 14 1212 |1 a; =409 =4

3. {4 |14 10,1 a; =8,a2 =18

4. (8 (712 14 a; =2

5 |8 1612 |1 a) =8

6. |8 |612 |2 a; =4,a2 =4

7. 18 15{3 |01 o) =16,a9 =10

8. 18 {512 0,2 a; =8,az =18

9. 8 414 1,2 ay = 16, Qg = 60,&3 =4

10. [ 8 |42 [1,5 o) =8,00=24,a3 =32,04 = 16

11. | 8 3 r 5 0,1,2 o) = 16,02 =112,a3 =108, a4 = 6

12. 18 |3.]4 (0,15 a; =16,y = 82,03 = 96, aq = 48

13.18 |26 101,24 ] a; =16,a; =112,a3 = 368,a4 = 216,05 = 16

14. | 8 214 0,1,4,5 a1 = 16, Qg = 100,&3 = 288, Qg = 324

1518 [1{8 |0,1,2,5]| a1 =16,ay =112,a3 = 448, a4 = 1050, a5 = 560

16. 10§92 |5 a; =2

17.{10[8 (2 [0,5 oy =4,00=4

18. 11062 |1 o = 10,5 = 40, a3 = 30

19. {10514 |01 a; =20,a; =132,a3 =90

20.110|15)2 |02 oy = 10,ay = 40,03 = 80,04 = 80, a5 = 32

21.11014 14 0,15 a; = 20, ay = 132, az = 240, oy = 240,
Qs = 96

22. 1101215 1,2 a1 = 20,a, = 180, ag = 860, oy = 2200, a5 = 2400,
ag = 900

23.11011(10{0,1,2 o =20,09 =180,3 = 960,04 = 3360, a5 = 7812,
ag = 7350

24. 111|615 |1 a; = 22,a, =220

25.111{5}6 |01 oy = 22,00 = 220,03 = 440, a4 = 44,05 = 2

26. |11 | 1|11 {12 a1 = 22, a9 = 220, a3 = 1320, aq = 5280,
as = 14784, ag = 25872, a7 = 11550
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No|n |k |d | Roots | Coset leaders weight distribution

27.1131103 |1 a; =26

28.11319 |13 |0, o) = 26,09 = 52,03 =2

29. 113 |7 |5 |14 o) =41, a5 = 362, a3 = 324

30.|13}|7 |4 1,2 a; =41, a9 = 302,03 = 384

31. {13 | 6 6 0,14 a1 =29, a0 =348, a3 = 1274, a4 = 32,5 = 3

32.11316 |6 [0,12 a1 = 29,00 = 352, 3 = 1432, oy = 373

33.11314 |7 |]1,24 a1 = 26,as = 312, a3 = 2288, ay = 8788,
as = 8060, ag = 208

34. 113 |3 |9 |0,1,24 | a1 = 26,2 = 312, a3 = 2288, g = 11440,
as = 30342, ag = 14352, a7 = 288

35.113 11 1311,24,7 | a1 =26, 0 = 312, 3 = 2288, oy = 11440,
as = 41184, ag = 109824, a7 = 204204,
ag = 162162

36. 114113 |2 |7 ap =2

37.114 11212 0,7 ay =4,as =4

38. 14 1 8 2 1 Q= 14, Qn = 84, a3 = 280, Oy = 350

39. 1147 4 0,1 a1 = 30, = 300, a3 = 1015, oy = 841

40. 11417 |2 |02 a1 = 14,09 = 84, a3 = 280, ag = 560,
Qg = 672,(15 = 448, a7 =128

41. {1416 |4 |{0,1,7 oy = 44, a = 343, a3 = 1102, a4 = 1930,
ags = 1935, ag = 1003, a7 = 202

42, (142 17 11,2 o) = 28, ay = 364, a3 = 2912, oy = 15596,
as = 56840, ag = 137200, a7 = 196000,
ag = 122500

43. 114 | 1 14 | 0,1,2 a; = 28, a0 = 364, a3 = 2912, oy = 160186,
as = 64064, ag = 192192, a7 = 435864,
ag = 630630, ag = 252252
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THE WEIGHT DISTRIBUTION OF THE COSET LEADERS
OF TERNARY CYCLIC CODES WITH GENERATING
POLYNOMIAL OF SMALL DEGREE

E. VELIKOVA

Using the algebraic structure of cyclic codes, it is proved that the cyclic codes with one
and the same generating polynomial have equal weight distribution of cosets’ leaders.
As an illustration,the weight distribution of the leaders of the cosets of all ternary cyclic
codes with generating polynomial of degree less than 6 is presented.

Keywaords: cyclic codes, covering radius, coset weight distribution
2000 MSC: 94B15

1. INTRODUCTION

Let C be a cyclic code of length n over the finite field F; = GF(g). Let us
consider the standard correspondence between a vector from n—dimensional vector
space F;" and a polynomial from the ring of the polynomials Fy|z]

v=(v0,V1,...,0n-1) 2 V(&) =ap+arz+--- +an_1z™
A generator polynomial g(z) of code C is a nonzero polynomial of the smallest
degree of code and ¢ € C if and only if g(z)le(z). If C is a cyclic [n, k] code with
the generator polynomial g(z), then the degree of g(z) is m = n—k and the number
of cosets a + C of code C is equal to ¢™.
Leader of a coset a + C is the vector with the smallest Hamming weight in
that coset and by wit(a + C) we denote the weight of the coset leader a + C, i.e.
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wt(a + C) = min{wt(z)|x € a + C}. The covering radius of the code is the weight
of the leader with maximum weight. The covering radii of some binary and ternary
cyclic codes are determined in {1}, [2], (3], [4], [5], [6], [7]-

Some applications of codes require the knowledge of not only the covering
radius but also of spectrum of leaders of all cosets of a code. Let us denote by w,
the number of cosets a + C for which wt(a + C) = e. It is clear that wy = 1 ;
wo + wi + ... +wn = ¢" % and w, = 0, for every t > n — k. The spectrum of the
of cosets leaders of the code C is w(C) = (wo,w1,...,wn—k). In [8] a method for
computation of weight distribution of spectrum of coset leaders of an cyclic code is
presented.

In all the known tables the cyclic codes are grouped by the code length and
by the roots of the generating polynomials. It is proved in this paper that there is
a connection between spectrum of coset leaders for cyclic codes over a finite field
GF(q) with equal generating polynomial and non equal lengths. As an illustra-
tion,the weight distribution of the leaders of the cosets of all ternary cyclic codes
with generating polynomial with degree less than 6 is presented.

2. COSETS OF CYCLIC CODES WITH EQUAL GENERATING
POLYNOMIAL

Let C be a cyclic [n, k] code over the finite field with ¢ elements F;. The
generator polynomial g(z) of C is of degree deg(g(z)) = n — k, g(z)|(z™ — 1) and
h(z) = %EYI is a parity check polynomial of code C. ‘

Let ng be the smallest integer such that g(z)|(z™ — 1) and Cp is the cyclic
code with length ng and generator polynomial g(z). From ged(z™ — 1,20 — 1) =
29¢4("m0) _ 1 we obtain that ng|n. If n = s.np then the parity check polynomial of
code C is "

-1 z™% -1

M) = 9(z) T -1 Ao

and the dual of the code C' is s times repeated the dual of code Cy.

Theorem 2.1. Let C be a cyclic [n, k] code with the generator polynomial g(x)
and let ng is the small integer such that g(z)|(z™ — 1). If the Cy =< g(z) > is
the cyclic code with length ng and the generator polynomial g(x) then the spectra
of cosets leaders for codes C and Cy are equal w(C) = w(Cq).

Proof. Let a € Fy™ and & be the extended vector & = (a,0,...,0) from Fq".
Let a correspondence ¢ : {a + Cola € Fy™} — {a + Cla € F;"} between the
cosets of code Cy and C be defined as ¢(a + Cy) = @ + C. Then it is clear that
bea+Cy e bed+ C. Hence the correspondence ¢ is a bijection as the number
of cosets of codes C and Cj are equal.

For z = (zg, ..., 2n-1) € F,", let us consider the vector 2(m0) = (yo, .., Ung—1) €
F™, where ¥i = 2z + Zigng + .o + Zig(s—1)n, for all i € {0,..,m9 — 1}. It is
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clear that if y; # O then wt(z;) + Wt(2i4ny) + ... + Wt(Zit(s—1)n,) = 1. Hence
wit(z(™)) < wt(z). The polynomial z("0)(z) is the remainder of the division of z(z)
by z™ — 1. Therefore ™) € 24+ C. Ifa € F,™ is the leader of the coset a + Co
then wt(p(a + Cp)) < wt(a). Let z be the leader of w(a + Co) then z(™) € a + Co
hence wt(z) > wt(a + Cp). Therefore wt(a + Co) = wt(w(a + Cp)) . O

From that theorem we can conclude that if C; and C5 are two cyclic codes
with different lengths but with one and the same generator polynomial g(z) then
w(Cl) = w(Cg).

3. COSET LEADERS WEIGHT DISTRIBUTIONS OF SOME TERNARY
CYCLIC CODES

As an illustration of the previous section we calculate the coset leaders weight
distributions of some ternary cyclic codes with generator polynomial of degree< 5.
For the calculations we have used mostly the definition of the spectrum of the coset
leaders and the following methods:

Method 1. If the linear [n,k] code C over Fy has a parity check matrix H
and a € F;",a ¢ C then wt(a + C) is the least integer e such that the syndrome
S(a) = Ha' can be represented as a linear combination of the e from the columns
of matrix H. So, we can calculate the coset leader’s spectrum if for any nonzero
syndrome S calculate the minimal number of columns of H that linear generate S.

Method 2. In [8] is considered the action of the cyclic group Gp, =< ¢ > (0 is
a cyclic shift of coordinates) with n elements on the cosets of one cyclic [n, k] code
as o(a + C) = o(a) + C. This action splits the cosets in disjoint orbits and from
[8] it is clear how to obtain one representative from each coset.Thus we calculate
the weight of the coset leader only for one coset from each orbit.

Let C be a cyclic code with generator polynomial g(x) and the minimum length
of cyclic code with generator polynomial g(z) be ng. In the following tables are
presented basic parameters of some cyclic codes . In the tables the polynomials are
represented by their coefficients, namely g(z) = go + g1z + ... + gmz™ is given as
a string gogi.--gm. As the reciprocals polynomials generate equivalent codes, the
table contains only one from any couple of such polynomials.

3.1. SPECTRUM OF COSET LEADERS FOR IRREDUCIBLE POLYNOMIALS

Let g(z) be an irreducible polynomial over F, of degree m. Then g(x)|(z?" ~~
1) and if ng is the smallest integer such that g(z)|z"™ — 1, then ng|{(g™ —1). Let o
be a root of g(x) and Cp be the cyclic [ng, no — m] code, with generator polynomial
g(z), then a parity check matrix of code Cj is the following H = (1, a,a?, ...,a™™1).
A polynomial g(z) for which is hold ng = ¢™ — 1 is called primitive polynomial
and every parity check matrix for the code with length ¢™ — 1 consists of every
nonzero vector column from F™ . Hence for that code spectrum of coset’s leaders
is (1,¢™—1,0,...,0). If C; and C3 are [n, k] cyclic codes generated with irreducible
polynomials of degree m the codes Cy and Cs are equivalent.

The table from [9] was used as a source for all irreducible polynomials over F.
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TABLE 1. Coset leaders weight distributions of irreducible ternary cyclic codes with generator
polynomial of degree < 5

N | deg polynomial n k d |R Spectrum
1] 1 21 n | n-1 ] 2 |1 1.2
2| 1 11 % | 2s—1 | 2 |1 (1,2)
3] 2 101 s | 4s—2 | 2 |2 1,4, 4)
41 2 211 8s | 8 —2 2 1 (1,8,0)
51 3 2201;2111 135 | 13s—3 {3o0r2|1 (1,26,0,0)
6] 3 1201;1211 26s | 26s—3 2 1 (1,26,0,0)
7] 4 11111 5s | 55—4 |50r2|3]| (1,10,40,30,0)
81 4 12121 10s | 10s — 4 2 3| (1,10,40,30,0)
91 4 20201 16s | 16s—4 2 2| (1,16,64,0,0)
10| 4 12011 20s | 20s —4 2 2| (1,20,60,0,0)
11| 4 10111;12101 40s | 40s — 4 2 21 (1,40,40,0,0)
12] 4 ;ggﬂ:;i?gi’ 80s | 80s —4 2 11 (1,80,0,0,0)
13| 5 221201 1is | 11s—5 |5 or 2| 2 | (1,22, 220,0,0,0)
14| 5 122201 228 | 225 -5 2 21(1,22,220,0,0,0)
220001;211001;210101;
15| 5 g%yg;giégiggfgi 12151215 — 5 [3or 2| 1| (1,242,0,0,0,0)
212021;211121
120001;112001;110101;
102101;122101;112201;
16| 5 120011;111011;121111; 2425|2425 -5 2 1] (1,242,0,0,0,0)
112111;122021

3.2. SPECTRA FOR REDUCIBLE POLYNOMIALS WITHOUT MULTIPLE ROOTS

If g(z) is a reducible polynomial over Fy and it does not have multiple roots
then for the minimum integer ng for which g(x)[(z™ — 1) is hold ged(q,no) = 1. If
« is a primitive n—th root of unity in some field F+ then all zeros of g(z) will be
a®,...,at . It is known that if Cy and C; are cyclic [ng, ng —m] codes and the sets
of roots of the codes Cy and C, are, respectively, o', ...,a*" and o, ...,a’" and
there exists a integer v, such that ged(ng,v) = 1 and j; = v,i; for s € {1,...,m}
then the codes C; and C; are equivalent. In that table we omit all equivalent codes,
obtained by the upper procedure.
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TABLE 2. Coset leaders weight distributions of ternary cyclic codes
without multiple roots and generator polynomial of degree < 5

Noldeg| polynomial n k d |R Spectrum
172 501 3 (35— 2 |2 @.4.49)
213 1111;2121 4s | 45—3 {4or2(2 (1,8,18,0)
313 1101;2021 8 | 88~—3 |3o0r2j2 (1,16,10,0)
14 20001 35 [ ds—4 | 2 [4] (1,824,32,16)
512 10001 85 | 8s—4 | 2 [4] (1,8 24,32,16)
614 13111 85 | 8s—4 |4or2|3] (1,16,60,4,0)
714 51011 85 | 8s—4 |4or2|3] (L 16,60,4,0)

§ | 4 | 10221,11001 | 13s | 13s—4 [3or2|3| (1,26,52,2,0)
9 | 4 [ 10211;10021 | 26s | 26s—4| 2 3| (1,26,52,2.0)
10| 4 g;g; 2202212011’ 2s | 26s—4 |[30r2|2| (1,52,28,0,0)

15 500001 55 | 5s—5 | 2 |5 [(1,10,40,80,80,32)
3] 5 | 111201;201121 | &5 | 85 =5 |5or 2|4 | (1, 16, 112, 108,6.0)
13| 5 | 210021; 110011 | 85 | 8s—5 |dor 2|47 (i, 16,82, 96,48,0)
15 100001 105 ] 10s=5] 2 |5](L10,40,80,80,32)
15| 5 | 120221;221211 | 105 | 1055 |4 or 2| 3] (1,20, 132, 90,0,0)
16 | 5 | 121221;229211 | 165 | 165=5 [30r 2|2 (1,32, 210,0,0,0)
17 |5 | 222201; 121201 | 205 | 2055 |4 or 2| 2 | (1,40, 202,0,0,0)
18] 5 ;ﬂgi;%?ﬂ 2%s | 2655 |30r2|3| (1,52,184,6,0,0)
195 | Jipornizo0n | 405 | 4055 [3or2|2 | (1,80,162,0,0,0)
20| 5 gfggif;ggii 52s | 5255 |3or 2| 2| (1,104,138,0,0,0)

120111; 102021
21| 5 ;giggi ;iggﬂ 80s | 80s 5 |3or2|2| (1,160,82,0,0,0)
210221; 202001
33 | 5 | 111101, 212101 | 1045|1045 =5 |3 or 2| 2| (1,208,34,0,0,0)
53 5 | 121021, 222011 | 1045|1045 —5 |3 or 2] 2| (1, 208,34,0,0,0)
54| 5 | 102001, 201001 | 104s|104s — 5|3 or 2] 2| (1,208, 34.0,0,0)
56 | 5 | 121211, 211111 |104s] 1045 —5]3or 2| 2| (1,208, 34,0,0,0)

3.3. SPECTRUM CODES GENERATED BY POLYNOMIALS WITH MULTIPLE ROOTS
If 29" — 1 = (2™ — 1)? over the field F; and g(z) has multiple roots then

g(z)|(z™ — 1) where g|n. Very few is known about such a codes so in the following
table may contain equivalent codes.
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TABLE 3. Coset leaders weight distributions of ternary cyclic codes
with multiple roots and generator polynomial of degree <5

N | deg | polynomial | n k d R Spectrum

1] 2 111 3s | 3s—~2 [30r2| 2 (1,6,2)

2 2 121 6s | 65—2 2 2 (1,6,2)

3] 3 2001 3s | 3s—3 2 3 (1,6,12,8)

41 3 1001 6s | 6s—3 2 3 (1,6,12,8)

5 3 2211 6s | 6s—3 |4or2| 2 (1,12,14,0)

6| 3 1221 6s | 6s—3 |3or2] 2 (1,12,14,0)

7| 4 10101 6s | 6s—4 [3or2} 4 (1,12,40,24,2)

8| 4 22011 | 6s | 6s—4 |dor2| 3| (1,12,44,24,0)

91 4 21021 6s | 6s—4 |4o0r2] 3 (1,12,44,24,0)

101 4 12021 9s | 9s—4 [ 30or2| 3 (1,18,38,24,0)

11} 4 10201 125 { 125 — 4 2 4 (1,12,40,24,4)

12} 4 11211 125 | 12s—4 [ 3o0r2 | 2 (1,24,56,0,0)

13] 4 12221 1251 12s—4|3o0r2| 2 (1,24,56,0,0)

141 4 11011 185 | 18s—4 2 3 (1,18,38,24,0)

15| 4 20121 24s | 24s—4|3o0r2| 2 (1,48,32,0,0)

16| 4 22201 24s [ 24s—4 | 3o0r2| 2 (1,48,32,0,0)

17| 4 11221 24s | 24s—4 2 2 (1,24,56,0,0)

18] 5 212121 6s | 6s—5 |[60r2| 4 (1,12,60,140,30,0)

19| 5 111111 6s | 6s—5 |6o0r2| 4 | (1,12,60, 140, 30,0)

201 5 222111 9s | 9s—5 [3o0or2|4(1,18,114,108,2,0)

21| 5 120021 125 {125 —-5|3o0r2 | 4 1 (1,24,74,96,48,0)

22| 5 220011 125{12s—5|30r2 | 4 | (1,24,74,96,48,0)

231 6 112211 125 | 12s—5§3o0r2 | 4 | (1,24,134,72,12,0)

241 5 211221 125 { 12s—5 | 3o0r2 | 4 | (1,24,134,72,12,0)

25| 5 101101 125 | 12s-5|4o0r2| 3 | (1,24,146,72,0,0)

26| 5 202101 125 | 12s—5{4or 2| 3 | (1,24,146,72,0,0)

27| 5 121121 185 | 18s—5 2 4 | (1,18,114,108,2,0)

281 b 1102201 185 | 185—513o0r2} 3 | (1,36,134,72,0,0)

291 5 201201 185 | 18s—5|30r2{ 3| (1,36,134,72,0,0)

30| 5 122211 2451 245—5|3o0r2| 3| (1,48,122,72,0,0)

31| 5 211211 245 |24s—-5|3o0r2| 3 | (1,48,122,72,0,0)

32| 5 221001 245 | 24s—-5|3or2| 3| (1,48,182,12,0,0)

33| 5 100221 245 | 24s—5|3or2| 3 | (1,48,182,12,0,0)

341 5 202011 245 | 24s—5{3o0r2| 2| (1,48,194,0,0,0)

351 & 120101 24s | 24s—5{3o0r2| 2| (1,48,194,0,0,0)

36| 5 211011 39s139s—5|30r2| 3] (1,78,158,6,0,0)

371 b 201021 39s | 39s—5|30r2| 3| (1,78,158,6,0,0)
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N | deg | polynomial | n k d R Spectrum

38| 5 112021 78s | 785~ 5 2 3| (1,78,158,6,0,0)
39| 5 110201 78s | 785 —5 2 3| (1,78,158,6,0,0)
40| 5 200021 78s | 78s—~5|3o0r2| 2 | (1,156,86,0,0,0)
41| 5 222101 78s | 78 ~5|3o0r2| 2 | (1,156,86,0,0,0)
42| 5 100011 78s | 78 —-5|30or2| 2 | (1,156,86,0,0,0)
431 5 101121 783 | 78s—5|30r2| 2| (1,156,86,0,0,0)
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CONNECTION BETWEEN THE LOWER P-FRAME CONDITION
AND EXISTENCE OF RECONSTRUCTION FORMULAS
IN A BANACH SPACE AND ITS DUAL

DIANA T. STOEVA

In the present paper it is proved that under an additional assumption (which is au-
tomatically satisfied in case p = 2) validity of the lower p-frame condition for a se-
quence {gi} C X* implies that for f in a subset of X there exists a representation
=3 9i(f)fi, where {fi} C X satisfies the upper g-frame condition, ;11- + % =1. An

example showing that the above representation is not necessarily valid for all f in X
(neither reconstruction formula of type g = Y g(fi)g: for all g € X*) is given. It is
shown that when D(U) is dense in X, g € X* can be represented as g = 3, g(f:)g: if
and only if 3 g(fi)g: converges.

Keywords: p-frames, lower bound, reconstructions, Banach spaces, dual spaces
2000 MSC: 42C15, 40A05

1. INTRODUCTION

It is well known that if a sequence {g;}{2; C H is a frame for a Hilbert space
‘H, i.e. there exist constants A, B > 0 such that

ANFIP < < fog > P < BIFIP, YfeH,

i=1

then every f € H can be represented by a dual frame {f;}2; C H:

F=Y <hfi>e=)Y <f9>f (11)

i=1 i=1
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Sequences, which satisfy the lower frame condition, but may fail the upper one, are
used in some applications (for example, in irregular sampling). For this reason the
existence of reconstruction formulas like (1.1} when only the lower frame condition
is assumed has become a topic of investigation. The first study in this direction
may be found in [3]. There an operator is associated to a family {g;}2, € X
and under some assumptions on that operator it is proved that {g;}$2, satisfies the
lower frame condition and there exists a Bessel sequence {f;}52, C H (i.e. sequence
satisfying the upper frame condition) such that f = Zf_:l < f,fi>gi, VfeH.
Later, aim of investigation has been to get reconstruction formulas when the lower
frame condition is assumed to be valid. In [2] it is proved that if {g:}32, C H
satisfies the lower frame condition, then there exists a Bessel sequence {fi}2; ¢ H
such that

f=Y<f09>f, ¥Vf € D), (1.2)
i=1
where o~
DU)={feX|) [<fg> <o}, (1.3)
i=1
U:DWU)CH-E Uf:={<fgi>}2; (1.4)

Recently, frames in Hilbert spaces have been generalized to p-frames in Banach
spaces [1]. A sequence {g:}2; C X* is called p-frame for X (1 < p < o) if there
exist constants A, B > 0 such that

i=1

o0 1/p
Allfllx £ <Z|gi(f)|”) < Bjiflix, Vf € X.

{9}, is called a p-Bessel sequence for X if it satisfies the upper p-frame inequality
for all f € X. In [4], p-frames {g;}2; C X* in general Banach spaces are considered
and necessary and sufficient condition for existence of reconstruction formulas like

f=) g:if)fis VFE X, (1.5)
i=1

g=> g(f)gi, Yg € X* (1.6)
i=1

via a dual ¢-frame is found, namely the condition "the range of the operator U
is complemented in ¢P", where U : X — P, Uf = {g:(f)}2;. In the present
paper we are interested in reconstruction formulas when only the lower p-frame
condition is assumed. In Section 3, generalization of (1.2) to the case when a family
{9:}2, € X* is assumed to satisfy the lower p-frame condition is investigated; for
this case a necessary and sufficient condition for validity of formula like (1.2) via
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a g-Bessel sequence {f;}32, is given. Section 4 concerns the question whether the
lower p-frame condition 1mp11es existence of reconstruction formulas not only in
D(U), but in the whole spaces X and X™ (like (1.5) and (1.6)). In Section 5 we
investigate the lower p-frame inequality in Banach spaces in case the corresponding
operator U is assumed to be densely defined. This is motivated by the work by
Christensen and Li, who investigated the lower frame inequality in Hilbert spaces
in case the operator U, given by (1.3} and (1.4), is densely defined, with the aim
of obtaining reconstruction formulas in the weak sense. Our aim in this section is
to obtain representation in X* with convergence in norm-sense. In Proposition 5.1
a necessary and sufficient condition for an element g € X* to be represented via a
formula like (1.6) is given.

