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HEBECHATA MEXAHUKA
B TBOPYECTBOTO HA KMPUJI IIOITIOB

EMIJI XOPO30B

We trace the role of selestial mechanics in the research of the prominent Bulgarian
mathematician and physisist Kiril Popov.

[Ipe3 usistata MCTOpUS Ha MaTeMaTHKaTa, & JOPUM B HCTOPHSATA HA HayKaTa,
nebecHaTa MeXaHUKa (38€J(HO0 ¢ aCTPOHOMHATA) € MUrpaja QYHIAMCHTAJHS PO,
Kpast Ha XIX u nauasoro na XX Bex ca 06Besin ¢ ocobeHa POMaHTHKA — TOTaBa.
n3an3aT emnoxainure paboru na Ioaukape. Kupun Ionos e nman macruero, HO
npeJin BCHYUKO yceTa, Ja ce Hacoun B Ta3d objact. HeroBure Hayunm sanumanus
zarousart ¢ acrpounomus. Muoro ckopo Toit 06pbIna BUMMaHHE W HA TEOPHATA,
13y IaBaiiKil CAMOCTOSTENHO KIACHICCKHAS yIeOHHK 1o Mexanuka a Anes. Murepe-
Ca CH K'bM aCTPOHOMHUSITA TOIH bJIKK Ha ¢BOst podecop M. Buiusapos, Ho uariexna,
¢ TEOPEeTUHUTEe MY 3aHHMAHHs Ca OCHOBHO IJIOX Ha co0CcTBeHHM Thpcenus. Karo
CJCICTBHE OT HENOJAXOISN IpenoaaBaTen ome KaTo cryiaeHT Iloros caM n3ydasa
tpyjose Ha Tucepan. (IlocaeanuaT e npeamectsennk ta [loankape kaTo exus oT
HAK-TOJIEMHTE CIIETMAJINCTY TI0 HebecHa MeXaHnKa, a ¥ PLKOBOIUTE Ha KaTeApaTa. )
Camusit IlonoB ce omaksa or GaBHus TeMN Ha, MaTeMaTHYeCKaTa IOJATOTOBKA B
ToraBaiHus Qusnko-MaremMarudeckn gakynrer. ,Maremarukara, nume Ilomnos,
JKUBCEIIe MHTEH3WBCH XKHUBOT, 3a KOHTO HuMe HsIMaxMe mpeiacraBa.” ToraBaursoTo
cricaine ga PU3HKO-MATEMATHYECKOTO APYIKECTBO ABJArO BpeMe KOMEeHTHpa OT-
KpUTHeTO Ha 81-aTa 3abesieKNTE/HA TOUKA B TPUBI'bJIHAKA B MOMEHT, KOraTo roJje-
MuaTe IpobieMu Ha GU3KMKATA Pa3TbhpcBaT HayuHus cBat. Karo yauren Toii 3anousa
u3JaBaHeTo Ha , Bubanoreka ot 3HAMUTENHN JOKIAJM B MEXKLYHAPOIHN KOHIPECH",
3a kostTo ipeBexkia X. Xepu, OcBasn, rotsu ce xa npeseje i {loanxape. C HIKOJIKO
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aymu, Knpnn Ionos nposiBsiga pano cosita Thpeeilla HaTypa. Usyuasaiikn camo-
CTOATECJIHO cepusl KiacHdecku Tpynose Ha Iloankape, dapby, Tucepan u ap.. Toi
ce NOJIrOTBA TaKa, Je CJIe/l H3BECTHO BPEME eJUH OT Haii-I06paTe YHUBCPCUTETH 110
onosa speme ~ CopGonata — peniasa, 1€ Moze Ja IPU3HAC HeroBOTO 06pasoBanie
3a JOCTaTHIHO, 3a Ja 3an04He JoKTopautypa. Hobpe ¢ u3BecTHO, e TaM Hay*IeH
phroBoauTeNn My craBa Iloankape. Iloankape My mpegocrasst cam Aa ¢ uadepe
TeMa, Hel0 HOTHIIHYHO 32 3HAMEHHTUS MATEeMAaTHK, KOHUTO B CIy'as Beaiara 0100-
psiBa TeMaTa. V] TemaTa e H3BeCTHA B HAILIMS HayueH CBAT — IBUKECHUCTO HA MaJKATAa
mnatiera Xeky6a. A ¢ KAKBO € HHTCPCCHA TEOPUSATA Ha, JBHXKCHIETO Ha Ta3H IUIAHeTA,
mMoxke 6H He pew'ike 3uasT. Ilone a3 4o npeay 3alMMANHMATA CH ChC CLIHHCHHSTA
Ha HO&HKH‘p(‘, CbM CYHTaAJA TEMaTa 3a CK30THUYIHA.

Hexa 3anotisa ¢ MaTeMaTH1eCcKHsT MOJEJ, T.¢. U30KPAIeTo Ha, O IXO SN Ade-
penmuannn ypasnenns. MajgkuTte, KAKTo W TOJICMHATE, IUIAHCTH CC ABHKAT [VIABIO
o Bu3jeicrsreTo Ha CaBHIETO 110 KCIICPOBH CJMIICH, T.€. 332 MAJKH HITePBAIA
OT BpPeMe Bb3JCHCTBHATA OT APYrH HeDecHu Tesa MOraT Ja ce npenchpernar 6e3
3Ha4HTeNHa 3ary6ba Ha TOHOCT. 3a roleMu HHTEPBaJIH OT BPEME - OT HOPSIbKa Ha
TOIOHMHH — TO3W MOJCJ HC ¢ A0CTATDHCH; KbM BIMSIHUACTO Ha CirbHUETO TPAOGBa Ja ce
JobaBH 1 B/HSIHMETO HA HAKOHM JIPYTH IMIaHeTH. I3 MOBeHeTo caydan ¢ Haii-BasKHO
¢ Ja ce ordere npurterifnero Ha FOmurtep. Axo npuemeM macarta Ha CIbHICTO
3a caununa, To Tasu Ha [Oumrep e or nopsiabka ma 1/1000. Caen IMoankape
GuxMe Kazasif, e TOBa ¢ MaJKHAT apaMeTbp Ha cucremata. OT ¢Bos cTpana
MaJIKUTC IIJIAHCTH He OKa3BaT INPaKTHU'1CCKH ITHKAKBO BJIWAHNC BbLPXY JABUKCIINCTO
u 1a Cobauero, u #Ha FOnnrep. Hakpasi, Moxe fa ce npemnosoxu, ©ie FOmurep
¢e JBIDKH caMo Iof, BiaustHaero Ha Coabmiero, T.e. no kemaeposa opbura. Topa
NPHOMMKENHE € JOCTATHIIIO, Thil KATO HETOYHOCTHTE I Ce OTPA3sT HA MAJKATA
IUTAHEeTa OT MO-BUCOK NopPsIbK. C Te3M NaHHE Ha OCHOBATA HA BTOPHS 3aKOH Ha
Hioron u 3akona 3a BCeMHPHOTO NPHUBIMYAHC JICCHO CC CHCTABAT YPABHCIHUATA 4
asmxerne. To3n Moxes e 0cHOBeH 3a HebecHaTa MeXaliKa H CC HApUYa Orpainvena
3ajiat1a 3a Tpute reja. Ilpenebpersaiikn FOnurep, acreponabT ce BHAKY 110 KCILIE-
poBa canmca. ToBa Moxke Ja ce B3eMe 3a HAYaJIIo NPHOINKEHHe.

Crexn onpesesisiie Ha HavlaHO NPUOJIDKEHHE, T.C. CJICMEHTHTE HA KellIepoBaTa
opbura, cieaBalIiTe MPUO/IMKENHS € THPCSAT BbB BIJ| Ha PeAOBE, THHTO KoeUL-
€HTH CC MTPCCMATAT YPC3 BCUIC HAMEPEHHTE CaMO ¢ ADUTMCTUUIHHA AeficTsus. B ae-
ToJHTe, Npeasioxkenn ot JIosepue, ¢ kouTo ToR e oTkpma mwianerata Hemryn, ce
HaJlara Jia ce Jenu Ha JinHeHHH KOMOWMHAIMHK ¢ nei KoedHIEMEeHTH OT CPCIIHATE
JABIDKENNA Ha IianeTtuTe — B ciaydas FOuumrep u Magaxara nyasera. Iloscuspan,
4¢ CPeTHOTO ABIXKEHHE ¢ HEWOo KaTo 4ectoTa. B cnyqas na FOmurep u Xekyba
TC3M CPefHY JBIDKCHHs Ce OTHACAT MpHOJIHM3HTENHO KakTo 2:1, T.e. UMa pe3oHanc
or Hali-umckud nopaabK. Craexosaresno Meroante Ha JIboBepue ca HCMPHUIOMKIME

|33 PCCMSITAHE OLIC Ha CJICABAIIOTO IpubJInKeHUe.

Tyx ce nosBssa efa OT OCHOBHHTC TPYAHOCTH Ha HeGeCHATA MEXallHKa M
BLOOIIE B MEPTYPOaLOHHATe 3a1a1 Ha AMHAMUTIHATe cicTeMu. CraBa BLIPOC 3a
MaJIKHATE 3HaMeHaTe . CIIeaBanioTo NOKOIeHHe aCTPOHOMH M MATCMATHITH H3IIAMH-
paT 1o-punH cpecTBa, KOHTO NO3BOJABAT A2 ce PABOTH ¢ MAJIKUTE 3HAMCHATEJIH.
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Tosa ¢ cranano B paborure na Jlungmen, Jdesone, 'miagen u ap., ome npeiu
IMoankape, 10 CACA TOBa TC3H CPCACTBA Ca CHJTHO ONPOCTENH u HAH-BaXHOTO —
waeiino zsicienn ot Ioankape. Te ca ocosany Ha KaHOHM'UHM CMeHH Ha IPOMEH-
JIMBHTe, KOHTO IIPHIABAT Ha yPaBICHUATA [0-yJI00cH 33 paboTa BUJ, 3aMa3BAHKH
TaxHaTa xaMuiaTonosa dhopma. Hali-106puaT npusMep 3a MPHIIOKCHHUE HA TCOPUATA
nia Jdesone, xaspa [Toankape B CBOUTE 3HAMCHHTH JICKIHU 0O HEBCCHA MCXAHHKA,
etenn Maorokpatio B CopbonaTa, e IPIIIOKeHHeTo My KbM mtanerata Xexyba.* C
JIPYTH AyMH, TemMaTa Ha JucepranusaTa ia Ionos ¢bBceM He € BBIIPOC ¢ OrpaHH™ernt
nrepec. Hanportus, ciaeaBaliku ceralimuTe yKasanus na BAK, tpabra ma Kaxkem,
e TeMaTa Ha JUCEPTALHATA © H3KIIOUMTENII0 aKTyalna, HO 38 Pa3jnka oT obmust
cJIyvail B AHEUIHO BpeMe TOBA JOPH 6u 610 BAPHO.

C nsxenyero da XeKyba ca ce 3aHIMABAJIM HIKOJKO aCTPOHOMH U MaTeMaTH-
i -~ cpea TAX ca actpornoMbT Cunmonen u camuat Ioankape, Koitto, 0610 B3eTO,
cacpa paboruTe ia CuMoHeH B cBouTe JeKuuit. BebmpocT [ToaHkape caMo CKHIHPA
HACHTE ¥ OCTaBsl ABLJATATE H CHLBCCM HE MPOCTH NpeoOpasoBaliis Ha qurareias. 3a
YHCJICHA PeaJu3allis 1 jyMa ne mMoxe ga crasa. Korato Kupua Tlonos ce zaema
7a OCDLIICCTBH Ha MPAKTUKA cKunaTa, ipeasoxena ot [loankape, ce okasna, 1c
CHICJACHUTE PE3YJITATH CC OTJHIABAT 3HAMUTC/IHO OT JCHCTBHTCANATE HAOMOICHUS.
Kupun Tonos pasnonara ¢ Tounn nabmogenus 3a iepuoga ot 1869 o 1901 u
Te COUAT OTKJOHCHIE HA MPCCMETHATHTE OT JIEHCTBHTESIHATE PE3YNATATH € OKOJIO
2 rpagyca na roguna. Caenosarenno mojenst Ha Ioaukape nva menocrarbuu. 1
HAHCTHHA Tolt ¢ Tpenebpernas HsIKOM WICHOBE B ypapHenusaTa, 6€3 Ja uMa 10cTa-
THUIIO OCHOBAHMNA 3a TOBa. Bripoucs ToBa e nocotieno ot camust Ioamkape B jiexium-
Te U ChBCEM He ca ueTHHa JerenauTe. ¢ Iomos ¢ nonpasui rpemrka na Ioankape.

Kupmt ITonos ce cupass otantino ¢be 3anataTa. Toil u3bupa 1o-ToNN ypas-
HeIHsl, & CJIe TOBa IpIIara TeopusTa Ha Iloankape (napedena meroq na Jlesorce).
B MHOro OTHOUICHHS TOBa H3IVIEXKJA PYTHHHA 3a/a4a ¥ JIHUHO a3 OT CeramrHaa
mICaIa TOUKa A cuuTaM 3a pyrtuida. Ho nomexe ce crpaxybam, ‘1€ MHCHHETO
MH MOKE J3 H3IVICKAA BHCOKOMEPHO, ILe MOSiCHSA, KATO CH IOCJIYKa ChC CIOMeHH
ua camusi Kupua Ilonos. B cxun pasrosop ¢ Hero jgupekropbT na IMapmxkkara
obcepsaropust Epuct Eckianron n3ka3sa yayABaHCTO €1, Ue KA TAJIHUTE TPYZOBE
na IMoankape okassaT cinabo Bimsnue na MateMmarunure. LnTupam Muenuero pa
Kupua IMonos: ./ Tpyunosere ua Ioankape ca no-ckopo maeftnn. B tax ne nammpane
TA3M TeXHIrIecKa pa3paboTKa, KOSTO yJecHsBa TAXHOTO NPHIOKCHHE 0T 10-Caabu
mMareMaTHIp.” Hammar cbHapomunk e ¢hbyMsiT Jia T pa36epe B J1a HalpaBy HAKOH
oT TaX no-jgocTbini. Toil e Tpabpago Aa m3yM MeToad, cbiualdenn camo 10-15
rojHHN no-pano u 3a kouto Iloankape ¢ 1mojiyun/i BCHYKKM Bb3MOXKHHA [TOYECTH 11O
OHOBA BPEMeE, T.C. TOBA €4 MCTOJHN OT CAMHUTe BbPXOBe Na MaTeMaTHkaTa. Bmecto na
cC 3aHMMaBa CLC CTPANNYIN U HHKOro He uirepecysamy suipocy, Kupnn Ilonos
C WLPBHUTC CH HAY'IHH 3aHAMAHHS Ce XBbPJIA B FOJIAMaTa HayKa.

Buxme Moram Ja HalpaBuM I1apaJjiell ¢bC CerallHoTO CLCTOAHUE Ha HayKaTa y
Hac...
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a ce BbpHEM KbM aucepranisarta. Ocsen qbaboKaTa TCOPHS, HYXKIA 33 aTa-
KyBallc Ha 3ajaiaTa, [lonos Brafee g0 CLBLPINEHCTBO B METOIHTC 3a THCICHO
npecMsTale. 3a€IHO ¢ TOBA yMee OTJIMTHO Ja ¢ CIIPABs ¢ JANHHA OT aCTPOHOMHSITA
— Ja ne 3abpaBsiMe, de Tol ¢ OHJI mpean TOBA acTPONOM CLC CTasK B HSKOH OT
Hali-1o6puTe obcepaTopun B ¢Beta. Beutiko ToBa mpeonpesie/ist BHCOKOTO Hay HO
MBO Ha AHCEPTALMATA. THCICHATE PE3yITaTH CHBUALAT C HADIIOACHHATA C BHCOKA
ToocT. Herosuat mppsu nayuen porrosoaure [oankape e 611 mouuuan HAKOJIKO
Mecena mo-paHo, HO OCTAHANNTE KOJICTH Ha 3HAMEHHTHS yHell BACOKO 5 OLCHSEBAT.
3a npezcenaTen Ha XKypHTO ¢ Nastadcn na msactoto na [oankape ITon Anen (mumm
MOXKe OH caM ce ¢ Ha3Ha'HJl - [0 TOBa BpeMe Toif ¢ jckan Ha (Paky/iTeTa Ha
naykure). IIpucversa n 2Kax Azamap, KoiTo npeay 3aimuraTa uMa, ILira Gecena
¢ AoxtopanTa. Heka HantoMus U c103KHATE 06CTOATENCTBA, IPH KOUTO CE ITPOREKIA
samaraTa. IIpes centemspn 1912 1. Kupui IMonos nonytapa MOBRIR3AIMONIA 3ATI0-
BeJ 3a apMmudATa — Habmmxasa Bankanckara sofina. ®akynTeThT OTKJINKBA Ha
. TpyAuata cuTyanus na obarapuna. Hakou ot ¢popmadimnocrrte ce napymasar. Tora-
Ba ole e buto Bakanmonno spesme. Jekanst [lon Anen u cekperapst na axynrera
HAMHPAT OCTAHAJIUTE "ICHOBE HA 2KYPHTO, KOUTO CHUIO ¢¢ CBIVIACABAT 114 TTPEKDC-
HAT MOTHBKATA CH. 38 TPU IHH 3alIHTATA € Oprali3upana U mposejcna. M enara
ciel; tosa Ionos zammmasa na dponra. Beue tam Toit mosyuaBa BCCTHHKADPCKH
H3PC3KH Ha (PPCHCKM, HCMCKH M aHMVIMACKH, OTPas3sBaliy (0 BCCTHAKAPCKH ) 3aIIH-
tata. B exua oT Tax ce mamupa 100pe M3BECTHOTO Ha MOBEYCTO MATEMATHITH
HAC n3pasurteso cvobmenne: ,,Copbonara cec MOGHUIUMPA MTPe3 TOBA BAKAHIHMOHHO
BpeMe, Tbit Kato Bharapus Mobminzupa csouTe BoicKH. ©

PaGorara na Kupun Ionos Bbpxy amceprauuara ce orpassiBa BbPXY LSLIOTO
My TBopYectBo. CTpyBa MU ce, e Hafi-ycrellinaTa ob1acT B HeropaTa Kapuepa e
BbHIINATA 6anncTuka. 3a nes nuMa apyr aextop. Ho u taMm, BLIPeKH Ye CbM yBa
U APYrH MHENHsi, BIHAHHETO 1a Hebecnarta MexanuKa e oucsuaio. Jocraruumno o
Aa CH IPUIOMHHM 3arJIABHCTO Ha HEroBUTe BHCOKO OHeHenu Jjekiwmu: , Mertomurte
Ha [loankape 3a unrerpupane u obmus npobieM Ha BbLHmNATa Gaymcruka“ . He
€ CJIyvafiHo, e IpCAroBopbLT KbM JeKnuure no banmeruka na Ilonos, YeTenn B
Copb6oriara, € nanncan ot Evun Iukap u ¢bBceM He 0T BOeHHHTE.