2. NOTATIONS AND BASIC FACTS

Throughout the paper (H, < -,- >) denotes a separable Hilbert space; X de-
notes a separable Banach space and X™* denotes its dual space; p and ¢ are assumed

1 1
to satisfy 1 < p,¢ < oo and - + — = 1; the canonical basis of %/ (1 < p < o) is
the basis consisting of the elements (1,0,0,0,...), (0,1,0,0,...), (0,0,1,0,...),...

A sequence {g;}2, C X* satisfies the lower p-frame condition when there
exists a constant A > 0 such that

i/p
Alfllx < (Zlgz f)l”) , VfeX. (2.1)

To such a sequence the (possibly unbounded) linear operator

U:DU)C X -2, Uf={a(X: (2.2)

where D(U) = {f € X | Zlg, )P < oo}, is associated. R(U) denotes the range
of U.

Recall that a linear operator U : D(U) C X — Y, whose domain is a linear
subset of a Banach space X and whose range lies in a Banach space Y, is closed if
the conditions {z;} C D(U),z; — = in X and Uz; — y in Y when j — oo imply
xz € D(U) and Uz = y or, equivalently, if the graph of U is closed in the product
space X x Y [5, p. 57].

The following known results are needed:

Lemma 2.1 {7, p.156]. Let E,F be linear normed spaces and U : E — F
be a linear operator. Then, for A > 0, the inequality |U fllr = Al fllg holds for
all f € D(U) +f and only if U has a bounded inverse U~! : R(U) — E for which

-1 1
< g
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Lemma 2.2 [4}. {9:}{2; C X* is a p-Bessel sequence for X with bound B if
and only if

[o0)
T {dR, - 3 digs
i=1
s a well defined (hence bounded) operator from €9 into X* and |T| < B.

Lemma 2.3 [6, 8]. For every 1 <1 <p < 00, £ is a linear subset of {7 and
{ei}2ller < {ei}2iller for all {c;}2, € €. Furthermore, no space of the family

i=1
P, 1 < p< oo, is isomorphic to a subspace of another member of this family.

Corollary 2.1. For every 1 < r < p < 00, the space {7, considered as a
subset of ¢, is not closed in £P.

3. CONSEQUENCES OF THE LOWER P-FRAME CONDITION
IN THE GENERAL CASE

We begin with a consequence of the lower p-frame condition concerning the asso-
ciated operator U, which is a generalization of a result concerning the lower frame
condition in Hilbert spaces [2]:

Lemma 3.1. Suppose that {g;}2; C X* satisfies the lower p-frame condition
(2.1). Then the operator U given by (2.2) is an injective closed operator with closed

1
range. Furthermore, the inverse U~! : R(U) — D(U) is bounded and ||[U~}|| < e

Proof. To prove that U is closed, consider a sequence {z;}52, C D(U) for
which

z; — ¢ in X and Uz; — {¢;}52, in £ when j — oo.

Since all g; are continuous functionals and since convergence in P implies conver-
gence by coordinates, the assumptions imply that for all ¢,

gi(z;) — gi(z) as j — o0

and
9i(z;) — ¢i as j — oo.
Thus {gi(2)}2; = {c:}2,, i.e. z € D(U) and Uz = {¢;}$2,, and hence U is closed.

To prove that U has closed range, consider again a sequence {z;}32; C D(U), and
assume that Uz; — y as j — oco. Thus {Ua:j}_;?il is a Cauchy sequence, which
implies by (2.1) that {z;}$2, is a Cauchy sequence. Thus x; — z for a certain
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element z of the Banach space X. Since U is closed, one can now conclude that
z € D(U) and y = Uz, i.e. y belongs to the range of U.

The rest follows by Lemma 2.1 0.

Note that when {g;}{2; C X™* satisfies the lower p-frame condition and D(U) =

X, then {g:}2, is a p—frame for X. Indeed, in this case Lemma 3.1 implies the
existence of a bounded inverse U~! from the closed subspace R(U) of £? onto X,
which by the Inverse Mapping Theorem implies boundedness of U, i.e. validity
of the upper p-frame condition. Similarly, if {g;}, C X* satisfies the lower p-
frame condition and D(U) is a closed subspace of X, then {g:|p)}{2, is a p-frame
for the Banach space D(U). Reconstruction formulas when both the lower and the
upper p-frame conditions are satisfied have been studied in [4]. In this paper we are
mostly interested in cases when {g;}32, C X satisfies the lower p-frame condition
and D(U) & X is not closed in X (i.e. {g;}{2;, C X* fails to be a p-Bessel sequence
for X or for D(U)). For examples of this kmd see 4.1, 5.1 and 3.1.

When (2.1) is satisfied, the above lemma assures that the operator U given
by (2.2) has a bounded inverse U~! : R(U) — D(U). The next theorem shows
that the existence of a bounded extension of U~? on ¢ is a necessary and sufficient
condition for existence of representations of the elements in D(U) via a ¢-Bessel
sequence:

Theorem 3.1. Suppose that {g;}2, C X* satisfies the lower p-frame condi-
tion (2.1). Then the following are equzvalent

(i) there exists a q-Bessel sequence {f;}2, C X(C X**) for X* such that
oo
f=Y_gif)fi Yf €DWUY; (3.1)
i=1

(i) the operator U~ : R(U) — X can be extended to a linear bounded operator
on £P.

Proof. Assume (i). By Lemma, 2.2, the operator V : {¢;}2, — 22  cifiis a
well defined linear bounded operator from £ into X. For every f € D(U) we have

Zgz(f)f, f=U"'vf
=1
and hence V is an extension of U1,

Assume now (ii). Let {e;}32; be the canonical basis for 7 and let f; := Ve; for all
i. Then, by construction, for all f € D(U) we have

F=VUF=Y alf)f:

i=1
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Now let g € X™*. Considering the functional gV € (€7)*, the natural isometrical iso-
morphism between (£7)* and ¢7 implies that the sequence {g(f:)}{2; = {9V (e:)}2,
belongs to £7 and

(Zlg(ﬂ ) (ZIQV(ez)I"> =llgVlleesy- < IV - ligllx-, Vg € X~

Hence {f;}32,, considered as a family in X**, is a g-Bessel sequence for X* 0.

Note that when {g;}32; C X* is a p-frame for X, then the above conditions
(i) and (ii) are equivalent to the condition

(iii) R(U) is complemented in P
(see [4]). When only the lower p-frame condition is assumed, (iii) implies (ii).
Indeed, if P is a bounded projection from P onto R(U), then, clearly, U~1P is
a linear bounded extension of U1 on P, In special cases the inverse implication
is also true. For example, if p = 2 and {g;}{2, C X™ satisfies the lower 2-frame
condition, then R(U) is closed in the Hllbert space ¢2 and hence (iii) and (ii) are
satisfied; thus (i) is always valid in this case. Example 3.1 and Example 5.1 are
examples of cases, when {g;}32; C X* satisfies the lower p-frame condition for X,
D(U) G X is not closed in X and (i), (ii) and (iii} are satisfied. It is still an open
question whether there exists an example of a family, which satisfies the lower p-
frame condition, D(U) G X is not closed in X, (i) and (ii) are satisfied, but (iii)
fails.

Example 3.1. Let 1 < p < 5 < oo. Consider the Banach space X = £%.
Let {e;}$2; be the canonical basis for ¢¢ and let {E;}2; C (£°)* be the asso-
ciated coefficient functionals. By Lemma 2.3, the set D(U) = {{d;}2; € ¢*
{E; ({di}21)};2, € €} is actually &£ G X and for all {d;}2; € D(U) we have
WU ({di}2, )ng = |{di}21ller = 11{di}2;|le»; for the elements {d;}52, € £°\ ¢P the
lower p-frame inequality is clearly satlsﬁed By Corollary 2.1, D(U) is not closed
in X. The range of the operator U is R(U) = ¢P and thus (iii), and hence (ii) and
(i) are valid.

4. A COUNTEREXAMPLE

As it was shown in the previous section, under the additional assumption on
complementability of R(U) in ¢? or the existence of a bounded extension of U~!
on #P, the lower p-frame condition implies the existence of reconstruction formulas
in D(U). This section concerns the question whether the same assumptions imply
existence of reconstruction formulas in the whole space X or in the whole X*. Ex-
ample 4.1 below answers negative; it shows a case when there are no reconstruction
formulas neither in the whole space X* via the sequence {g;}32; C X, satisfying
the lower p-frame condition, nor in the whole space X via a dual family {f;}{2, ¢ X
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(2 g-Bessel sequence satisfying (3.1)). The example concerns a case when X is a
Hilbert space and p = 2 (in this case the assumption "R(U)-complemented in ¢2"
is automatically satisfied) and thus it shows that the answer is negative even for
this special most considered case. Note that in a recent paper [2], concerning the
lower frame condition in Hilbert spaces, it has been shown that the representation
in (1.2) is not necessarily valid for all f € H; the counterexample given in [2] and
the one given in the present paper are obtained independently; the counterexample
given in [2] is more complicated than the one below.

Example 4.1. Let {e;}$2, be an orthonormal basis for a Hilbert space (H, <
-, >) and consider the family {g;}32, := {i(e1 + €;)}i>2 C H. The family {g;}2,
has the following properties:

(1) {gi}$2, satisfies the lower frame inequality, but it is not a frame for H;
(ii) e1 can not be written as y_;°, c;g; for any numbers {c;}$2,;

(iii) if {fi}2, is a Bessel sequence, satisfying (1.2), e; can not be written as

i=

Yooy cifi for any numbers {c;}52,.

Proof. (i) Let € H be arbitrary fixed. If < 1,e; >=0, then

o0 o oo
d<zmg> = Y PAl<nea>P>2) [<ze>
=2 =2 =2

o]

doI<ze > =l

=1

Let now < z,e; ># 0. Since {e;}{2, is an orthonormal basis for H,

o
Z|<z,ei>|2<oo
=2

and hence < z,e; >— 0 when i — oo. Therefore

o
Z|<x,e¢>+<x,el>[2=oo, (4.1)
=2

because otherwise < x,e; > would converge to (— < z,e; >) # 0, which is a
contradiction. Now (4.1) implies that

oo (o0}
Zl<x,gi>|2:Zi2]<z,ei>+<m,el>]2=oo
=2 =2

and hence the inequality

oo
dol<zgi> P> e
i=2
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is satisfied.

The fact, that {g,;}32, does not satisfy the upper frame inequality follows from the
equalities

oo
dol<er,gi> =k =k e, Vk>2.
i=2
(ii) If there exist constants cg, cs,c4, ... such that e; = 222 cii(er + €;), then
the orthogonality < ex,e; >= 0, Vk > 2, implies that all ¢; are zero, which is a
contradiction.
(iii) Let now {f;}$2, be a Bessel sequence, satisfying (1.2). For every k > 2,
ex belongs to D(U) and thus, by (1.2),

oo
er = Z < ek,i(el + e,-) > fi= kfk.

i=2

If we assume that e; = Y o, ¢ f; for some numbers {c;}2,, this would imply that

Py
o Ci o .
e1=> oo T e;, which is a contradiction. O

5. THE LOWER P-FRAME CONDITION IN A SPECIAL CASE

Let {g:}32, C X* satisfies the lower p-frame condition. In this section we
are interested in representation of elements in the dual space X*. In the previous
section we have seen an example of a case when {g;}{2; C X* satisfies the lower
p-frame condition and {f;}$2; C X is a g-Bessel sequence satisfying (3.1), but not
all g in X* can be represented as g = Y =, g(f;)gi- Here the elements g € X*
which allow such representations are investigated. We consider the special case
when the given sequence {g;}$2, satisfies one more assumption, namely that the
domain of the associated operator U, defined by (2.2}, is a dense subset of X. The

following result holds true:

Theorem 5.1. Let {g;}2, C X* satisfy the lower p-frame condition, D(U)
be dense in X and {fi}2; C X be a g-Bessel sequence satisfying (3.1). Then an
element g € X* can be represented as

oo

9= g(f:)g:

i=1

if and only if
n o
the sequence {Zg( f,-)g,-} s convergent.

g==1
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Proof. Fix an arbitrary g € X*.
It is only needed to prove that if {3, g( f,-)g,-},;'o=l is convergent, then it
n

converges to g. Suppose that Y .o, g(fi)gi = nlm;o Zg( fi)g: exists. Denote the
i=1"

1
canonical basis of ¢7 by {e;}32, and the canonical basis of £2 by {z;}2; (= +l =1).

Let V : » — X be the linear bounded extension of U~! defined in the proof of
Theorem 3.1; then f; = V(e;), Vi. By the isometrical isomorphism of (¢#)* and £9,
{gV(ei)}2, = {g(fi)}2, € ¢7 can be identified with V*(g) = gV € (¢7)* and thus

Y g(fi)x ol Y g(f)u=Vg. (5.1)
i=1

i=1
Under the assumptions of the theorem we can consider the adjoint operator
Uu*:pUr) — X*,
where
D(U™) = {G € (£7)*| the functional G o U is continuous on D(U)}.

By definition, U*G is the unique extension of GU to a continuous functional on
X (the continuous extension is unique, because D(U) is assumed to be dense in X).
It is not difficult to see that U* is a densely defined closed operator. Every z; belongs
to D(U*) (considered as a subset of £7) and U*z; = g;, because (g; — U*%)(f) =
9i(f) — gi(f) = 0 for all f in D(U), which is dense in X. Then for every n € N, the-
finite sum 3", g(fi)2: belongs to D(U*) and

n n n o0
U (Z g(fi)2i> =Y g(f)Uz =) g(fi)g: — D o(f)g  (52)
i=1 i=1 i=1 i=1
Now (5.1), (5.2) and the closeness of U* imply that V*g belongs to D(U*) and
oo
Uvig=Y_ g(fi)g
i=1

Since U*V*(9)(f) —g(f) = gVU(f) — g(f) = 0 for all f in D(U), which is dense in
o0
X, one can conclude that U*V*(g) = g. Therefore g = Zg( fig:- O
i=1
As a consequence of Theorem 5.1, for the Hilbert frame case we get:

Corollary 5.1. Let H be a Hilbert space and assume that {g;}2; C H

satisfies the lower frame condition with D(U) dense in H. Let h € H and {ﬁ};ﬁl C
H be a Bessel sequence satisfying (1.2). Then

oo
h=Y <hfi>g

i=1
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if and only if

n o0
the sequence {Z <h, fi> gi} 18 convergent.

i=] n=1

Below an example of a sequence satisfying the assumptions of Theorem 5.1 is
given.

Example 5.1. Let {e;}$2, be an orthonormal basis for a Hilbert space H and
let {g:}%2, := {ie:}$2;. Since
o0 o0

[e o]
Sl<hg>P=Yi<hg>P>Y |<he>P=|hl}, VheH,

i=1 i=1 =1

{9:}32, satisfies the lower frame condition. Clearly,

D(U) ={c= che, €H : Z|1c,| < 00}

t=1

1
Since span{e;} € D(U), but span{e;} = H ¢ D(U) (for example ) .2, 176 €
H\D(U)), D(U) is dense, but not closed in H. For every g € H* = H, the sequence
{ S <g. -:,—ei > gi} converges to g and {= 61}1_1 is a Bessel sequence for H.

n=1
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We find a rotated hypersurface M™ whose induced metric from R™*? is isometric
to metric of IP manifolds and therefore the hypersurface is conformally flat. In the
case of 4-dimensional hypersurface with IP metric we have presented explicitly a skew-
symmetric curvature operator and have proved directly that its eigenvalues are point-
wise. We find the mean curvature of the hypersurface.
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Let V be the Levi-Civita connection of a Riemannian manifold (M™, g). Let
z,y and z be tangent vector fields on M™. Then the associated curvature tensor
R(z,y, z) is defined by

R(x,y,2) = Vo Vyz = Vy Vo2 — Vg 2.

The value of R(z,y, z) at a point p of M depends only of values of z,y and z at p.
The skew-symmetric curvature operator K , is defined by

K y(u) = R(z,y,u)

for any orthonormal pair (z, y) of tangent vectors at any point pin M and u € T, M.
It is easy to see that the curvature operator K , does not depend on the orientated
orthonormal basis which is chosen for the orientated 2-plane E? = span{z,y} [1].
A unit vector u is an eigenvector to K, with the corresponding eigenvalues c iff

K y(u) = cu,
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where, generally, ¢ is a function of the point p and the plane E2, ¢ = ¢(p; E?). G.
Stanilov first has stated a problem for the investigation of Riemannian manifolds
of pointwise constant eigenvalues of K 4 [5].

In [4] Ivanov and Petrova have given a local classification of four dimension
manifolds, where the skew-symmetric curvature operator K, , has pointwise eigen-
values: -

Theorem 1. Let (M, g) be a four dimensional Riemannian manifold such that
the eigenvalues of the skew-symmetric curvature operator are pointwise constants
at any point p of the manifold M. Then (M,g) is locally (almost everywhere)
isometric to one of the following spaces:

a) real space form,

b) a warped product B x g N, where B is an open interval on the real line, N
s a 3-dimensional space form of the constant sectional curvature K, and F is a
smooth function on B given by F(u) = VKu? + Cu+ D, K,C, D being constants
such that C? — 4K D # 0.

We say that (M, g) is IP if the eigenvalues of K , depend only on the point p
in M and do not depend on the plane E? = span{z, y}.

This result is generalized for n-dimensional manifolds for n > 4 and n # 7 by
Gilkey, Leahy and Sadofsky in [3], [2].

Later, we are going to gwe an example of a rotational hypersurface in R" +1
whose induced metric from R™*" is isometric of IP n-dimensional manifolds.

Every rotated hypersurface M™ in R™*! can be represented locally by

(! = f(u!)sin(u?)sin(u?)...sin(u"),
z? = f(u!)sin(u?)sin(u?)...cos(u™),

\ ;,;"—1 = f(u!)sin(u?) cos(u?), @
2 = () eos(u?)

uiGJi, JiCRI, 1=1,...,n.

We write

s (] 2 n-1 ,.n _ntl
c=(z,z% ..., e,z "),

o =at(ulu?, . u), i=1,...,n+ 1

..5/ v d{iv @
.
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This means that u® is a natural parameter of the curve

! = f(ul)’
x? = 0,
c 3)
z" = 0,
"t = hul).
Let
f(u') = Va(ul), q(u')>0, u' € Jy. )

Then we can evaluate h(u!) from (2).
Below, we will consider a rotational surface generated from the rotation of a

curve that satisfies conditions (2) and (4).
Oz Oz

But dud
metric tensor g of surface M, induced from the inner product of R™!. The matrix
of gis ’

Using that g;; = , we can evaluate directly the components of the

1 0 0 0

0 q(ul) 0 0

0 0 g(u!)sin®(u?) 0

0 0 0 0 (5)
0 0 0 0

0 0 0 g(u?) sin®(u?) .. . sin®(u™"?) sin®(u™)

Therefore, the metric of the rotational surface given by (1) coincides with the
metric of a warped product B! x4, S"~}, where B is an open interval in R and
S7~1is the (n — 1)-dimensional sphere. The radius of the sphere S"~!is 1.

If we set g(u!) = (u!)2+C(u')+D , C?—4D < 0, the metric of (1) will coincide
with the metric of IP manifolds which are not with constant sectional curvature.
This kind of rotational surfaces we will call rotational IP hypersurfaces.

We can check directly that for rotational IP hypersurfaces in Rs, generated
by the rotation of the curve (3) when g(u!) = (u!)? + Cul + D, it holds that the
skew-symmetric curvature operator has pointwise eigenvalues. For this purpose we
are going to use a local parametrization of 4-dimensional hypersurface. Explicitly,
the parametrization of this surface is

2 = (W) +Cul + D)sin(u?) sin(u?) sin(ut),

2?2 = ((u!)? + Cu® + D)sin(u?)sin(u 3) cos(u?),

2 = ((u')?+ Cul + D)sin(u? )Cos( 3, {6)
ot = ((u!)?+ Cul + D)cos(u?),

= LVIDZC(C+ 2 + @ T O T D))
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Its metric tensor g is

1 0 0 0

0 q(ul) 0 0

0 0 g(ul)sin®(u?) 0 ’
0 0 0 q(u?) sin(u?) sin®(u3)

where g(u!) = D + Cu! + (u!)2. The inverse matrix g~! of g is

1 0 0 0
0 ! 0 0
D + Cul + (ul)? 2 s
csc*(u?)
0 0 D+ Cul & (ul)? 0
0 0 0 esc(u?)esc?(u)

D + Cu! + (u!)?

When we have the metric tensor of a given manifold, we can calculate the
Christofel symbols Ffj and the components of the curvature tensor Rl;, on the

following way:
Fk _1 ghk (%ﬁ + 9gik _ 391‘])

29 Qut  dul  Ouk
orl,  ort
Rzgk 3uJ’ 81;]k + Fskr - iirij'
After some algebra we find that the sectional curvature k; ;, 4,5 = 1,...,4, of

two-dimensional planes given from the base vectors

8 .
ul’ 5u2' 003 Bl

C? —-4D
ki = 1 12)2’
(D+Cu + (u!)?)
C? - 4D
kiz = 1 1)2)2
4(D + Cu! + (u?)?)?’
k _ C?-4D
M7 4D+ Cul + (W)
P C?-4D
2 4(D + Cul + (u1)2)?’
by = C?-4D
24 4(D + Cul + (wI)?)?’
k _ C? -4D
#MOTT 4D+ Cul + (w)?)?
Using the components of the curvature tensor, we can find the matrix of the
skew-symmetric curvature operator K, ., i # j, 4,j = 1,...,4, where ¢; =
2]
%ui 5 i = 1,...,4, relative to orthonormal base e¢;. For example, the
(8u"’ﬁ)
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matrix of K, ¢, is

C?2-4D
20 T H{DFCul+(w)?)? 00
C?—4D
Kex ,e2 = 1(DFCuTH (uT)7)? 0 0 0 (7)
0 0 0 0
0 0 00
The eigenvalues A;, i = 1,...,4, of this operator are
i(C? — 4D) _ i(C? - 4D)

A=0, A2=0, \g= y A= — .
1=0, A2 ST 4D ¥ Cu + (u))?2)? M 4(D + Cu! + (ul)?)?

In a similar way, the matrix of the skew-symmetric curvature operator Ko, e,
is '

2_
g g "4ZD+g161 iD(u T)2)Z 8
KeheS = 02—40 O O O (8)
HD+CulF(uh)%)2
0 0 0 0

The eigenvalues of this operator are

i(C? —4D) L i(C? —4D)
4D +Cul + (@)®2 7 TYD +Cu + ()2

A=0, x2a=0, A3=

In general, let us consider two orthonormal vectors a,b € T, M, i. e.
a=a'e;, b=V,
gla,a) =1, g(b,b)=1, g(a,b)=0. (9)

Then the matrix of the skew-symmetric curvature operator K, , with respect
to the orthonormal base e; is

0 a2t - alb? @B —a'® et — el
—a a0 —aP+a% —ath® + a2t
R I 0 —atp? a3t |0 (10)
—atb! +alb? ab? —a2t  ath® - a3t 0
2 _
where k = C”—4D

4D + Cul + (ul)?2)?
The eigenvalues of the curvature operator K, , are

A =0, A2=0,
_ i(C? — 4D) - i(C*-4D)
As = 4(D + Cul + (u?)?)2 VA, M= " 4(D + Cul + (u1)?2)? va,

where
A — (a4)2(b1)2 + (al)Z(bz)z + ((1.4)2(62)2 4 (al)Z(b3)2
+(a4)2(b3)2 . 2a1a4b1b4 + (al)z(b4)2 _ a3b3(a1b1 + a4b4)
—2a2b2(a1b1 +a3b3 +a4b4) + (aa)Z((bl)Z + (b2)2 + (b4)2)
+(@)?((0')% + (6%)* + (8*)%).
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Using (9), we obtain that A = 1. Therefore, the eigenvalues of the operator
K, » do not depend on the two-dimensional plane determined by the vectors u, v.
We are going to generalize the derived results in the following

Theorem 2. The rotational 4-dimensional hypersurface given by (6) has point-
wise eigenvalues.

We can prove directly also the similar results in dimensions 3, 5, 6, 7.
Let us point out that the two-dimensional IP hypersurface in R

' = ((u')?+ Cu! 4+ D)sin(u?),
22 = ((u')?+ Cu! + D) cos(u?),
B = % 4D — C2In(C + 2(u' + /(u!)? + Cul + D))

has a vanishing mean curvature, i. e. this is a minimal surface in R®.

But we prove directly that when we have k-dimensional IP rotational surfaces
for n = 3,4,5,6,7, they are not minimal. More exactly, the mean curvature H of
n-dimensional IP rotational surfaces is:

v~C? + 4D

H= =y ycut 7 )

We remark that the IP rotational hypersurfaces are conformally flat as rota-
tional hypersurfaces. We can also see this from (5) or, using the local parametriza-
tion of the IP rotational surfaces, we can directly evaluate the components of the
Weyl tensor Wi x and find that Wijx = 0.

We have used computer for some of the evaluations above.
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ON INFINITESIMAL RIGIDITY OF HYPERSURFACES !
IN EUCLIDEAN SPACE
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The infinitesimal rigidity of hypersurfaces in R n> 3, is considered. In section
1 we remind some definitions in the theory of the infinitesimal bendings (inf. b.). In
section 2 we discuss the results in the papers [5 - 9]. In section 3 we consider our main
result in the paper {10} and we give some geometric interpretations of the investigations
in {10]. Finally we consider an example.