BeposiTHo Hali-BaXKIOTO CICACTBHE OT 3aHAMAHMSITA 110 JUCEPTAIUATA € YTBbLD-
AcCHuTe YMCHHE M cTpemex 1a Ilonos za Tbped u naMupa Ababoxa npobacmu or
ectecrsosnanneto. Ile koMenTUpaM HaKpaTKO JBE CHUHHCHHS OTHOBO 110 OCPAH-
ueHaTa 33Ja4a 33 TPUTe TeJa.

‘Hobpe e u3BecTHO KaKBa TexecT Npuaasa [loanKape Ha MCPHOAMTHATE PEIc-
Hud. ,,TG Ca COIUHCTBEHUAT >XaJiol, 10 KOMTO MOXKeM JAa TTPOHHMKHEM B O6.TIaCT¢
CHUTAIIA [IO-PAHO 34 HEAOCTBIHA" —~ MHINC 3HAMCHUTHSAT Y4CH B OCHOBHOTO CH C'biH-
nenne ,Hosu mMeTomu B nebecharta Mexanmuka“, B pabora, nyGmkysana B Buletin
astronomique, HAIIKAT CHHAPOIHUK CC 3a0Ma, ChC 38344, ,, 18 Bb3CTAHOBH IPCCTHKA
Ha TeopeMaTa Ha Iloankape”, TBbpAdINA, e NEPHOAUIHUTE PELICHHs CE PAXKIAT

8 ~ Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 5-9.



1 B34C3BAT MO JBOMKM KAKTO KopenuTe na anrebpuqmure ypasnemns. Ilo-xkbemno
VuatHep (ToBa ¢ aBTOPBT Ha CANa J0CTa MONYJSIpia 0 J0ccra mMonorpadst 1o
neecHa MexaHMKA) ce ONUTBa ja OIpoBeprac TBbpicHuero. M ieicrsurento, 3a
110-001IH yPABHEHISI TOBA OYEBUAIIO HC ¢ BAPHO — HAanpumep Gndypkanuara na
Augponos-Xond. Bevumoct Ioankape n3ka3sa TakoBa HCILO, HO B KOHTCKCT, 10CTa
PasIITICH OT TOBA, ¢ KOeTo ce 3anuMasat Yunrnep u [onos. Crarusara na Ilonos ce
3aHAMABRA ¢ M3KJIOTHTCIHO TPY/HN KafICCTBEHH BBHIPOCH OT HebecHaTa MCXAHHKA.
A3 He ¢bM YBepel B MATCMATHYCCKATA W IPCIU3HOCT — TaM UMa TPY/HOCTH J0pI
B jJedunununre. Bnopeku Tosa paboTaTa BeuaTAsBa C He TAKa “ECTO CPCIanusd
cera CTpeMeX 3a ‘3aHUMaIIUsl ¢ €CTCCTBCHU ,II'I;JI6OKI/I 1]p06.}10]\ﬂ/1. 3?1 TC3U, KOHUTO
HCKAT BCe TIaK JIa "IySAT HIKABH OBSICHEHHS, 11e IPUIOMHS 3HAMCHHTATA XIII0Te3a Ha
[Moankape, e MEPHONTTHATE ABIAKCHES B MEXAIM'IHN CHCTEMHA B ODILO ITOI0KCIUC
ca HaBCSKbLAC IbeTH. Taka ue HpHEMANKH XHIOTe3aTa 3a BApua (3a KOCTO HMA
JOCTATLIHO OCHOBAINST), HE © ¢bBCEM sCHO Kakpo u3iaespa. Pasbupa ce. Ilonos ne
ce ¢ 3abJyAiT Ha TOBA eqieMenTapio Msicto. IIpoeTo uckaM aa Kaxa, e Tpsabsa no-
BHUMATCIHO Jia c¢ noaxoan. Mma pasmuiiin ceMeficTBa OT HePHOJMTIHI TPACKTOPHH
na Xun, ma Jlsuynos, sa Tpu suja Ha IloaHkape — ¥ “OBCK TpaOBa Ja ce
OrpaliiIy ¢ HAKOH oT TsxX. 30610 ToBa ¢ THMHTIHO TPYAIA KadecTBCHA 3ajada
3a CTPYKTYpaTa Ha pelleHdsiTa B Mexanuminu 3agaqd. Tosu Bui 3ajga41 H cera ne
ynMeeM ja pemasanme. Cpea cpeacTsara, ¢ KOHTO cn cyxn [lonos, me orbeseza
mpouyTaTa peryaspuianus na pemchusita. C nefina nomont 3ynjmMant nouytiasa
PA3BUTHC B PO BLPXY UAAaTa OC Ha PEHICHHsITa, OTTOBAPSIIH 11a cOIbCKBAIIC A BC
IUIAHETH ~ TAKA HAPCICHOTO | PCIIICHHE HA 3aJavarta 3a TpUTe Tema’ , nyOJmMKyBano
npe3 1913 1., 1 HANPABIIIO CeN3allks B HaydHHUs cBAT. B apyra pabota 8 Mathema-
tische annalen Tlomos n3cicapa U caMuTe pemienus Ha 3yaaMan. Toit nokassa, ve
MaKap Ja MMa TMOBEUC PCLICHEs ¢ PA3JIMKA Ha KOOPAMHATHTC, PaBHa Ha mya, (T.c.
~ ¢BIbCKBAHE), CAMO PCIIeHHATa Ha 3YHAMaH OTTOBapsT Ha peaim asuwxkenns. I
MaKap IrLpBaTa 4acT 1a TELPACHHCTO Ja e u3secrna (nmpumamiexu na Mlasn e
ny6MKyBaHa HOYTH Bejara cJeA cTaruaTa Ha SywaMal), U Ts HMa CTOHHOCT -
HAITpaBena e ¢ JIPyru cpeacTna. k
Hazusiganm ce, HacTpana or KpaTkust 0630p na paborure na Ionos o nebecna
MeXalHKa, Ja € CTaHaJo sICHO KAKBO OlIe ¢C OIUTBAM Ja Kaxa ¢ To3M jokaan. Heka
JOKOCBAHETO J0 TBOPUECTBOTO Ha eJIMH OT Hall-rosieMuTe 6LArapeKy yUeHu ¢ Moo/
Ja orjename u cebe cH.

Hoayuena na 28.11.2005

Emun Xoposos

dakyaTer 1o MaTeMaTHka U HH@POPMATHKA
Codmiickn ynusepcuter ,Cs. Kinment Oxpuackn “
1164 Codus, n.x. 64, B'bJITAPUSA

E-mail: horozov@fmi.uni-sofia.bg
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i

BerX.\,,’ NU3CJAEIBAHUATA HA KUPWJI TIOIIOB
IO BAJIMCTUKA !

JHOBOMUMP JIMJIOB

A short survey on the main results of Knpui Popoff in the field of ballistics is preseuted.
Special attention is given to the afline transformations of the gravity center trajectories
and the shell rotations around its gravity center.

B uznoxkenuero ce msnoassaT MuHIMazeH 6poit GopMysn U e ce gajae 11pei-
cTaBa 3a OCHOBHNUTE HJen U noctuskenust na Kupus [Jonos B o61acTTa na pbumuiaTa
Gamcruka. ToBa BEPOATHO HIC JHITH H3JI0KEHHETO OT ONPCACJICHA CTPOIOCT, 110 I1ie
ro HAOPaBH MO-JI0CTBLIHO 33 HECHEeIHaJ iCTHTE.

Joknama cu e 3amovHa ¢ eaHO MPUIOXKHO micaeasaie Ha Kupnir ITonos,
KOETO [0Ka3Ba CBCKUS MY NOIJIC] BLPXY OT/ABHA PEICHM W PDYTHHHH 3aja'1ld U
Ta3M HOBA HHTEPHPCTAINS Ha O3HATH PC3YJITATH HCOTAKBAHO BOIH JO Cb3AaBallce
Ha N0-eeKTHBHN METOAN 3a M3CHeABaiie, & B MHOIMO CJIy4ad H J0 HOBO 3HAHHC.
3ajiadaTa e KOHCTPYKTUBHO J1a Ce YCTAHOBSIT TPACKTOPUUTE HA aPTHIePHICKN cHa-
P 10 JAHHA OT CTPeJiby Ha HONHIOHA — €AHA 33Ja7a, KOATO IMa 063 CHMHCHME
OCHOBHO 3Ha"ICHHE 32 BOCHHHTC. VI3BeCTEH PE3Y/ITAT OT MEXaHUKATA €, 1€ MACOBHAT
UEHTBP Ha CAUH CHAPSII CE JIBHXKH KATO MATCPUAJHA TOYKA, HA KOATO JCHCTBAT
BCHYIKM NPILIOKEHH KbM TOUKHTE HA CHapd/a BLHIMHY cuiud. B cuimno maeannsu-
paHmns cay4dall Ha OTCHTCTBHC Ha CLIPOTHBJIEHHE €IMHCTBEHATA JcHcTBaIa CHIA
€ CHilaTa Ha TeXKeCTTa. ﬂa‘ HAIIOMIHA ,[LO6p0 H3BECTHOTO pelaeHre fa 3ajavaTta 3a
JIBUZKEHHC Ha TOYKA B XOMOICHHOTO MOJI€ Ha CHJIATAa HA TCXKCCTTA IIPH OTCHTCTBHE
Ha CLIpoTHBAcHHE. Tasn 3a1a4a e 38 bIKNATEICH TPUMED NPH OPEIOJABAIECTO Ha

1,H,OKJIE:L,H, U3HECeR HA YeCTBAHeTO Ha 125-TOAMIIHMHATA OT POXKIAEHHETO MY.

Ann. Softa Univ., Fac. Math. and Inf., 98, 2008, 11-23. 11



pazzena ,JlnmnaMuKa Ha TOMKa® B Kypca 00 MeXanwka. ToukaTa, H3cTpesisina 1o/
BI'BJT (@ KBM XOPH30HTA ¢ HAYAJIHA CKOPOCT Vg, ONIUCEBA Napabosa KATo IPH 33,5a,CHA,
Havua/Iia CKOPOCT BHCOMHATA [a TPACKTOPUSTA € Hai-roJsva IpH o = 7/2, a
AaneauHaTa Ha noseta - npu « = 7 /4 (pur.1). Meneitku « ot 0 10 7/2, mony-1aname
COMEHCTBO TPACKTOPHH B IbPBH KB3/APaHT Ha KOOPAHHATHATA cucTema OTy, KOeTo
CCMCHCTBO UMa KaTO €BOJIBCHTA OTHOBO HapaboJsia, MUHABAIIA Hpe3 Hall-BUCOKATA
u nail-a/ctHaTa TouKa, JOCTHXKIMH ChC CKOPOCT vy ~ TaKa HapedeHaTa napabosa
11a 6E30MACIOCTTA.

&

Nopobona
JEI30RQCHOCIY

Kupnn Tlonos  npasu nnrepecHa unTepripeTaiis Ha TOBa JBHXKCHHE, KOSITO
CJIe TOBA My ZIaBa Bb3MOXHOCT Ja PA3ryie/a HCTHHCKOTO ABMAKEHIC Ha CHAPSAIA B
CBIIPOTHBUTENHA cPea. 3a MPOCTOTA HA PA3IVIEKIANUATA da IPUCMEM HABCIKbIE
[I0-HATaThHK, Ie MacaTa Ha MATCPHAJIHATA TOUKA € eaubuua. [la oTHeceM aBHIKe-
HHETO Ha TO'IKaTa K'bM KOOPAHHATHA CHCTeMa, "1usiTo oc Oy ChBHAJIA ¢ HAUAIHATA
CKOPOCT Vg Ha TOUKATA, KOATO CKJIOUBA BI'bJ (& ¢ XOPHU30HTA, & ocTa (02 e HACOUCHA
HaJ0J1y KbM LenTbpa Ha 3emsra (dur. 2).

Hpn To3u u300p Ha KOOPAMHATHATA CHCTEMA NBHMKEHHETO HA TOUKATA MOMKC
Aa ce pasrackaa KaTo reOMETputieH cbop oT ABIKeHHe Ha Toukarta 1o octa Oy ¢
HOCTOSIHHA. CKOPOCT Ug

Yy = vot

12 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 11-23.



2 3
o
N, . e,
R . m, Xopusonr
4
5 .
dur. 2

1 ABHZKCIINC IO OCTa OZ, C HaMaJHa CKOPDOCT HYJIa U YCKOpeHnue g:

12
z=g5-

VaobersoTo Ha Taxka Bbieaerara or Kupua [lonos koopanHaTHa CHCTEMA ¢, 1€
TEe3W ABa M3PA3a Ca Ne3aBHCAMM OT BI'bJA (¥, KOHTO HauasIHaTa CKOPOCT CKJII0UBA ¢
XOPH3OHTA, ¥ 3aBUCST CAMO OT BPEMETO £, OT g M OT Uy, KOHTO ca riocTosuuu. Topa
JIABA BL3MOZKHOCT TPACKTOPUHATE HA TOUKATA ITPH Pa3JIM'IHATE BIVIH & JIa MOTaT Ja
ce M3BEIAT C/HA OT JPYra upes ¢jHa npocra TpaHcopMalus.

Ja cu n3bepeM eana. jacchopMEPYEMa PaMKa ¢ HOCTOSHHH, YCHOPCINY CTPalH,
 LIMIHTE MY KOHTO MOTAT [ Ce MEHST R JIa B3eMaT Pasiini cToinocTy (pur.3).

8

Dur. 3
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Aa orbeiexnum Bbpxy pamoro AB Ha Tasu paMKa TOUKHTE a1, 42, 43,. . . HA PA3CTOsA-
e vg, 2vy, 3vg.. .. 0T HAMAN0TO A, a ¢bio U ToukaTe by, b, b3, .. BLPXY PaMOTO
CD na cuupre pascrosinust o1 D. Ja onmbHeM Mexiy ChbOTBETHHTC TOUKH i, b;
HUIIKY @;b; 0 BLPXY TAX Ja HaneceM TOWKHTC 1y, M2, M3....Ha pascrosnus 2.
g%} q—’; ..OT &y, a2, a3,. .. lIpn pasnuanure braym, xkouto paMoro 4B ckmoiBa ¢
XOPU3O0NTA, TOUKHTC My, My, M3,...HC CC PEAAT 110 CLOTBCTHHTE TPACKTOPHH Ha
TOYKaTa M, XRLPJICHA OT BbpPXa A ¢ HaiaIHa CKOPOCT Vi, KOSITO MO HOCOKA CLBOAIA
¢ pamoro AB. Hpu aedopmannnre na pamkaTta, KaTo MenuM brbjia BAD, mie ce
[0JIyaT BCHYKH TPACKTOPHUU, KOUTO OTTOBapAT Ha HAYAJIHATA CKOPOCT Vg U Ha
‘bEMH Ha XBLPJsiiero L BAD.

Kupuia Honmos cu 3a1aBa Bbrnpoca, Z0KOJIKO U IIPU KAKBU YCJIOBHST TOBA a(DHHHO
CBOMICTBO Ha TPACKTOPHHATC B Oe3BBLIAYIIIO MPOCTPANCTRO [a €€ H3BCKJIAT ¢IHa
OT JApyra 'Ipe3 onucanaTta JcdopMHpyeMa paMKa ce 3amasBa [MPH JIBUKCHHCTO Ha
MATCPUAMIATa TO'IKA BLB BL3AyXa, T.€. IPH JIBIXKEHUE B CLIPOTUBHTCIHA CPea.

Ha np1B norsen caMoTo mocTaBsine Ha BBIOPOCA H3IVICKAA abCypano, Thi
KaTO, Ha €llia ¥ CbIla HavdaJdHa CKOPOCT W TPH CAMH U ChIIH BI'LA Ha H3CTPera
TPACKTOPHUTE B ¢Ha CLOPOTHBHTEIHA CPCAa Mo pa3Mep KOPEHHO ¢ OTIU'1aBaT
OT TPACKTOPHITE B 6e3BBL3/YIIHOTO HPOCTPAHCTBO, 0CODEHO aK0 ChIPOTHBICIHCTO
a cpegata, Hefinata IBLTHOCT, ¢ MHOrO rogsmMo. Ho BLOpexn ToBa MHOro BaKHH
CBOMCTBRA Ha TPACKTOPUHTE B DE3BL3MY INHOTO IPOCTPAHCTBO CC 3al1a3BaT MPH TPACK-
TOPUHTE Ua apTIICPHHACKAA CHApsAJ BLB Bb3/yXa, CBOHCTBA, KOUTO MOraT Ja Ce
M3T0/I3BAT IPH apTUIepUiicKiTe cTpesdn.

Ha gomycues cera, ©é MaTepuaimaTa TOMKA, C Maca ¢AMHULA, ¢ HICTPEIIA C
IIAYAJIHA CKOPOCT Vg, KOATO CKJII0UBA 'bI'bJI (¢ C XOPU3OHTA HA OTBOPA Ha OPhAUCTO.

Y

’/z’ :
{ / A /
Lwi o ‘ yd ;

S

Aopusant .

¥y

@ur. 4
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Ja u3bepeM W B To3M caydail OTBOpa Ha OP'BLAHCTO 33 HATTAJ0 Ha KOOPAHHATHATA
cucreMa, octa Oy Ha KOsATO CbBIaJA ¢ HAUAJIHATA CKOPOCT Vo, a octa 02 e Haco'ena
[0 BEPTHKAIATA KLM HCNThpa na 3emara (dur. 4).

Ja o3nasHM ¢ m H0J0KeHHeTO Ha MATCPHAIATA TOUKA BLPXY neiiHaTa TPacK-
TOPHA B MOMEHTa t HCc v -— Heifata CKOPOCT B TO3H MOMEHT, CKOPOCT, I1ACO'IeHA IO
TaurenTaTa na rTpaekropuarta. Ja osnadmm ¢ F {v) ¢LOpoTHBICHHCTO 1A cpeiara
HpH ABHAKCHUCTO 11a TOUKATA, CHLOPOTHBICHHE OTHCCCHO KhM CAHIMIA MACca H Ila-
COYCHO MO0 TAHreHTATa HA TPACKTOPHSITA, B 00paTHa M0COKa [Ha CKOPOCTTA, CHITPO-
THBJCHHE, KOoeTo ¢ DyHKINA Ha ckopoceTTa. Ja osmatum ¢ y' i 2’ kommonenture na
CKOPOCTTA M0 KOOP/AUHaTHHTE oci. KOMIONCNTHTE Ha CHLIPOTHBJICHHETO 110 OCHTC
Oy u Oz me 6baaT, B3eMaliki IpejBHA epTexka 1na Gur. 4, CLOTBCTIO

/F(”)  F(v)

y——= uz
v v

(1)

I[H(‘l)Op(‘IIIIHaJIIIIl'l‘(‘. ypaBHeHnus 1a JBHXKCHHCTO CIIPSMO m6panaTa, Koopaunat-
Ha CHCTCMa UIC ()’I),Ll‘d’l' CJICOOBATCIIIIO

2, TN

%;? = -y E = —y/f(u), (2)
2 F(

((lltz =9- 3 uv) =g~ Z/f(’U),

pn Havuaam yeqosuag t =0, y =2 =0, ¢y’ = v, 2/ =0. Ty

v =gy 2% -2 sina
= (y' +z) — 4y'2' sin? 5
= (y — 2)* +4y'2 sin 2g,
KbJero ¥ = T/2+a, ¢ = 7/2 — a.
OTTYK ce BIKIA, ‘IC HATCrPAJIMTE Ha ypaBHCHUsATa (2) OpH HAMAJTHUTE yCJIO-
A t =0,y =2 =0,y = vy, 2’ = 0 3aBHCAT OT bI'bJA & CAMO HOCPEJICTBOM U H
me 61,4aT HEBABHCHMH OT (¥, aKO

F(v)

v

ce peayIHpa Ha eHa KoHcranTa k, T. e. ako

F(v) = kv

Tosa o3HauaBa JHHENHO CHIPOTUBJICHHC HA CPEJAATa, KOCTO € THIIU'HO 328 CKO-
poctit oT fiopsrbKa 70 (0,36 KM/ 1, KaKBATO CKOPOCT 3HAYUTEIHO Ce HaJAXBbLPJIA OT
aprusepuiickus cuaps. Kupua [Monos pasriexkia obave 0THANA10 TO3H CJIytait 1
NOJIYI€HHTE IPH HETOBOTO M3CJACABAHE PE3yITaTH 0606maBa no-KbCHO 3a PCAIHOTO
JBUKCHHE Ha cHapsiga. B To3u cayyali kKakBaTo U Ja € CTOMHOCTTA Ha KOUCTAHTATa
L, npn egEa H ¢blia HAAIHA CKOPOCT vy, KAKTO KOODAUHATHTC Y H 2, Thil H KOMIIO-
HCOTHTE 11a CKopocTTa ' B 2’ 0o ocure mie ObIAT HE3ABHCHMH OT BLIbJA (v, KOHTO
HAYAJHATA CKOPOCT Vg CKJIOYBA ¢ XOPH3OHTA, U e 3aBHCAT U3KIIOUHTECIHO OT k' |
oT Bpeneto t. Tt me aMaMme
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y= y(t, ’U(),/(,‘)7 y/ — y/ (t,f)(),k>, (3)
z =z (t,vo, k), 2 = 2 (t,vo, k),

K'BJCTO PON3BOIHUTE €A B3ETH M0 BPEMETO t,
Hpu F (v) = kv qudepennpannure ypasienus (2) npHeMar Brjia

d?y ,

@ = ,
d?z )
‘(—i-th‘ =4 — kz'.

Uirrerpupann npu HauaJ iu yCaoBHst

TC XaBarT

—(Z_kt). o

_9(,_1 e ™ v 9kt
z«k(r‘, k+ k,)’ zmk(l e ).

CJleeno e ga ce s, ue nopu K = 0 Tesn U3pa3sM OPEMUHABAT B CHOTBCTHUTC
n3pasn 3a 6e3BbLIAYUIHOTO npocTpancTBo. Ot GopmymuTe (5) 3a ¢ — 400 Hosy Ia-
BaMC

(5)

limy = %, limy =0
t— 400 {— —oc
lim z = +o00, limz' = 0.
{ — +oo { — —o0

CaegoBarediio, KakTo U 18 n3bupame Kouctanrarta k # 0, BCsKa TPAGKTOPHS
upn F (v) = kv acumrrroruiso ce npubnmkasa 10 eIHa BEPTUKAJINA [IPaBa, yPab-
HeHHeTO B u3bpanara KOOPAHHATHA CUCTEMa Ha KOSATO €

Yo
V=%
Ha ce obbpreM cera kKbM Halllus napasesorpaM u no pamenata AB u DC ot
A n D na pascrosinns

v
&
HAHECEM C'BOTBCTHO TOUKHTE @1, a2, 43, . .. H by, by, b3,. .. Ja cheaunuM cLOTBeTHHTE
TOUKH @;, b; ¢ HMIIKY a;b;, IO KOUTO OT TOUKHUTE Q1, G2, G3,. . . Ha PA3CTOAHMS

1 ekt

z=5{t- =+ — t=1 3, ...
( k-i— 2 )npn , 2,3,

y= (1 - e‘kt) ,mpu t=1,23, ..
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JI3, HAHCCEM TOYUKHUTe 1, Mg, M3, . . . [IpH BCAKO MonoXkeHne Ha PaAMKATA TC3U TOUKH
ie ¢e HAPCXKIAT 1O eHa TPACKTOPHsl, KOSTO OTTOBAPA Ha HaaJHATa CKOPOCT Uy,
npua = ZBAD—7/2. Tlpu acdopmanusaTa na pamMkaTa Kpusata Am;y, mz, ms, . ..
I CHBIAAA TOCTICAOBATEIHO ¢ BCUYIKH TPACKTOPHN Ha (haMHUIUATa TPACKTOPIH, Xa-
PaKTCPU3NPAHH ¢ TapaMeTpuTe g 1 k. [IpecMsirancTo na ¢fa OT TC3U TPACKTOPHHA
BoAu JI0 TIo3HaBaHeTo na BcuikH octaniann. [lo ananornien HaupH, KOraTo BMECTO
y v z B3eMeM ¢’ u 2/, me noslyuumM u Xozorpadya Ha CKOPOCTHTE.

C npyrn jgymu, 4 B ciydas Na CHOPOTHBJEHHE (HO €aMO OPONOPIHOHAJIIO
Ha CKOPOCTTA) YCTANOBCHATE IPU JBHKCHUC B HECHIPOTUBMTCNHA cpejia aduriu
CBOMCTBA I TPACKTOPHUTE OCTABAT B CUJIA M MOTAT Ja Ce HOJIy4aBaT ¢AHa OT Apyra
¢ ToMouITa Ha onucaHust ot akan. Kupui Ilonos ycnopeannk.

Kak cera or tesu pesyararn Kupun Homos mMuHaBa KbM peasnust ClIydait,
KOI'aTO 3aKON'LT Ha CLOPOTHBJICHHE MOXKE Jd UMa MHOTO no-ciaoxen sua? Huryn-
THUBHATa My JOTajka ¢ cheapaTa. Toil KaTo cTofHOCTATE Ha AajeHa xojoMopdHa
dbyukuns F(v) B Zajgen HATEPBAJ BBDPXY MOJMKHTEINATa OC Ha KOMILICKCHATA
PaBIMNA U MOXKE 13 CE 3aKI0TAT MEXKIY CTOHHOCTHTC HA QyHKIUNITE kv IPH CLIHA
RHTEPBAJ 3a v, KOUTO OTroBapAT Ha JBe OiM3KH cToiiHocTH HA k, 61 Morjio ma ce
JIOIYCHe, ¥Ie yCTaHOBENOTO CBOHCTBO Ha Tpaektopuute npu F(v) = kv ¢ romsmo
npubanzenne me 6bae NPaKTHIECKH YIOBJCTBOPEHO U IIPU BCCKH (pu3HtIecKn A0-
OyCTHM 3aKOH Ha cbopoTnsictuue F(v) ma pu3ayxa. Tosa mocemane roit obocro-
BaBa CTPOro ¢Jel TOBA MO JIBa DA3JIIYHN HAYIMHA, DX TOBA KATO B3eMa NPCABU
M OBCTOSITEACTBOTO, e B Hal-001Mus ciiysail ¢bIPOTUBJICHUCTO Ha CPEJaTa 3aBHCH
u oT HelinaTa MILTHOCT, B IaJIeHUs CJIytall OT ILIBTHOCTTA Ha aTMOCKhePHNS CI0M,
1Ipe3 KOHTO CHAPSITLT NPEMHHABA, & Ta3W IUILTHOCT HaMaJsiBa ¢ BHcodUHMHaTa /i
HaJl, XOPU30HTA, BICOYHMHA, KOSTO IIPH HAIINA U300p Ha KOODIMHATHATA CHCTCMA €
h = ysina — z (dur. 5).

. / .{/

X308 T

S

Qur. 5
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Hsina fa ce ciupam Ha ¢Tporata MaTeMaThHYecka 000CHOBKa Ha TO3U PE3yITar,
a Hamnpaso II¢ OPCMHIA BbPXY NPaKTHICCKOTO My H3TION3BAle N INC MOKaKa Kak
ycTaHoBenuTe apMIHN CBOWCTBA Ha TPACKTOPUNTe NpH Hai-0011 ciyt1ail Ha 3aK0H
Ha CBLIPOTHBJICHHETO MOTaT Aa ¢ H3MON3BAT 3a NOJIyHaBane 1o KONCTDYKTHUBCH
Ha'IMH Ha TPACKTODHUTE BbB BB3AyXa MO JAHHU OT CTpe/iba Ha IOJUroHa. .

Ja norycrieM, 1e 3a gajcna CTORHOCT ¢ Ha BIbJIA Ha U3CTPeTa CMe YCTAHOBHIH
13 TIOJTHroHA Pa3cTosnyueTo d OT OTBOPa Ha OP'LIMCTO JI0 MACTOTO HA NAJAHCTO HA
cHapsjia B XOpPU30HTa Ha Op'bJHeTO U HITeDBaJa BpeMe [ 0T MOMEHTa Ha H3CTPEIa
JI0 MOMeHTa Ha 1onaaenero. C TOBA HUE UMaMe BCUYKHU JAHHM 3a ONpec/iaHe Ha
KOOPJAHHATUTE Ha TOYKATA Ia [ONaJCHUCTO B KOOPIUIIATHATA CHCTCMA, IPH KOATO
ocure Oy n Oz CKMOYBAT LILA & + 5.

Ho ra3n Touka e CLIEBPCMCHHO TOUKA OT TPAEKTOPHATA, KOITO OTroBaps Ha
JAACHUS BI'bJ Ha H3CTPEJIa (¢ C HAYaJHa CKOPOCT Vg, HO3HABAICTO Ha KOSITO B
AaneHusi ciaytail He e geobxomumo. Taka HuC nMaMe

d

cos

z(t) = d tga, y(t) =

IosnaBame 1 KOOPAHHATIHTE 33 JAJCH MOMEHT ¢ Ha €J(Ha TOTKa BbPXY Ja/cHa
TPACKTOPHA (v, C TOBA HHE HO3HABAME KOOPDJIUIATHTE B CHLOTBETHATA KOOPAUHATIHA
CHCTCMa Ha CLOTBETHATA TOUKA BbLPXY TPACKTODHUSTA OT (HPaMHUINATA TPACKTODITH,
KOWTO OTFOBAPAT Ha CBLIIATA HATAJIA CKOPOCT [pH HAH-pas/iHu B & Ha 13-
crpesia. Eana Touka BbpXy JajeHa TPACKTOPUS BOAY JO IO3HABAHETO HA ChOTBET-
HUTC TOYKY BLPXY IisiaaTa haMuIns TPACKTOPHH Ug.

MeroanT, koitro Kupma Ilonos npeasiara, ce ¢bCTOH B TOBA: Ja CC OUPCJACIAT
TOYHO PA3CTOSNINATA 4 MTONAJCINETO B XOPH30IITA HA OPbMETO 32 Pe/l TPACKTOPHUH,
KOMTO OTroBapsT Ha ¢IHA pelmila «,[3,7,.. Ha bIVIM Ha w3cTpesa. Beska eana
TaKaBa TOYKA BOJU 1Pe3 MPOCTH KOHCTPYKIIUH J0 CLOTBCTHUTE TOMKHY Ha M30patiaTa
peauia TPaCKTOPHE.

3a Tasu 1es1 cu u3bupame Ha DOJUIoHA. €Ha 1o0pe HUBeJIHpana XOPH30HTAJHA
UBHIA, IO KOATO CC H3BbPUIBAT BCUIKH ONHTHEH cTpeabn. Crpesas ce ¢ eano u
CBLIIO OPbAME, IPH eIUH U CbII CHAPSAL W MPU €|H U by 3apsa. KakTo e
Kupuna ITonos ,, C nafi-rosgaMo cTapaHue U TOYHOCT €€ ONPeACAT KaKTO BbI'bJa
Ha H3CTPEJa, THbil CbIIe W NONAJCHHETO B XOPH30HTA HA OTBOpa 11a OPbIACTO."
OnpeaessgHeTo ua BPeMeTo He € HeobX0AHMO, aKo 3aadaTa ce CBeXKJa CaMo JO
onpeaensine (hopMaTa Ha TPaeKTOpHETe BbLB Bb3ayxa. To obate e HeoOXoaHMO.
aKO UCKaMe ] 3HaeM 1 MOMCHTA, B KOWTO CHADSIIBT JOCTUrA JajeHa TOUKa Ha
CLOTBETHATA, TPACKTOPHS, KAKTO TOB& € CAVUAsIT NHPH CHApsLH, KOHTO TpsidBa Aa
eKCILIOUPAT B IaJeHa TOYKA, Ha TPACKTOPUSITA.

Ha oznam ¢ @, 3,7, 6, ... IpeaBapuTeso H3OpAaHUTE BIVIM Ha H3CTpeda, ¢ A,
B, C, D.... - cvoTBeTnuTEe TPACKTOPUN, 1 C @1, b2, €3, dy, ... ~ TOUKHUTC B XOPH30HTA
HA Te3U TPAEKTOPHM, ONPCACICHN 1 H3MepeHH Ha rosurona (dur. 6).
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Dur. 6

Ha cmn goGpe onbHAT 4YepTexken JucT o3uadasaMe oTsopa O Ha OpBLAMCTO,
xopuzonta OO0’ u npapute OA, OB, OC, OD,..., KOHTO CKJIIOUBAT C XOPI30HTA
BV @, 3,7, 6, .... Bbpxy npasata OQ’, B us3bpan mau@ab HaHacsaMe TOUKHTE
ay, by, c3,dy, ..., TOUKH OT CHOTBETHHATEC TPACKTOPKA, U Ha pascrosuue or () ¢hbOTBET-
1o na nabiaBannTe 1 N3MEPEHN PA3CTOSIHUS Ha TIOJUTOHA.

IIpes TouKkaTa ay, KOATO € TOUKA B XOPH30HTa Ha TpacKTopusaTa A, npekapBane
npapata a;Aj. ycnopeama na ocra OZ, mo npecudanero d ¢ mpasata OA. Tlo
TakbB HA'UMH MoJydaBame koopauHature y, = OAy, z1 = a1 A; Ha TOuMKaTa a1
ot TpackTopusita A B koopannatnara cuctema AQZ. 3a Ia NOLYIUM CLOTBETHHTE
TOUKH BLPXY Tpaekrtopunre B, C, D, wnanacame sbpxy npasute OB, OC, OD
toukute By, 1, D na pascrosuue or O, pasio na OAq, H 10 1IpaBuTe, TErVICHH
OT Te3n TOUKH ycrnopeano Ha octa OZ, nanacsiMe HadoJy TOUKuTe by, c1,dy, ... a
pascrosinue a1 A,. Taka nosyuenure Touky by, ¢, dy, ... €& TOYKH OT TPACKTOPHHUTE
B, C, D, ®outo oTrrosapsTr Ha TO4KaTa ai oT A.