Keywords: hypersurfaces, Euclidian space, infinitesimal rigidity
2000 MSC: 53C24

1. INTRODUCTION

The theory of the bendings of the surfaces is one of the most important sections
of the classical differential geometry. The first definitions of the notion bending of
the surfaces are in some 19th century works and concern only 2-dimensional sur-
faces in R® (3-dimensional euclidean space). In these works the difference between
bending and infinitesimal bending was not made. First Darboux in the end of the
19th century pointed out the difference between these two notions. The first results
of the infinitesimal bendings (inf. b.) of the surfaces in R® belong to Cauchy (1813)
- for a closed convex polyhedron and to Liebmann (1901, 1919) - for an analytic
convex surface. During the 20th century too many results on the inf. b. of the

I'The work is supported by the fond ”Scientific Research” of the Sofia University under contracts
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surfaces in R*™* have been obtained (see [1 - 4]). In this paper we shall discuss the
inf. b. of the hypersurfaces in R"+1, n > 3. First we shall give1 some definitions.
Let S:r = r(ul,..,u™) be a smooth hypersurface in R™" and let

Se:re=r+2tU +0(t), t—0,

be an infinitesimal deformation of S. Let ¢ be an arbitrary smooth curve on S and
let ¢; be its corresponding curve on S;. We denote the lengths of ¢ and ¢; with [
and [; correspondingly. The infinitesimal deformation S; is called an inf. b. of S if
the equality B

Iy —1l=o0(t), t—0, (1.1)

is true, i.e. the vector field U of inf. b. satisfies the equation

drdU = 0. (1.2)
The field U of inf. b. is called trivial if it has the form

U=Qr+uw, (1.3)

where (2 is a constant skew-symmetric matrix and w is a constant vector. If the
equation (1.2) has, under some conditions, only a trivial solution, i.e. the vector
field U is of the form (1.3), then the hypersurface S is called infinitesimally rigid
under these conditions.

2. THE RESULTS IN THE PAPERS [5)-[9)

There are 6 known papers ([5] - [10]) on inf. rigidity of hypersurfaces in
R™! n >3, in the literature. The first results concerning inf. rigidity of hypersur-
faces belong to Sen’kin [5]. He investigated inf.b. of general convex hypersurfaces,
i.e. the convex hypersurfaces for which smootness was not assumed. The theory of
inf. b. of such surfaces in R® was developed by A. D. Alexandrov (1936). Sen’kin
used this theory and the results of A. V. Pogorelov (1959) for inf. b. of general

convex surfaces in R® and proved ([5]) the following

Theorem 2.1 (Sen’kin, 1972). A closed convex hypersurface S in R"H, n>3,
which does not contain flat n-dimensional domains is infinitesimally rigid. If S
contains n-dimensional domains it is inf. rigid outside of these domains.

Theorem 2.2 (Sen’kin, 1975). A closed convex hypersurface S in Rn+l, n>3,
which does not contain flat n-dimensional domains is inf. rigid in neighborhood of
each point, which does not lie in a flat (n — 1)-dimensional and (n — 2)-dimensional
domain. If S contains flat n-dimensional domains, it is inf. rigid in neighborhood
of the indicated points outside of the flat n-dimensional domains.
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In 1975 Goldstein and Ryan, usin% the theory of the conformal vector fields,
proved ([6]) that the sphere S™ in R™" n >3, is inf. rigid and in 1980 Nannicini
proved ({7]) that a C° smooth compact strictly convex hypersurface in R* n>
3, is inf. rigid. It is obvious that these two results are contained in Theorem 2.1 of
Sen’kin.

In |{7] Nannicini proved the following

Theorem 2.3 (Nannicini, 1980). Let S be a (n — 1)-dimensional C> smooth

compact strictlly convez surface which lie on a hyperplane R” ¢ R",n > 3.
Let p = R"" be a subspace of R* and SN p = @. The rotation hypersurface
S =3x8 in R™"' obtained by rotation of S around p is inf. rigid.

In [8] Markov proved the following

Theorem 2.4 (Markov, 1980). Let S be a C* smooth hypersurface in Rn“, n>
3, with type number 7 > 3, i.e. S has at least 3 nonzero principal curvatures at
each point. Then each neighborhood on S of every point of S is inf. rigid.

This result of Markov is infinitesimal analog of the well known classical result of
Beez (1876) and Killing (1885) for isometric rigidity of hypersurface S in R"+1, n>
3. The surface in theorem 4 can be compact or noncompact.

In [9] Dajczer and Rodrigues prove the following

Theorem 2.5 (Daiczer, Rodrigues, 1990). Every smooth compact hypersur-
phace in R"+l, n > 3, which does not contain flat n-dimensional domains is in-
finitesimally rigid.

This result is an infinitesimal version of a very beautiful result of Sacksteder
(1960) for isometric rigidity.

3. THE MAIN RESULT IN THE PAPER ([10]
AND SOME GEOMETRIC INTERPRETATIONS

In the paper [10] we obtain sufficient conditions for inf. rigidity of a class
of hypersurfaces with boundary in Rn+1,n > 3, which are projected one-to-one

orthogonally on a region G in a hyperplane. Such a hypersurface S is represented
by:
Szt = f(z),z = (z,..,2") € G (3.1)

We assume that G is a bounded finitely connected region with piecewise smooth
boundary G =T and the function f(z) and the field U(z) (EX(z),...,Mx),((z))
of the inf. b. of S belong to the class C*(G). We assume that the inequalities

fass > 0, fasafaap—Sfaps > 0 (respectively faps <0, fopsfacp—faps > 0) (3.2)
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are fulfilled on a set éaﬁ everywhere dense in G = GUAG, B:=a+1,
a=13,..,n—-3,n—1fornevenand a =1,3,..,n—2,n—1 for n odd. Here we
denote with fg, faa, fags, --- the partial derivatives fos, forgo, fosy sa, ... Further
our presentation will be for n even - when n is odd the things are analogous.

We shall give a geometric interpretation of the inequalities (3.2). L=t P(al,a?, ...,
a™) be an arbitrary point of G. We consider, for fixed « € {1,3,...,n-- 3,n— 1}
and 8 = a + 1, the 2-dimensional surface $%* = SN Riﬁ, where Rid is the 3-
dimensional plane which contains P and is parallel to the coordinate 3-din:entional
plane O, c,e,.,.- The surface S*# has the representation

— P ==
S§9P ; gl = f(al,...,a%7 1, 2%, 27,a%2, . a"), (z%,2°) € Gop = GﬂRiﬁ (3.3)

with respect to the coordinate system Og"e#e““ ,0'(al,...,a®"1,0,0,a%%2,...,a",0 .
The following statement is valid

Proposition 3.1. Let S be of the class (3.1). (3.2). Then the surfaces

Sl‘;*a s = fa(al, ., 0% 2%, 28 0%F2 a0 € {1,3,...,n—3,n—1}, 3= a+1,
(3.4)
have Gaussian curvature K > 0 on7=1(GP,) = 7= (GNR 4) ? and they are convex
af af
correspondingly locally convex) if GP, = G n RS, is convex correspondingly
g af aj
noONConver).

Proof. From (3.2) for the sign of the Gaussian curvature K of Sgﬂ on ;1 (é f 3)
we have

sgn K = sgn (faps foaa — fhas) > 0. (3.5)

Let G’fﬁ = G’ﬂRia be convex. For fixed a € {1,3,..,n-3,n—1}and 8= a+1
we consider the quadratic form

Cl€ar€8) = fpanks + 2fpaplpba + fapsth 13.6)

of the function falal,...;a® 1, 2% 2P a®*2 . a™). From the inequalities (3.2) it
follows that quadratic form (3.6) is nonnegative (nonpositive) in G,5. Hence th~
function fs(al,...,a® 1, 2% 27,42, .., a") is convex. Therefore the surface Sg"
is convex.

Let GLy = G Rzﬁ be nonconvex, where a € {1,3,....n — 3,n — 1} is fixed.
A =« + 1. For every point of Gfﬁ we take a convex neighborhood and repeating
the above reasonings we obtain that the surface Sgg is locally convex.

Let us consider the curve cgﬂ = Sgﬁ n Rz, where Rg is 2-dimensional plane

across an arbitrary point of éfﬂ and is parallel to O Let v ..« be the normai
5]

€€l

. 1
2We denote with 7 the orthogonal projection R _LR"= Oe,
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. . 7 . 3 T
curvature of c3” relative to the unit normal vector I to $5° for which (I, en41)e < =
B 8

2
We have
sgn (fpp) = sgn (Vas) (3.7

on ﬂ—l(épa ﬂR;) Then from (3.2), (3.5) and (3.7)we obtain

Corollary 3.1. IfS is of the class (3.1), (3.21) (correspondingly (3.1), (3.22).
then the surfaces S[, ,a=1,2,...,.n-3,n—1, 8 =a+1 are convexr below (cor-
respondingly above). :

Let 71 = (a!,...,7") be the unit vector of the exterior normal to 8G = I'. Then
7Y = cosf”, where 87 = (e,,n). and e, is the unit vector of the axis Oz“’,’y =
1,...,n. We decompose ([10]) the smooth parts of T’ [Sfor fixed o € {1,3,.

3,n— 1} and § = a + 1) in nonintersecting subsets I't",i = 1,2,3,4, as follows

1) on TP : HoPRP >0, fsgff > 0 (respectively HP7P < 0, faah® < 0);
a) H*PRP <0, fapn? <0
(respectively H*®RP > 0, fggni® > 0) or
R =0, fag#£0 or AP =0, fgg=0,fasn®>0
(respectively 7” =0, fgg#0ori? =0, fgg =0, fapn® <0);
3) on I“"ﬁ HeB7P <0, fgghP > 0 (respectively H*P7P > 0, fggnf < 0)
a)TP #0,H*P7P >0 fgen® <0 -
(respectively 718 # 0, H*P7P <0 fgsm” >0) or
b)7P =0, fas=0,fagn® <0
(respectively 71f = 0, fgg =0, fapn® > 0);

where H*? = f34(7*)? — 2fagi®T + faa(@P)?.

The decomposition of I' = 9G induces corresponding decomposition of the
boundary 8S = w~!(8G) in nonintersecting parts SF?B =7~ }I),i =1,2,3,4,
which depends only on the geometric properties of 5. Indeed, a) 7i? = cos 67,68 =
(eg,N)e, N* = cos0%,0% = (eq,7)e ; b) sgn H*? = sgn ulf'ﬁ, where I/,t?ﬂ is the normal

2)onTgP :

4)on TP

curvature to the curve ¢®® = 95 N Riﬁ relative to unit normal vector | to the
o~ m . .

surface S for which ([,e541)e < 3 (c®P has equations z* = ¢* = const, i =
L.,n+l, i£a,pB, z*=2z%s), °=1~(s), ¢*#(0,...,0,2%(s),#7(s),,0,...,0)
and #* = o7f, 8 = —0on®, ¢ #0, since ALc*®, where ¢® = 7(c*?) ); ¢)fas is
the normal curvature of the z°-line on S relative to ! and f,g is the polar form of
the second fundamental form relative to [ for z*-line and z#-line of S in the points
of 9S. .

Let L C S be a surface of dimension k, 1<k <n-—1. Every inf. b. S; of §
with a field U which satisfies the condition

Ueny1lr =0  (respectively Ueny1|r = const) (3.8)
is called inf. b. with sliding (respectively generalized sliding) along L with respect

to v = Ogz!..z™. Let L, be the orthogonal projection of L on v i.e. Ly = m(L).
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We shall call 22 - inf. b. along L with respect to « every inf. b. S; of S for which
the field U of inf. b. satisfy the condition

(Ue'n+1)a|L1 =0. (3.9)
We denote
SF13 — U (Sr\lll,@USI\gﬁ)’
a=13,...,n-3,n—-1
B=a+1
SF4 — n Srgﬂ,
a=13,....,.n—3,n—1,
B=a+1
SF] — U Srfllﬁ.
a=13,...,n—-3,n—-1,
B=a+1

We proved in [10] the following

Theorem 3.1. The hypersurface (3.1),(3.2) is rigid under inf. b. with sliding
(or generalized sliding) along °T'13 with respect to the hyperplane v and z8 - inf b.
along Sl"g’ﬁ U SI‘gﬂ,a =1,3,...,n-3,n—1, B =0+ 1, with respect to 7.

Remark. There are ([10]) m < § conditions on the field U of the inf. b. at
every point P € 35, P ¢ STy, since there are 5 decompositions of the boundary
0S. Certainly we assume that these conditions are consistent.

We denote with Srgf forae {1,3,...,n—3,n—1} and 8 = a + 1 this part
of ® Fg’ﬁ , whose orthogonal project on the hyperplane v = 0Oe; ... e, is composed of
(n — 1)-dimensional planes parallel to the coordinate vectors eg, = 2,4,...,n or

it is composed of (n — 1)-dimensional ruled surfaces, whose generatrixes are parallel
tolg, §=12,4,...,n. Let

5T = U Sresl,
a=13,...,n—-3,n—-1,
B=a+1
Then we have

Corollary 3.2. The hypersurface (3.1), (3.2), which has a boundary 0S =
STy U STy U STy is rigid under inf.b. with sliding (or generalized sliding) along
0S\ST'y with respect to the hyperplane 7.

Corollary 3.3. The hypersurface (3.1), (3.2), which has a boundary 0S =
STy USTg USTy is rigid if the part STy U STy of S is fived.
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4. AN EXAMPLE

The hypersurface

Szt = 3 [(xo+1)3 4 zotl(22)?] + (21)%, z = (z',...,2") € G
a=1,3,....n-3,n-1
is of the class (3.1), (3.2) since

fees = 6,fggﬁfﬂaa - fgﬂa =12, a=13,...,n=-3,n—-1,8=a+1.

It is not from Beez-Killing’s class. Its type number 7 for example at the point
0(o,...,0) is 1.

Let n = 4 and G be a 4-dimensional cube, i.e.

S - :55 — (.’II2)3 + (1134)3 + .7:2(1:1)2 + 11:4(1'3)2 4 (:L‘l)2, (4.1)
G={@,..2)eR*: -1<2*<1,i=1,..,4}.

We have U(€(z),. .. ,{4(1:),4(:1:)), T = (z1,...,7%), and:
(a) f22 = 6.1:2,f12 = 2:L‘ f44 = 6.’13 f34 = 2:1:
(by H?2= 6m2(~1) —42'7'72 + (222 + 2)(n2)2

H3 = 624(7%)? — 4237374 + 224(R)%;

4
() 9G=3 aGE,
=1

oGE . xl =+1,-1< 22,23, 14 <1,

aGi 2 =+41,-1< :El,:c3,a:4 <1,

OGE : 2® = +1,-1 < 21, x2 i <1,

8G§:.x =41,-1<z 22,23 < 1;
(d) ﬁ|6Gli (:}:1,0,0,0), nlacf(ovilao 0)7

ﬁ|aG3i(0,0,:t1,0), ﬁ[aG;t(O,O,O,:i:l).
From 1) - 4) and (a) - (d) we find

z! = +1,
GE cT1?, aGE\6f 1, ef Iy, 6f:{z*=0, (4.2)
-1<22, 22 <1,
% = +1,
OGE c T2, AGE\OF c TP, 0 cI¥, 0f:{zt=0, (4.3)
-1 S 1) 13 < 1’
3 = 41,
OGE\OE cT1?, 6F cTl?, 6F:{z2=0, , 0GE CT3Y,  (44)
~1<zl 1<
zt = 41,
AGE\6F cT12, 6f cT?, 6f:{z2=0, ,0GE ¢T3, (45)
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We note that:
a1) if (lpgz = const then (3 = (4 = 0 since dGE||02?,02%;
by) if ¢| agt = const then {4 =0 since GE| |0z,
cy) if (;lacsi = const then (3 = ¢4 = 0 since dG¥||0z?, Ox*;
dy) if C'aaf = const then (y = 0 since dGF||0z?;
From Theorem 3.1, (4.2) - (4.5) and a;) - d;) we obtain

Proposition 4.1. The hypersurface S (4.1) in R® is rigid under inf. b. with
sliding (or generalized sliding)along its boundary 8S with respect to the hyperplane
v = Oz z%x32%.

Proposition 4.2. The hypersurface S (4.1) in R® is rigid if its boundary 39S
is fized.
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COMPLETE INTERSECTIONS IN
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We consider a complex submanifold X of finite codimension in an infinite-dimensional
complex projective space P and a holomorphic vector bundle E over X. Given a
covering U of X with Zariski open sets, we define a subcomplex C{X, E) of the Cech
complex corresponding to the vector bundle E and the covering U. For a special class
of coverings U, we prove that the complex C(X, E) is acyclic when X is a complete
intersection and P admits smooth partitions of unity.

Keywords: infinite-dimensional complex manifolds, projective manifolds, vanishing
theorems .
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1. INTRODUCTION

In finite dimensions the Cech cohomology groups and the Dolbeault cohomol-
ogy groups of a vector bundle over a complex manifold are the same, by the Dol-
beault isomorphism. When we try to extend the Dolbeault isomorphism to complex
manifolds modeled on infinite-dimensional complex Banach spaces, we encounter
a serious obstacle: the existence of Banach spaces for which the Dolbeault lemma
about the local solvability of the d-equation is no longer true (see [7]). In this paper
we offer a way to overcome this obstacle for a projective space P(V) where V is
an arbitrary Banach space. Given a holomorphic vector bundle E — P(V)) and
a covering U = {U;}iey of P(V) with Zariski open sets, we define a subcomplex
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C(P(V),E) of the Cech complex corresponding to E and U. We show in Theo-
rem 5.1 that if dim P(V) = oo and P(V') admits smooth partitions of unity, then
the cohomology groups HY(C(P(V),E)), ¢ > 0, of C(P(V), E) are isomorphic to
the Dolbeault cohomology groups H*(P(V),E), ¢ > 0, of E. Since the groups
H%9(P(V), E) vanish for ¢ > 1 ([4, Theorem 7.3]), we obtain a vanishing theorem
for the higher cobomology groups of the complex C(P(V), E).

The definition of the complex C(P(V), E) carries over without modifications
to submanifolds of finite codimension in P(V') - given a holomorphic vector bundle
E over a submanifold X of finite codimension in P(V') and a covering U = {U}ier
of X with Zariski open sets - we define a subcomplex C(X, E) of the Cech complex
corresponding to E and . We show in Section 6 that if X is a complete intersection
(e.g. hypersurface) in P(V) and U is a suitable covering of X, then the complex
C(X,0x(n)), n € Z, has an acyclic resolution of finite length. This allows us
to prove the vanishing Theorem 6.5: If X is a complete intersection in P(V),
dim P(V) = oo and P(V) admits smooth partitions of unity, then the higher
cohomology groups of the complex C(X, E) vanish. This vanishing theorem is used
in [3] to prove that H*!(X,0x(n)) =0, n € Z, when X is a complete intersection
in an infinite-dimensional complex projective space P(V') which admits smooth
partitions of unity.

Let us describe briefly the contents of the paper.

In the book [8] J.-P. Ramis has extended Chow’s lemma to all projective spaces
modeled on complex Banach spaces. He has proved that if X is a closed analytic
set of finite codimension in P(V') for which there exists a fixed number N such
that for any £ € X there is a neighbourhood U of z in which X N U is the set
of common zeros of N holomorphic functions on U, then X is an algebraic set
of finite codimension in P(V) (8, Théoréme II1.2.3.1]. Hence every submanifold
of finite codimension n in P(V) is the set of common zeros of a finite number of
homogeneous polynomials on V. Since almost all proofs in this paper rest on the
algebraic nature of the submanifolds of finite codimension in P(V'), Sections 2 and 3
are devoted to the study of infinite-dimensional affine and projective algebraic sets.
The results presented in them are well known in finite dimensions but since there
was not a suitable reference at hand, it was necessary to give detailed proofs. Our
approach is heavily influenced by the book [8] which contains a similar treatment
of infinite-dimensional analytic sets.

In Section 4 we consider a finite holomorphic covering 7 : ¥ — Z between
complex manifolds along with a holomorphic line bundle L — Z and show that in
certain circumstances differential forms on Y with values in 7*L can be represented
in terms of differential forms on X with values in L. A special case of this represen-
tation is used immediately in the proof of Proposition 4.6 which plays important
role in Section 6. The general case of Propositions 4.2 and 4.3 is used in (3].

In Section 5 we define the complex C(X, E) and prove that it is acyclic when
X = P(V) admits smooth partitions of unity, and E is a finite rank holomorphic
vector bundle over P(V).

152 Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 151-182.



In Section 6 we prove the main result of the paper by making use of the Koszul
complex in order to construct an acyclic resolution of C(X, F) when X is a complete
intersection in P(V).

This paper is based on the author’s Ph.D. thesis (Purdue University, 2001).

2. AFFINE ALGEBRAIC SETS IN BANACH SPACES

Let V be a complex Banach space. A subset X C V is an analytic set of
finite codimension in V, if for any £ € X there exist a neighbourhood U and a
finite number of holomorphic functions ¢i,...,p, € O(U) such that X NU =
Z(@1,...,9s). For any open set U C V we denote by Z(X)(U) the set of all
holomorphic functions on U that vanish on X N U. The correspondence U +—
Z(X)(U) defines a subsheaf Z(X) of Oy. The sheaf Z(X) is an ideal in Oy, which
is called the ideal sheaf of X. For any z € X the stalk Z,(X) of Z(X) at =
consists of all holomorphic germs at x that vanish on X in some neighbourhood
of . We say that the point x € X is regular, if there exist a neighbourhood U
of z and a finite number of holomorphic functions ¥1,...,%, € O(U) such that
XNnU = Zu,...,¥n) and the differentials dy, ..., di, are linearly independent
at z. By the implicit function theorem the germs 91z, ...,%n; generate the ideal
Z.(X), and the tangent space T X = {£ € V : (dy)z(§) = 0 for all ¥ € T,(X)} to
X at z has codimension n in V. The subset X..q, consisting of all regular points of
X, is open in X and it is known that X,y is dense in X (see [8]). An analytic set
X of finite codimension in V is a submanifold of finite codimension in V, if every
point of X is regular.

A function F : V — C is a homogeneous polynomial of degree d on V if there
is a bounded multilinear map M : V¢ — C such that F(v) = M(v,...,v) for any
v € V. The vector space of all homogeneous polynomials on V of degree d will be
denoted by C[V]g4.

Let X be an analytic set of finite codimension in V', 2o € X and f € OL(V),
f # 0. Then there exist a natural number d and unique homogeneous polynomials
F; € C[V];, i > d, such that Fy # 0 and f(z) =3, Fi(z — o) for all z in some
neighbourhood of zo. The homogenous polynomial Fy is called the leading term of
the holomorphic germ f € O.(V). The set of common zeros of the leading terms
of all holomorphic germs f € T,(X), f # 0, is called the tangent cone C; X of z at
X.

Remark 1. If z is a regular point of X then Cp X = T, X. To see this, we
may assume without loss of generality that £ =0, V = V' x C" and U and B are
neighbourhoods of 0 in V' and C™ respectively such that

XNUxB={@,21,....,.2,) e V' xC": Z;=i(v'), i=1,...,n}

wiere ; : U — C, i =1,...,n, are holomorphic functions. We may even further
assulie that all differentials dy;, i = 1,...n, vanish at 0, so that T, X = V’. For a
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given f € Oy, 4, let g € Oy, ; be given by g(v') = f(V/,p1(v'),...,0a(v")) for all
v’ in some neighbourhood of 0 in V'. Let g = ), Giz with G; € C[V'};. Suppose
f # 0 and let Fy € C[V],4 be the leading term of f. Then G4 = Fyly because all
functions ¢;, 1 = 1,...n, vanish of order > 1 at 0. In particular if f € Z,(X) and
f # 0 then Fyly+ = 0 which yields C; X = T X.

A function f : V — C is a polynomial on V of degree d if f = Zz=1 fa, where
each fr, k= 1,...,d, is a homogeneous polynomial of degree k and f; # 0. The
ring of all polynomials on V' will be denoted by C[V}]. Since C[V] = @, C[V]4, the
ring of all polynomials on V is a graded ring. It is known that C[V] is a factorial
domain (see [8]). In particular the ring C{V] is integrally closed. For any f € C[V]
and any vg € V the function g : V — C given by g(v) = f(v + v), v € V, is also a
polynomial on V. Thus we may also speak about polynomials on the affine Banach
space A(V) associated with V.

A subset X of V is an algebraic set of finite codimension in V, if there is a
finite number of polynomials f,..., fr € C[V] such that X = Z(fy,..., fr). Every
algebraic set of finite codimension in V is a closed analytic set of finite codimension
in V. The ideal consisting of all polynomials on V' that vanish on X is denoted by
I(X). The factor-ring C[V]/I(X) is denoted by C[X] and is called the coordinate
ring of X. An algebraic set X of finite codimension in V is said to be irreducible
if the coordinate ring of X is an integral domain.

Let W be a finite-dimensional complex vector space of dimension n, and let
Zy,...,Zy be a basis of the dual space W*. It is clear that the ring of all polynomi-
als on V x W is isomorphic to the polynomial ring C{V](Z1,..., Zs]. Let X be an
algebraic subset of finite codimension in V' x W and let p : X — V be the restriction
of the projection 7 : VxW — V to X. We will say that p is a finite projection if the
homomorphism p* : C[V] — C[X], given by C[V] — C[V x W| — C[X], is finite,
i.e. C[X] is a finitely-generated C[V}-module. It is easy to see that p : X — V
is a finite prOJectlon if and only if for any 1 < j < n there is a monic polynomial
Fy(T) = T% + Y¥, a;i(v)T%~* € C[V][T] such that F;(Z;) € I(X). Al fibers
p‘l(v), v € V, of a finite projection p: X — V are ﬁnite sets. Moreover, for any
vo € V, there exists a neighbourhood U 3 vy and a compact set K C W such that
p~}(U) c U x K. This follows from the well known estimate

k L
o] < max(1, 3 lax(v)]) 2.1)

i=1

for any root a of a given polynomial F(v,T) = T* + Zf_ a;(v)T** € C[V|[T}.
Indeed, for any vp € V there is a neighbourhood O such that. Jai(v) - ai{v)] < 1
for any v € O and any i = 1,...,k. Ifv € O-and a is a root of F(v,T) then
lof < k+ ZLI la;{vo)| by estimate (2.1). Hence there is a neighbourhood U of vy
such that all functions Zi|x, ..., Z,|x are bounded on f}“l(U ) w}nch is equivalent
to p~!(U) being contained in U x K for some compact set K W This shows
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that for any compact set K’ C V the preimage p~1(K’) is compact, i.e. p: X -V
is a proper map. In particular p is a closed map: if B is a closed subset of X, then

p(B) is a closed subset of V. Hence if vo € V and N C X is a neighbourhood of

the fiber p~1(wp), then there is a neighbourhood U 3 v such that p~1(U) C N.

Proposition 2.1. Let X be an algebraic set of finite codimension in V' x W
for which p: X — V is a finite projection. Then the image p(X) of p is an algebraic
set of finite codimension in V and I(p(X)) = I(X) N C[V]. In particular, a finite
projection p : X — V is surjective if and only if I(X) N C[V] = (0).

Proof. In the proof we assume that the complex space W is one-dimensional
because, as soon as the claim is known to be true for such spaces, the general case
follows immediately by induction on the complex dimension of W. Let Z € W*
be a basis of W*. Since C[X] is a finite extension of C[V], there are polynomials
g1,---,9r € C[V][Z] such that X = Z(¢g1,...,9-) and the leading coefficient of at
least one of them is 1. Now we use the existence of a resultant system of several
polynomials in a single variable (see [9]):

Let f1, ..., fr be r polynomials of given degrees in a single variable with in-
determinate cocfficients. Then there exists a system D, ..., Dy of integral poly-
nomials in these coefficients with the property that if these coefficients are assigned
values from the field K the conditions Dy = 0, ..., Dy = 0 are necessary and
sufficient in order that either the equations fy =0, ..., fr = 0 have a solution in
a suitable extension field, or that the formal leading coefficients of all polynomials
fi, ..., fr vanish.

Let Dy,..., Dy be a resultant system of g;,...,g-. Let di,... dy € C[V] be
the system obtained from Dy, ..., Dy, after substituting the coefficients of g3, ..., gr
in Dy,...,Dp. Then the image p(X) coincides with the set of common zeros of the

polynomials dy, ..., d. 0

We observe that if § # X C V x W is the set of common zeros of r polynomials
in C[V x W] and the projection p : X — V is finite then dim W < r. Indeed, if
dim W > r the dimension of every non-empty fiber of p would be positive.

Now we are going to prove the normalisation lemma for algebraic subsets of
finite codimension in V. Let W be a closed complex vector subspace of V. We will
say that a complex vector subspace V' C V is complementary to W, or that V'
and W are complementary, if V' is closed and the natural linear map V' x W — V
is an isomorphism.

Proposition 2.2. (The Normalisation Lemma) Let X be a non-empty alge-
braic set of finite codimension in V, and let (Vy, W), dim W; < oo, be a pair of
complementary complex vector subspaces of V such that the projection pg : X — Vj
is finite. Then there is a pair (V/, W), dimW < oo, of complementary complex
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vector subspaces of V such that W D Wy, V/ C V{, and the projectionp: X — V'
is finite and surjective.

Proof. Let X = Z{f1,...fr) with f1,..., fr € C[V]. Denote by S be the set
of all pairs (V/, W) of complementary complex vector subspaces of V' such that
dim W < oo, W > Wy, V! C V,, and the projection p : X — V’ is finite. It is clear
that dimW < 7 for any (V/,W) € S. Let (V/,W) € S be a pair for which dim W
is maximal. Suppose that p(X) # V’. Then there is a polynomial f € I(X)NC[V’]
with a leading term f4 # 0. Choose a vector v/ € V' and a bounded linear
functional T on V’ such that f4(v') = 1 and T'(v') = 1. Then V' = U’ x {Cv},
where U’ = Ker T, and f = T% 4+ a;T% ! + --- + aq4 with a1,...,aq € C[U’]. Now
the projection p(X) — U’ along {Cv'} is finite, which implies that the projection
X — U’ along {Cv'} + W is also finite. Hence (U’,{Cv'} + W) € S, which
contradicts the assumption that W has maximal dimension. Thus p(X) =V’ and
the pair (V’, W) has the required properties. a

Definition. Let X be an algebraic set of finite codimension in a complex
Banach space V. We will say that the pair (V’, W) of complex vector subspaces of
V is an admissible factorisation for X, if dim W < oo, V' is complementary to W,
and the projection map p: X — V' is finite and surjective.

The Normalisation Lemma shows that admissible factorisations exist for any
non-empty algebraic set X of finite codimension in V.

Let X be an irreducible algebraic set of finite codimension in V x W such that
(V,W) is an admissible factorisation for X. Then the homomorphism p* : C{V] —
C[X] is injective and the field of fractions L of C[X] is a finite extension of the
field of fractions K of C[V]. We note that for any z € C[X] the coeflicients of the
minimal polynomial F of z over K belong to C[V]. Indeed, each coeflicient of F'
belongs to K and is integral over C[V]. Since the ring C[V] is integrally closed, all
coefficients of F are in in C[V]. In particular the discriminant D of F' also belongs
to C[V]. We will use the following well known fact about integral extensions (see
[6]): if = € C|[V] is a generator of L over K then DC[X] C C[V][z], where D is a
discrimininant of the minimal polynomial of z over K.

Proposition 2.3. Let W be a complex vector space of finite dimension n
and let X be an irreducible algebraic set of finite codimension in V' x W such that
(V,W) is an admissible factorisation for X. Suppose that Z € W* is such that
z=Z+1(X) € C[X] is a generator of the field L over the field K and let D € C[V]
be the discriminant of the minimal polynomial F' of z over the field K. Then
Xp = p~Y(Vp) is a connected complex submanifold of Vp x W of codimension n
which is dense in X, and plx, : Xp — Vp is a k-sheeted covering map, where
k=[L:K). ‘

Proof. Let ej,...,e, be a basis of W with dual basis Z3,..., Z, such that
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Zy=2. Let z; =Z; + (X) e C[X],i=2,...n. Since Dz; € C[V]{z],i=2,...n,
there are polynomials F;(Z) € C[V][Z], i = 2,...n such that Dz; = Fi(z), i =
2,...,n. All polynomials F(Z,) and DZ; — Fi(Z), i = 2,...,n, belong to I(X)
because F(z;) =0 and Dz; — Fi(2) =0,i=2,...,n.

We will show first that Xp is the set of all solutions of the equations

F(Z1) =0, Zy=D"'Fy(Z1), ... , Zn =D 'Fo(Z)) (2.2)

in Vp x W. Let J (resp. I(X)p) be the ideal generated in C{V}{Z1,...,Z,]p by
F(Z,) and Z; — D7YF;(Z1), i = 2,...,n, (resp. by I(X)). It is enough to show
that J(X)p = J. We observe that the factor-ring C[V][Z1,..., Zp]p/J = C[V][z]p
is both an integral domain and an integral extension of C[V]|p. Furthermore, the
prime ideal I(X)p/J is such that I(X)p/J N C[V]p = (0) (since I(X)NC{V] =
(0)). This implies I(X)p/J = (0) because if A C B is an integral extension of
integral domains and P is a prime ideal in B such that PN A = (0), then P = (0)
(see [5]). Thus I(X)p = J and Xp is defined by equations (2.2).

Next we find local solutions of the equation F(v, Z) = 0 by means of an integral
formula. For a given vo € Vp, let a;, 7 = 1,...,k, be the roots of the F(vg, Z).
Choose a positive real number ¢ such that «; is the only root of F(vg, Z) in the disk
|Z-a;] <8,j=1,...,k LetT; be the circle |Z —a,| = 8, and let TU¥_, T;. Since
F does not vanish on {vo} x T, there exists a connected neighbourhood U ¢ A(V)p
of vp such that F does not vanish on U x I". For v € U the number of roots of
F(v,Z) (counted with multiplicities) lying inside I'; is given by the holomorphic
function ) (0, 2)

_ z\Y -
nj(v)—% FiF—(’(),—Z—)_dZ’ ]—1,...,k.
Since nj(vo) = 1, the polynomial F(v,Z) has exactly one root a;(v) lying inside
T'; for v € U and this root is given by the holomorphic function

1 Fy(v,2) .
(W)= | 2202y =1,...,k.
() = 53 /F], Flv,z) 244 I=he

Hence Flyxw = (Z —a1(v)).. . (Z —ox(v)). Let q; : U - UxW,j=1,...,k, be
the graph of the holomorphic map r; : U — W given by

n
ri(v) = a;(v) e; + D(v)™? ZGi(aj(U)) e, veU.
i=2
Then p~!(U) is the disjoint union of the complex manifolds ¢;(U), j = 1,...,k,
and each restriction plg; ) : ¢;(U) = U, j =1,...,k, is a biholomorphic map.
The set Vp is connected because for any vi, va € Vp the complex line joining
v1 and vo intersects Z(D) in a finite set. Let C be a connected component of Xp. .
Then p|c : C — Vp is a covering of degree k; < k and

Fiw,2)= J] (Z-2@&) € OVp)Z], veVp,

z€p~1{(v)NC
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is a polynomial of degree k; in Z which divides F in the ring O(Vp)[Z]. Since
for any v € V the roots of F(v, Z) are uniformly bounded in some neighbourhood
of v, the same is true about the coefficients of F;, and by the Riemann extension
theorem all coefficients of Fy can be extended to holomorphic functions on V.
Moreover, estimate (2.1) shows that the roots of F' grow polynomially, i.e. there is
a natural number N and a positive real number C such that |a| < C(1 + |Jo]l)N for
any root « of F(v,Z). Hence the coefficients of F; also grow polynomially which
shows that they are polynomials. We conclude that F; = F because F} divides the
irreducible polynomial F' in C[V]{Z]. This immediately yields C = Xp, and thus
Xp is connected.

It remains to prove that Xp is dense in X. Let 20 € X and let O C X be a
neighbourhood of zo. Choose a real number 6 > 0 such that |Z(z) — Z(zo)| > 6
for all z € p~Y(p(z0)), = # Zo. Since OU {z € X : |Z(z) — Z(zo)] > d} is a
neighbourhood of p~!(p(zo)) and the map-p is closed, there exists a neighbourhood
U C V of p(xp) such that if p(z) € U, then either x € O, or |Z(z) — Z(zo)| > 4.
After shrinking U we may also assume that for any v € U the polynomial F(v, Z)
has a root « such that ja — Z(zg)| < 6. Let v € U N Vp. Then the fiber p~1(v)
contains a point z such that |Z(z) — Z(zo)| < 6, and it is clear that z € O. Thus
the set X is dense in X. 0

Remark 2. Suppose that (V/, W) is an admissible factorisation for an irre-
ducible algebraic set X of finite codimension in V. Denote by i : C[V] — C[X] the
natural homomorphism given by i(f) = f + I(X), f € C[V]. Let Z1,...,Z, € W*
be a basis of the dual space W*. Since the elements z; ="i(Z}),...,2, = i(Z,)
generate the ring C[X] over the ring C[V’], they also generate the field of fractions
L of C[X] over the field of fractions K of C[V']. Let A = {(ai1,...,as) € C":
Z=0121 + ...0QnZy is a generator of L over K}. By the theorem for the primitive
element, A is a non-empty Zariski open set in C". Hence the set W = {ZeWw*:
i(Z) generates L over K} is a non-empty Zariski open set in W*.

Remark 3. Let (V',W) be an admissible factorisation for an irreducible
algebraic set X of finite codimension in V. Proposition 2.3 and Remark 2 show
that there exists an open dense subset Vy of V' such that for any y € Vj the
fiber m1(y) = {y} x W intersects X transversely in k regular points of X, where
k=[L:K].

Corollary 2.4. For any irreducible algebraic set X of finite codimension in V'
the set X,., is a connected locally closed submanifold of finite codimension in V,
which is dense in X. Moreover, for any pair (V’, W) of complex vector subspaces
of V that is admissible for X, the dimension of W is equal to the codimension of
Xreg in V.

Proof. Let (V’, W) be an admissible factorisation for X. According to Remark
2, there exists Z € W* such that 2 = Z + I(X) € C[X] generates the field of
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fractions L of C{X] over the field of fractions K of C[V']. Let F € C[V'][Z] be
the minimal polynomial of Z over K, and let D € C[V’] be the discriminant of F.
Then Xp C Xreg by Proposition 2.3. Since X is connected and dense in X, so is
Xreg. Proposition 2.3 implies codimy X,y = codimy Xp = dim W. O

In view of Corollary 2.4 we define the codimension of an irreducible algebraic
subset X in V as the codimension of the submanifold X;eg in V. The codimension
of X in V will be denoted by codimy X. The next lemma describes the behaviour
of the codimension under finite projections.

Lemma 2.5. Let X be an irreducible algebraic set of finite codimension in V,
and let (V/, W) be a pair of complex vector subspaces of V' such that dim W < oo,
V'’ is complementary to W, and the projection p : X — V' is finite. Then the
set X’ = p(X) is an irreducible algebraic set of finite codimension in V', and
codimy X’ = codimy X — dim W,

Proof. Let (V"”,W') be an admissible factorisation for X’ in V’. Then the
pair of subspaces (V/, W’ x W) is an admissible factorisation for X in V, and
Corollary 2.4 yields codimy' X’ = dim W’ = dim W' x W —dim W = codimy X —
dim W ‘ 0

Let X be an irreducible algebraic set of finite codimension n in V. The next
two lemmas will be used to prove that for any x € X4 there exist n polynomials
ff? ... +§, € I(X) such that their differentials df,...,df, are linearly independent
at x.

Lemma 2.6. We keep the notation and the assumptions of Proposition 2.3.
Suppose that £o = (vg, wo) € Xreg is such that:

(i) the fiber 7= (m(z0)) = {wo} x W is transversal to X at z;

(i) Z(zo0) # Z(z) for all z € p~(p(z0)), T # Zo-
Then Z(zo) is a simple root of F(vg, Z).

Proof. It follows from (i) that there exist neighbourhoods U C V of wy,
B Cc W of wg, and a holomorphic map f : U — B such that X N U x B =T'(f),
where I'(f) C U x B is the graph of f. Let § be a positive real number such
that |Z(z) — Z(zo)] > 6 for all z € p~Y(wp), = # Zo, and let X5 = {z € X :
[Z(z) — Z(zo)| > d}. Since p is a proper map, the fiber p~!(v) is contained in
U x B U X; for all v that are close to vp. Let ! be the multiplicity of Z(zg) as a
root of F(vg,Z). For all v € Vp that are close to v, the fiber p~1(v) contains !
distinct points z;, i = 1,...,1 such that |Z(z;) — Z(zo)| < d for i = 1,...,l. Hence
for all v € Vp that are close to vy, the graph I'(f) contains ! distinct points of the
fiber p~!(v). This implies { = 1. : a

Lemma 2.7 Let X be an irreducible algebraic set of finite codimension in
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V, and let V! C V be a closed complex vector subspace such that codimy V' =
codimy X. Then there exists a finite dimensional complex vector subspace W C V
such that (V’, W) is an admissible factorisation for X.

Proof. The claim is true when codimy X = 0. Suppose that codimy X = n > 0,
and that the lemma is true for all irreducible algebraic subsets of codimension less
than n in a Banach space. Let f be a non-zero polynomial in I(X) with leading
term fg. Since the set V' \ V' is dense in V, there exists a vector v € V \ V’
such that fy(v) = 1. Let T be a bounded linear functional on V such that U =
KerT D V' and T(v) = 1. Then C[V] 2 C[U}[T) and f = T4+ Z?=1 a;T4~* with

"a; € C[U}, i =1,...,d. Thus the projection p; : X — U along {Cuv} is finite, and
by Lemma 2.4 the set X’ = p;(X) is an irreducible algebraic subset of codimension
n—1in U. Since codimy V'’ = codimy X’, there exists a finite dimensional complex
vector subspace W’ C U such that (V’', W’) is an admissible factorisation for X’ in
U. Then (V', W’ x {Cv}) is an admissible factorisation for X in V', which finishes
the proof. O

Proposition 2.8. For any regular point zo of an irreducible algebraic set X
of finite codimension n in V, there exist polynomials f1,..., fn € I(X) such that
their differentials dfy,...,df, are linearly independent at z;.

Proof. By Lemma 2.7 with V* = T;,, X, there is an n-dimensional subspace W
of V such that (V',W) is an admissible factorisation for X in V. Let Z,,...,2Z,
be a basis of W* that satisfies the following two conditions: (i) Z;(x) # Z;(zq) for
z € p~ Y p(xo)), x # x0, 1 = 1,...,n; (ii) z; = Z; + [(X) € C[X] generates the field
of fractions of C{X] over the field of fractions of C[V'], i = 1,...,n. The existence
of such a basis of W* follows from Remark 2. Let g; € C[V'][Z;] be the minimal
polynomial of z; over the field of fractions of C[V'], i = 1,...,n. Then dg;|lw =
9i(0(20), Z;(x0))dZ;; = 1,...,n, and since by Lemma 2.6 g{(p(xo), Z:(x0)) # 0,
i=1,...,n, the differentials dg,,...,dgn are linearly independent at z;. O

3. PROJECTIVE ALGEBRAIC SETS

In this section we first consider a complex Banach space V and briefly describe
the complex structure of the corresponding complex projective space P(V'). After
that we study the properties of algebraic subsets of finite codimension in P(V).

Let V be a complex Banach space with a dual space V*. The projective space
P(V) associated with V consists of all complex lines in V. The set P(V) is given
a structure of a complex manifold as follows. For any v € V, v # 0, the complex
line spanned by v will be denoted by [v]. For a given bounded linear functional
heV* 1 #£0,let P(V)y = {[v] € P(V): h(v) # 0}. Denote by Ap the affine
hyperplane Aj, = {v € V : A(v) = 1}, and let ¢p, : P(V), — Ap be the coordinate
map given by @p([v]) = h(v)~v. The family of sets P(V)y, h € V*, h #0, is a
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covering of P(V) by the Hahn-Banach theorem, and it is easy to verify that the
coordinate maps @, b € V*, h # 0, endow P (V) with a structure of a complex
manifold.

We note that for any h € V*, h # 0, the open set P(V )y is an affine space.
Moreover, for any F € C[V]y, the function f : P(V), — C given by f([v]) =
h(v)~¢F(v) for [v] € P(V)4, is a polynomial on P(V);, because f o p;! = F|4, is
a polynomial on the affine hyperplane A;. Since for every polynomial f on Ap, there
exists a homogeneous polynomial F on V such that f = F|a,, the ring C[P(V)4]
of all polynomials on P(V), is naturally isomorphic to the so called homogeneous
localisation C[V),) = {F/h?: F € C[V]q, d > 0}.

A subset X C P(V) is an analytic set of finite codimension in P(V), if for any
z € X there exist a neighbourhood U and a finite number of holomorphic functions
@1, s € O(U) such that X NU = Z(p1,...,ps). We say that the point z € X
is regular, if there exist a neighbourhood U of z and a finite number of holomorphic
functions ¥, . .., ¥, € O(U) such that X NU = Z(vy, ..., ¥n) and the differentials
di1,...,d¥, are linearly independent at z. The subset Xreq, consisting of of all
regular points of X, is open in X, and it is known that X,.q is dense in X (see
[8]). An analytic set X of finite codimension in P(V) is a submanifold of finite
codimension in P(V), if every point of X is regular.

A subset X of P(V) is an algebraic set of finite codimension in P(V'), if there
is a finite number of homogeneous polynomials fi,..., fr € C[V] such that X is the
set of common zeros of fi,. .., f, in P(V). Every algebraic set of finite codimension
in P(V) is a closed analytic set of finite codimension in P(V). The ideal generated
by all homogeneous polynomials on V' that vanish on X will be denoted by I(X).
Let I(X)q be the vector space I(X)NC[V]q4. Since I(X) = @ 5o I(X)q, the ideal
I(X) is a homogeneous ideal in the graded ring C[V]. The factor-ring C[V]/I(X)
is denoted by S[X] and is called the homogeneous coordinate ring of X. Since
I(X) is a homogeneous ideal in C[V], the ring S[X] inherits the grading of C[V];
S(X) = Bysg S(X)a, where S(X)q = C[V]4/I(X)4. The set Z(I(X)) C Visa
cone in V and will be denoted by C(X). It is clear that C(X) is an algebraic set
of finite codimension in V and C[C(X)] = S(X).

Forany h € V*, h # 0, the open set X, = XNP(V) is an algebraic set of finite
codimension in the affine space P(V),. If F € I(X)q4, then F/h? € I(X}) and,
conversely, if F/h¢ € I(X},) for some F € C[V]y, then Fh € I(X)4+1. Hence the
coordinate ring C[X}] of X}, is isomorphic to the so called homogeneous localisation
S(X)n)-

We will say that X is an #rreducible algebraic set of finite codimension in
P(V) if S[X] is an integral domain. If X is an irreducible algebraic set of finite
codimension in P(V'), then X}, is an irreducible algebraic set of finite codimension
in P(V), for any h € V*, h ¢ I(X). It is clear that, for every irreducible algebraic
set X of finite codimension in P(V'), the family of sets C = {P(V),}, h € V*,
h ¢ I(X), is an open covering of X. Moreover, for any P(V)p,, P(V)n, € C the
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intersection P(V),, N P(V )y, is dense in both P(V)y, and P(V),. Hence all sets
P(V), € C are dense in X.

Proposition 3.1. For any irreducible algebraic subset X of finite codimension
in P(V), the set X,y is a connected open subset of X which is dense in X.

Proof. This follows from Corollary 2.4 and the considerations above. 0O

In view of Proposition 3.1, we define the codimension of an irreducible algebraic
subset X in P(V) as the codimension of the locally closed submanifold Xz in
P(V). The codimension of X in P(V) will be denoted by codimp(yy X.

Let W be a finite-dimensional complex vector space of dimension n. The
projection map V x W — V induces a holomorphic map

m: P(Vx W)\ P(W) — P(V)

given by p([(v,w)]) = [v] for [(v,w)] € P(V x W)\ P(W). For h € V*, h # 0,
let 6y : 7Y (P(V)r) — P(V)r x W be the trivialisation given by w4 ([v,w]) =
([v}, h(v)~1w). It is easy to verify that the family of trivialisations 6y, h € V*,
h # 0, makes 7 into a locally trivial vector bundle over P(V') with fiber W.

Let Z,,...,Z, be a basis of W*. For any algebraic set X of finite codimension
in P(V xW), we denote by p : X\ P(W) — P(V) the restriction of = to X \ P(W),
and by p* : C[V] — S[X] the ring homomorphism given by the composition C{V] <
ClV)[Z1,...,2,) = C][V x W] — S|X]. It is clear that the homomorphism p*
respects the grading of C[V] and S[X], i.e. p*(C[V]a) C S[X]4, d > 0. Furthermore,
for any h € V*, h ¢ I(X), the homomorphism p}, : C[V]() — C[X}], associated
with the projection p, = p|x, : Xn — P(V)s, is induced by the homomorphism
p* : C[V] — S[X] (via homogeneous localisation with respect to h). Hence if p* is
finite, then p}, is finite for any h € V*, h ¢ I(X).

Remark 1. If p* is a finite homomorphism, then all fibers of the map p¢ :
C(X) — V are finite sets. In particular the cone pg'(0) = C(X)NW is a finite
set. Hence C(X) = NW{0}, which implies X N P(W) = 0. The next proposition
shows that the converse is also true.

Lemma 3.2. Let X be an algebraic set of finite codimension in P(V x W) such

~ that X N P(W) = 0. Then the homomorphism p* : C[V] — S[X] is finite, the set

Y = p(X) is an algebraic set of finite codimension in P(V'), and I(Y) = I{X)nC[V].

If the algebraic set X is irreducible, then the algebraic set Y is also irreducible,
and codimp(y+) Y = codimp(y) X — dimW.

Proof. As in the proof of Proposition 2.1, we may assume that dim W =1, i.e.