3a Ja mOJIyYMM TOYKHA Ha TPAEeKTOPHHUTE, KOUTO OTFOBApAT Ha TOUKara by OT
TpackTopuaTa B, npekapsaMe npes by npasa, ycnopeasa Ha OZ, 10 NpecHIaHETO
A ¢ mpaBata OB. [a osnauuM ¢ Bz cLoTBeTHata Touka Ha npecutaneto. Taka
HoJly'apaMe B KoopZauraTHaTa CHCTEMa BOZ KOODIUHATHUTC Ha TOUKaTa bg oT
Tpaektopusita B

y2 = OBy, z3 = Baby,
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KOHTO Ca PaBHM HA KOOPAMHATHTE B CBOTBETHHTE KOOPAMHATHH CHCTCMU Ha CbOT-
BCTHHUTC TOYKH G2, C2,ds, ... BbPXY Tpaekropunre A, C, D. 3a Ja mosysum Tesn
Toukd, pbLpxy Opasure QA, OC, OD,... u or nasanoro O HaHaciMe TOYKHUTE
Az, (9, Dy, ... Ha PA3CTOAHHE Y2, MPC3 KOHUTO NMpPEKApBAMEe IPaBH, YCIOPCIHH Ha
0Z u Bbpxy kouto o1 Ay, Cy, Da, ... HAHACAME HAJIOY HA PA3CTOSHUE zg TOUKUTE
ay,C2,ds, ..., KOUTO ca Toukn oT Tpacktopunte A, C, D, cbOTBeTHH Ha TOUKaTa b
OT TpaekTopusaTa B.

o cbmust HasMH TOCTBLIIBAME ¢ TOYKATA ¢3 OT TpaeKTopusita C U T. H. B T. H.

Mo To3u HayuuH Mo AAHHKM OT CTPENOUTE Ha MOJMIOHA HHE MOXCM JIa BL3CTaHO-
BUM TOYKE, [10 TOYKA (PAMHIHATA TPAGKTODUH, KOHTO OTIOBADST Ha €IHA U CbINa
HAYAJIHA CKOPOCT Vg.

Ha egma Mexaynapomna kondepeHIHsi HO acTPOHABTHKa BLB BapHa npes
1964 r., xakTo orbenazpa cuubT Ha Kupur Ionos — Bopuc Ilonos, B ciomenn 3a
6ama cu, Kupun ITonos paskaspa Ha IpUCHCTBAJINA HA Ta3W KOH(MEPCHIMA BUJICH
aMePHKAHCKH y4eH OT yHrapcku mpousxol npod. Teomop don Kapman 3a KoHCTpPY-
UPaHHSA OT HEro YCIOPEAHUK ¢ OI'bHATH MEX/Ly TOPHATa M J0JIHATA CTPaHa HUIIKH,
upe3 KOUTO MOXKe Ja ce HaMepH BCsKa BbL3MOXKHA TPAeKTOPHs Ha CHapAl, aKko ce
no3nasa ezHa. [Ipod. KapMan e octanan BbLB BB3TOPr OT TO3M IPOCT ypeJd H €
orbesstzag, Ue Moxe G TO3M OPUELHAI ¢ NO-CLBBPUIEH OT METOIHUTE, ¢ KOUTO CC
OTIPEJICHAT TPACKTOPUITE HA CHAPAAUTE C NOMOUITA HA KOMIIOTPH.»

Nanoxenusit Metol e riaouen B Monorpadusara na Kupun Ilonos ,Oc-
HOBHY NpobJjeMu Ha BbHIINaTa GAJHCTHKA B CBETJIMHATA Ha CLBPEMCHATA Ma-
rematuka’ (“Die Hauptprobleme der dusseren Balistik im Lichte der modernen
Mathematik™), uznagena s Jlaitmwr mpe3 1954 r., KOATO BKJIIOYBa OCHOBHHTC MY
u3cjIeABanns no GasncTeka. Tadu MoHOrpapus € Bb3HUKIAIA OT JIEKIUHTE, KOHTO
Kupusn [Monos e yen B paznuanu roguin no noxkana B CopboHaTa, B yHUBEPCHTCTHTE
ua Bepmnn, Mionxen, Xam6bypr, Pum, B Hucruryra mo aepomunammka ,Kaifizep
Buixeam” B 'vorunren, B I1Ikonara mo npuioxkenue Ha apTwiepusaTa B Topumo
1 B YHHIMIIETO 1o MOpPcKa aptuiiepust B [lapmk. YacTt or uznoxxenus: B KHUATATA
MATEPUAJI € YAOCTOeH ¢ HarpajgaTa ,Montuiton” no Mexanuka 3a 1926 r. ot Ilapmx-
KarTa akaJeMus Ha Haykure. Jlekuuure u nybaukanuute My 1o 6aJMCTHKA JOHACAT
na Kupuu [Toros cBeTOBHA H3BECTHOCT H TOH € KAHEH B MHOTO €BPOMEHCKH YHUBED-
curetd. OCK'bIHOTO BpeMe He MU JaBa HMKAKBA Bb3MOMKHOCT Jla Ce CIIpa [O-TIOJ-
pobHO Ha H3OXKeHNTe B MonorpadusTa pesyiratu. llle nanpass KpaTbk KoMeHTap
caMo 110 TOCTAHOBKATA Ha 33JaUaTa 3a JBHXKEHHE Ha CHADSA H Ha €CTeCTBOTO
Ha TPYAHOCTHTE, KOUTO TpabBa Ja ce MpeogoJiesT NpH Heilnoro pemasane. Hait-
TPY/AHATA 33 H3CJICIBAHE YACT OT 33Ja4aTa 33 NBIDKEHHE Ha CHAPSJ € 3a/a4aTa 33
JABYKEHHETO MY OKOJIO MACOBHA MY LEHTBD — 3aIII0TO Betle CTaBa JyMa 33 ABHKCHHE
Ha TJI0, a e Ha TOYKa, KAKBATO € MACOBUSIT ICHTDLD. [IBeTe ABMKeHus ca CBbP3aHN
H ABH>KECHHUETO OKOJIO MaCOBHS IICHTLP BJIHSIC 10 pellaBall H31NH BLPXY OCHOBHUTEC
DapaMeTpH Ha crpexbaTa M Ipeldy BCHUKO BbPXY TOYHOCTTA Ha IOMaJCHHATA.
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zont

Hori

Our. 7

Cbe cHapsiaa e HeM3MEeHHO CBbLP3aHa KoopAuHaTHata cucrema G111 21, Kato G
€ MaCOBHSIT HCHTHP Ha CHAPAAR, & 2| € 0CTa Ha cuMeTpHs Ha cHapaga (dur. 7). Tasn
KOODAMHATHA CHCTEMa, ce JBHKH II0 OTHOUICHHE Ha KOOpAmMHATHaTa cucteMa Gy,
KaTOo ce npeanoJiara, 4e octa Gz e no tanrenrara, ocra Gy 1o riaBHaTa HOPMaJa
1 octa Gz no GHHOpMaJaTa KbM TPAEKTODPUATA Ha Macosusi neHTnp. Teopemara,
onpelensaa JBUKEHHETO OKOJIO MACOBHS LEHTHP, € TeOpeMaTa 33 KHHCTHIHHA
MOMEHT, KOSTO IJIaCH, “¢ IIPOM3BO/IHATA B MHEPIHAJIHOTO HPOCTPAHCTBO HA KHHe-
TH'HHS MOMEHT Ha CHapsijla, IPecMeTHAT IO OTHONIEHHE HA MACOBHS LEHTDLD, €
PaBHA Ha [VIABHHS HA MOMEHT Ha BCUUKM BBHIIHHM CHJH, AciicTBAIU HA CHAPSIA
cnpsMo MacoBust My neHTbp. [Ipoekrupano B cucremara Gxiy: 2, TOBA BEKTOPHO
PaBEHCTBO BOJHM JI0 cHCTeMaTa TudepeHIUAIHE YPABHCHUS

Bp+(C—-B)gr=1L
Bg+(C—~B)pr=M
Cr =N,

KBJETO P, ¢, T Ca KOMIOHEHTHTE HAa BIVIOBATA CKOPOCT Ha cHapsijga, L, M, N -
KOMIIOHEHTHTE HA IVIaBHHS MOMEHT Ha JAeficTBamuTe BLHIHA cum, a B u C —
HHEPYHHTE MOMEHTH Ha CHapsiia 3a ocute I (Y1) H 2.
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IIpecanonara ce, 4¢ TPaCKTOPUATA Ha MAaCcOBHs HEHTDHD HA CHAPsa ¢ PABHUIHA
KPHBa; CICA0BATEIHO penepbT GTyz ce BbPTH camo okojo butopmanara Gr. [ono-
JKEeHUeTO 11a cHapsiaa ce onpedes ot brawre na Qitnep ¥, 6, @.

Kaksn cuim JeficTBar na coapsia, T.c. Kakpu ca sejadununre L, M, N7 IIpean
BCH'KO TOBa Ca CHJIATA Ha TEXECTTa My, KOSATO He OKa3Ba 00aye BIMIINC Ha ABH-
KCIHETO OKOI0 MACOBHA HEHTDD, 3alI0TO HCHHUAT MOMCHT CHPAMO HCTO © HYJICB, H
cuaTa Ha ChLIpoTHBJAende MR (v), KOATO Jexu B paBHUNATA HA CBLIPOTHBJCHHC
(2Gz1) u ckiouBa LB &y ¢ octa Ha cuMerpud. VM BrbabT 0y, ¥ Toukara Ha
IPUJIOKCHHE Ha CAJIATA Ha ChIPOTUBJCHUE ca HenspecTHH Besnunny. Mzo06mo acpo-
JAMHAMITHOTO BL3ACHCTBME ¢ MHOTO CJIOXKHO M OCBCH CHJIATA HA CbIPOTHBJICHHC
cC NOpaXkKJaT U CTPAHWIHA CHJIM Ha TpUeHe TIopa iy NpUIaJeHaTa Ha cHapaia 1Ipu
H3CTPEIBAIETO MY TOJIAMA LIVIOBA CKOPOCT OKOJIO 0CTa My Ha cumerpis (dur. 8).

Z

®ur. 8

Brprenero okoj0 ocTa Ha CUMETPHUS ¥ TPOMSHATA HA HEHHOTO MOJ0KCHHC B
IPOCTPANCTBOTO MOpaxkia U Apyru edekTd Karo uanpumep edekra Ha Marnyc,
3aBUXDAHUAA, KOUTO CHIIO TPAGBA a ce OTYUTAT. 38 Aa Ce OTHeTaT BCHYUKH TE3H
ABJCHHS U Ja MOXKe JIa Ce U3TPaJH NPeACTaBa 3a eCTeCTBOTO Ha Te3H CUIIH, TPsabBa
Ja e U3TOA3BAT eKcriepaMenTatnn meroan. Tosa obade npn TunuannTe 3a HaIHCTH-
KaTa CKOPOCTH € HEOOMKHOBEHO CJI0XKHA, IIPAKTHICCKH Hepaspeninma 3a1ada. 'Tosa
HaJlara Aa ce CTPOAT XHUIOTE3H, KOUTO CaMo CJeJ] CPaABHSABAHC Ha PC3YJATATHTC OT
cTpesnbaTa ¢ MATEMATHTICCKUTE PE3YIITATH Bb3 OCHOBA HA NIPUETATA XUIIOTC3a MOTAT
Aa 6baaT NOTBbPACHH HJIH OIpoBepraiy. 3a ToBa obave e 6e3yCcJI0BHO HCOOXOANMO
MATCMATHICCKUST alapaT 44 T03BOJISBA CUTYPHH 3aK/II0MEeHNA B'b3 OCHOBA 114, IIPH-
eTuTe xunoresn, 6e3 ga ru Qanmucpumppa. Taka cTapa sfcHa BaXKHATa POJid Ha
MATEMATHYIECKUTE METONM: T¢ TPAOBa Ma JONBJAHSAT OCKbLIHUTE aepOIUHAMHTIHH
HO3HAHHS] U Ja HAJaT Bb3MOXKHOCT NPHETATE aePOJANHAMUYIHYA XUNOTe3n Ja Obaar
OLICHEHEHH.
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Touno Tyk e 3acnyrara na Kupun ITonos. Toit npusiutia 3a 3amaiure Ha
6aMCTHRATA MATEMATHICCKHTE MCTOAM, HpeacTaBetd B paborute na Iloankape,
ITukap, Benankcon u Canjamal, u ru fopassusa. BiabxHopenue 3a Hero e npaMepsbT
na IMoankape, KOHTO ¢ 611 HCTOB UIPCHICAABATEN B KOHTO ro HACOUYBA B H300pa My HA
TCMa 3a JOKTOpCKaTa My gucepranusi. B kuurara cu ,Hoeu Meronm ma uebecnara
mexanuxa” Hoankape, usnoassaiiky TeopusitTa Ha KoudopMuuTe H300pakeHUsd U
TEOPHUATA HA AHATATHIHOTO NPOILJIKCHUE, TOJIYHaBa BayKiK Pe3yaTaTy B nebecHa-
Ta MexaHuka. Kupuir TTonor perrasa, KakTo nuiie B IpeAroBopa Ha KHACaTa CH, ‘ie
e --BPEMETO € HOJAXOJAN0 U GaJHCTHYIRATE Teopud aa Objaar pasrienany oT Ta3n
raeana Touka’. Tyk, pasbupa ce, TPYyAIOCTHTE ¢a OT JPYro ecrecTso. JokaTto B
HebecHaTa MCXaHHKa CHJIMTE ca ICHTPAJHH ¥ MPHTEXaBaT NOTeHINal, TYK aepo-
JIUIIAMHIHOTO CLIPOTHBJCHHE HMA ¢HLBCEM JAPYTa NPUPoJa, HO He3ABHCHMO OT TOBA
CITOMCHATHTC TCOPHM JOBCXK/AT J0 HOBU PE3YIITATH, OTIMYABAINU CC OCBEH € IbJI-
6o"1MHa ¢HLHIO TAKA U C CACTAHTHOCT.

Hanpasennsat kpatbk 0630p na uscacapanusita no basmcrika na Kupun [onon
TIOKA3Ba TSIXHATA OPUIMHAJIHOCT 1 bJbouia. Te ¢a 1oy uan cBeTORHO MpU3HAaIie
M Taka ca CIOCODCTBAIN MHOIO 3a U3AUrane aBTOpUTeTa Ha ObarapckaTa HayKa.

Hoaywena na 18.4.2006

JIroBomup Jlnnos

DPakyarer 10 MaTeMaTHKa M HHMOPMATAKA
Codpuiicku yuusepcurer . Ce. Kunment Oxpuacku
1164 Codusi, n.x. 64, BbJIFAPUA

E-mail: lilov@fmi.uni-sofia.bg
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KMNPUJI ITOITOB -
[MMOHEP HA BbJI'APCKATA ACTPOHOMUA

BAJIEPU T'OJIEB

Some details of the early history and early timeline of modern Bulgarian astronomy
are reviewed. The role of prof. Kiril Popov, member of Academy and a great Bulgarian
mathematician, in the development of modern astronomy in Bulgaria is discussed.

»IIpes 6cunKomo epeme HA MOAMA CREUUGAUIGUUA 6 CTMPAHCINGO A3 YENLUHO
ce NOJ2OMEAL NO ACTRPOHOMUA, KATNO “e MU Npedcmoewe 00 YnpasAieam Hall-
zoaamama obcepsamopua 6 céema.

IIpes nacroamara roguna orbensaspaMe 125 roguHu OT POXKIACHUCTO HA CIUMH
OT Hali-rojieMHTe yuenn na Buarapus — ronemusT mareMaTiK akaa. Kupui ITonos.
Tyk 11e HanpaBuM ONUT Aa HPUIOMHHM poJisita akaia. Kupun Ilomos, kosto Toft
H3UTPaBa B PA3BUTUETO Ha ACTPOHOMHSATA B BLJIrapust — poJist, KOSTO IbJTH POITHE
OCTaB4 CKPUTa B CHHKATA HA HETOBUTE CBCTOBHH MOCTHYKCHUSI B PA3IUTIHI 00OJIaCTH
Ha MarTeMaTukaTa. [Ipeau Bex TorasammnoTo Buciie yumnmime ¢be 3aK0H € npenme-
HYBaHO B yHHBEPCHTET U H3AaBa CBOS I'bPBY roaumHuk mpe3 1905 r. B rozu Tpyacn
3a HAMHUPAaHE cera IbPBY TOM MHTATEAT e OTKPUE U MbPBATA Hay1HA MyOauKaims
0 acTpoHoMmwsi, oriedarana B Buarapus. Ts uznmza nox neporo Ha TOKy-1I0
HA3HAYEHHs 3a aCHCTeHT IMo acTporomus Miuan yuen Kwupun Ilonos. Ilak Ttorasa
WU3JIM3a M IILPBHAT TOM Ha CIIHCAHUETO Ha ObJarapckoro Pusnko-MaTeMaTHiecko
APYKECTBO, K'beTo noanucsT Ha Kupua [onos erou nox Tpu nybaukainuu. Benrtiko
TOBa He HH OCTaBs He3pa3IuHM, 3allOTO XBBPJS CBETJIMHA BBPXY HSIKOH JIpebin
Ha NPBHB [OIVIeJ, HO Ba)KHHU 33 HAC, aCTPOHOMETE, (PAKTH OT HAUAJIHATA HCTOPUA
Ha HAIATa aCTPOHOMHS.
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Hetinocrra na Kipun Tlonos kato Matemarnk ¢ Beelpu3nara u pobpe us-
BecTHa. SHAMCHET yICHHK (CAHH OT MajKoTo) Ha peaukus Iloalkape n cBeToBHO
mssecren yicn, Knpua [Tonos cam ce e eMaTan koJKOTO 332 MATEMATHK; TOJIKOBA
U 32 acTpoHOM (BK. MO TO3H NMOBOA iierosata , Asrobuorpacus “ [1]). Herosure
UIMPOKO W3BECTHH HOCTIDKEHH B PA3AMMEA 06AacTH OT MATCMATHKATa H 0COGCHO
BbB BLIIHATA OAIHCTHKA H MaTeMaTUIHUTC OCHOBH 1A HebeCHATa MeXaluKa (KONTo
TYK HAMa Ja KOMeITupaMe), KAKTO H IIeI0BOTO U3pacTBaHe KaTo BOJIeNl MATEMATHK
B CopuitcKs yHUBCPCHTET OCTABST B CANKA 32, 061IECTBOTO HU 3HAYMHTECHHS [IPUIIOC,
KOUTO TOM HMa 3a Pa3BUTHETO 1A KATeJIpaTa [0 acTPOHOMUS NMPe3 I'LPBaTa TPeTHHA
Ha MIHAJIHS BCK.