W = {Ce}, e # 0. Let Z € W* be a basis of W*. Since [(e,0)] € X, the ideal I(X)
contains a homogeneous polynomial g = Z"+a;Z" 1 +...4ay, a1,...,a8, € C[v],
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with leading coefficient 1 with respect to Z. Thus p* : C[V] — S[X] is a finite
homomorphism. Let C(X) C V x W (resp. C(Y) C V) be the cone of X (resp.
Y). By Proposition 2.1 the set C(Y) is an algebraic set of finite codimension in V'
and I(C(Y)) = I{C(X)) N C[V]. Hence Y is an algebraic set of finite codimension
in P(V) and I(Y) = I(X)NC[V’]. If X is irreducible, then I(X)NC[V’] is a prime
ideal in C[V'], and Y is also irreducible. Let h be a bounded linear functional on
V' such that Y, = P(V/),NY # 0. Since the projection plx, : Xp — P(V')y
is finite, codimp(y+), Y» = codimp(y), Xp — dim W by Lemma 2.5. This proves
the last claim of this lemma because X, and Y, are open and dense in X and Y
respectively. _ O

The Normalisation Lemma has a natural analogue for projective spaces:

Proposition 3.3. (The Projective Normalisation Lemma) Let X be an alge-
braic set of finite codimension in P(V) and Wy be a finite dimensional complex
vector subspace such that P(Wp)NX = 0. Then there is a finite dimensional com-
plex vector subspace W D W; such that for any complementary complex vector
subspace V' the projection map p: X — P(V’) is surjective.

Proof. Let Vy be a complex vector subspace which is complementary to Wyp.
Since the homomorphism p§ : C[Vy] — S[X] = C|C(X)] is finite by Lemma 3.2,
we can apply Proposition 2.2 to the pair (V3, Wp) and the cone C(X). Thus there
exists a pair of complementary complex vector subspaces (V/,W), dimW < oo,
W > W, V' C Vj, for which the homomorphism p* : C[V’] — S(X) is finite and
I(X)NC[V'] = (0). Remark 1 shows that P(W)N X = @, and Lemma 3.2 shows
that the projection map p : X — P(V’) is surjective. If V{ is another complex
subspace that is complementary to W, then

ClV{] = {f € C[V]: f(v+ w) = f(v) for any w € W} =C[V],

which shows that the projection map p; : X — P(VY) is surjective too. n|

Definition. Let X be an algebraic set of finite codimension in a projective
space P(V). Given a pair (V/,W) of complementary complex vector subspaces
of V, we say that (V',W) is an admissible factorisation for X if dimW < oo,
P(W)N X = @, and the projection p : X — P(V’) is surjective.

The Projective Normalisation Lemma shows that admissible factorisations ex-
ist for any algebraic set X of finite codimension in P(V). If X is irreducible, then
a given pair (V/, W) of complementary complex vector subspaces is an admissible
factorisation for X if and only if P(W)N X = 0 and dim W = codimp(y) X.

We note that if the pair (V, W) is an admissible factorisation for an irreducible
algebraic set X of finite codimension in P(V x W), then p* : C[V] — S|X] is an
injective homomorphism, and the field of fractions L of S(X) is a finite extension
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of the field of fractions K of C[V]. Now we are going to prove an analogue of
Proposition 2.3 for irreducible algebraic sets of finite codimension in projective
space.

Proposition 3.4. Let W be a complex vector space of finite dimension n
and let X be an irreducible algebraic set of finite codimension in P(V x W) such
(V,W) is an admissible factorisation for X. Suppose that Z € W* is such that
z = Z+ I(X) € S[X] is a generator of the field L over the field K, and let
D € C[V] be the discriminant of the minimal polynomial of z over K. Then
Xp =p Y (P(V)p) is a complex submanifold of P(V x W)p of codimension n and
plxp : Xp — P(V)p is a d-sheeted covering map, where d = [L : K].

Proof. We note that for a given h € V*, h # 0, the fraction z/h generates
the field of fractions Ly of S[X], over the field of fractions K, of C[V]). Let
Dy, be the discriminant of the minimal polynomial of z/h over Kj. According to
Proposition 2.3, the set (X3)p, is a complex submanifold of (P(V)y)p, x W of
codimension n and the map pnl(x,),, : (Xn)p, = (P(V)r)p, is a kp-sheeted
covering map, where ky = [Ly : Kp). Since K = Kj(h), L = Ly(h), and h
is transcendental over K}, we see that k, = d for h € V*, h # 0. A simple
calculation shows that D;, = D/h¥*~1) which implies (P(V)#)p, (P(V)p)r. To
finish the proof, we observe that the family of sets (P(V)p)n, h € V*, h # 0, is an
open covering of P(V)p. |

Definition. Let (V/, W) be an admissible factorisation for an irreducible al-
gebraic set X of finite codimension in P(V) and z € S(X);. We will say that
(W, V', z) is an admissible triple for X, if z is a generator of the field of fractions L
of S(X) over the field of fractions K of C[V]. Given an admissible triple (W, V", z)
for X, the discriminant of the minimal polynomial of z over K is denoted by D.

Remark 2. According to Remark 2 in Section 2, if (V/, W) is an admissible
factorisation for an irreducible algebraic set X of finite codimension in P(V), then
there is an element z € §(X); such that (V’, W, z) is an admissible triple for X.

If (W, V', 2) is an admissible triple for an irreducible algebraic set X of finite
codimension in P(V) and y € P(V')p, then the fiber 7~!(y) = {y} x W intersects
the manifold X,y transversely in d points, where d = [L : K]. Let U C V
be the complex vector subspace spanned by W and y in V. Then dim P(U) =
codimp(yy X and P(U) intersects the manifold X, transversely in d points. The
next lemma shows that the number d is the same for all admissible triples for X in
P(V).

Lemma 3.5. Let X be an irreducible algebraic set of finite codimension n in

P(V), and let U, Us be n + 1-dimensional complex vector subspaces of V such
that both sets P(U;) N X, P(U) N X consist of regular points of X and both
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intersections P(U1) N Xyeq, P(Uz) N Xreq are transversal. Then the cardinality of
the finite sets P(U;) N X and P(Us) N X is the same.

Proof. If dimV < oo, then the lemma is true because the cardinality of both
sets P(Uy) N X and P(W>) N X is equal to the degree of X in P(V). Let V' be
a finite dimensional complex vector subspace of V which contains both U; and U,
and let X' = XN P(V'). Then both sets P(U1)NX’, P(W2)N X' consist of regular
points of X’ and both intersections P(U1) N X,y P(Uz) N X/, are transversal.
Hence the cardinality of the sets P(U;) N X, P(Uz) N X is the same. a

In view of Lemma 3.5 the following definition makes sense.

Definition. Let X be an irreducible algebraic set of finite codimension in P(V).
The degree of X in P(V) is the degree of the field of fractions of S(X) over the field
of fractions of C[V’] for any admissible factorisation (V’, W) for X. The degree of
X in P(V) will be denoted by deg X.

Remark 3. Let X be an irreducible algebraic set X of finite codimension
n < oo and degree d in P(V). Then for any given point g € P(V) \ X there
exists an n+ 1-dimensional complex vector subspace U of V such that P(U) passes
through zg, and P(U) intersects X transversely in d distinct regular points of X.
Indeed, let (V',W,z) be an admissible triple for X such that zo € P(W) (see
Proposition 3.3 and Remark 2). Then for any y € P(V’')p the complex vector
subspace U, spanned by W and y in V, has the required properties.

Now we are going to show that if z¢ is a regular point of an irreducible algebraic
subset X of finite codimension n and degree d in P(V'), then there exists an n + 1-
dimensional complex vector subspace U of V such that P(U) passes through xy,
and P(U) intersects X transversely in d distinct regular points of X.

Let z¢ be a regular point of an irreducible algebraic set X of finite codimension
in P(V) and let | C P(V) be a projective line passing through zo. We say that [ is
a tangent line to X at xg if f|; vanishes of order > 1 at zg for any f € I(X). The
union of all tangent lines to X at zo will be denoted by P, X. It is clear that the
set Pr,X is a projective subspace of codimension n in P(V). Let V' be a closed
hyperplane in V such that zo ¢ P(V’) and let 7 : P(V)\{z0} — P(V’) be the map
induced by the projection p; : V= V/ x g — V’. Let Z : V — C be a bounded
linear functional on V such that Ker Z = V’. Then for any given homogeneous
polynomial 0 # f € C[V] there are unique homogeneous polynomials a;(f) € C[V],
i=0,...,m, such that f = Z:lo ai(f) 2™ ag #0, and dega; + m — i = deg f,
1=0,...,m.

Lemma 3.6. Let zp be a regular point of an irreducible algebraic set X of
finite codimension n in P(V') and V' be a hyperplane in V such that zo ¢ P(V’).
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Then-
(P X \ {z0}) = {[v'] € P(V') : ao(f)(v') =0 for all f € Ua>oI(X)a\ {0}}.

Proof. Let vg € zp be such that Z(zq) = 1. Since P(V)z is by definition
the affine subspace vg + V' C V, we will identify the tangent space Ty, P(V) with
V’. Then Pp, X \ P(V’) = {[v',v0] € P(V)z : v' € T;;, X} and n(FPr, X \ {z0}) =
P(T,,X). Thus it is enough to prove that

TeoX = {V €V : ao(f)(v')=0forall f € Ug>oI(X)a\{0}}. (3.1)

Denote by A,,X the set on the right-hand side of (3.1). For f € Ua>o0 I(X)4\ {0},
let g € I(Xz) be given by g([v',w]) = f(v',v0) = Y1y @i(f) ('), v € V'. Then
9(z) = Y50 ai(f)(z — o) for all z € P(V)z, which shows that ao(f) is the
leading term of the holomorphic germ g,, € Z;,(Xz). Hence A;,X O Cy.X,
where C,, X is the tangent cone of X at zg. According to Proposition 2.8, there
exist polynomials g; € I(Xz), j = 1,...,n such that the differentials dgi,...,dgn
are linearly independent at zo. Let g;([v/,vo]) = Y 1% aij(v'), v’ € V’, where
aij € C[V')iy1 for j =1,...,n,0 < i < m;. Then the linear functionals agy, ..., a0
are exactly the differentials of g1,...,9, at zo. Let f; € C[V]m;41 be given by
fi(v) = ) aij(pa(v)) Z(w)™~* v e V, j = 1,...,n. Then f; € I(X)m;41
and ao(f;) = aoj, j = 1,...,n. Hence T, X D Az, X. Since T X = C;, X (see
Remark 1 in Section 2), we conclude that A;, X =T,,X. a

In the next lemma we keep the notation and the assumptions of Lemma 3.6.

Lemma 3.7. Let Y = (X \ {zo}) Un (P, \ {z0}). Then Y is an irreducible
algebraic set of finite codimension in P(V’) such that I(Y) = I(X)NC[V']. f h:
V! — C, h ¢ I(Y), is a bounded linear functional which vanishes on 7(P, \ {z0}),
then m|x, : Xp — P(V’)s is a finite map (in the sense that the homomorphism
Phy - C[V](h) — S(X)(h) is ﬁnite).

Proof. Let f; € I(X), j =1,...,n, be the polynomials which were defined in
the proof of Lemma 3.6. Choose homogeneous polynomials G; = 3" bi; 2™~ €
I(X),j=1,...,rsuch that G; = f; for j = 1,...,n, and X = Z(Fy,...,F}).
Lemma 3.6 shows that Z(bo1,...,bor) = m(Py, \ {zo}). Let Dy,...,Dp € C[V'] be
a resultant system of Gy, ..., G, (see the proof of Proposition 2.1). The properties
of Dq,...,Dy imply Z(Ds,... ,Dh,) = W(X \ {xo}) U Z(bol, .. ,,bor) =Y, which
proves that Y is an algebraic set of finite codimension in P(V"').

We note that ag(f) = f for any homogeneous polynomial f € I(X) N C[V’].
Hence any f € I(X) N C[V’] vanishes on both sets 7(X \ {zo}) and 7n(Py, \ {z0}),
which yields I(X) N C[V’] C I(Y). Since any f € I(Y) vanishes on X, we obtain
IY)=I(X)nC[V'].
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Suppose that b € V'* vanishes on m(P;, \ {To}) = Z(bo1,-..,bon). Then
h belongs to the subspace which is spanned by the linear functionals h; = bo;,
j=0,...,n,in V'*, which shows that the ideal generated by h;/h, j =1,...,n, in
C[V](n) is exactly C[V](). Thus, in order to prove that the homomorphism p(s),
is finite, it is enough to prove that all localisations (pa))nj/n : (C[V')(h))nj/n —
(S(X)m)nisns 3 =1,...,n, of p) are finite. In view of the natural isomorphisms
(C[VI](h))hj/h = (C[VI](hj))h/hJ' and (S(X)(h))hj/h > (S(X)(hj))h]hj’ we see that
it is enough to prove that all homomorphisms pg;) : C[V'|n,) = S(X)n;), 5 =
1,...,n, are finite. To this end we note first, that C{V](;) = C{V'|»,y[Z/hj], j =
1,...,n. Let dj =degfj j=1,...,n. Then hj_djf]' € C[V')n;)[Z/h;] is a monic
polynomial which belongs to I(Xs;), 7 = 1,...,n, whence all homomorphisms
D(h;) * C[V/}(h,-) — S(X)(hj), j=1,...,n, are finite. ]

Lemma 3.8. For any regular point o of an irreducible algebraic subset X
of finite codimension n and degree d in P(V), there exists an n + 1-dimensional -
complex subspace U of V' such that P(U) passes through zo and P(U) intersects
X transversely in d regular points of X.

Proof. Since the claim is obvious when X is a linear projective subspace of
finite codimension in P(V), we will assume that deg X > 1. Let V’ be a closed
hyperplane in P(V) such that zop ¢ P(V’) and let 7 : P(V) \ {zo} — P(V’) be
the map induced by the projection p; : V & V' x 29 — V’. Then according to
Lemma 3.7, the set Y = n(X \ {zo}) Un(Pz, \ {Z0}) is an irreducible algebraic set
of codimension n — 1 in P(V'), and the set m(P,, X \ {z0}) is a linear projective
subspace of codimension n in P(V). Let (V”, W’) be an admissible factorisation for
Y in P(V’) and let W be the n-dimensional vector subspace of V' which is spanned
by W” and zo. Then P(W)N(X U P, X) = {0} because P(W’) = NY . Denote
by 7' : P(V)\ P(W) — P(V") (resp. " : P(V')\ P(W’') —» P(V")) the map
induced by the projectionV =V’ x W — V" (resp. V' = V" x W’ — V"). Since
the set 7'(Py, X \ {z0}) is a projective hyperplane in P(V"), there exists a linear
functional h' € V""" such that Z(h') = #'(Pry X \ {z0}). Let h € V'* be given by

the composition V! = V" x W' — V” X, C. Then h vanishes on 7{Py, \ {Z0}) and
the map =|x, : Xp — P(V’') is finite by Lemma 3.7. Taking into account that
the map 7|y : Y — P(V") is finite and surjective, we conclude that 7’|x, : Xp —
P(V")ps is a finite surjective map. Hence P(V), = P(V"”)p x W is an admissible
factorisation for X3 in P(V),. According to Remark 3 in Section 2, there is a point
y € P(V"), such that the set 7" (y)N X}, consists of regular points of X}, and the
intersection of 7! (y) and X}, is transversal at each of these points. We also note
that 7'~ (y) N Xpa' ™ (y) N X and 7'~ (y) N Py, X = 0 because ©' ™' (y) € P(V)s.
Let U be the n + 1-dimensional complex vector subspace spanned by W and y in
V. Since P(U) = '~ (y) U P(W), we obtain P(U)N X = (=’ (y) N X}) U {zo}
and P(U)N Py, X = {xo}. Hence the set P(U)N X consists of regular points of X
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and the intersection of P(U) and X is transversal at each of those points. O

Proposition 3.9. If X is a submanifold of finite codimension in P(V'), then
for any zo € P(V) there exists an admissible triple (V/, W, z) for X such that
zo € P(W) and n(zo) € P(V')p.

Proof. Let n = codimp(yy X and d = deg X. Choose an n + 1-dimensional
complex vector subspace U of V which passes through z¢ and intersects X trans-
versely in d regular points z;, ¢ = 1,...,d, of X (see Remark 3 and Lemma 3.8).
Choose an n-dimensional complex vector subspace W of U such that z; ¢ P(W),
i=20,...,d. Let V' be a vector subspace of V which is complementary to W.
Then (V’/, W) is an admissible factorisation for X and n~!(m(zo)) = P(U)\ P(W).
Let y = w(z0) = [v§), vg € V', and let z; = [vp + wi], ws € W, i = 1,...,d.
Choose a linear functional Z : W — C such that Z(w;) # Z(wjy) for i # j, and set
z =27+ I(X) € S(X). Let F(v',Z) € C[V'][Z] be the minimal polynomial of z
over the field of fractions of C[V'|. Since F(vy, Z{w;)) =0, i =1,...,d, the degree
of the polynomial F is equal to d. Hence z is a generator of the field of fractions of
S(X) over the field of fractions of C[V] and n(zo) € P(V')p. |

Corollary 3.10. For any submanifold X of finite codimension in P(V), there
exists a family of admissible triples {(V/, Wi, 2;) }ier, for which the family of open
sets {P(V)p, }ier is an open covering of P(V).

Proof. This is just a rephrasing of the previous proposition. O

4. A REPRESENTATION THEOREM FOR DIFFERENTIAL FORMS

In this section, we consider a submanifold X of finite codimension in P = P(V)
and an admissible triple (V', W, z) for X in P. We note that p*Op(y+y(k) = Ox(k),
where Ox (k) is the restriction of the line bundle Op(k) to X, k € Z. According
to Proposition 3.4, the map p|x, : Xp — P(V’')p is a finite covering of degree
d = deg X. We will show that, for any differential form g € C;, q(X 0, Ox(k)), there
exist unique differential forms g; € C . (P(V')p,Opvy(k—7)), §=0,...,d -1,

such that
d-1

Z (Plxp)"9; ® 2. (41)
=0

Representation (4.1) will be derived in a more general setting. Let Y and Z
be complex manifolds and let 7 : Y — Z be a covering map of finite degree d. Let
L — Z be a given holomorphic line bundle over Z and let M — Y be the line
bundle 7* L. The ring Snez H%(Z, L™) will be denoted by S.

Proposition 4.1. Let s € H(Y,M) and g; € H°(Z, L), i = 1,...,d, be
such that s¢ + (7*a;)s% ! + -+ + (7*ag_1)s + m*aq = 0. If the discriminant D €
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HO(Z, L¥4=1) of the polynomial Z¢ + q, 291 + ... 4+ ag_1Z + ag € S[Z] vanishes
nowhere on Z then for any given differential form g € Cp (Y, M k), n € Z, there
exist unique differential forms g; € C7 (Z,L¥77), j =0,...d — 1, such that

d—1 .
= Z g Q8. (4.2)
3=0

Furthermore, the differential form g is 8-closed (resp. 8-exact) if and only if all
differential forms g;, 7 =0....,d — 1, are O-closed (resp. O-exact).

Proof. Since the claim is local with respect to Z, we may assume that L = Oy
and that 7 has d distinct right inverses r; : Z — Y, gr; =idz, ¢ = 1,...,d. Let
s; =r¥s € H(Z,0z), i = 1,...,d. Then s; (b) # s4,(b) for iy # iz and b € Z
because D vanishes nowhere on Z. Eq. (4.2) is equivalent to the linear system

Zs{gj:r;‘g', i=1,...,d.

Its determinant is

A= H (Si2 —Sil).

1<4 <2<d

Since A? = D, the holomorphic function A vanishes nowhere on Z. Thus the
differential forms g;, j = 1,...,d, are determined uniquely by Cramer’s formulae:
g; = A~ ldet(4;),j=0,...,d -1, where 4;, j =0,...,d — 1, is the matrix

i—1 1 -1

1 s - 8 rig $tt o
j— x j+1 d—1

A= 1 s 85 39 Sy 5
1 j+1 d-1

1 s4 Sy Ted Sy 54

Since rfg € Cp ((Z) fori=1,...,d, all differential forms g;, 7 =0,...,d—1, also
belong to C7 (Z). We note that Bg = Z 7*(0g;) ® s7 because the section s is
holomorphic. Since the representation (4. 2) is unique and the homomorphism 7*
is injective, the differential forms g;, 7 =0,...,d — 1, are O-closed (resp. 0-exact)
if and only if the differential form g is 6—closed (resp. J-exact). ]

Now we can deal with Representation (4.1).

Proposition 4.2. Let (V/, W, z) be an admissible triple for X in P. Then for
any differential form g € Cy (Xp,Ox(k)), k € Z, there exist unique differential
forms g; € C7 (P(V')p,Opwn(k ~34)),j=0,...,d—1, such that

d—

g=> (plx,)"g;®.

3=0

—
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Furthermore, the differential form g is 5-_(:_losed (resp. 5_-_exact) if and only if all
differential forms g;, j =0,...,d — 1, are 9-closed (resp. J-exact).

Proof. By Proposition 3.4, the holomorphic map plx, : Xp — P(V')p is a fi-
nite covering of degree d = deg X. Proposition 4.2 now follows from Proposition 4.1
with Y = Xp, Z = P(V')p, L = Opv1(1)|p(vy,. and s = z|x,,. 0

We also need a version of Proposition 4.2 for an algebraic submanifold X of
finite codimension n in a Banach space V. Let (V',W) be an admissible fac-
torisation for X as in Section 2, and let Zy,...,Z, be a basis of W* such that
z = Z1 + I(X) € C[X] generates the field of fractions of C[X] over the field of
fractions of C[V’]. Let D € C[V’] be the discriminant of the minimal polynomial
F of z over the field of fractions of C[V’]. By Proposition 2.3, the holomorphic
map pp = plx, : Xp — V) is a covering of degree d = deg F. We note that
the vector bundle TPV’ — V'’ is canonically isomorphic to the trivial bundle
VIX APV ATV S VY

Proposition 4.3. For any differential form g € C} ((Xp), there exist unique
differential forms g; € Cf ,(Vp), 5 =0,...,d — 1, such that

d—1
9=> 7phg;-
Jj=0

If U is an open subset of V}, such that pp has d distinct right inverses r; : U — Xp
onU,wmor; =idy,i=1,...,d, then

9;(b,€,€) = D(b)™" A(b) det 4;(b,¢,8), i=0,...,d~1,
for be U, £ € APV, € € NTW', where
A= JI  (ari,(®) ~ 2(ri, (b))

1<i1<iz<d

and A;(b,&,8) is the d x d matrix

Loan@) o AnO) eBED AT o s
Loz®) o anO) rigBE rB) o a(ra)
U)o a7 rigBEE) Hra®)F o (ra®)

Proof. We use Proposition 4.2 withY = Xp, Z =V}, L = OVB’ and s = z.
Since 8; = r}(s) = z o r;, we have s;(b) = z(r;(b)), i =1,...,d. Hence

A= [ (sw®) - s, 0))

1< <i2<d

= JI (ru®) - 2(ri,0))? = D),

1<i;<iz<d
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which gives D(b)"1A(b) = A(b)~!. The claim now follows from Cramer’s formulae
as in the proof of Proposition 4.2. a

Propositions 4.2 and 4.3 are used in full generality in [3]. Here we use them
only for p = ¢ = 0. Let us consider first the affine case.

Lemma 4.4. We keep the assumptions and the notation of Proposition 4.3.
Let g € H%(X,Ox) and g; € H*(V},0v+),  =0,...,d — 1, be such that

d-1
9= 2ppg;.
=0
Then there exist §; € H(V’,0v), j = 0,...,d — 1 such that Dg; = gjlvy for
j=0,...,d—1.

Proof. By virtue of Riemann’s removable singularity theorem it is enough to
show that, for any by € Z(D), there is a neighbourhood U of by such that all
functions Dg;, j = 0,...,d — 1, are bounded on U NV},. Let G, : X4 - C,
j=0,...,d—1, be the holomorphic function given by

Gj(z1,x2,...,24) = A(z1,%2,...,2q4)detA;(z1,22,...,2q)
where
A(zy,32,...,2a) =[] (2(&s) - 2(z4,))
1<iy<izg<d
and A;(z1,T2,...,2q) is the matrix
1 oz(z) - z:)7l g(m) 2@ )Pt - 2(z)*!
1oz(z) - 2zl glze) 2zl - 2(ze)*!
1 z(za) -+ 2(zaf ! g(za) 2(za)F' - z(zg)??

Since the fiber p~(bp) is a finite set, there is a neighbourhood N of p~!(bp) such
that the functions G, j =0,...,d—1, are bounded on N¢ and since p: X — V' is
a proper map, there is a neighbourhood U of by in V' such that p~!(U) C N. By
Proposition 4.3, D(b)g;(b) = G;(z1(b), z2(b), ..., 2a(b)), 5 =0, ...,d—1, for b € V},,
where {z1(b),z2(b),...,za(b)} = p~1(b). Hence all functions g;,  =0,...,d — 1,
are bounded on U N V), because {z;(b)} x {z2(b)} X ... x {za(b)} € N¢ for any
beUnVp. 8]

Lemma 4.5. We keep the assumptions and the notation of Proposition 4.2.
Let [/AS HO(Xa OX(k))v ke Z1 and g5 € HO(P(V,)D70P(V’)(]€—'.7’))» .7 =0,.. 'ad—

1, be such that
d-1

dxp = > (plxp)"9; ® 2.
7=0 :
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Then there exist §; € H'(P(V'),Opy)(k —j+ degD)), j = 0,...,d — 1, such
that Dg; :gjlp(vr)o for j=0,...,d—1.

Proof. Let s = deg D = d(d — 1). It is enough to show that for any h € V'*,
h # 0, the holomorphic functions Dg;h?=*=5 € HY(P(V')p 0 P(V'),Op(v1y,.),
j=0,...,d—1, can be extended to holomorphic functions on P(VV'),. Since

d—1
gh’Hk XpnX, = Z (Z/h)] (planXh)*(gjh’]_k) )
j=0
this follows from Lemma 4.4. O

Proposition 4.6. If X is a submanifold of finite codimension in P = P(V)
and (V', W, z) is an admissible triple for X in P, then for any g € H%(X, Ox(k)),
k € Z, there exists § € H°(P,Op(k + deg D)) such that Dg|x, = §lxp-

Proof. Let g; € HY(P(V')p,Opwn)(k—3), j =0,....,d -1, and §; €
HO(P(V’),OP(V/)(k ~j+degD)),=0,...,d—1, be as in Lemma 4.5. Choose
a bounded linear functional Z : V - C such that Z|X = Z + I(X) = z, and
set §o = Z;i;é mg; ® Z) € HY(P\ P(W),0p(k + deg D)), where 7 is the
vector bundle P\ P(W) — P(V’). Since codimp P(W) < 1, there exists a
§ € HO(P,Op(k 4+ deg D)) such that dlp\pw) = Jo. According to Lemma 4.5, we
have go|x, = Dg|x, which implies §|x, = Dglx,- 0

5. A DOLBEAULT ISOMORPHISM FOR INFINITE-DIMENSIONAL
PROJECTIVE SPACES

In this section, we will assume that V is a Banach space which admits smooth
partitions of unity. In general we say that manifold X admits smooth partitions of
unity if for any open cover {U;}icr of X there are 8; € C*°(X), supported in U;
such that ) .., 6; = 1, the sum being locally finite. Hilbert spaces are examples
of such manifolds. Separable and reflexive Banach spaces that localise are other
examples. Paracompact manifolds modeled on spaces that admit smooth partitions
of unity also admit smooth partitions of unity. We refer to {2] for more details. In
particular if V is a Banach space that admits smooth partitions of unity, then the
associated projective space P = P(V) also admits smooth partitions of unity.

For a finite-dimensional complex manifold X, the Dolbeault cohomology groups
and the Cech cohomology groups of a holomorphic vector bundle on X are the same
by the Dolbeault isomorphism. Let X be a submanifold of finite codimension in
P and let E — X be a holomorphic vector bundle over X. We will consider
a covering {X;}ie; of X with Zariski open sets and define a complex C(X, E)
which is a subcomplex of the usual Cech complex associated with {Xi}icr and E.
In this section, we will prove that HY(C(P,E)) = H®(P,E) for ¢ > 0. Since
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H™(P,E) = 0 for ¢ > 1 (see [4, Theorem 7.3]), we obtain H?(C(P,E)) = 0 for
g > 1. The vanishing of the higher cohomology groups of the complex C(P, Op(n)),
n € Z, is used in the next section.

Let D = {D; € C[V]}ics be a collection of homogeneous polynomials such that
U = {Pp, }icr is a covering of P. The degree of the polynomial D; will be denoted
by d;, i € I. The open set

Xp,N...NXp, ={z€X : D;, (x) #0form=0,...,q}

will be denoted by Xj,...;,- The complex C(X, E), corresponding to the collection
D, is defined in the following way. For any natural number N, we define first a
complex of abelian groups

Cn(X. E) = {CR (X, E), 6}420

as follows: Let C% (X, E) be the subgroup of []; g€l H°(Xy,. 4, E) that consists

of all ¢ = {@iy..5, € H(Xiy..i» E) Yio,..riqel such that for any ig,...,37, € I there
exists a global section @;,.;, € HY(X,E ® Ox(Ndy, + ...+ Nd,,)) for which

Pig...i, = (Dig -~ -Di,,)_N(@'o...i,,) X

We use the standard convention for alternate cochains: if {mg...m,} is a permu-
tation of {0...¢}, then Pirnyrrimy = (—1)5("10"'m‘1)<pio._,,~q, where e(myp ... my) is the
parity of the permutation {mg ... m,}. The differential § : C% (X, E) — C& (X, E)
is the Cech coboundary operator:

ig...iq "

q+1
(JQP)io...i,l_;.] = Z (-]-)m()o’io...’:,:...iq-;-] Xi()...iq_{,.l . (51)

m=0

Since

g+1

(Dio" lq+x)N(&p)iu...iq+1 :{Z( 1)m( z,,l(on Arn gl }leio..ﬂ'ﬁl ’ (5'2)

m=0

 is well defined. We note that for any N € N, there is a natural injective chain
map

CN(X,E) = Cnii(X,E).
The complex C(X, E) is now defined as the union of all complexes Cn (X, E):

CX,E)= | | Cn(X,E). (5.3)

e

0

Remark 1. The definition of the complex C(X,E) was suggested by the
proof of 4, Theorem 8.2]. We note, however, that the proof of [4, Theorem 8.2]
is not rigorous since it assumes implicitly that P is paracompact with the Zariski
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topology. We also note that the complex C(X, F) depends not only on the covering
U = {Pp,}ics but also on the collection of polynomials D = {D;}ics. For example,
let I =N and let D = {D; € C[V]}ier be a collection of homogeneous polynomials
such that &/ = {Pp,}icr is a covering of P. Let D} = (D;)}, i € I. Then the
covering U' = {PD‘/,},-G I is the same as the covering U, but the complex C'(X, F),
corresponding to the collection of homogeneous polynomials D’ = {D}};cy, is not
necessarily the same as the complex C(X, E).

The next theorem is the main result of this section.

Theorem 5.1. Let V be a complex Banach space that admits smooth par-
titions of unity and let P = P(V). Let {D;}icr be a collection of homogeneous
polynomials such that P = U;c;Pp,. Then HYC(P,E)) = 0, ¢ > 1, for any
holomorphic vector bundle E — P of finite rank over P.

To prove Theorem 5.1, it is-enough to show that the group HY(Cn(P, E)) =0
for N € N, ¢ > 1. We will prove that HY(Cy(P,E)) & H*¢(P,E) for N € N,
g > 0. To this end we define a double complex By (P, E) = {BY(P, E,§,08},.450
as follows. Let BY!(P, E) be the subgroup of the group [ C§5,(Py,..5,, E)

10,0erig €1

that consists of all p € [] C§%(Pi..i,, E) such that for any do,...,iq € I
VYR Y §
there exists a global section

(,51'(,,,_1;,[ c Cg?p(P, E®Op(Ndiyy +...+ Ndiq))

for which
win...iq = (Dio ° 'Di,,)—N‘Piq...iqIP;OW‘-(’ .

The differential
§: BY¥(P,E) — BY*Y(P,E)

is given by formula (5.1). Formula (5.2) shows that ¢ is well defined. The differential
3 :B¥(P,E) — BY'Y(P,E)

is given by _
(00)ig...i, = OPig...iy» 10,---,%g €1,
for ¢ € BY}(P, E). Since
(Dio Tt Diq)N(gw)io--.iq = 5((-Dio T Diq)N<pio~~~iq) = 5(¢i0-~~iq ,Pio...iq )’
we see that 3 is well defined, too.
Lemma 5.2. Let V be a Banach space that admits smooth partitions of unity

and let P = P(V). Then, foranyn € Z and N € N:
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i) H”(B'Ig(P E))=0forp>1,;
ii) HJ(B (P,E))=0forq>1.

Proof. Suppose p > 1, and let ¢ € BY¥(P, E) be such that 8¢ = 0. For
i0y-.-11q € I, let @y, € C§%(P, E® Op(Nd;, + ...+ Nd;,)) be the unique form
such that

(Diq - -Di(,)N%'o...i,, = Gig...iy|Pig..c, -
Since the form ;.. ;, is closed, the form @, ;, is closed, too. By [4, Theorem 7.3
there exists a form 1,5,-0,__,-,, € C§5-1(P,E ® Op(Nd;, + ... + Nds,)) such that
51/31'0...,',, = Qig...ip- Lt P € B‘,’V_lq(P, E) be the cochain given by

wio...iq = (Dio ot D‘iq)_N(’(z;’io...iqIP(D_,,{Q) € C(?;,_1(Pio...i,,,E), iO; e 11:4 € I.

Since 51!’:'0._.1',, = Pig...4i, for all i, .. .14 € I, we obtain 9y = p. This proves (i).

Suppose ¢ > 1, and let ¢ € BY (P, E) be such that §o = 0. Let {6;} be a
smooth partition of unity which is subordinated to the open covering {P;}icr, and
let B € 13 CS(Piy..ige1 E) be the cochain given by

‘iQ,...,iq_IGI
Pig.ig-1 = Z 0ipiio...iq-1 (5.4)
i€l
for i, ...,ig—1 € I. (On the right-hand side of (5.4) we use alternate cochains.) A

simple calculation shows that 0% = ¢ (see [1, Proposition 8.5]). Let us verify that
7 € BP9-1(P E).

(D'i() T Di.,_l)N@o dgm1

= {Z 6; (DilP;)_ [( D;, - - ‘q 1) Pido...iq— 1]}
i€l
= {Z 0; (Dslp,)~N ¢iio~-iq—1}

iel

|0 dg—-1

V:

:0..41"’__1

Since 8;(D;|p,)~N € C®(P,0p(—Nd;)) and suppb;(D;|p,)~N C supp 8; for all
1 € I, we obtain

> 0:(Dilp,) N Gii..iys € CEH(PLE®Op(Ndig + ...+ Nd;, _,)).
i€l
Hence p € BP9~ 1(P, E). Since § = ¢, part (ii) has been proved. 0

Remark 2. We note that we were able to prove part (ii) of Lemma 5.2 because
the same N “worked” for all cochains ¢y, i, %0,...,%q € I, (cf. Remark 1.)

Now we can give a proof of Theorem 5.1.

Proof of Theorem 5.1. As it has already been mentioned, it is enough to show
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that HY(Cy(P,E)) =0forall g > 1, n € Z, and N € N. It is well known (see
for example [1, Proposition 8.8]) that if conditions (i) and (ii) of Lemma 5.1 hold
for a double complex B = {BP%,d’,d"}, >0, then the groups HY (HY.(B)) and
"HY%,(HY/(B)) are naturally isomorphic for all ¢ > 0. We note that the complex
HY(B(P,E)) is the Dolbeault complex of the vector bundle E on P, and the
complex Hg(B(P, E)) is just the complex Cn(P, E). Since the higher Dolbeault
cohomology groups of the vector bundle £ on P vanish by [4, Theorem 7.3|, we
obtain HI(CN(P,E)) =0forqg>1, NeN. O

6. A DOLBEAULT ISOMORPHISM FOR COMPLETE INTERSECTIONS IN
INFINITE-DIMENSIONAL PROJECTIVE SPACES

In this section we assume that X is a complete intersection in P, and that
{(V/, Wi, 2:) }ier is a collection of admissible triples for X such that U = {Pp, }ier
is a covering of P. According to Corollary 3.10, such collections exist for every
submanifold X of finite codimension in P. Let C{X, Ox(k)) be the complex (5.3)
corresponding to the collection of homogeneous polynomials D = {D,-}ie 1 and to
the line bundle Ox(k), k € Z. In this setup all polynomials D;, i € I, are of the
same degree d; = d(d—1), where d = deg X. We will show that if P admits smooth
partitions of unity, then H9(C(X,0x(k))) =0forg> 1,k € Z.

Before dealing with the general case, let us outline the argument in the case of a
hypersurface. Suppose X is the set of zeros of a homogeneous polynomial P € C[V]
of degree d. Then multiplication by P yields the exact sequence of sheaves

0« Ox(k) — Op(k) & Op(k —d) — 0. (6.1)
The sequence (6.1) induces an exact sequence of complexes
0« C(X,0x(k)) « C(P,0p(k)) & C(P,0p(k — d)) — 0 (6.2)

Since by Theorem 5.1 H?(C(P,Op(k))) = 0 for ¢ > 1, k € Z, the long exact
sequence of cohomology groups that is associated with the short exact sequence
(6.2) yields HY(C(X,0Ox(k))) = 0 for ¢ > 1, k € Z. This argument carries over
to complete intersections in P because the exact sequence (6.1) is a special case of
the Koszul complex.

To define complete intersections in P, we need the notion of a regular sequence
from commutative algebra.

Let A be a commutative ring and let a1,...,a, € A. Let I;,5 = 1,...,n, be
the ideal generated by a1, ... ,a; in A. The sequence a,...,q; is called regular if
I # A and a;+I;_ is not a zero divisor in the factor-ring A/I;_; for j =1,...,n.

Given a commutative ring A and ay,...,a, € A, we define a complex K as
follows:

Ky 'p_lfiKp(_...*ﬂKné_o
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(cf. [5]) Set Ko = A. For 1 < p <k, let K, = ®Aey,..j, be the free A-module of
rank (ﬁ) with basis {¢;, j, }1<j<...<j,<k- The differential d : K} — Kp_; is given
by

P
dlej,. 5,) = Z(—l)"laj,,ejl,_Aj,....j,, ;
r=1

(for p = 1, set d(e;) = a;). One checks easily that dd = 0. The complex K is called
the Koszul complex corresponding to ay,...,a,. We note that d(K;) =1, C A
and coker{Kp « K1} = A/I,.

The proof of the following important theorem can be found in [5].

Theorem 6.1 Let A be a commutative ring and let a;,...,a, be a regular
sequence in A. Then H,(K) =0 for p > 0. If A is an N-graded ring and a1, ..., a,
are homogeneous elements of positive degree, then the converse is also true.

1t follows from Theorem 6.1 that if A is an N-graded ring and a1,...,a, is a
regular sequence that consists of homogeneous elements of positive degree then any
permutation of ap, ..., a, is also a regular sequence.

Definition. A submanifold X of finite codimension in P is called a com-
plete intersection if there exists a regular sequence of homogeneous polynomials
Py, ..., P, that generates the ideal I(X).

From now on we assume that X is a complete intersection in P, and P, ..., P,
is a given regular sequence of homogeneous polynomials in C[V] that generates
I(X). We will denote by K the Koszul complex corresponding to Py,. .., Py.

Let C(X), C(P), and Cny(P), N € N, be the complexes

c(X)=PCX,0xk), C(P) =P, 0pk),
keZ keZ
and Cn(P)=(PCn(P,0p(k)), NEeN.
kEZ

Let us note that C(P) = JyenCn(P). We are going to construct a resolution of
the complex C(X)
0—CX)LCoe—ver e p_1<d—,Cp<ﬁ---<—Cn<——0 (6.3)
such that H(Cp) = 0 for ¢ > 0 and p = 0,...,k. This will immediately imply
HIYC(X,0x(k))) =0for ¢ >0 and any n € Z.
In the construction of the resolution (6.3) we will use the existence of a natural

C[V]-module structure on the complexes Cy(P), N € N, and C(P). To exhibit this
module structure, we consider homogeneous polynomials of degree m as sections of
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the line bundle Op(m). If P € C[V];n and ¢ € CL(P,Op(k)), then it is easy to
verify that the collection

(P(p)io...’iq = Pso’i()...i,‘ € HO(PiQ...iqa OP(k =+ m)) (6‘4)

is in C§(P,Op(k +m)). Thus the group C%(P) = @rez CL(P,0p(k)), ¢ > 0,
has a structure of a C[V]-module that is given by (6.4). It follows from (5.1) and
(6.4) that the coboundary operator & : C4(P) — C%T'(P) is a homomorphism of
C[V]-modules. Since C(P) = UnenCn(P) and since the C[V]-module structures
on Cn(P) and Cy41(P) agree for all N € N, the complex C(P) also has a C[V]-
module structure.

Remark 1. For N € Nand i, ...,ig € I,let C[V](Dy, - - -D,-q)‘N be the C[V]-
module generated by (D, - -- D;,) ™" in the field of fractions of C[V]. It is clear that
C[V](Di, ---D;,)~V is a free C[V]-module of rank 1. It follows from the definition
of the groups Cj (P, Op(k)) that, for any ¢ € C4(P) = ®rez CL (P, Op(k)), there
exist unique @P;,...5, € Orez HO(P,0p(k)), io,.. .,iq € I such that

Pio...iq = (Dio e Di,,)_N(¢io---iq)fpio...iq

for any ip,...,iq € I. Since ®rez H'(P,Op(k)) = C[V], there exists an isomor-
phism of C{V]-modules

Py [[ cviDi,--Di,)™N. (6.5)
io,...,‘i,lel
The resolution (6.3) is constructed as follows: for p = 0,...,n, let C, and
Cp,n, N €N, be the complexes
Cp =K, Bciv) C(P) and Cpn = K, Bciv) Cn(P), NeN. (6.6)

The differential d : K, — K,_; induces chain maps
d'=d®id:C, - Cp1 and d' =d®id:Cpny —Cp1n, NN, (6.7)
forp=1,...,k.
Proposition 6.1. The sequence of complexes
Coe e Cpy & Cpmrr = Cp 0
is exact.

Proof. Since C(P) = UnenCn(P) it is enough to check that for any N € N
and any ¢ > 0 the sequence of C[V]-modules

q q d’ g
Co,N‘_ «C 1N"‘Cp

o1, ,N<——-~~<—CqN<—0 (6.8)

n!
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is exact. It follows from (6.6), (6.6) and (6.7) that the complex (6.8) is isomorphic
to the complex

Kocy(P)=K® [] CVI(Dsw---Di) V.
10,...,8q €1

Since each Kp, p = 1,...,k, is a finitely generated C[V']-module, there is an iso-
morphism of complexes

K® [] cViDi---Di) V= [ KeCVIDi---Diy)™V. (69
10, iq €1 i0,...,iq€T

Now we note that the complex on the right-hand side of (6.9) is exact because
the Koszul complex is exact by Theorem 5.1, and C[V](Dj, -+ D;, )™V is a free
C[V]-module for any ig,...,iq € I. O

It remains to define a surjective chain map r : Co — C(X) such that kerr =

im{C; 4, Co}. We note that the complex Cp coincides with the complex C(P)
because Ko = C[V]. Then the map r : Co — C(X) is given by the restriction of the
sections of the line bundles Op(k), k € Z, to the submanifold X. More precisely,
the restriction homomorphisms

{H°(Pi..i,, Op(K)) — H(Xiq..i0, Ox (k) Yio,...igel »
HO(Pyy..i,, Op(k)) 3 Pig...iy = (Pia..ig)|xe.0, € H%(Xi,...4,, Ox (K))

induce chain maps ry : Cy(P,Op(k)) — Cn(X,0x(k)) for k € Z, N € N. The
collection of chain maps {rn}~en then induces a natural chain map

ri : C(P,Op(k)) — C(X, Ox (k) (6.10)

for any k € Z. The next lemma is instrumental in the proof of the surjectivity of
the chain map (6.10).

Lemma 6.2. Suppose that
® € H%(X,,..5,,Ox(k)) and &€ H(X,Ox(k+ Nd;, +---+ Ndy,))

are such that ® = (D, “'Di.,)‘N(‘T’
sections

o € HO(Py, .., Op(K)) and € HO(P,Op(k+ (N + 1)ds, + - + (N +1)di,))
and ¢ = (D, ---D

Xi..:,) for some N € N. Then there exist

such that @ = ¢|x,; ., i,,)_N-I(ﬁlPio...iq‘

Proof. By Proposition 4.6, there exists a homogeneous polynomial P € C[V]
such that deg P =k + Nd;, +--- + Ndiq + di, and (DiO‘I)) Xioplxio . Let

@ =D;,---Di, P € H(P,0p(k+ (N +1)di + -+ + (N + 1)d;,))
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and
¥ = (Dio e D":q)’—‘\ - @ipi“...i € HO(Pinmi,,»OP(k)) :

which proves the lemma. 0

9

Then ¢ = ¢lx,,

Lemma 6.3. The natural chain map
ri : C(P,Op(k)) — C(X,Ox (k)
is surjective for any k € Z.

Proof. Let @ be a cochain in CJ, (X, Ox(k)). It follows from Lemma 6.2 that
for any io, . . .,iq € I there are @;, i, € H'(P,Op(k+(N+1)d;y+---+(N+1)d;,))
and ¢;,..;, € HY(Py,. ;,,Op(k)) such that

Pig.vig| Xig..oy = Ligu iy and Dig..iy = (Diy - - Di,,)‘Nﬂl(‘;bio...iqIP.-O..A;,,)'
By the definition of the group C% (P, Op(k)), the cochain ¢ = {@i,._1, }io..i,er
belongs to Ca_ (P, Op(k)) and ry(g) = &. 0

Let r: Cg = C(P) — C(X) be the chain map
T =®rezTk * Co= DrezC(P.Op(k)) = @rez C(X, Ox(k)) = C(X),
where i : C(P,Op(k)) — C(X,Ox(k)), k € Z, is the chain map (6.10).

Lemma 6.4. The sequence of complexes 0 «— C(X) < Cq & C; is exact.

Proof. By Lemma 6.3 the chain map r is surjective. It remains to show that
kerr = im d’. Let

Y= {901‘()...2',, € ®/€€Z HO(PZ'()‘..?:,NOp(k))}i(),...,i,lef S Cg)}\](P) = C;ZV(P)

be such that r(¢) = 0. For any ig,...,iq € I, there exists a polynomial Pig...i, €
C|[V] such that Pig..i, = (Di, -+ Dj )'N (@in...iq|.\'mmi,,)‘ Each polynomial &y, ;,,

g
ig, - - -,%q € I, vanishes on X because ¢y, ;, vanishes on X;, ; and the set X;,

is dense in X. Since the ideal I(X) is generated by P,. .., Py, for any polynomial
Dig...iy» G0+ - iq € I, there exist polynomials Py, 4,y Pr,..4,, such that

T
Bivooig = 3 PiPrig.i, -
J=1
Let P = {(Di() "’Di,,)—ij,in...i.,}io,u.,i,,el € CK,(P), j=1,...,n. Then ¢ =
k
Zj:l Pjp;. Set
k

'(Z)':zej @QOJ € K ®C1(([(P) :Cq.N(P)
j=1
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Then

n n n
d@)=d' | D e 0w | =3 dle) @ =) Pi®y =y
j=1 j=1

j=1

Thus for any N € N, any ¢ 2 0, and any ¢ € C§ (P) such that r(¢) = 0, there
exists € Cf y(P) such that d'(¢) = . 0

Theorem 6.5. Let V' be an infinite-dimensional Banach space that admits
smooth partitions of unity and let P = P(V). If X is a complete intersection in
P.then HY(C(X,Ox(k))) =0for ¢ > 1 and any k € Z.

Proof. The sequence of complexes

0 C(X) & Coemvnme=Cpy <—d—/~Cp<—-~<—Cn+—O
is exact by Proposition 6.1 and Lemma 6.4. Since each K, is a free C[V]-module,
we have HY(C,) = I, @ HI(C(P)) for p = 0,...,k, and ¢ > 0. By Theorem 5.1,
HIC(P)) = 0 for ¢ > 1. Hence HI(Cp) =0 for p=0,...,n and ¢ > 1. Let B;

be the complex coker{C; & Cit1}, 7 =0,...,n. We note that By = C(X) and
B, =C,. For any j =1,...,n, we have a short exact sequence

0B, & ¢ B —0

Using the long exact sequence of cohomology groups, we derive by descending
induction cn j that H9(B;~,) =0forg>1andj=mn,...,1. Hence H(C(X)) =0
for ¢ > 1 and this implies H9(C(X,Ox(k))) =0 for ¢ > 1 and any k € Z. O

Acknowledgements. I am greatly indebted to Prof. Lészlé Lempert for the
interesting problem and the useful discussions during the work on it.
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COHOMOLOGY GROUP OF HOLOMORPHIC
LINE BUNDLES ON COMPLETE INTERSECTIONS
IN INFINITE DIMENSIONAL PROJECTIVE SPACE

BORIS KOTZEV

We consider a complex submanifold X of finite codimension in an infinite-dimensional
complex projective space P and prove that the first Dolbeault cohomology group of all
line bundles Ox (n), n € Z, vanishes when X is a complete intersection and P admits
smooth partitions of unity.

Keywords: Dolbeault cohomology groups, infinite-dimensional complex manifolds,
projective manifolds, vanishing theorems
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1. INTRODUCTION

In this paper, we prove a vanishing theorem for the first Dolbeault cohomology
group of the line bundies Ox(n), n € Z, where X is a complete intersection in an
infinite-dimensional projective space P which admits smooth partitions of unity.