A 14 e ynukasna, 3amoTo:

1) Kunpus ITonos ¢ nepsuam aoxrop no acrponomus (1ie6ccHa MCXaHHKA) B
Bouarapus.

2) Ha Kupnua [TonoB qb/ukuM M nspeama nayana myGIaKaIis 00 ACTPOHOMHUS
B Boharapns 2] (ma nes me ce cnipes no-noay).

3) HeroBu ca m e/nu oT napeume y Hac HayHNONONYJISPHA NMyOJMKALIIH 110
acTporomust - Bx. Haup. [3) u |4].

4) Kupun ITonos nposex;ia n ny6/MkyBa cauncTsennte B Buarapus nabmoie-
nps ta XaJeeBaTa KOMETa OT Y UHBEPCUTETCKATA ACTPOHOMUICCKA 0DCePBATOPUS —
Bxk. K. Popoff, "Observation de la comete Halley faites a 1’Observatoire de Sofia“.
Comptes rendus de "Academie des Sciences de Paris, t.157, 1395-1397. Toea ca
napsume CTORNOCTHH TPOMCCHONAINM ACTPOHOMUINN HAOMOACHHA, TTPOBEACHH B
Buirapust.

5) Oxono 1/3 or mayunute My UyGIUMKAIMH ca TOCBCTCHH HA aCTPOHOMHATA
(Bx. cobeTBenNs My COMCBK, MyGmkyBsan B [1]).

6) Herosa ¢ u rpmkata 3a passutueTo na Kareapara no acTpoHOMHsT MaJKO
Ipey U HeNoCPeJCTBCHO cJlel, cMbpTTa Ha npod. Briesapos.

Hexa oTnadano npocse/ M HaKpaTKO OCHOBHHTC JaTH B PAHHOTO Pa3BHTHE
Ha ObJarapckata acTpOHOMHS, KOETO ¢ CBBP3ano M3MsIo u camo ¢ Kareapara no
actporoMist B Couiickusi yHHBEPCUTET.

1. BPEMEBA JIMHUS HA HAYAJIHOTO PABBUTUE HA BbJITAPCKATA
ACTPOHOMUNA

Bpemesara jnumst na acrponomusTa B Buarapus sanousa ¢ npod. Mapun
Buuesapos (pogen npes 1859 r. 8 Fopna OpsixoBina u 3aBLpUIL aCTPOHOMHS B
MockoBekust yHuBepenTet), Koitto paboTi yaupepcuTeTa oT 1890 I i A0 CMBLPTTA
e npes 1926 . Acrponomusita ¢ ¢b31aeHa OT HEro KaTo AUCIMILINHA BbB Pusuko-
MaTeMaTHIecKus GaKyITeT Ha Bee OLIC HAPUIAHOTO Torasa Bucwe yummmime. M.
Buesapos 3an0uBa fa eTe bpBUS Kype 10 ACTPOHOMUS 1Ipe3 mpoieTTa na 1892 r.
Toit cvznasa Kareapara no acrponomus m Actponomuucckara obecpBaTopHs Ha
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yamBepcureTa rnpe3 1894 r., KaKTo U HeCLIICCTBYBAINMsI cera aCTPOHOMUMICCKH HIi-
CTHTYT K'bM yHuBepcurTeTa mpe3 1910 r. {5.6].

Or 1.IX.1901 r. 10 1.1.1904 r. B oGcepsaTopusita paboTH MbPBHAT ACHCTCHT
no acrporomusi. Topa ¢ 6BbACIUUAT pegoBen Hpodecop Ho TeoJcsHs M KyaTypHa
TexHuKa B Arporonmo-tecosbackus dakyarer Mopran Kosaues (posen npes 1875 1.
B Kiocrenguin), TBopuceTBOTO My € H3KJIIOTHTEANO [UIOLOTBOPHO U BKIIIOMBA 1A,
150 paborn B obsacTTa HA ACTPOHOMHATA U I'COAE3HSATA, IIOBCUCTO OT KOHTO Ca
Hay1IOHONYJ/IsIpH CTaTHH 1 KiurH [6].

Or cerrremspu 1904 1. g0 1914 1. acucTeHT B KaTeapata € IyMenelbT Kupni
[onos (pogen upes 1880 r.).

Hoapo6roctrte ot 6uorpadusiTa My ca u3sectin. B mepnoja na yausepenrer-
ckata Kpu3a ot 11.V1.1907 10 31.1.1908 no simuust Ha , a1TepuaTHBIMA YIHBCPCUTET
33 U3BbLIPEAeH Npod)ecop Mo ACTPOHOMHUS € HA3HAYCH JOTOraBaIlHUAT aCUCTenT 0O
maremarnka Hukona Croanos (poxen mpe3s 1874 1. 8 Hoitpan). Toit obate ne ¢
"esl JIeKINH, a ¢ 6u1 Komammuposad BbB @pannus u lepmanna. [Isa ubtu Toil e
Ha3HauaBaH 3a PEIOBCH JOIeHT mo actpoioMus — npes 1920 . u 1926 r., no ne ¢
3aCMadl JYIbAKHOCTTA (BCPOSTHO MOPAJH BHCOKHTE TOCTOBE, KOUTO TOTAaBA ¢ 3aeMall
B GbJrapckaTa 6aHKOBA CHCTEMA).

Ot 20.1X.1924 r. 70 geHS Ha NPCXKJCBPEMCHIATA CH cMbLPT — 18.V.1927 1., B
KarepaTa 1o acTponomusi ¢ acuetent Bemnecsnas  ‘Iepuokoses  (pozen mpes
1896 r. B Kiocrenaun), sapbpmiua ¢ Jmcancue e cuanc” s [apix npes OKTOMBPI
1923 r. |6]. Herosata auunocT e MajKO HM3BCCTHA Ha HAUIATA ACTPOHOMHYUCCKE
KOJICI'HSL.

Cuien embprTa Ha 1pod. Biresapos 3a Kareapara no acrponomust 3anotisa
fa ce rpuxn Kupua Homos. Or 29.VI.1927 1. B kaTeapata e HazHa'ien 3a aCHCTelT
poacimsT B Crpyra npes 1894 r. Jumutsp dyaymos. A or 1.XI1.1928 r. karo
peoBer AONCHT KaTeApaTta IocMa BuanuTanukbT Ha Kupun Ilonos n 6bacm axa-
Jevuk Hukosa Bornes (pozen npes 18398 r. 8 Crapa 3aropa).

2. ITbPBATA HAYYHA ITYBJIMKALIA IO ACTPOHOMIS B BbJIFAPYS

[TbpsaTa ¢hLBpeMeHHa HayuHa MyOJIMKAIMS ¢ OPUIMHAJEH IPHHOC TIO aCTpo-
HOMHS, HaIlACaHa 11a OLJArAPCKH M oTmneuaTana B Buarapus, e na Kupun Homnos,
TOraBa acHCTCHT [0 acTponomus. Ts ce Hapuya ,Eama MeTosa 3a oupeneasiie Xe-
JHOTPAMUIIOTO MOJOXKCHRE 14 CJbIYMEBUTe [IETHA “ ¥ e MOCBeTeHa Ha Hab/IoMAC-
musita na Cavinero [2] (gur. 1). Toa e ¥ HeroBUAT OPbLB HAYHCH TPY/A H I0ABATA
My He e caydaiina. Tlo Bpeme Ha ciegsaneto ci ot 1898 1. 1o 1902 r. mo noprucine
na npod. Buyesapon Kupma ITonos ecexu 6oocu den 6e3 BaKaHIMHTE, KOraTo
BPEMETO ¢ M03BOJIABAJO0, B 2 Haca CiIc IJaaie ¢ H3BbPIIBaJ (KAKTO IHINC CAMHAT
Toit B [1]) ,crcremaTruio HAOMIOIACHEE ¥ 3aperucTpUpaie na 6post, roacMuuaTa u
MOJI0KEHHETO Ha cJbhieBHTe Netna’ . HarpynanugT upu te3n HabmogeHUs OMHT
¢ CHITe3WpaH B HOBATA My Hies 3a ONPEAEIe Ha XeJHOrpahCKOTO NOJIOXKEHHE Ha
CILHUCBUTC HETHA, H3NOXKEeHA B MocoveHaTa 1nybaukanys.
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Brpouem akrusuocrta na Kupna [lonos xato crymeHTt He ¢C € ¢bCTOsIA ¢aMO
B M3BBPIIBAHCTO Ha Te3u 603 chbMHEHHe oTropopHH HabJHozelust ([HTaM ce Jajm
61IXMe MOTVIH Ja HaMepHM cera CTYAEHT-I'bPBOKYPCHUK, Ha KOTOTO Ja pa3iuTaMe,
4e uie epbpinn noxobua pabora 3a 4 roaumu nanper...). Kakro toit mame, ,Ilo
HHAIHATUBA Ha CTYIeHTHTE OT Halmsl Kype obpasysaxyme npu dakyntera CryaenT-
CKO acTPOHOMHYCCKO 0B1IecTBO, yeTaBbT Ha Koeto e ogobpen or dakyrrernns
¢bBOT ¥ B KOETO ¢e H3Hacsaxa pedepaTu us objacTra Ha acTpoHoMuATa. bsaxa
opranuzupaii HabJoaenus naj najamure 3pezau: Jleonuau, Ilepcenau u ap.“ [1].
JIoBomuTHO e ¢ 3a YnTaTess Ja yiiae, e tosu [I'bPBH cryrenrckn Kpbkox no
acTPOHOMHAS olNe PYHKIMOINPA K'bM YHUBEPCUTCTCKATA ACTPOHOMHEIECKa 0DcepBa-
TOpIst!

Eana merofa 3a onpbabaaHe XenWorpaduynoTO NOAOHEHKE
Ha CnbHYesWTH nerwa.” '

Plpy patGorarta b rags smeroga tphboa otnanphas a3 uy A no-
AEATH CACMCRTHTE Ha CABHYCRATA POTAUHA, 3 AMCHAO ! ARDKHIATE 13
BAJCAR B HAKJAOWLTH HA CHBHYCHBHN CKBATOPD KbMbL CKAHUTHKATH.

Crn XEAROMETPE, WAH Ch ApPYFDh MHKpOMETPL, onphabasue wman-
MHS AHAMETLDPD Ml CHALHUCBHA JMCKD, ROZHIHOMIMS Arbanh (W) ma
HETHOTO CHPHMO CrLHUEBHE HEHTBIYL W FCONCHTPHUHOTO MY OTCTORIHE
OFL HEHTPR 13 COBIMCBIY HBCKS, sBacwh ad Tona — onphabasme u
XCAHOUCHTPHUHOTO OTCTONHKE ¢ (== 0%} Ha peraoTe an npeboaa ua
CABHYCHBATA HOWBLPXHENG Ch 3CMEAH DLAHYCH-BEKTODD.

Hexa a (bur. L) nu nphacraasa cansmiesoro neruo, DQ - canp-
HCRHS CKBATODL 8 [ - (0AKCA BA Toau exnarops, Hexa NS ¢ nphoba-
KATS HA CTLUYEHATA HOBPLIHEHA b JCKAMVANHOHHAS KPATDL, KORTO mi-

N uana nphys HENTPa Ha ALY~
P —n nero. Tazn pasunna chue
CABHUSRATA HOBPHYHBUS B
roahME  KDAPB, KOlTO o

e

|
‘,«‘/ﬂ }
i
/ \ ; )“TF

Pur. 1. Hawanuata cTpanuia Ha n'bpBata CbBpPeMEHHA HayuyHa myOinKauus ¢
OPHIHMHAJIEH IIPHHOC TIO acTpoHoMUst B Bwnrapus (2], nanucana ot Kupna Honos.

3. ACUCTEHTCKU I'OOVUHU

Ot 1904 r. Kupu Ionos e acucrent no acrponomust B Couiickust yHuBepCH-
teT. Oue npeJy natanoTo na yiaebuara 1904/5 r. To# 3amo4Ba yCHICHO 12 NOATOTBS
YOpayKHeHHATa, KOUTO TPAOBAJIO Jla BOAU CLC CTYJEHTHTE OT YE€TBBPTA TOJUHA.
»,DPAX Ha 24 rOOHHH, a Te MOUTHM BCHYKH 0dXa NO-BbL3PACTHH OT MeH H He 6:axa
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soBauy. Expa wact or ynpaxueHHsiTa 6saxa TEOPeTHUHH, a apyra — paboTa ¢ ui-
ctpyMeutn. TeoperuannTe 33JaH ce QapaXa MPe3 BPeMe Ha JEKIHMATC 0T Mpod.
Bruesapos. B rToBa ornomenue 6sax cnoxoen. Ho paborara ¢ uncTpyMeHTHTe He
TpsIOBAlIe Ja UMa caMo JEMOHCTPATHBEH xapakrtep. TpsadBame cTyAeHTLT Ja Mo-
IyBCTBA, e BbPIIH HCTHHCKA HAY'Ha paboTa... UMax mbiHarta cBoboia OpH MoATa
OpaKkTHIecKa paboTa ¢bC CTYACHTHTE H paboTaTa MU MODPAJHO ME  YUOBJCTBODI-
Ballle. ..

ITpes mupBuTe ABC TOAMIN UIYANPAX OCHOBHO , AHanmTuvna Mexauuka' na [loa
Anen, naazupuax B, Hebecnarta mexannka® na Pecas, usyuux asa roma or ,Hebec-
HaTa Mexanuka “ na Tucpan, 3aMo3HaX ce OCHOBIIO ¢ HAKOH OT CBLUMHEHAATA II0
MareMaTHyecka dusnka Ha [Moankape i ¢, Teopus ua BepositHocTTe” Ha Beprpar.
ITo Tosm naumu Gax roToB Aa samo<iHa paspaborTkara ma cina JOKTOPCKa Te3a.
Hurepecure 6sixa Bede cubyaenn 1 a3 NPOALIRKABAX B Ta3H HACOKA M B CJICAITUTE
roaunm...“ [1].

ITpes 1906 r. Kupnn [Tonos e usnparen ot npody. BiieBapos Ha crieHaIA3alHla
B Tepyanus 1 @panmus. B Tepmanus nocemasa obcepsatopuute B Mionxen u
Xaiinenbepr, KLACTo ce 3amno3niaBa ¢ wiente "a Iloankape 3a TpuTe Tejaa 4 ¢
Herosata Teopus Ha meprypGamuure. Ot 1907 r. ¢ B obceppatopusra B Huna,
K'BJICTO aKTHBHO Habmionasa acteponau. [Ipes ecenta na ¢bimara roauna e B [Tapixk,
KbAeTo cayma B Copbonarta gekuuu. OTTaM npaBy HayIHA KOMAHAMPOBKY B 06cep-
saropunte B I'puiiynt (¢Ba Ji1 e HMAJIO TOraBa No-npotyTa ot Hest) n B Ctpacbypr
- roraBa pce ome Hemcku rpan. B Ilapmk moayuasa ot [Moankape kato TeMa
3a CBOSTA JOKTOPCKA JUCEPTAIUA 3aJa7a JIa Cb3AaJe TeopHsl Ha ABHKEGHHCTO Ha
MaJjKaTa miaHera XekyOa. Tosa e 3ajaua 3a TpuTe Teja (ABHXKEHHCTO Ha TO3H
acreponz ce onpeaeast ot Cabunero u FOnurep). Muoro e mobonmmren exnt nacax,
cnioMeHaT oT akaJ. [lornos no To3u noBo: ... CTpysBa MA ce, U a3 ¢bM I'LPBOTO
june or Boarapusi, 3a koero ITapiyKKusi YHHBEPCHUTCT 3aueTe JOKYMCHTUTC Ha
Coduiickus 3a €KBHBAJCHTHH ¢ HAPHKKUTE [0 OTHOIICHHE HA JOKTOPCKHS H3-
T [1]. ToBa ce e biKaso Ha 6e3ynpeaHnTe My aCTPOHOMUIN HAOJIOIEHAST, 1aCT
OT KOMTO Beve Gumy my6/IHKYBaiy ¥ USIPAINIIN Ha aBTOPa CH COJU/CH aBTOPUTET.

Kwnpun [Monos zanousa pabora bpxy ABmxcinero na Xeky6a BbL3 ocHOBA Ha
TeopuaTa na [loamkape, HO ¢C OKa3Ba, ¢ MOJYYCHATE PE3YITATH HC CHBIAJAT C
Habmionenusita. U Torama, 3a ga cbryiacysa TeopuaTa ¢ Habuwogennsra, Krpui
Honos kopurnpa no mogxoasur Hauus neprypbanuonarta yukuus Ha IToankape.
Tosa ¢ nerosara riaBia 3aciyra 3a Pa3BATACTO Ha aCTPOHOMHATA. ToH 3apbpiIBa
CBOSI HAY™ICI TPYA ciel 4 roauny. 3aluraTa My € HacpodeHa 1pe3 ecenta ma 1912
r. B Copbonara na Ilapux . Ho cumespemenno e obssens Baskaickara Bofina n
Kupnan Ionos ¢ mobunusnpan. Torapa 1o M3KII0YEHEE XXYPUATO € ¢hOPano BLIPEKi
BakaHnuonuusi nepuoy ome Ha 12.09.1912 r. Kupus Ilonos 3amurasa dmecTsio
CBOATA MPOYyTa JOKTOPCKa JQHCEePTauMs, o3arjabeda ,Sur le mouvement de 108
Hecube® u Beauara cien 3amprara ce 3aBpbila B BLbarapus, KbAeTo B3eMa yHiacTae
BbB BoHAaTA.

Ipes 1914 r. Kupua [Tonos e n36pan 3a JOLEHT O OCHOBY 32 BUCIIATA MATCMA~
Tuka. OT TO31 MOMEHT HATATLK 3al01Ba Bb3XOABT My KaTo MaTemaTnk. Ho makap
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i pete mspecten Maremaruk, Knpun Ilonos ocrasa sepen Ha moboBTa CH KbM
ACTPOHOMHSITA U B MEPUOIA MEXKAY /ABETe CBeTOBIH BOMHU MeTe mode 15 mbTi
AeKumn o nebecna Mexarmika s Cop6onata, 8 Bepaun u Xaiigeabepr | 1].

4. ACTEPOUIBT LIBETAHA (785 ZWETANA)

II'LpBOTO MME Ha ACTEPONJ, CBbP3aHO ¢ Bharapust, IbJIKAM Ha aBTOPUTETA Ha
Kupui onos, kofiTo TOM ¢i H3rpaXK/Ja B cpejute Ha eBponchickara acTPOHOMHS.
Crapa nyma 3a mMeTo Ha Majdxara niatera I[serana (785 Zwetana), oTkpuTa Ha
30 mapt 1914 B Xaiineabepr ot A. Massinger.

O6cTosTesICTBATA OKOJIO TOBA UMe Ca CBBbP3ani ¢ Jpyxkdara na Knpun [Tomos
¢BHC CTaHAMNSA MO-KbCHO AupekTop ua Astronomisches Rechen-Institut B Xaitacn-
6epr A. Kopff - mneros auvien npusitea ot xafieaGeprcKute My TOAMHU, KOHTO €
PLKOBOJGLI B TOKTOPCKaTa Teaa Ha Hukona Bones. B ciomenure na Kupui Ionos
geren: ,Karo napekTop na Astronomisches Rechen-Institut, eana ot sazaite na
KOHTO € Ja KOOPAMINPA U PEAAKTHPA PE3YATATUTE 0T HAOIIONCHAATA, B PA3IM THITC
obcepBaTOpHE, HEMY H lla HHCTHTYTa Ce Hajallie 3ajadaTa MCXKIy Apyroro ja
waenTudunpEpa HabJII0aBaAHHTe ACTEPORJIH C BCTC IIO3HATUTE U Ja KPbllaBa HOBATC
¢BC CBLOTBETHH HMCHa... EJAuN jen Toll MU Ka3a, U¢ ¢ KPLCTHJ CAHa OT HOBOOT-
KPHTITE MAJKH ILIAHCTH Ha HMeTo na jrbileps mu llBerana, kosro (murancra —
6.4.} JHEC ce HOCH U3 MCXKIAYIUIAHCTHOTO MPOCTPAlCTBO U BCAKA IOAuNA ce AaBaT
B aCTPOHOMUYHHTC aJIMaHaCH JIAIHM 34 HEHHOTO HOJIOZKeHUEe MexAy spesauTe. B
€JIHO TIHCMO JO ALIICPS M TOH Iuuie, ©ic riaHetarta LBerana ¢ HMEHHEO Ha JDLUICPST
mu IIserana, a ue ua apyra IHserana® {1]. Tasu ronsima wect, oxasana na Kupun
TTonos, ce paspuba Ha ¢ona na MOAUTHUECKUTe cbOuTHs B [epManns npes 30-te
roaunan: , Beme b8 BpeMeto Ha Xuwep. Exun gen Kopft mu ce onnaka, e senakn
[O-U3AAFHATH JIAIA OT MAPTHSITA Ha XHTJIED OTHBAJHM IPU HEro ¢ MOXKENaus Ja
BIJISIT MMCTO CH CBDBP3aH0 ¢ HSIKOs HOBOOTKpHTa IWiaHeTa. VHCTUTYTBHT HMalie
MEZKIyHAPOACH XapaKTep. 3a Ja He KOMIIPOMETHPA TO3H My XapakKTep, To#H 110 €11uH
WM apyr natiuH H30arsaiie Ja yJI0BAeTBODSBA ¥KeJIaHUATa Ha BUIHHTC NapTHIHIH.
Hazxe umeto na Xuraep He cC cpeliia Mex1y MaJkuTe mianern. [1].

5. II'bPBOKJIACEH YYEH U HAYYEH PbKOBOJANTEJI

IMoayecTBas rpuxara Ha CBOSI pfbxosozmmﬂ npocd. BbraeBapoB, clen BpeMe
Knpua Honos ocurypsisa Bb3MOXHOCTTA Ha CBOSL aCUCTEHT B KaTenpara no Bucina
matemaruka Hukosa Bones ja cnenuanusupa pbus @pannust u [epmanms a1 cacs,
3aluTa Ha JOKTOpcKa AucepTanus B [lorcaaMm na moeme KaTo JOIEHT OCTAHAJIATA
6e3 Turynsp Kareapa no acrponomusi. B criomenare cu Kupuot [onos nume: ,,Cren
I'bPRUTE NAPUKKHA JICKIUK OsIX MOKaHeH Ja rocTyBaM B BepJsmickus yHHBEPCUTET.

. Ha serbnnTenara sekigist IpUCHLCETES, MTOYMTH HeausT (pakyareT. Tyk 3a BTopH
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BT co cpetniax ¢ npod. Afumaiti. ... [Ipeau Ja 3an0uua JEKIUATA, UMAX HPOTbII-
xuTeen pasrosop ¢ npod. Jlyaengopd (mipextop Ha Actponomuticckara obcep-
Baropusi — 6.a.), KoifTo ¢e 3AHHTEpecyBa OT CBCTOAHHETO Ha aCTPOHOMUTIECKATA
nayka b Boarapns. Kaszax My MCXIy Apyroro, 1 B TO3M MOMCHT KATO CTAXKalT B
IMapmxkata obcepraTopust paborn mMoat acucrent Hukona Bones. ... Jlyaennopd
ME cbODIIH, YIe TOH pa3nmosara B MOMEHTa ¢ KPCAMT 3a eIull HAYICH CHLTPYHHK
u 4¢ ¢ rotoB ja mpueme H. Bowmes. ... Toit Tolt MoXka ma npekapa ABE TOMMIH
B Bepmimn, jga moAroTBH AOKTOPCKa Te3a M Ja Ce 3aBbLPIC [I0ATOTBEH [a 3acMe
Karexpara no acrporomust B Coduiickiist yHHBCPCHTCT (KOSITO CJICA CMBLPTTA Ha
npod. Mapun Biaesapos Gettie octanana csoboa 0 a3 YeTAX BPEMEHHO JCKIMH 110
Hebectra Mexanuka). ... Ocsen Men Bones e Moxe 6u npodecopbT 0T yHHBEPCUTCTA.,
KOHITO e HMai Hall-MIoro speMe (IbJrd IeTHpH TOAMHH) Ja ¢ TOTBU B 1y XKOHna
3a KaTeApaTa, Kosto zaema’ [1].

Axazi. HajpxakoB B crioMenuTte ci, Hamucahu no 1osoi 90-tara romgniminmna
na Coduiicknst ynusepentet, kazpa caeanoro: , Kupun [lonos, xoitto ce rorseie
3a JOHEHT 110 ACTPOHOMUS ... cc opueHTHpa (npe3 1914 r. - 6.a.) kbM obsiBenaTa
BaK4aHTHA JOHCHTYDA MO AM(CPEHIMAIO U UOTErPAIo CMsTale, KbACTo (1ocie
- 6.a.) crana npodecop. Hpn Kupua [onos, ko#ito Geme mwbpBoKaacen Haytien
PBLKOBOAUTCL, U3paciaxa Hail-MHOro u Hail-6bp3o Maazn Hay-m Kaapu® [7]. Cpen
TC3H KaJpy akald. HatkakoB mocousa Jgsama ObACIIH akaleMUId - MaTeMATHKA
Huxkomna Obpemkos n acrponoma Hukona Bones. Hamzkaxkos numme tesu penone ¢
H3BECTHA Tbra H 6JaropoiHa 3aBHCT KbM MJIAJIUTC yueld nojg KpuaoTo fa Kipui
TIonos Ba ¢oHa Ha HErOBOTO COGCTBCHO PA3BUTHE, TIPEMUNAIO TPUH CbBCCM JpPYT
KOJICTHAJICH | KJIUMAT™ .

H. Cperenosa mackopo nyGinKysa HsSKOH JOKYMEHTH OT apxupa Ha Kupun
Momos, B exiin oT KouTO, nucal B Kpad Ha HO-Te TOMMHHE, MOXKC Ja C¢ IMPOTIeTe
caennoto: , TIpn MostTa KaTeapa KaTo aCUCTeITH ¢a ¢e (DOPMHUPAIIH CJACIHUTE NPode-
copu: akaj. Hukosra Obpeinkos, wien-kopecnonaent na BAH npod. Huxona Boues,
npoc. I'eopra Bpagucrnuons n qonenrsr SIpocaas Tarammunxu® [8]. Tpyano moxe
Aa ce namepu B Bparapus Apyro ToaxkoBa pKO Ch3Be3ANC OT TAJANTH, FPYIHPAIH
OKO.I0 CBOsI yIuTea 0 pbkoBoaured. [lo moe ybexacnue ToBa € 61O Bb3MOKIIO HEe
Ha HOCACMIO MICTO I T0PAId BHCOKoMOpaHus Bbarac, ua Kupua [Tonos 3a Tosa
KaKBO 3HAYH Jia C6 PHKUIN 3a HAYyTHOTO H3PAcTBaHe A MO-MIAJHTE CH KOJICIH —
,J8aTo ¢bM ce rprKMI 3a ApyruTe, a3 He ¢bM 3abpaBsi, Hc ne GUBa 3 ce KU4a C
TYKIM yCNEeXH, | IVIeax a3 JMIHO Ja HMaM €U Hay' el aKTHB, KOHTO HAAXBLPJIs
OBUKHOBEHUTE U3NCKBaHUA, KATO NyGIMKYBaM paboTH, KOUTO 33,1080 ISBAT, MEpey
¢ esponeiickn Maab“ [1].
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100 TOAUHNM OT POXKIAEHUETO
HA BJIATOBECT OOJIAITYNEB

EBI'EHH XPUCTOB

The main facts and dates in the biography of the well-known bulgarian scientist B.
Dolaptschieff are given.

Hsina ga ckpust, sic uanpassifikul ce B TO34 JIeH NpeJ] Ta3u Ay MTOPHUs, CE BbIIHY-
BaM I[IOBetie OT 06HANHOTO: 3a10 — MoXXe OH e CTaHe SICHO B Kpasl Ha TOBa H3JIO-
JKEHHE, KDBJETO HIe CE TOCTapast JIa OTTOBOPs Ha BbIPOCca, Kol ¢ npodecop Hosan-
‘IHEB 332 MOCTO HOKOJICHWE U 32 MEHE JIH'HO.

3a nayunuTe HHTEepecH W npuHocH Ha mpod. Hosamiues e roBopsaT MOUTE
kodstera ui.-kop. Cr. Pages u npod. JI. Jlunos. Mosita 3agaqsa Tyk e jga ouepras
oTHa4aN0 B 4aTH xusota Ha npod. Jdomanumes. Muoro ot usbpoenure mo-mosy
¢akTn ca B3eTH oT auunus My apxus: , Jlonanuuen 3a Jonamuues® (logummnk Ha
CY, Tom 88, 1994), KOHTO ImIe HUTHPAM HECTO, € OIVIE MAKCHMAJIHA, JOCTOBEPHOCT Ha,
nzsoxennero. CHuTaM, 4e TOBa € U MO-MHTepecHo, 3aII0To CaMo JABaMa 6barapcku
MmaTemaTniy — Kupun ITonos 1 Brnarosect lonanuues — ca ocraBuin asTobnorpa-
buunn croMeHn.

Pogen e Totmo npean 100 rogunn na Tosu aen (16 gexemepn 1905 r.) B rp.
Ciympen. Toit e neroro u mocnenHo nete B cemelictBoro Ha Mean JdumuTpos
Tanes - Jonamuusara u Cbba Jparasosa TaroBa (nomamdms e Typcka ayma, Ha
6'1)J1I'ElrpCKI/I — Terapu4ap, C KOUTO 3aHasT 6amaTa € HU3XpaHBaJ MHOTI'O'THCJICHOTO
cn cemeiictso.) Pagocrra Ha famara ciel TpH JLUICPH Ja BMa cuH dparoMup e
CHUT'YPHO JOKyMeHTHpala, a 32 TOBa, 4€ CJeJ T'OJIUHA M MOJOBUHA MMa OIIe €IHH
CHIH € 3acera M3BecTHO caMo, e ce Ka3Ba Bnarosect Usanos Jonamiunes.
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3a ZCeTCTBOTO CH BHOCACACTBHC TOH NHINe 3arporsamo: ,beie Kby Kpasd Ha
EsponeiickaTa Bofiia, HO Ts1 omie e 6e cpbpimia. Qe 3b3HEXME, OHIe IVIaLyBaXMC
u MuzepeTBaxMe.... Beiak, muHaBallky Kpait eia ¢ypHa, KbAETO OlLIE Ce BUXK1aXa
HSIKOJIKO HEB3eTH XJisiha, GpaT MH CIUINO Me yauBu, KaTo Kasa: e mu ja rpabna
emMi X0 — TOJNKOBa, CbM Iiaaen!

TUMIa3HaiHOTO CH 06pasoBalie 3aBbpilBa npes 1924 r. B pojgumst ¢H rpai.
He e siciio KaKTo OT COBCTBEHHTE MY apXUBM, Taka ¥ OT CIHOMCHHTe Ha OJIM3KHTC
My Koe cLOY»KJa oO0BTa My K'bM MaTeMAaTHKaTa B YVCHH'IECKUTE [OIMIH, 32 12
OBSICHIM 3al0 Ha OPeIOKCHIeTo Ha, (IIATHpaM) ,,C/HH BL3PAcTCH BHCOK, c1alb i
aar mpogecop Msan Henos® , nexan na Or3uko-MaTeMaTUTICCKUst (DaKyATeT!

JJomucanxte sm 106pe? Bre MokeTe Ja 3anuuieTe 1 MCAHIMHA, M XUMHIL —
GarbT Bu nmossonssa. ¢ '

Orroeopux: , He, n36pas com Matemarika. Jpyro ne 6ux 3ammcal

Jobpe, 106pe” | crana, phKyBa ce ¢ Mel u Mu noxena na , JIo6np tact ! Tosa
6e 11a 14 okromepu 1925 r. He Moxkex na 3nas, ge cjel 4eTUPH FOJHUIIN, TOTHO 10
C'BHIOTO BpEMe 1Ie CTalla [eroB acHCTeHT. "

JliobuausiT npeaMer a yHennka Bi. JJosanaues ¢ creHorpadusTa, OBAAILLI A
e TIepd)CKTHO, KOETO BIIOCJIEACTBHE My ¢ HOMOTHAMO0 [a ¢€ H3/UbPXKa H KaTO CTY/ICHT.
IMimme: , Cacapaneto Mu B Ynupepeutera, paborara mu s Hapoanoto cnOparime
HAITLJIHO 3aexa BCMYKHTC MH MHcad. EaxoTo Geme KuBOT, B KOUTO BX HE CaMO
nacuseH HaOII0ZATEN, HO B aKTUBEH YIACTHHK; APYTrOTO — 3peNUUle OT HAl-BHCOKA
kaaca. *“ (A cera we susupuemave s Hapomporo cnbpanme KaTo 3peiuimie ot
kaaca?l)

MaagusT Jonamanes HsiMa CPeJCTBa J1a 3a0+HE CJeIBAICTO CU BeHATA CICH
3aBLPIIBAIIC HA CPEAHOTO ci obpasosanme. Tosa ro npuiyxaapa ja paboTh 1npe3
1924-25 r. xato yunren 1o creporpadus B CaMOKOB. YDOLMTE Ha MU yITe]
MIHABAT YCIIEIHO JOTOJKOBA, 1C HA YIHTCJICKH CbBET YHATEIAT N0 ObJIrapCKY €31K
uporecTupad, e Jomanames passuBa CTeHOrpaduaTa 3a CMETKA HA OCTAHAJINTE
yueGHHN npeMeTH. Y UenunuTe yHeIu 1 roBopeu caMmo 3a crenorpadus. B nacosere
10 OLATAPCKH €3MK, 110 UCTOPHs, 10 MaTeMaTHKa Te CC 3aHAMAaBa/IM CaMO ChC
crenorpadust. JdupektopbT Bb3paswi: ,Pa3pusajiTe U BHe BallUTe MPEAMCTH 34
¢MeTKa na ctenorpadgusaTa.” u Baura saceganneto. Moxke 61 omie TO3M UUTAT JIaBa
OTroOBOP Ha BBHIPOCA, 3all10 XapecBaxme JekuuuTe Ha npod. Jomamines.

Hocrunea 3B Ousuko-MaTeMaTHieckust (akynrer na Codufickus yuusep-
curer BbLB Bpemeto, korato GakylTeThT € Bede ¢ uarpadet asropureT. Eto kak
cTynenTbT Honamiues smkaa csoute yuurend: ,Bede 6axme onosuann uaimre
npenogaBaTeNH U OsiXMe TOUHAAN 33ApYXKeH XKuBoT ¢ mnpodecopute Tabakos U
O6pemkos. [Tpod. dmmrrnp Tabakos un deteme anainTuana reomerpud. Hereme
YBJIGKATEJHO, JJOPH CbC CTPACT.

Scio au e?- obpbujame ce Toi KbM ayJHTOPHATA, HOACMUXBAMKM CC U 3aI10'-
BalKy NOpEeIHUs] TYPCKH aHEeKJOT!

Ta Bamara npuiIn4a Ha HOPAXUMOBATA, JETO CH MHUCJE, 1€ BCHIKO My € SICHO H
Bcuvko pasbupa. ,Bpuma ce Mbpaxum cnen 5-6 roaunu cieaBane no MaTeMaTHKa
B CopbGonara. ~ E, pasbupamre Ju BCMYKO ACTO BH ro npenogasaxa tam?! — [la.