For a given complex Banach space V, the associated complex projective space
P(V) consists of all complex lines in V. The set P(V) has a natural structure
of complex manifold which is described in detail in [3]. For a submanifold X of
finite codimension in P(V') the complexified tangent bundle T¢ X, the holomorphic
tangent bundle 779X, and the antiholomorphic tangent bundle T%!X of X can
be defined as in finite dimensions. Given a vector bundle E — X, we define (0, ¢)-
forms on X with values in E as bundle maps from 799X = AYT%!X to E. For
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any open set U C X, we denote by Cf (U, E) the vector space of all r-times
continuously differentiable (0, ¢)-forms with values in £, 0 < r < oo. We will also
write C™(U, E) instead of C§o(U, E), Co ¢(U, E) instead of C3 ,(U, E), and C(U. E)
instead of CQ (U, E). When the vector bundle E is holomorphic, the J-operator,
d: Ce (U, E) — ng;il(U, E), r > 1, is defined by means of Cartan’s formula for
the exterior derivative. The Dolbeault cohomology groups H%9(X,E), ¢ > 0, of a
holomorphic vector bundle £ — X are defined as in finite dimensions:

{closed smooth (0, g)-forms with values in E'}

H*(X,E) = , :
( ) {exact smooth (0, g)-forms with values in E}

We refer to [5] for a detailed treatment of (p, g)-forms with values in vector bundles
and the J-operator on infinite dimensional complex manifolds.

L. Lempert has proved in {5, Theorem 7.3} that if £ — P(V) is a holomorphic
vector bundle of finite rank over localising infinite-dimensional complex projective
space P(V), then H®9(P(V),E) =0, ¢ > 1. The extra condition on the projective
space P(V') has to do with the existence of bump functions. A differentiable mani-
fold M localises if, for every nonempty open set W C M, there exists a smooth not
identically zero function ¢ : M — R that is supported in W. Every Hilbert space
localises whereas the space /! does not [4]. A projective space P(V) associated
with a locally convex topological vector space V' localises if and only if V localises
[5, p- 509].

In this paper, we partially extend some of the results in [5] to complete in-
tersections in infinite-dimensional complex projective space. The methods we use
require that even stronger conditions should be imposed on the projective space
P(V). Namely we have to assume that P(V) admits smooth partitions of unity. A
differentiable manifold X admits smooth partitions of unity if, for any open cover
{Ui}ier of X, there are 8; € C°(X), supported in U; such that ), 6; = 1, the
sum being locally finite. Hilbert spaces are examples of such manifolds. Separable
and reflexive Banach spaces that localise are other examples. Paracompact mani-
folds modeled on spaces that admit smooth partitions of unity also admit smooth
partitions of unity. In particular, if V' is a Banach space that admits smooth par-
titions of unity, then the associated projective space P = P(V} admits smooth
partitions of unity. We refer to [1] for more details about smooth partitions of
unity.

Here is a brief outline of the contents of the paper.

In Section 2, we consider a closed form f € Cf ; (P(V),Op(v)(n)), 1 <r < oo,
n € Z. In Proposition 2.2.1 and Proposition 2.2.2, we prove that if V localises
and flw € C§G(W,Opy(n)) for some none-empty open set W C P(V), then
f is exact. Both propositions are generalisations of {5, Theorem 7.3] for (0,1)-
forms. The difference is that the differential form f is assumed to be smooth in
[5], whereas for our purposes we have to give a proof for differential forms that
are smooth on a proper open subset of P(V'). Let us emphasise that these results
are global. The local solvability of the d-equation can not be taken for granted in
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infinite dimensions - see [6] for an example of a complex Banach space V' and a
closed form f € C§5(V) which is not exact on any nonempty open subset U of
V. In the proofs we use Lempert’s idea to solve the D-equation on the blow up
Bl P(V") of P(V) at a point z € P(V).

In Section 3, we prove the main result of this paper. The proof consists of
two parts. The first part is to find local solutions to the J-equation: we con-
sider an arbitrary submanifold X of finite codimension in P(V') and a closed form
f € C§%(X,0x(n)), n € Z, and construct an open covering {X;};cs of X and a
collection of sections {u; € C®(X;, Ox,)}ier such that Ou; = flx, for i € I. For
this part of the proof we need to assume only that the projective space P(V) lo-
calises. The second part of the proof is to solve the Cousin problem for the cocycle
{u; —u; € H*(U; UU;,0x)}ijer- That this is possible is proved in [3]. For the
second part we have to assume that X is a complete intersection and P (V) admits
smooth partitions of identity.

This paper is based on the author’s Ph.D. thesis (Purdue University, 2001).

2. THE §-EQUATION ON INFINITE-DIMENSIONAL PROJECTIVE SPACES

Let X be a complex manifold and let Y be a submanifold of X of codimension
1. We recall that there cxists a holomorphic line bundle Ly over X, and a section
uy € H(X, Ly) such that Yuy*(0) and duy (y) # 0 for any y € Y (where duy (y)
is calculated in some local trivialisation of Ly at y). Let L — X be a complex line
bundle. Given a section v € C(U, L) on an open set I/ C X, we say that u is locally
bounded at a subset X’ C X if for any 2’ ¢ X' there exist an openset W 3 2’ and a
local trivialisation ¢ : Ly — W x C such that the function pegufwny : WNU — C
is bounded on W N U. We say that u vanishes at X' if for any 2’ € X’ and any
real number € > 0 there exist a neighbourhood W of 2’ and a local trivialisation
¢ : Liw — W x C such that |pegu(z)| < e for all z € WNU. Given a submanifold
Y of codimension 1 in X, and an integer n € Z, we write u = O(Juy|™) at Y (resp.
u = o(|juy|™) at Y') if the restriction of u®uy™ to U\Y is locally bounded at Y (resp.
vanishes at Y). Given a differential form f € C1(U, L), we write f = O(Juy|™) at
Y (resp. f = o(juy|™) at Y) if f(Q) = O(Juy|™) at Y (vesp. f(Q) = o(|uy|™) at
Y) for any vector field Q € C®(X, TcX).

In 2.1.1 we will need the concept of a weak solution of the d-equation. Let
A be an open subset of a complex Banach space V. Suppose that v € C(A) and
f € Co1(A). We say that Gu = f in the weak sense if for any finite dimensional
affine subspace F' C V, 8(u|rna) = f|Fna holds in the sense of distribution theory.
For example, if for any z € A and any £ € V the directional derivative

Bu(z:F) = % d/dtlsmo{u(z + €) + iz + it€))
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exists and Ou(z;€) = f(z;€), then Bu = f in the weak sense. We will use the
following fact from “elliptic regularity theory”:

Proposition 2.1 If u € C(A), f € C§,(U), 1 <7 < o0, and 8u = f in the
weak sense, then u € C"(A) and Ou = f holds according to the original definition
of the 0-operator.

Proof. See {5, Proposition 9.3]. O

2.1. THE 0-EQUATION FOR (0, 1)-FORMS ON Pl.BUNDLES

In this section, we consider first a trivial P!-bundle 7 : X = B x P! - Bover
a complex manifold B. Let ¢ be the projection X = B x P! — P, For an integer
n € Z, we denote by Ox (n) the holomorphic line bundle ¢*(Op1(n)) over X.

Let z: P!\ {o0} — C and w = z7! : P!\ {0} — C be the local coordinates
on P!\ {00} and P\ {0}, respectively. A section u € C"(W, Ox(n)) on an open
set W C X is represented by a pair of functions u; € C™(W \ B x {o0}) and
uz € C"(U \ B x {0}) such that

ug (b, w) = w™uy (b,w™?), (bywye W, w+#0. (2.1.1)

) Proposition 2.1.1. If f € CE,I(PI\{y},Opx (n),y€ P, neZ 0<r<oo,
is such that f = O(Jugy}|™), then there is a unique section u € Cr(P"\{y},0p:(n))
such that du = f and u = o(|u(y}|") at {y}.

Proof. The section u is unique because if v € HO(P' \ {y},Op:1(n)) is such
that v = o(|ugy}|™) at {y}, then v = 0.

To prove the existence of u, we can assume that y = co and write f = F(z)dz
with F € C"(C). Relation (2.1.1) yields f = —w"w 2F(w™!)dw, w # 0. Since
f = O(|s{s0}|™), there is a constant C > 0 such that

|F(2)] < C(1+|2))72, zeC. (2.1.2)
We set
up(2) = 51—1/ /\ﬂﬁd,\/\dX, zeC. (2.1.3)
™t Je -z

Integral (2.1.3) converges by estimate (2.1.2). Moreover u; € C™(C) and 0u,/0z =
F [2, Theorem 1.2.2]. Let up € CT(P\ {0,00}) be given by ug(w) = wuy(w™?),
w # 0. Let u € CT(P'\ {00}, Op1(n)) be represented by the pair u;(z), ug(w).
Then u € C™(P!\ {0}, Op1(n)) and Ju = f. To complete the proof, we have to
show that

1}}3‘0 ur(w™t) =0.
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Let G € CT(C \ {0}) be given by G(w) = —w~2F(w™!), w # 0. Estimate (2.1.2)
yields
|G(w)] < C(1 + |w])~?, w#0. ©(2.14)

Making the substitutions z = w™! and A = ! in (2.1.3), we obtain
- 1 [ Gp) - / G(w) -
) = — Adp
ui(w™) 2wt Jo pu— wd“/\d'u 2mi du
Let U : C — C be given by
1 S
Uw) = —— [ ¥ 44 /G”—“’)d AdD.
2mi Jop—w = om

We claim that U is continuous on C. It is easy to see this when G can be extended
to a continuous function G on C because estimate (2.1.4) yields

WG+ w)l < Cll ™ (1 + v+ wl) ™2 < O+ w7} (1 + )2

and the function [v|71(1 + |v|)~2 is integrable on C. To deal with the general
case, we use continuous bump functions at 0 to construct a sequence of functions
Gm € C(C), m = 1,2,..., such that |Gn(p)| < |G(u)} for pp # 0, G (v) = G(v)
for |u| > m~!, and G (1) = 0 for |u| < (2m)~!. Let

1 [ Gm(p)

Um(w ~ om CH—W

dp A dp, m=12,....

Now each Uy, is continuous on C and it is not difficult to check that the sequence
Un, m=1,2..., converges uniformly to U as m - oco. Hence U is also continuous
on C. Since u3(w™!) = U(w) — U(0) for w # 0, we see that lim,—ou;(w™1) = 0.
]

Corollary 2.1.2. Suppose that u € CT(P*\{0},0p1(n)),n €Z,1 <71 < 00,
is such that u = 0(|s{x0}|") at co and Ju = O(|s{c0}|™). Then

1 [ dw/X
u1(Z)—§7; c /\_Z d/\/\dA

Proof. This follows immediately from Proposition 2.1.1 O

In the next proposition, we denote by ¢ a holomorphic section o : B — X of a
trivial P'-bundle X = B x P! — B. The submanifold o(B) C X will be denoted
by Y.

Proposition 2.1.3. Suppose that f € C§,(X \Y,0x(n)),n€Z,1 <r < oo,
is a closed form that satisfies the following conditions:
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(i) £ = Olluy ") at Y;
(ii) if Q@ € C(X,TcX) is a vector fleld that is tangent to Y, then f() = o(|uy ™)
at Y and 0(f(Q2)) = O(juy|*) at Y.

Then there exists umque u € C7(X\Y,Ox(n)) such that Ou = f and u = o(juy|™)
at Y.

Proof. The uniqueness of u is established as in the proof of Proposition 2.1.2.
To prove the existence of 1, we can assume that o : B — X is the section given by
o(b) = (b,o0), b € B and thus Y = B x {oo}. Then we write f|«c = F(b,z)dz

and set F(b,\
/ ) diadx, (2.1.5)

where condition (i) makes sure that the mtegral converges. One verifies, as in the
proof of Proposition 2.1.1, that u; is a continuous function on X \ Y and that u;
vanishes on Y. Let us be given by

ui(b,z) = ot

us(b, w) = wuy (b, w"l), w#0,

and let u be the section of Ox{n) on X \ Y that is represented by the pair
uy (b, 2),u(b,w). Tt is clear that v = o(juy|*) at Y.

According to Proposition 2.1.1, we have 8(u|{p}xc) = fl{p}xc. b € B. To prove
that u € CT(X \ ' Y,Ox(n)) and du = f, it is enough to show that 5('u1|3x{z}) =
flBx{z) weakly for any z € C. This implies Ou = f weakly and then the claim
follows from Proposition 2.1. Let z € C and let w € C®°(B x {z},T%Y(B x {z})).
Define a vector field Q € C®(X,T%'X) by Q(b,p) = w(b,2), p € P! It is clear
that © commutes with the vector field 8/8z € C=(X \ Y, T%1X), i.e [2,0/8z] =0
on X \'Y. Since f is closed, Cartan’s formula yields

0=0f(,0/0%) = Q(f(8/9%)) - 8/02(f(2)) — ([2,8/07]).

Hence QF = Q(f(0/0%)) = 0/0z(f(2)). Formal differentiation in (2.1.5) yields

Qua(b,2) = 1/9@”—”(»/\&:# I/ONSENBN) 4 44X (2.1.6)
2wt Jo A —z 2mi Je A=z

Since the vector field  is tangent to Y = B x {oo}, condition (ii) holds for f(Q)
and it follows, from Corollary 2.1.2, that Qu = (). Hence E(UIBX{Z}) = flBx{z}
weakly.

Formal differentiation in (2.1.5) is justified as follows. It follows from the
growth estimate 9(f(€2)) = O(]sy|") that for any b € B there is a neighbourhood
U 3 bg and a constant C > 0 such that

|8/OX(F(Q2))(b, A)| < C(1+ |A\))72, beU XeC.

188 Ann. Univ. Sofia, Fac. Math. Inf., 97, 2005, 183-204.



Since the function |X — 2](1 + |A])™2 is integrable on C, integral (2.1.6) converges
uniformly in b € U. Thus formal differentiation in {2.1.5) is justified. a

In the next two propositions, we consider a (not necessarily trivial) P!-bundle
7w : X — B over a complex manifold B which has a holomorphic section o : B — X.
The codimension 1 submanifold o(B) C X will be denoted by Y.

Proposition 2.1.4. Let L — X be a holomorphic line bundle such that for
any b € B there is a neighbourhood U 3 b for which L-1(y) = Or-1(y)(n) for some
fixed integer n < 0. Then for any closed form f € C§ ;(X,LYNCF (X \Y,L), 1 <
r < o0, there exists a unique section u € C™(X \ Y, L) such that Ju = f and
u=o(luy|") at Y.

Proof. Let {U;}ics be an open covering of B such that L|,-1(u,) = Or-1(y,y(n),
i € I. Denote Y N« (U;) by Y;. Conditions (i) and (ii) of Proposition 2.1.3 hold
trivially for f|.-1(y,) and uy; because n < 0. For each i € I Proposition 2.1.3 yields
a unique section u; € C™(7~Y(U;) \ 'Y, L) such that Gu; = f on 7~} (U;) \ ¥; and
U = o(]uYi]”). For i, j € I the restrictions ui’ﬂ,—l(Ui)nﬂ.—x(Uj) and Ujl,r—l(ui)nﬂ-—l(Uj)
are the same because u;ily,ny; = o(|uy;ny;|®) and ujly,ny; = o(Juy,ny;|™). Hence
the sections u;, i € I, paste together to a section u € CT(X\Y, L) such that fu = f
on X\Y and u = o(Juy|*) at Y. The section u is unique because if a holomorphic
section s € H°(X \ 'Y, L) is such that s = o(|luy|") at Y, then s = 0. O

We recall that a smooth vector-valued function u on a real differentiable man-
ifold X vanishes at € X of order k + 1 if all differentials d%u, d'w, ..., d*u
vanish at x. Given a vector bundle E — X and a section u € C*°(X, E), we say
that u vanishes at x € X of order k + 1 if for some (or any) local trivialisation
¢ : Ely — U x R" of E about z the vector-valued function pegujy : U — R
vanishes at z of order k£ + 1. Given a differential form f € Cf°(X, E), we say that
f vanishes of order k + 1 at z € X, if for any neighbourhood U of z and any vector
field Q € C(U,TX) the section f(Q2) € C*°(U, E) vanishes of order k + 1 at .
Let X’ be a subset of X. We will say that f € C$°(X, F) vanishes of order k + 1
at X' if f vanishes of order k + 1 at z for any z € X'.

Proposition 2.1.5. Let L — X be a holomorphic line bundle such that for
any b € B there is a neighbourhood U 3 b for which Li-1y) & Or-1(yy(n) for
some fixed integer n > 0. Suppose that f € Cf (X, L), 1 <1 < oo, is a closed
form such that

(i) f € C§5(W, L) for some open set W D Y;

(i) f vanishes of order n at Y;

(iii) f(©2) vanishes of order n + 1 at Y for any vector field @ € C*°(X,T¢(X))
that is tangent to Y.
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Then there is a unique u € C"(X \Y, L)NC®(W\Y, L) such that du = f on X \Y
and u = o(|uy|*) at Y.

Proof. Condition (ii) yields f = O(|uy|™). Condition (iii) yields f(Q) =
o(Juy|™) and 3(£(R)) = O(juy|") for any vector field Q € C®(X,Tc(X)) that is
tangent to Y. Let {U;}icr and Y;, ¢ € I, be as in the proof of Proposition 2.1.4.
Then conditions (i) and (ii) of Proposition 2.1.3 hold for f|,;-1(y,y and uy,, i € I,
and the rest of the proof is analogous to the proof of Proposition 2.1.4. O

2.2. THE O-EQUATION FOR (0, 1)-FORMS ON PROJECTIVE SPACE

In this subsection, we consider a projective space P(V'), corresponding to a
complex Banach space V, and apply the results from the previous subsection to
construct a solution of the equation du = f for (0, 1)-forms on P(V) with values
in the line bundle Op(v)(n), n € Z. For a description of the complex structure
of P(V), we refer to [3, Sec. 3] . In the proofs we will use the blow up manifold
Bl (P(V)) of P(V) at a point x € P(V), which is described as follows. For a given
z = [vg] € P(V), we denote by V' the factor-space V/[v], and by ¢ the factoring
linear map from V to V’. To simplify the notation, we will write P (resp. P’)
instead of P(V) (resp. P(V’)). The blow up Bl (P) of P at x is the set

Bl (P) = {([v],[v']) € P x P’ : q(v) € [v']}.

Let 7 (resp. p) be the restriction of the projection Px P' — P’ (resp. Px P’ — P)
to Blz(P). To make Bl (P) into a complex manifold, we first choose a bounded
linear functional [ on V' such that z € P; and then, for any I’ € V™*, I’ #£ 0,
define a coordinate map ¢y : 7~ (P},) — P} x P! by the formula ¢y ([v], [v']) =
([v'], ' (p(v)) : Y(v)]). The family of coordinate maps ¢y, I’ € V'*, I’ # 0, endows
Bl.(P) with a structure of a complex manifold such that the maps m and p are
holomorphic. Furthermore, the map  is a locally trivial projective line bundle over
P’, and the map p is biholomorphic outside the exceptional divisor E = p~!(z) of
Bl(P). We note that the map o : P’ — Bl (P), given by the formula o(f+']) =
([vo], [v]) for [v'] € P, is a holomorphic section of 7 such that o(P’) = E.

Proposition 2.2.1. Let f € Cf,(P,0p(n)), r > 1, n <0, be a closed form.
If dim P > 1, then there exists a unique section u € C"(P,0Op(n)) such that
Ju=f.

Proof. Since H°(P,Op(n)) = 0 for n < 0, the equation du = f cannot have
two distinct solutions. To prove the existence of a solution wu, it is enough to show
that, for any x € P, there exists a section u; € C"(P \ {z},Op(n)) such that
Ouy = f on P\ {z}. Indeed, let y € P, z # z, and u, € C"(P\ {y},Op(n))
be such that dv, = f on P\ {y}. Then s = u, —u, € HY(P\ {z,y},0p(n))
extends to a global holomorphic section § of Op(n) by Hartogs’ theorem. Let
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€ C™(P,0p(n)) be given by u; on P\ {z} and by uy + 3 on P\ {y}. Then
u = f.

Solet z € Pandlet f = p*f € C5.1(Blz(P), p*Op(n)). By Proposi-
tion (2.1.4), there is a section @ € C"(BI, P \ E, p*Op(n)) such that 84 = f. Now
the map p is biholomorphic on Bl (P)\ E, and u, = (p~!)*f € C"(P\ {p}, Op(n))
is such that du, = f on P\ {z}. ]

Qi &

To deal with (0,1)-forms with values in the line bundles Op(n), n > 0, we
consider a special class of Banach spaces. They have the property that for any
nonempty open subset W C V, there exists a not identically zero function w €
C*(V) that is supported in U. A differentiable manifold M that has this property
is called localising (cf. [5, Sec. 7]), or we will say that M localises. The projective
space P(V) localises if and only if the Banach space V localises [5, Sec. 7]. All
Hilbert spaces localise because the square of the norm is a smooth function. The
Banach space ! is an example of a space that is not localising [4].

Proposition 2.2.2. Let V be a Banach space that localises. Suppose that
f € C,(P,0p(n)), n 20, 721, is a closed form such that f € C53 (W, Op(n))
for some nonempty open set W C P. Then there exists a u € C"(P,0Op(n)) N
C=(W, Op(n)) such that du = f.

Proof. We will assume that V is an infinite dimensional Banach space (for
dimV < oo the proposition is well known under much weaker conditions on the
regularity of f). Then it is enough to show that for any z € W there is a
uy € CT(P\ {z},Op(n)) such that du, = f on P\ {z} (cf. the proof of Proposi-
tion (2.2.1)

So let z € W and P’ be a hyperplane in P which does not contain z. Let W’
be a neighbourhood of z such that W/ ¢ W and W/N P’ = (). Since the line bundle
Op(n) trivialises on W', there exists v’ € C®(W',Op(n)) such that fly — Ou’
vanishes of order n at = (see [5, Theorem 3.6]). Let w € C™(P) be a cut-off
function that is supported in W', and equal to 1 in a neighbourhood of z and let g =
f—08(wv). Then g € C§ (P, Op(n))NCES (W, Op(n)) is a closed form that vanishes
of order n at z. Consequently, § = p*g € Cf 1(Blp(P), p*Op(n)) is a closed form
that is smooth on p~!(W) and vanishes of order n at E. Moreover, if {1 is a smooth
vector field on Bl;(P) that is tangent to £, then §(?) vanishes of order n+1 at E
because p.(TcE) = 0. By Proposition 2.1.5, thereisa @ € C" (Bl (P)\E, p*Op(n))
such that 8 = § on Bl (P)\ E. Set uz = (p~1)*@& +wv € C™(P \ {z},Op(n)).
Then Jug = f on P\ {z}, which completes the proof. O

3. ANALYSIS OF REGULARITY

Let X be a submanifold of finite codimension n and degree d in P = P(V)
and (V',W,2) be an admissible triple for X (see [3, Section 3]). Let p: X —
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P(V') be the map induced by the projection V.= W x V' — V'. According
to [3, Proposition 4.2, for any given f € C§,(X,0x(n)), n € Z, there exist
unique forms f; € Cf (P(V')p,Opwn(n—j)), j=0,...,d— 1 such that f|x, =
YI0 (wlxn) g ® 2.

The differential forms f;, = 0,...,d — 1, should not be expected to behave
in a regular manner along the divisor D = Z(D) (see Example 1 below). However,
their behaviour can be improved to a degree by twisting with powers of D. Thus
for any natural number N, we define new forms

YV € Cor(P(V'),0pwn(n—j+NdegD)), j=0,....,d-1,
in the following way:

N b6) = { D(b)N £;(b,€) for b e P(V')p and € € T P(VY),
A 0 for b ¢ P(V')p and € € Ty  P(V').

The following proposition is the main result in this section.

Proposition 3.1. Let f € C§{(X,0x(n)), 1 <r<oo,n€Z I N >4r+3,
then

N eCr (P(V),0pyy(n—j+NdegD)), j=0,...,d—1.

The proof of Proposition 3.1 will be given later in this section.

Since the vector bundle 7 : P\ P(W) — P(V’) trivialises over every affine open
set P(V')n, 0+# h € V'™, we will prove first an affine version of Proposition 3.1.

From now on we will assume that X is an algebraic manifold of finite codi-
mension n in a Banach space V. Let (W, V') be an admissible factorisation for X,
and let Z1,..., Z, be a basis of W* such that z = Z; + I(X) € C|[X] generates the
field of fractions of C[X] over the field of fractions of the C[V’]. We denote by D
the discriminant of the minimal polynomial of z over the field of fractions of C[V’].
The restriction of the projection p : X — V’ to Xp will be denoted by pp. By
[3, Proposition 2.3] the holomorphic map pp : Xp — Vp is a covering of degree
d = deg F. For a given f € C§,(X), let g = f|x,,- By [3, Proposition 4.3] there
exist unique forms g; € Cf ,(Vp) 7 =0,...,d ~1 such that g = Z‘;;é 22 m*g;. For
any natural number N we define new forms g;" € Coa(V’), 7=0,...,d—1, in the
following way:

g (b,¢) = D(b)Ng;(b,€) for be V) and §€T£’1V’
95 \6,8)= 0 for b&/Vb and gETbO'lV'.