1«
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edenannep! Beniko pasbpax, caMo eano HEIIO M J0CEra He Mora A2 pasbepa: 3a1mo
BCH1KH NPohecopu B JCKIMHUTE 110 MATEMATHKA TOBOPEXa 32 JBe BPATH: (b0 KalH,
mbo Kanu! Tonkos pas6pan HGpaxum maTeMaTHka, KOJKOTO HAYTHI H (DPEHCKH
e3MK (3a YCIOKOCHHe Ha Te3H, KOHTO He ca pa3bpajn aHeKIOTa IIE Kaxa, de 1
Honanmes oT6ensaspa , K'bCHO CXBanaxMe Tasd urera Ha Tabakos“ ).

Cvebpmeno apyr 6e npod. O6pemkos. Haguopmeno BHCOK, € 4epHa Koca,
Maand (ensa HaBbpuma 32 roguny), a peaosen npodecop. Tolt HUKOra Ie HAITyCKaIle
CHOKONHOTO CH CLCTOSIHHE CbC CHU3XOJUTEJHO - CPAMEXJIMBA ycMUBKA. Ueremre
BHCIIa anrebpa H Pa3BUBALIE BCUYKO IIPOCTO M JIEKO, KATO Ja Pa3Ka3pallc ChBCeM
enementapny nema. Hpod. Obpenkos Geille MaTeMaTHK 0T MeXKLyliapoJHa KJaca.

Zpyr mam npodecop, KoiiTo cu Geme U3BOIOBAI MCKIYHAPOIHO HMe, Belie
npod. Kupua [Tonos — acrponom, GamucTuk, npenogasamn AucbepeHIdaniio 0 uil-
Terpasno cumatane. Toit Geme mpodecop - apruct: Korato npenonasamie HsiKoc
TPY/JHO MSICTO, CH Xalellle KOKaJI'leTaTa Ha MPLCTUTE, BhpTelle ce Ha TOKOBE Ty
KBM JIbCKATA, TY KbM HAC, a O'IMTe My — MAJKH, FICDHI, KABA — HH 3aBJIAJSBAXA.
Toit cbmo e cayXeie ¢ ZyXOBATOCTH, HO OT BUCIINS MaTEMATHUECKH JIHT Cpeil
koifto ce apuxemie B Espoma (Ioamkape, Ilemnese, Apmamap — Bce Kpyimm
cBeTHIa). '

Ipes 1929 r. Jonamnes 3apbpinsa ¢ Harpaga 3a OTJIYeH yClexX U Ope3 CLIATa
TO/IMHA ¢ Ha3HauCH 3a aCHCTEHT KbM Karteaparta no anajmruina Mexanuka. [lame:
» IpHMa acHCTeHTH Ha wecT Kareapu (3aemuo ¢ Jlonamunes acucrentu ca B. Iler-
karaun ¥ . BpafucTuios), KaTto AHCHMIVIMHATE, 0 KOHTO BONAT YIPAarKHCHHA,
AocturaT mecT. iMaxme TosisMo caMO'lyBCTBYE KAaTO aCHCTeHTH B Y HUBEPCHTETA.,
1 Moxke Om TOBa ce JbyKeme ThKMO Ha TOBA, W€ BOJCXMEe TaKa pa3HooBpasHa
yaebna paboral*

IIpes 1932 r. e yBoJinen no HpunanCOBH IPHUNHHA, KATO KPUTEPHUAT 33 YBOJIHCHIE
€ TIOCIICAHUAT NOCTLINA acucTeHT: Honanines e Hali-MnagusaT oT TpuMaTa acUCTeH-
i, [Tmme: Taka Geme nourn sHascaxbae. Kakpo max ma npass HaIpuMep a3,
KOraTo Clejl BTopaTa roiMHa Ha MOeTO aCHCTEHCTBO 05X yBojHeH No OlompKeTHH
npuunnn. [Hocruoux ornoso crenorpad s Hapoanoro cnbpanme, mMaxap 4e 6sx
BHIIMCT-MATEMATHK, 38 KOMOTO HAMaIe U YIUTEICKO MSICTO.

Buacranosen e nva 1 onn 1933

Ha 29 romunu (1935) 3amnnasa 3a I'votunren ¢ Xymboarosa crunenaps. Ioe-
TaaHo 3pyun: ['pag-rpasuna, Mekara na mMaTemaTnkaTta, rpaja na I'ayc n Be6ep,
Kunaitn m Xubept, 8 koiito e cieasan npod. K. I'banbos n cnenpamsnpan akal,
Haxanos.” A unaqe: ,Ilsn cemecTbp ocert Guten Tag u Aufwiederseen 1e nporoso-
pux Hemcku. Hamaime ¢ koro. Xaszsure mMu ce okazaxa TeMepyTu.”

Crennamsnpa npu cBetoBHo ussectHus yuen Jlymsur Ipannbia — cb3garen
Ha TEOPHATA Ha FPAHMYIIMS CJIOH, K'bJETO 3aI0UBa JOKTOPCKATA CH JUCCPTAlMs.

JhoGonurro e na ce oTbenexu, 4e JOKTOPAHTHTE U CHICIHAIU3AHTHTE 110 AePO-
JAUIIAMUKA Ca MUHABaJM Kypc 110 6e3MOTODHO JIETeHe, 34, 13 [OYyBCTBAT HEHoCped-
CTBEHO BbPXY cebe CH NOJEeMHATa CHJla Ha CaMo/IeTHOTO Kpuio. Ome ¢ IbpBUs cu
HoJIeT J0KTOPanTdbT losaniues ycnspa Jia NPH3eMA BEPTUKAAHO He3MOTOPHHKA, I
IO Y10 OCTABA XKHB.
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Crunenausta cBbpiBa npe3 1937 I # 1o Ta3u npuydHa caMaTa 3alIMTa ¢ B
Codus na akageMuden usnut npu npodecopure Yakanos, Obpemkos u Crosnos.
Temata e ,, IIpunoc KbM cTabuaMTETa HA KAPMAHOBUTE BUXPOBHU YIHUIH ¥ TPACKTOPHA
Ha oraennute suxpu” . ToBa ¢ mpbpBaTa AucepTanus, 3a Kosto B Coduiickns yuu-
BCPCHTET ¢ NPHCHAEHA HAYYHATA CTENEH ,JIOKTOp HAa MATeMaTHICCKUTE HAYKM “ .
Ipez 1943 r. e n3bpan 3a JOLEHT B KaTeapaTa Mo aHaJHTHIHA MEXaHHUKa, IIpe3
1947 1. e mopumen B UsBbLHpPeneH npodecop, mpes 1951 — 3a pexosen npodecop n
PHKOBOIHTE Ha KaTeIpaTa, KAK'bBTO ocTaBa JI0 Xpad Ha xusoTta cu (3.02.1974 r.).
[Ipes 1967 r. e n3bpan 3a wieH-kopecnongeHT Ha BAH no ananututina Mexanuka
M T.H.

W ome uckaM aHec Ja morieprasi, de 33 H30pPOsiBAHETO HA TC3H JATH, KOETO
MOKE JIa POJILJIKY, MMallle eJuH 3abenexnrenen 4osek. KasBaHno € u oT Apyru,
HoBTapsM ro u a3. , Jlonamues G6e BeJIMK NPUMeED 3a BUCIIM XXHUTeHCKY TPUHLIANN U
rpaxJaHcKu Jo6pogerenn. Beska HecnpaBeIJIMBOCT PEJN3BUKBALIC Y HETO IOYUTH
¢pusuiaccka bonxa. Toit mMame anepris KM aulieMepueTo u dadnma, KbM KOHIOHK-
TypHAaTa aJANTallud U IOJIUTHKA Ha MOMEHTa, KbM aJIMAHICTPATHBHATA Kapuepa H
BJIACTOXOJIH3Ma, - 1 Gelle OT pa3jiliHa KP'bBHA IPYIa ¢ HOCHTEJINTe HA Te3) BUPYCH.
Toit Gewe 106poKeaaTeCH H ToNepanTeH. yBCTBaTa Ha 3aBUCT H PEBHOCT MY Osxa
aBCoOMIOTHO YyXKaM U TOH ce pajsalle Ha YCHeXHTe Ha APYrUTe KaKTO Ha CBOUTC
coberenn.“ (Hamacano e ot npod.Yobanos B kuurara My ,Biarosecr [lonamun-
eB“ (1993).) '

M 3a ma sonbianst Ka3aHOTO, LIE ¢e TOCTapasi HAKPATKO Ja o4epTas Pojsita
Ha npod. Jonamanep 3a Moeto nokosenne. Enna 3agata ce pemiaba jecHo, KOraTo
3HaeTe OTTOBOPA, HO OTFOBOPDBT € HA MNOCICAHATa crpanuial A B masedHaTa eccH
Ha 1960 r. nme 6sixMe caMO CTYJEHTH, 3aUCAJH 43 CeJBAT MAaTEMATHKa M CaMo
MaTeMaTHKa, CaMO H CaMO Ja OT'BPBAT JBE FOAMHH BOCHHA CJIy>Kba!

Hupsr xype MuHaBaLe O 3HaKa Ha JIeKLUUTE 0 IUdepeHIHaNTHO 0 HHTCr- -
paJiso cMstrane na npod. 5. Tarammmuky. Paskassalie yBICKaTC/IHO U ¢ IOPA3HTE-
HaTa CTPOTOCT, KOATO HE Ce BIMCRAIIE B HALINTE YYCHUIECKH IIPEJCTABH 33 MATEMa-
taKata. M Hail-BaXKHOTO — HaKapa HH A3 Y4UM MHOI'G CTAPATEJHO H 110 BpeMe Ha
CEMECTHpAa, 3a KOCTO HeMAJOBaXKHa pois Hrpaelle 1 GaxTbr, 4e yectTo Tpadsae or
MSICTO 3 OTIOBOPHM Ha BbIpocuTe My { HAKOHM OT Tax gocta xarumsu!). Ha sTopu
Kypc npod. Jonarunes 3anouHa JEKUUATE CH IO aHAJNTHYHA MeXaHnKa. Topa
felre Apyr CTHIT Ha M3JIOXKEHHE, APYT CTHA Ha Muciene. QTrosapsiue Ha HaHIETO
BbTPCHIHO KeJIAHHE Ja YCEeTHM, de 381 (DOpMy/IHTe uMa €aul peajieH CBAT H TOBa
IJieHsIBamle. AHANMBLT, TEOMETPUSTA U aJirebpaTa ce chOupaxa B elHa yAUBUTEIHA
xapmonus. I'oTBeiiku ce 32 TO3H HOKJaJ, IPEJNUCTHX OTHOBO HETOBHs YUeOHUK IO
AHAJTATHYHA MEXAHHKA, IPU3HABAM Cera MU Ce BHIS TIO-TPY/EeH, OTKOJIKOTO TOrasa!
Usnura B3ex ¢ 0yiMdHa OHEHKa, yIacTBax U ¢ JOKJa u Ha ceMunapa My. BeposiTio
ToBa Gcllie NpMYUMHATA B Kpas Ha BTOPH KyPC Ja HPeAoXKu Ha MeH (3aefHO C
xosierute K. Kupues n JI. JIunos) ga npoasixnm obpasosannero ¢ B CLBETCKHA
cb103. [Ipoabikax o6pasoBannero cu B XapKOBCKUs yHHBEPCUTET, K'bIETO 34BbD-
MHUX W acHHpaHTypaTa. Beme Me u3npaTHi ¢ NOXKEJaHHETO Ja CHCLHAJIM3UPaM
KBaHTOBa MexaHnKa. {ucepraimsita mu Gelie Bbpxy ypasaenuero Ha HIpsoaunrep.
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Brnpuax ce oTHOBO Betie KaTO aCHCTEHT B KATEAPATa 10 aHAIMTHIHA MCXaHIKA.
Bogex yupaxkuenns nio JUC npu mpod. TaraMauuky 1 10 aHaJIHTHYHA MCXaHUKa
npu npod. Jonamuues. IIpod. Tarammunxu cbbupalne ekunuTe BCAKa CEAMHIA U
JlaBalie CTPUKTHH yKa3aHVs 32 3aJa4uTe, KOUTO TpsibBamie ja pemasame. [Ipusna-
BaM, JICCTBalIe MaJkKo MoTHcKamo. Hue Beye GiaxMe KaHAMAATH HAa MaTeMaTHIe-
CKHTE HayKH U MMaxMe M3BecTHO camodyscrBue. [pu npod. Hosamines ykasann-
sITA Ce CBEXKIAXa JIO C/IHa CPCIa B HAYaJI0TO Ha CeMeCTbpa, B KOATO CC OYEPTABAIIIC
ob1aTa cxeMa, K'bM KOSITO cJleiBalie Ja ce npuabpkaMe. Tosa gelicTBalie CTuMy -
paio. CrioMHAM i, e ¢ Apyrusi acucrent, kojerara Cr. Pajes, necro obebxkaaxme
3aJa"HTe 3a yOpaxKHeHus, Ipubupatiku ce sxbum or Pakyrrera npes Bopucopara
rpaauia KbM OpJioB MOCT. YTPaKHENUATA 10 MEXaHHKa UMAT CcrequduIny TpyI-
HOCTH, a MOXKe OM W HHe HsiMaxme HeoOxoxumus omur. KoMneHcHpaxme ro mo
cBoeobpaser Hauni. Panes Bin3amme o cpeata Ha yIPaKHEHUETO MU M MU II'bXAIIC
€150 CI'bHATO JIUCTYE ,,3a6paBuil cn pelreHreTo Ha 3atauuTe!” |, mocje a3 B HEroOBHS
gac — ,,3abpaBui cu ycioBusiTa Ha 3ajaquTe!“ u obparno. MMame n3BecTen nomo-
)Xuresien eeKT, HoCemaeMoCcTTa Ha CTyIeHTuTe ce yseanyn. Jlomoro Geue, 1e KaTo
PYCKH BL3NATAHNIM, HAC IPaBeXMe Y€CTO TPENIKA B NPeBOJa Ha MAaTEMAaTHUECKaTa
tepmunosiorusi. Koopaunatnara cucrema ¢ nauajio O-npuM crasauie O-1ITpHX, a ¢
rauaao O-cexon crapame O-ZBa MTpUXa, a HUE 3a CTyleHTHTE: acucTenTa ,0-
mrpux “ , acucrenta ,,O-aBa mrpuxa . Ilo3soasiBaM cH TyX Ia pa3Kaxa Te3M
CIU30/, 3aUOTO BAPBaM, "¢ OT [0-I06PUs CBAT, KbAeTO otuge npod. Jonamives,
cHrypHO Ivieaa To3u csoft 100-cH poxkien gen ¢ 100poXKeTaTeaHO-CHAZXOAUTETHATA
CH YyCMHBKA, HallenBaiky Mu , 3HaM, 311aM, JIOCTA [VIYIIOCTH OpaBexTe, HO H a3 ile
6s1x cBerer u cjasa Gory!*

A 3a cebe cu cera me Kaxa, kakTo Jonarmrives nuine 3a yMuTeas CH 110 CTEHO-
rpacus: ,Josopeme 6aBHO, a BbpBelle 40pH ollle o 6HaBHO, nolexe beliie B Harpea-
HAJIA BhL3PACT — MPEeXBbLPIMI IecTaeceTTe.

Bpeme e ga 3apnpusaM. Ule nutupam masecrnus pycku mareMartk Jlepuran
( He XynoXKHHKa), KOITO KasBame, € 3a Ja CTaHell mayveHn paboTHuk, tpsbpar
TPHU YCJOBHS: ObPBO Ja UMALI ONpedeJeHH JalAeHOCTH, HAIIPUMED 38 MaTeMaTHKA,
a mo-106pe 33 MaTeMaTHKa M MEXAHHKA, BTOPOTO YCJIOBHE € IITKOJIaTa M YHIUTeIUTE
1 TPETOTO yCJIOBHE € KaK I0-HATATDLK I U3No3Baul bpsuTe Jase. Hsama na xomen-
THPaM JOKOJIKO OTTOBAPAM Ha I'bPBOTO U TPETOTO YCJIOBHE, HO 34 BTOPOTO yOeICHO
MOra, I3 KaxKa: 3all04iax KaTo CTyAeHT BbB DaxyaTeTa o MaTeMaTHKa H MeXaHHKa
na Coguiickust yauBepcuTeT U Mo# mobuM yunren Geme npod. Josandues u ToBa
OIIpejiesIN B IoJIsIMa CTEHCH MONTE HAyHM HHTepecH!

Buaronaps 3a sunmanuero!

Hoayuena na 28.11.2005

®dakysaTer o MaTeMaTnka u HHQPOPMATHKA
Codpmiicku yunsepcurer ,Cs. Knnmert Oxpracks “
1164 Codus, n.k. 64, B'bJITAPUSA

E-mail: hristov@fmi.uni-sofia.bg
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FOOMIIHUK HA COSUACKUA YHUBEPCUTET ,CB. KAIUMEHT OXPUACKHU*

PARKYIJITET IO MATEMATUKA U UHPOPMATHUEKA
Toxm 98

ANNUAIRE DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 98

N3CJIEJABAHUATA HA BJIATOBECT JOJIAITYNEB
IO MEXAHUKA HA OJIYNIUTE

CTE®AH PAJIEB

The present lecture concerns Blagovest Dolaptschieff’s works on fluid mechanics. The
most valuable of his contributions in the field of fluid mechanics are outlined, including
the well known Maue-Dolaptschieff condition for the stability of two-parametric vortex
streets.