Proposition 3.2. Let f € C§;(X), 1 < r < oo, and let g = f|x,. If
N > 4r+3, then gN € CF ,(V'), j=0,...,d -1,

~ The proof of this proposition will be given later in the section.
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The following example shows a typical behaviour of the forms g;, along the
divisor D = Z(D). Let V = C? and let X = {(¥,Z) € C? : Z? = Y/4}. Set
z=Z|x €C[X). Let W ={(0,2) € C?*: Zc C}and V' ={(Y,0) e C*: Y € C}.
Then the projection p : X — C given by p(Y, Z) =Y is finite and surjective, and
z generates C[X] over C[V'] = C[Y]. The discriminant of the minimal polynomial
F=2722-Y/4is D=Y. Thus D = {0}, V), = C\ {0}, and Xp = X \ {(0,0)}.

Ezample 1. Let X C C? be the quadric described above and f = dZ|x. Then
87 dz = p*(dY), and solving for dz, we obtain

1

g = Erbld?) = 5= Ppd¥) = zpp(zpydT).

Hence go = 0 and g1 = 27 !|Y|~1dY. It is easy to see that, for every natural number
r, there exists a natural number N, such that §¥ = 2-1Y|~'YN dY ¢ C™(C) for
N > N,.. However, there is no natural number N such that g € C*(C).

Suppose that r : U — X is a right inverse to pp on some open set U C V), i.e.
ppor =idy. Let e1,. .., e, be the basis of W which is dual to the basis Z;, ..., Z,.
Let R; = zjor € H'(U,Oy), j=1,...,n. Then

)= (5, S Rybley) € X CV/ xW
j=1

for all b € U. Since F(z) = 0, where F is the minimal polynomial of z, we
obtain F(R;) = 0. As in [3, Lemma 2.3, there exist polynomials F; € C[V'](Z],
j:27--"n, Such that

R;=D7'Fj(R1), j=2,...,n. (3.1)

The holomorphic map r» : U — X C V induces a complex linear map r.
from the complexified tangent space of b € U to the complexified tangent space of
r(b) € X, r : TEU — r(b )X CT wV forallbe U. For § € TEU, we denote by
r.(b, &) the image of £ in TS (b)X Smce V' and V are vector spaces, we can naturally
identify TLU and Tf(b V with V'@V’ and VoV = (V'&V")x (WOW), respectively.
Since the map r is holomorphic, r, (Tbl’OU) C TTI(E)X and 7, (Tl?‘lU) C TTO(’;)X. The
restriction of r, to T, bl °U will be denoted by dr, and the restriction of r, to Tb0 1y
will be denoted by dr. For any vector £ € Tbl’OU , its conjugate vector £ is in Tl? U,
and dr(b, &) = dr(b, €). It is clear that for £ € Tbl’OU we have

() d ! 2
ra(b,6) = f?_:lR(bf)az)EVXW (3:2)
where dR; is the differential of the holomorphic function R;, 7 =1,...,n.
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The next lemma is the main step in the proof of Proposition 3.2.

Lemma 3.3. There exists a smooth function H : V x V' — V such that:
(i) for any open set U in V}, and any right inverse r : U — X to pp on U we have
dr(b,€) = D(b)"2H(r(b),£) for bc U and £ € V',
(it) H(z,£) € T}°X forz € X and £ € V*;
(iii) H is linear in £ € V.

Proof. We want to find the coefficients dR;(b,§), j = 1,...,n, in (3.2). Since
the function R; satisfies the equation F(R;) = 0, we use implicit differentiation to
find dRy(b,€). Then we differentiate (3.1) to find dR;(,£), 7 =2,...,n.

Let F = Z% 4+ a;Z4 1 + ... + a4, where a, € C[V'], m = 1,...,d, and let
F' € C[V']|Z] be the derivative of F with respect to Z.

Since F(R;) = 0, we obtain

d
F'(Ri(5)dR1(b,6) + Y dam(b,€) Ra())* ™ =0. (3.3)

m=1

It is well known (see for example [7]) that there exist polynomials A, B € C{V'][Z]
such that
AF+BF' =D.

Hence
F'(Ry(b))™" = D(b) "' B(R1(b)) (3.4)

forbe U and £ € V’. Let H; € C®(V x V') be the function given by

d
Hy(v,6) = ~B(Z1(v)) Y dam(m(v),€)Z1(v)* ™.

m=1
It follows from (3.3) and (3.4) that
dRy(b,€) = D(b) " Hi(r(b),€) (3:5)
forbeUand £ e V. '

Let F; = Z:in;loaijd_m‘l € C[V'||Z), 5 = 2,...,n, where a,,; € C[V']
for j =2,...,n,and m = 0,...,d — 1. Let F] € C[V'|[Z], j = 2,...,n, be the
derivative of F; with respect to Z. Since R; = D7 'F;(Ry), j = 2,...,n, (by
equation (3.1)), we obtain

dR;(b,€) = —D(b)*dD(b,€)Fy (R (b)) + D(b) " dRu (b, ) F}(Ra (b))+

d—1
+ D)7 S dam(b, R (0)* ™ (by (3.5))
=0
= —D(b)"2dD(b,£)F;(Ra (b)) + D(b) *Hi(r(b), £) F} (R (b))+
d-1
+ D)™ dam;(b, R ()™ | (3.6)
m=0
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Let H; € C®(V x V'), j =2,...,k, be the function given by

H;j(v,§) = —dD(n(v),¢ ) i(Z1(v ))+H1(w,£)F}(Zl(v))+

D(p(v)) Zdamj ), Z1 ()

It follows from (3.6) that dR;(b,€) = D(b) >H,(r(b),&) for j=2,...,n
Finally, let H : V x V! — V be the smooth function given by

A

k
H(v,€) = (D(r())’¢, D(”(U))Hl(v,i)a_az—; + > Hj(v, 5)6—(92—; ).
=2

It follows from (3.1), (3.5), and (3.6), that (i) holds for H.
To prove that (ii) holds for H, we notice first that if z € Xp then there exists

an open neighbourhood U C V}, of p(z) and a right inverse r : U — X to pp on U

such that r(p(z)) = z. By part (i) we have H(z,£) = D(p(z))? r.(p(z), &) € T} X
for all £ € V'. Thus (ii) holds for H if z € Xp. Let B XXV S TWOV =V xV
be given by the formula H(z &) = (z,H(x, f)) for (y,€) € X x V’. It is clear that
H is a continuous map and H(Xp x V') ¢ T*°X. Since T" %X is a closed subset of
TV, and Xp x V' is a dense subset of X x V', we see that H(X x V') ¢ T}°X.
Hence condition (ii) holds for H. Finally, condltlon (iii) also holds for H because
all functions H;, 1 =2,...,n, are linear in &. 0

We will need a similar result for the restriction of 7, to the bundle T%1U.

Lemma 3.4. There exists a smooth function H : V x V7 — V such that:
(i) for any open set U in V), and any right inverse 7 : U — X to pp on U we have
dr(b _) D) ~ H(r(b) E)forbe U and £ V7;
(i) H(z,&) e T X for z € X and £ € V7,
(iii) H is linear in £ € V.

Proof. Let H : V x V! — V be given by H(w,€) = H(w,£) for w € W,
§ € W'. It follows from Lemma 3.3 that (i), (ii) and (iii) hold for the map H
because dr(b, &) = dr(b, ). a

We denote by Xg the real manifold associated with the complex manifold X.
For any = € X there is a natural inclusion

TeXgp = TEX = C @ Tp Xg = TVOX @ TO'X

given by

1 1 . 1 1
TIXRaﬁH§(l®n+2—.®m)€9§(1®n—;®m)GT;’OX@TQ’IX-
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For a given vector 1 € Ty Xgr, we denote by n''0 and %1 the vectors %(1 N+ % ®in)
and $(1 ® 7 — 1 ®in), respectively.

If £ is a complex vector space, then the real tangent bundle TEgr — Ep is
naturally isomorphic to the trivial bundle Eg X Egx — Eg. Thus, for any b € Eg,
we can canonically identify T, Er with Eg.

Lemma 3.3 and Lemma 3.4 are combined in the next lemma, to prove a similar
result for the map r, : TUp — TVk.

Lemma 3.5 There exists a smooth function R : Vg x V{ — Vg such that:
(i) for any open set U in V}, and any right inverse r : U — X to pp oa U we have

ro(b,7) = D)2 D) R(r(b),n) for b€ Up and 1 € V;
(i) R(z,n) € Ty Xg for z € Xy and n € Vg;
(iii) R is R-linear in n € V§.

Proof. For any b € Ug and any n € Vg
ru(b,7) =7 (b, n"0) + 7 (b, 7*1)

= dr(b,n"%) + dr(b,n"")
= D(b)"*H(r(b),n"°) + D(b)
= D)D) {DB) Hr®)n'®) + DEPHEO), )} . (37)

Let R: Vg x Vg — Vg be the map given by

R(v,n) = D(x(v)) ? H(,n'%) + D(x())* H(v,n®>), veVr,ncVg. (3.8

Eq. (3.7) shows that condition (i) holds for R. If z € Xg, then the vectors

D(p(x))2H(m,nl’O) and D(p(z))>H(z,n>!) are conjugate to each other. Hence
R(x,n) € T, Xg for x € Xg. Thus condition (ii) holds for R. It is clear from (3.8)
that R is R-linear in 7. |

Lemma 3.6. Suppose that g € Cf,(Xp) is such that g = f|x, for some
f € C%1(X). Then there exists a function G € C™(X x V') such that:
(i) for any open set U in V}, and any right inverse r : U — X to pp on U we have
r*g(b,€) = D(b) G(r(b), € forbelU and £ € V;
(ii) G is linear in £ € V7.

Proof For z € X and € € V7, let G(z,€) = f(z, H(x,£)), where H is the

map (ieﬁned in Lemma 3.4. We note that the right-hand side makes sense because
H(z,£) € T21X by part (ii) of Lemma 3.4. Let us verify that (i) holds for G:

g (0,8) = F(r(b), dr(5,)) = £(r(0), D) H(r(b),5) =DB)  G(r(8).%).
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The definition of G shows that it is linear in € € V7. O

Proposition 3.7. Let f € Cf(X) and g = f[x,. Suppose that g; €
Ce.(Vp), 5 =0,....d —_1, are such that g = Z?;é 27 m*g;. Then there exist
functions G; € C™(X% x V'), =0,...d — 1, such that: N
(i) each function G; is symmetric in (z1,...,24) € X® and linear in £ € V7;

(it) g;(,8) = DO)'DE) ~ C(r1(b),...,ra(b),E) for j = 0,...,d— 1, b € V),
£ €V, where {r1(b),...,ra(b)} is the fiber of pp : Xp — VJ, over b € V.

Proof. Let b € V[, and let U C V}, be a neighbourhood of b such that the
covering map pp : Xp — V}, has d distinct right inverses r; : U — Xp on U,
por;=idy, i =1,...,d. Then, according to {3, Proposition 4.3,

g](b’g) = D(b)—lA(b) det Aj (b7 E)

where
A= [ (ru®) = 2(ri,(3)),

1<y <in<d

and A;(b,€) is the d x d matrix

Lo2(m@®) - 2@ g0 () - a(ra(b)d!
1 o2(ra(B)) - 2P rig(bE) z(ra)yt - z(ra(b))?
e e e R

According to Lemma 3.6 rfg(b,€) = D(b) - G(ri(b),€) for i = 1,...,d. Hence
det A;(b,) = D(b) _ det B;(b, &), where B;(b,€), 5 =0,...,d— 1, is the matrix

Loz(ri(b)) - 2((®)™h G(ri(b),€) z(ri(d)* oo z(ri(b))*!
1oz(ra(b)) - 2(ra(®))7t G(ra(b),€)  2(r2(b))FT - 2(ra(b))*?
U 2ra®) o reP7 Glral8)E) ra®) - alra(®)i?

Let § : X¢ — C be the smooth function given by

5(:1:1,...,23,1) = H (Z(xiz)—z(xil))'

1<y <ip£d

Let Cj(xl,...,zd,Z), 7=0,...,d -1, be the matrix

1 oz2(xy) - z@)Y G1,€) z(z)ITY oo z(x)d?
1oz(z2) - z(py ' G(z2,8) z(y2)™ - z(z)*?
i Z(xd) ........ Z(Id)J = G(xd’é) . z(xd)ﬁl e z(md)d—l
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Finally, let G; : X¢x V' - C, j=0,...,d — 1, be given by
Gj(xl,...,md,f) = (5(.’1,‘1,...,1',1) deth(ml,...,xd,Z)

for j = 0,...,d — 1. The definition of G; shows that it satisfies (i). Since A(b) =
6(r1(b),...,ra(d)) and B;(b,€) = Cj(r1(b),...,ra(b), &), we see that (ii) also holds
for G, j=0,...,d~1. O

Let w € C§,(V)) and let my,...,7m be vectors in Vg, (m < 7). The derivative
of order m of w at the point (b,£) € (V5)gr x V7 in the directions n,. .., 7m will be
denoted by d*w(b, 'é, M,---,Mm). Foranyw € Cf ,(Vp) and any natural number N,
we will denote by w” the form DVw € CF,(V}). The next lemma is an extension
of Proposition 3.7 to the derivatives of the forms 95, 3=0,...,d-1.

Lemma 3.8. Let f € C§;(X), 1 <7 < o0, and g = f|x,. Suppose that
g € C51(Vp), 3 =0,...,d — 1, are such that g = Zd_é 27 w*g;. Then for any
0<m<r 0L j<d-1 and any natural number N there exists a function
GN, € C~™(X* x V' x V'g") such that:
(i) G’;.Vm is symmetric in z1,...,2z4 € X% and linear in £ € V7;
(ii) for any b € V,, £ € V', and m1,...,nm € TpVg = V§ we have

bgj (b 5,771, ,77m)=

~2m—

DN 2 1ID®) T G 1 (b)s -, 7a(B) Eo 1)

Proof. The proof is by induction on m. For m = 0 the lemma is true by
Proposition 3.7. We are going to show that if 1 < m < r and there exists a function

Gy € CTTMH(XE X VT X V'&"1) such that (1) and (i) hold for G, _,, then
there exists a function GN € C"~™(Y4 x V7 x V'g") such that (i) and (ii) hold for
GN

Let b € V), and let U C V}, be a neighbourhood of b such that the covering
map pp : Xp — V, has d dxstmct right inverses r; : U — Xp, i=1,...,d,on U,
Tor; = 1dU,z-1 .,d.

To find dp* 9; (b { M, - -+, Nm), we differentiate the function

D(b)N_2m+1D(b) —2mG_!jvm—l(rl (b)’ ey Td(b)ag’ My, 7Im—1)

in the direction n, € TyVg = Vi. After applying the product rule and the chain
rule, we obtain the following terms

L Anm D(b)N-2m dD(b,nm)D(b) Gjm 1r1(0)y oy ra(®), €,y ),
where Aym = N — 2m — 1 and dD(b,n,,) is the derivative of D in the direction
Mm € TyVg = W
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Let FJ}, € CT=™+1(X4 x V7 x ™) be the function given by

fJN (T1,.. T, &1, ooy ) =
—_—2 -
AN‘m D(b) D(b) dD(bJIm) G_;ym—l(xl, ses 1md,€1 m,... 17]m—l) . (39)

IL By D(B)N=2+1D(8) """ dD(b,1m) Gy (r1(b), - -, 7a(6), & s -y )y
where B, = —2m — 1 and dD(b, Tim) is the derivative of D in the direction 7, €
T,V = W,

Let GfY, € CT=™+1(X4 x V7 x Vg™) be the function given by

gJN (l'],- . '11‘d7277ha- . 1nm) =
Bm D(b)2 D(b) d_D_(b, nm) G] m-—l(xla v ,xdvza M- 1"7171—1) . (310)

——-2m

- aG_;‘Vm——l b3
III. D(b)N—2m+1 D(b) —(r—(rl(b),...,'rd(b),ﬁ,nl,...,nm_l)(ri*(b,nm)),

k3
i=1,...,d, where

8G’;'Vm—l - .
——ar(rl (b), e ,Td(b),f, my.-- ,T]m_l) : T,.‘.(b)XR - C
T
is the “the partial derivative” of G},,_, with respect to z;, ¢ = 1,...,d, and
’I‘i,,(b,-) :Tan{ b r.—(b)XR7 1= 1,...,d,

is the R-linear map from TV to Ty, »yXr that is induced by r; : U — Xp for
i=1,...,d. By Lemma 3.5,

Pia(b,m) = D) *D®)  R(i®)nm),  i=1,...,d.
Let HY ., € CT~™(X% x V' x V§™) be the function given by

jmi

H_;'Vmi(:vl) s 7"1:11’5,7711 . 17)"1) =

OGN . -
= ay (xl’---1xds§77717--'177m-—-1)(R(yi,nm)) (311)
1
fori=1,...,d .
Finally, let GIY,, € C""™(X* x V' x V™) be the function

d
Gl =Fpn+ G+ > Hivns (3.12)

i=1
It follows from (3.9), (3.10), and (3.11) that (ii) holds for Gjn. We note that the
functions 1, and G, are symmetric in 71, .. .,%4. Since the function 3°¢ , MY, .
is also symmetric in z1,...,x4, we see that G;-‘,’n is symmetric in x;,...,z4. The
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function G;Vm is linear in £ € V7 because all terms on the right-hand side of (3.12)
are linear, too. Thus (i) holds for GJ . 0

In the proof of Proposition 3.2 we will need the following simple lemma.

Lemma 3.9. Let X, Y, and W be metric spaces and let p: Y — Z be a proper
map. Let d be a natural number and suppose that G is a continuous function on
Y? x W. Then, for any zg € Z and any wo € W, there are neighbourhoods i/
and W of zy and wg, respectively such that the function G is bounded on the set
p U x W.

Proof Since p is a proper map, the fiber F = p~!(z) is compact. Since
Fax {wg} is a compact subset of Y x W, there exists an open set A4 C Y¢xW which
contains F'¢ x {wg}, and is such that G is bounded on .A. By the tube lemma from
topology there exist an open set ¥V C Y that contains F' and a neighbourhood W of
wo such that V¢ x W C A. Since p is a proper map, there exists a neighbourhood
U of zp such that p~1(U) C V. The function G is bounded on p~!(U)¢ x W because
pl Ut x W C A ]

Proof of Proposition 3.2. Let (bo,€y,m0) € Dx V' x V™ for 0 <m < r. We
will prove that if N > 4r + 3, then:

(i) For any 0 < m < r — 1 and any sequence {b,}32; C VJ, such that
limn_,oo bn = bo

li dingfl(bmgo»ﬂo)
m —

=0, i=0,...,d—1.
nmoo |y — bo !

This shows that g;v has a derivative of order m + 1 at (bo, &g, 70), and that this

derivative vanishes at (b, &g, 70). _ L
(ii) For any 0 < m < r and any sequence {(bn,&,,mn)}ney C Vp X VI x V'™
such that limp—.c0(bn, €ny ) = (b0, &0, 70)

lim dgngjv(bnagm'r]n):o, 3=0,...,d-1.
n—00
This shows that all derive tives d},”gJN , m=20,...,r, are continuous.

Let us prove (i). Let H)) € C""™(X¢) be the function given by

Hgn(l'l, e ,.’L‘d) = G;Vm(xl, cen ,xd,go,no)

for (x1,...,7q4) € X% By Lemma 3.9, there exists a neighbourhood i of by such
that H Jf‘fn is bounded on p~1(U)¢. Since lim,_c0 b = by, the sequence

{Gﬁn(rl (bn)v R 7Td(bn))—€—07 770)}‘;1..0=1
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is bounded. By Lemma 3.8,

dzng;\’ (bna EOv 770)

“bn - bO“
B D(bn)N—Zm—l (bn)—2m—2

Non — boll i
<[00 /DT ) G ). ralbn) Eam) |

G;\’m(rl(b'ﬂ)v s 7rd(bn)az()an0) =

B D(bn)N—4m—3
- ”bn - bO”

We note that N —4m — 3 = N —4r — 3+ 4(r — m) > 2 because N > 4r + 3 and

0 <m <r-—1. Hence
) . D(bn)N~4m—3
lim

L Ty A

Since the sequence

]2m+2 0

{[20n /561 ] ™ Gt ralv) o)

n=1
is bounded, we see that

lim gngj\](b'mgOanO) -
n—oo  |lbn — boll

The proof of part (ii) is similar. By Lemma 3.9 there exist neighbourhoods
U and W of by and (£,70), respectively such that G, € CT"™(X4 x V7 x V'™)
is bounded on the set p~(U)? x W. Since lim, o0 = (bn, &, 7n) (b0, &g 70) the
sequence

{G;Vm(rl (bn)a R Td(b@)vzna 77'!1) ;1.021
is bounded. By Lemma 3.8,

79 (b, €. i) =
—— e 2m—2 —
= Db )N D(bn) G (r1(ba)s -y a(bn), Epy )

= D(by)N—4m-3 {{D(bn)/mrm“ G;Vm(rl(bn),...,rd(bn),z,,,nn)} .

We note that N —4m — 3 > 1 because we assume that 0 <m <rand N > 4r + 3.
Since the sequence

J 2m+-2q oo

{[D(bn)/m G;’.\,’n(rl(bn),...,rd(bn)fmnn)}

n=1
is bounded, we obtain lim,,_, g”gN(bn,En, 7y) = 0 which finishes the proof. 0O

Proposition 3.1 is derived from Proposition 3.2 as follows.
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Proof of Proposition 3.1. For any h € V'*, h # 0, we set D), = D/hd(d-1) ¢
ClP(V')] and g = f/h™ € C§1(Xn). Let g; € C5(P(V)» N P(V')p), j =
0,...,d —1, be such that

d-1
9lxo, = > (2/hY (plxp, )95 -
=0
It is easily seen that g = p—nti—NdegD fJN|p(V/)h, j=0,...,d—1. According to

Proposition 3.2, we have §i¥ € CF ;(P(V’)y) for N > 4r+3 and j =0,...,d— 1.

Hence f I[pviy, € CF (P(V')h, Opviy(n — j + Ndeg D)) for N > 4r + 3 and
j = .,d — 1. Since the open sets {P(V'), : 0 # h € V'*} cover P(V'),
Proposmon 3.1 has been proved. 0

Corollary 3.10. If (V/,W,2) is an admissible triple for a submanifold X of
finite codimension in P, and f € C§9(X,0x(n)), n € Z, is a closed form, then
there exists v € C*°(Xp, Ox(n)) such that:

(i) Ou = f|Xp;
(if) D®u = v|x,, for some v € C}(X, Ox(n + 8deg D)).

Proof. Let f; € C§3(P(V')p,Opwn(n—1j)), j =0,...,d—1, be such that
flxp = Z;i;é (plxp)*fi ® 27. Then ff € C§1(P(V"),0pv(n + 8deg D)) for
j=0,...,d-1, by Proposition 3.1, and ff, j=0,...,d—1, is an exact form that
is smooth on the open set P(V')p. By Proposition 2.2.1 (if n + 8deg D < 0) and
Proposition 2.2.2 (if n + 8deg D > 0), there exist sections

u; € CY{P(V'),Op(yn(n+ 8deg D))

such that guj = ff for j=0,...,d— 1. Proposition 2.1 shows that all sections u;,
j=0,...,d—1, are smooth on P(V')p. Let

d-—1
= D78 " (plx,)" (4l pv),) ® 27 € C®(Xp, Ox(n))
3=0

and il
v=Y (plx)"y; ® 2 € CY(X,Ox(n+8deg D)).
=0
Then u and v satisfy (i) and (ii). O

Now we can prove the main result of this paper. In the proof we use the
complex C(X, Ox(n)) which was defined in [3, Section 5].

Theorem 3.11. Let V be a Banach space that admits smooth partitions
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of unity and P = P(V). Then H%!(X,0x(n)) = 0, n € Z, for any complete
intersection X in P.

Proof. Let f € C§5(X,0x(n)), n € Z, be a given closed form. According to
(3, Corollary 3.10], there is a collection {(V}, Wj, z;) }ier of admissible triples for X
in P such that U = {Pp, }icr is a covering of P. By Corollary 3.10 in this paper,
for any i € I there exist u; € C®(X;,Ox(n)) and v; € CY(X,Ox(n + 84d;)) such
that Ou; = f|x, and u; = Di_g(v,-lx‘.). For any i,j € I, let

eij = uj|x,; — uilx,; € C®(Xi;,0x(n)),
@ij = D3p; — D? 5; € CH{X,0x(n +8d; + 8d;)).

Then ?9—<p,~j = 0 for any i,j € I, which implies that ¢;; € H%(X;;,Ox(n)) for
any %,j € I. Furthermore, the global section $;; is holomorphic on X;; for any
i,7 € I because (D;D;)8pi; = @ij|x,; - Since @;; is continuous on X, the Riemann
removable singularity theorem yields @;; € H%(X,Ox(n + 8d; + 8d;)) for any
i,7 € I. Therefore the cocycle ¢ = {i;}i jer belongs to the group Ci(X,Ox(n))
(see [3, Section 6]). Since ¢ is a closed cocycle and H}(C(X,Ox(n)) =0, n € Z,
by 3, Theorem 6.5], there exists a collection of holomorphic sections

¥ = {w; € H'(X;,0x(n))}ier € C°(X,0x(n))

such that 69 = . This means that (u; — wi)x.nx; = (¥; — wj)xinx, for all
i,j € I. Let u € C*(X,0x(n)) be given by u|x, = wi —w;, i € I. Since
(Ou)lx, = O(u; — w;) = Ou; = f|x, for any i € I, we obtain du = f. ]
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