[1,pBOTO MU BICHATICHYE 33 MCK Y HAPOIHATA H3BCCTHOCT Ha npod. Jonardu-
eB (Taka BUHAIH CbM ¢C 00DPDBINAIL K'bM HEr0) KaTO U3THLKHAT CIICIUAJUCT IO MeXaH!-
Ka ma (JIYHANTE ¢ OT CTYACHTCKATE MU roguiu B Jlennurpajckust (cera Cankrie-
Tepbyprekn) yuusepcureT. Bsx HpusaTHO H3HEHaAaH, 1€ MOST HaydeH PbKOBOAUTE
Cepreit Bacunnesuu Bannangep (torasa mpodecop u pbrosoauren na Kateapara
10 acPOXHAPOJINHAMEIKA B CLUIMST YIUBEPCATET) Ce 0Ka3a Nobpe 3amo3HaT ¢ TPYIO-
Bete na ba. Jonamues nmo Kapymanosu BUXpoB# yaunu. 3auHTPUrYBal, HAIPABUX
CIIpaBKa B YHHBEPCUTeTCKaTa ODUOIHOTCKA WM TaM HaMepux Aucepraista Ha B
Honanues no Kapmanosu suxposu ynuiu. [1o-K'bCHO KaTO XOHOpYBan acHCTeHT
Ha npod. JonanuneB MHOIOKPATHO ¢bM MMaJl BL3MOXKIOCT 13 pa3roBapsM ¢ Hero
18 PasiviHA TeMHU OT MeXaHHKa Ha (UIyUAuTe, BKIOUHTESHO H B 00BJACTTa Ha
KapmanoBuTe BUXPOBH yinHi; Ha elJHa OT TEMHTE LIEe c¢ BbPHA B Kpas Ha MOs
JIOKJI&.

AxTusnure nscaeapanus Ha Baarosect Josamaues no Mexanuka Ha dJiynaare
3al0YBAT N0 BPEMe Ha CHerMaJN3annuaTa My B I'bOTHHren noJi pbKOBOJACTBOTO Ha
upod. Jyasur Hpanrsa (L. Prandtl). Ho toBa speme B I'soTHHreHCKHS YHUBED-
cuter [IpanTba pbKOBOIY eHH OT BOAEUIUTE IEHTPOBE [0 MEXaHUKA Ha DIIyuIuTe
B CBCTOBEH Maumiad, B KOITO paboTAT yHCHH, YHATO HMEHA CA OCTAHAJIH 3aBHHACH B
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yuebunmmTe no tazy gucipia. C To3U UeHTLDP mo TOBa BPEME CAMHCTBCHO MOXKe
aa ce cpasnsia LlenTpannuar acpoxuapoaunamucu uiactutyT B Mocksa (LHATH).
(e orbencxum, ue lonamames e 6un cpell ManIkoTo ChbTPyAHUUM B ['boTHHrEH.
KOIHTO eHakBo A06pe ¢ MO3HABaJ KAKTO PYCKUTE, TaKa ¥ 3alaJHITe U3CJIeBAHNT
110 AePOXUAPOAUHAMUKA ~ PyCKOTO HAMMCHOBAHHUe Ha, ,MCXaHHKa Ha (urynauTe”.)

3a ocnoBuHTe Hay' M HANPaBJCHHS] B TO3M HEeHTHLD Hall-106pe MoXkeM Jia Hay-
quM OT camus JIONaImuMeB, OT HETOBATA BCTBINTEINA JCKIHs KATO JOLEHT, Iy 6in-
kysana B lomuumnka na Coguiickus ymusepeuter (T. LX, roa. 1943 - 1944, 55-75)
moa, 3arjiasuc ,MaTemaTHdecku pelicHHs B acpoavHaMukaTa Ha jerenero”. Ta e
HocBeTela Ha ¢LCTOSHUETO Ha ¢AHH OT Hal-IbPBOCTENCHHHTE HPOSJIeMH TI0 TOBa
BpeMe — pa3paboTBaleTO Ha TEOPHSITA Ha KPWIOTO U CAMOJICTHOTO BUTyIO. I B MOs
JOKJaJ, 3a 118 OTKpouM rnpunocute na b, Honamiues B 061aCTTa Ha MCXAIIUKATA
na QJIyrIaTe, ce 1aJara Ja ce¢ CIpeM Ha HAKOW eTall OT HCTOPHATa Ha HEHHOTO
PasBHTIE, KAKTO 1 Ha HSIKOH YBOIHN CBEJICHUM 32 HeHHMs MaTeMaTH'iCH armapar.

ITpes 1903 r. 6paTa Paiit ocblnecTBABAT IbPBHA IOJCT Ha ABYILIOWEH CAMOJICT
¢ ABATATEN ¢ BbTpelino ropene (¢ ppogbakuTennoct 59 ¢). lloasaTa na aBuanpusiTa
HAaJara cBosl OTHeMATHK BbPXY HAJIOCTHOTO Pa3BUTHE Ha MeXaHHKara Ha aynan-
TC NMpe3 MLPBATA N0JOBHIA Ha JABaJeceTd BeK. B tacTHOCT TCOPHsiTa Ha KPUJIOTO
BBL3HHKBA OT HCODXOIUMOCTTA Ja CC NPCCMETHE PC3YJITAHTHATA Ha CHAMTC Ha B3a-
AMOJICHCTBAC MEXKAY 0BTUYAHOTO TSJIO U TeHeHneTo Ha duayuia.

Dur. 1. Besunpkynauyonso (cuMeTpHYHO) OOTHYAHE HA IPAB KPBIOB IHJINHBLD
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Ha ¢ur. 1 e noxazana dororpacdus na HAIPETHO cedeHne Ha GIlynHO TeeHne
OKOJIO NIPAB KPbroB HAMHILIBLD. T'BMHUTE UBUOH CHOTBCTCTBAT Ha TPACKTOPHHTC
Ha GAYHIHATC YacTUI, KOHTO 3aM0YBAT JBHKCIHMETO CH OTJIABO ChC CKOPOCT,
NePHCHINKYASIpHa Ha 00pa3yBalUTCe Ha UHJIHHILPA, CIACH KOCTO IO 3a00HKAIAT
1 OPOABIKABAT JBHXKEHUETO 1 HajsicHo, CHiMTe, KOUTO ACHCTBAT BLPXY HAIIPCU-
HOTO CCICHHC Ha IUIHHIDLPA, Hail-0bLI0 ca OT JBa THIIA: CHJIH Ha TPUCHE MCKIY
WWIHIbPa 11 PAyRIa B CHIM Ha HajJsranero. 3a usakou (uyuimu (kaTo Bb3ayxa u
BOJI@TA) CHJINTE Ha BLTPEIIHO TPHeHe, HADUUAHN BECKO3HY, B I'LPBO NpUbImKenye
MOTaT Ja ce NpeneOperHaT U TakKa JOCTHrAMe J0 MCX4HAKATA Ha HCBUCKOBIITE
(umeamure) dayuan.

3a aHAJUTHIHO OPEACTABSIHE Ha TeuenueTo Ha ¢ur. 1 ue BbBeIeM OTHpaBHa
KoopjunaTHa cucteMa Oryz ¢ HAMAJO B IEHTHLPA Ha Kpbra u oc Oz, NepnenauKy-
JIIPHA Ha paBhmHaTa na ¢uryparta. Torasa Ha Beaka Touka OT pastunara Ory Ha
TEYEHHETO CBOTBETCTBA BCKTOP T (¥, Uy, U, ), 384aBall CKOPOCTTA Ha (IyHAa B TA3H
TOYIKA. 38 NPECMATAHCTO Ha TaKa BbBCICHOTO I10J1€ Ha CKOPOCTHTE MCXAHHUKATa Ha
HEBUCKO3HUTE (hIIyHIN U3MOJI3BA CACIHUTE NP/ TIOII0KEHNS:

1. IInvrHOCTTA Ha dUyUIs p € NOCTOsHHA, T.€. H3TLJAHENO ¢ YPABHEIHETO Ha
HEMPEeK'bCHATOCTTA,

div? = 0; (1
2. TeuenueTo ¢ CTAMOHAPHO, T.€. HE 3aBUCH OT BPEMETO:
3]
ot
3. OAyMAHATE 9aCTHUKH ¢e ABUKAT [10 ¢ H CbII HAYMH B PABHIHY, YCIIOPCIIU
na Ozy, nau

0; (2)

UZ:O,g—zzo; | (3)

4. Tlonero na ckopoctTa € 6e3BUXPOBO:

roti = 0. (4)

IIpn Te3n upeanomoxennus Ha TedenueTo Ha (ur. 1 MoXKe Ja ce CbIOCTaBR
aHaJATHIHA QYHKIHA OT BHIA

] a? r N
P=p+iy=U[(+— )+ —In(, (5)
¢ 2mi

HapeUCHa KOMIUIEKCEH MOTeHIHan Ha ckopocTta. B ropuara dopmyna ¢ { = + iy
¢ O3Ha'CHA MIPOU3IBOJIHA TOYKA OT PABHHHATA Ha TEHEHHCTO, ¢ U-HeCMyTeHATa OT
TPUCLCTBHRETO Ha NIJIHHIbPA CKOPOCT HA TEIEHHETO, a | e IPOH3BOIHA HHTErPallt-
OHHA KOHCTAHTa, Hape1eHa HUPKYJIAlHs Ha CKOPoCcTTa. TPaeKTOPUNTE Ha “acTUIUTe
ce IOJIYHABAT OT yCAOBUETO!
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1 = Const, (6)

KaTO B pa3rjiexKJaalud C.Hy‘]aﬁ Ca eIHOBPCMCHHO CHJIOBH JHHUWU A CKOPOCTHOTO
ovIe, Hape4ecHy OlIe TOKOBH JIMHHH.

C oMouTa Ha r pesyiaranTiiaTta CuJjia Ha HAJAraHeTo, NPUJIOXKCHA KM IIILJINII-
Abpa, MOXKe Ja c¢ IpeacTaBi B CJACIHHNA BUA:

P, =0,P, = pVT. (7)

!
®Dur. 2. ToxkoBu suHny 1pU 06THYAHE HA LMITHHIDD C HEHYJIEBA UMPKYJIAIMS

Hpul = 0 ot (7) nonyvaBaMe n3BecTHAS TAPAIOKC Ha JanaMbep: HHIRHIIbPBT
11¢ H3IUTBa HUKAKBO Bb3jelicTBue oT cTpana Ha dbayuaa. ToBa e TouHO caytasT,
HOKa3aH Ha Gur. 1, 3a KOUTO AOI'LJHUTENHO UIe OTGENCIKUM, e TEYCHHETO € CH-
merpuaHo capamo octa Oz. ITpu I' # 0 cunara, npusoxena BbpXy UAIUIALPA, ©
OEPICHAUKYISPHA HA HAIPABICHUCTO Ha TCHEHHETO U ce HApUYa NOoJeMHa CHIIa.
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IMpunep ma Teuenue ¢ ' #£ 0 ¢ nokazair sa ¢ur. 2. Pa3zpymasancero Ha cuMer-
pHsITA Ha TedeHneTo crpsmo octa OF e HHYIHPANO OT OOCICAHOTO ChOUPAeMo B
(5), KOCTO CHOTBETCTBA Ha KOMIVICKCHHS [IOTEHIUAM Ha TOYKOB BHXLD

®=—=In((-G), (8)

pasIoIoKel B IEeHTbPa Ha Kpbra ((o = 0). JelcTBHETO HA TOYKOB BHXDLD BBLPXY
nponssosina GayHana sactauka M, wmocrpupano na ¢ur. 3, ce ¢Bexxaa 0 poTanud
Ha 9aCTUIATa OKOJO BHUXPOBHs UEeHTHLP M.

* 3

3 Mix. vy

®ur. 3. Porauns na ¢paynana 1acTra OKOJO BEXPOB LUEHTbD

Junicara na Taprennmania komnonerTa (cps. (7)) Ha cuiIaTa Ha B3aMMOJACHCT-
BHC MEXAY IMAMHIbpa U GUIynaa, T.e. HA CHIa Ha CHIPOTHBJIEHUE, € €CTCCTBEH
PC3YATAT OT IperebperBaneTo Ha BLTPEITHOTO Tpuene (BACKO3UTeTa) Ha (GiyHia.
ToBa 6u Tpsa6Bano Ja HM HABEAE Ha MUCHJTA, Y€ B HeBUCKO3eH (DJIyHA CIUIM Ha
CLIPOTUBJEHNE He MoraT ja ce toaytar. [logo6Ho 3axmodenue obade e caMo OT-
yacTH BApHO. TO ce OTHACA 33 OHA3H CbLCTABKA HA CBLIPOTHBJICHHETO, KOATO CC
ABJIKYA Ha CHIATE Ha TPHeHe MeXKAY (BJiyraa B MOBbLPXHOCTTA Ha 00THYAaHOTO TAI0
(napu4ano CbLIIO BHCKO3HO cbipoTusietue). CLINeCTBYBa M BTOPA CbCTABKA HA
CHJIaTa Ha CLIPOTHRJCHHE, HAPEUEHO BUXPOBO, KOSITO & HHAYIMPa OT CTPYKTYPH B
[OJICTO Ha TEYCHHETO, MOAOOHM Ha TOYKOBHTE BUXPU. TAKKUBa BUXPOBH CTPYKTYDH
JIeCHO Cce Ha6JIIO,ILaBEIT B pCaJItif yCJIOBI/IFI B 3aBUCHMOCT OT roJiecMHUHaTa Ha IlCCl\inC—
narta ckopoct U. [Ipa xapakTepHnu ciyuasi ca rmoxkasand Ha dur. 4 4 5.

Ha ¢ur. 4 scuo ce Bmkga odopMuiata ce ABOMKA BUXDH 3aJ LIVIMIILDA,
PasIoNOKEHH CHMCTPHYHO CIIPAMO CPeAHATA JIMHHs Ha TedeHnero. OT KUHEeMATHYHA
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[JICAHA TO'KA TC CA CKBUBAJCHTHH HA IICHTPOBe Ha JOKAJIHa poTalusd Ha (aynia
(cpB. dur. 3).

®ur. 4. O6Tuane Ha KPbrOB IWJINHABD OT BUCKO3eH dJryn

Ha dur. 5 3aa mummerbpa Betde ce HaAGIIOHaBaT ABE PCAUIA BUXPH, MO IPCIEHH
maxmaTHo. Tasu BHXpoBa Komburypanys € U3BccTHa KaTo KapMmanosa BUXpOBa

®ur. 5. Kapmanosa BUXpoBa yAula 3811 KDBrOB HUIHHIBLD
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y/mua. Takusa yimu MoxkeM Ja HabuogapaMe 38, TOTONICHUTE B IT'bJ/IHOBOAIH DCKH
MocToBM Koo, Ha TaxX ce AbjkKaT yucTHTe TOHOBE, ¢ KOUTO ,IedT" Teiedonuure
KU, obayxBaHH oT Hacpeient Barbp. Ha Kapmanosnre puxposu ymum 1ie ce
BbPHEM OTHOBO M0-J0Jy, Thbit KaTo B Ta3u 00JacT ca ¢IHH OT Hal-ChIeCTBeHUTE
npuxocH na Josamnmes.

IIpobsiemsT 0bate e TaM, Ue nomobGHN BUXPOBH KOHGMUTYPALUH OT HEBUCKO3CH
dayug ge morat ga 6baar remepupaiu. 3a TIAXHOTO 0bscHenue TpAOGBa OTHOBO
Ja Obae upuBjetcH BHCKO3UTETLT na duryuzaa. IIpes 1904 r. cnomenaTnar mo-
rope u3TbKHAT HeMckH yden JI. [lpauTbn dopmynnpa ocHoponosaramara UIes,
Yle Pa3/iMKaTa MEXKJY BHCKO3HOTO M HEBHCKO3HOTO TEYEHHC ¢ KOHICHTPHpalia B
C/IMH MHOI'O THHDBK CJAOH M0 MOBBLPXHOCTTA HA THJIOTO, HApHIaH B CbBPEMCHATa
JuTepaTypa rpanumved ciaoii oa IIpanrToia. ViMenno Tosm cioit urpae poJsTta a
TeHepaTop Ha BUXPHTe, FIHeTO IBHXKCHHE MOYKe OTHOBO JIa Ce MOJAEIHPa C MCTOANTE
Ha MeXaHUKaTa Ha HCBUCKO3BHHTE (hJIyHIH.

Mpes 1912 r. T. Kapman (Teodor Karman), BnocsieicTBue e 0T Nai-H3BCCT-
HUTe cbLTPYAuuIH Ha [IpanTna oT [voTunrencKara MKo/a, HpeJara ¢Ha N3KHIo-
HHTEJHO MI10/J0TBOPHA CXCMa 33 MPCCMSATAIC HA ChIPOTHBACHHETO, KOCTO H3IUTBA
KP'brOB IHJIMIILD, TIPH TOBA, OCTaBaiiky B pAMKHTEe Ha XHJIPOMEXaHHKaTa Ha He-
BuckosHATe Quryuau. KapMan 3aMcHst PEAJTHUTC BUXPH OT QUr. 5 ¢ TOIKOBH BHXPH
(Bk. ur. 6), KOUTO MOAPEK A B IBE YCOPEAHH PeJUIM ¢ PABHH 1O [OJEMHAHA, HO
[IPOTHBOLOJIOKHHA NO 3HAK LHUPKYJIAIMH 33 BHXPHUTE OT FOPHATA U JOJHATA PEIUIIA.

e
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Pur. 6. Hlaxmarro noxpesena Kapmanosa ysmmng 0T TOYKOBH BHXDU
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KapmMan g0Ka3Ba, 4¢ IPpH BCAKA CTOMHOCT Ha OTHONICHUCTO 2A/2[ Mexkay min-
pHHATA HA YJIHIATA M PA3CTOSIHHETO MEXAY ChCCIHHTC BUXPH BLB BCSIKA PCIMIA
MIaXMATHOTO 110IPEXKIAHC OCUIYpsBa JBMKCHHC Ha BHXPOBATA YJHMIA KAaTo adco-
JIIOTHO TBLPAO TANO CLC CKOPOCT, yCIIOPeIHaA Ha HAIIPaBJICHUCTO Ha peHLaTa. 3a
Taxkupa yiunuy KapMa#n u3Bekza CBOETO 3HAMEHHUTO YCJIOBHE 33 YCTOHYHBOCT MO
I'LPBO NPHOMMKEHTE, & UMCHHO:

wh

Sh“-l— = 1, (9)

oTKbaCcTO HaMupase h/l =~ 0,281. C noMourra Ha ToBa yciosie Kapman npecumaTa
BHXPOBOTO C'bIIPOTHBJICHHE 114 KPLIOB UUIHHILD.
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®ur. 7. Tpaextopnu no Jonandues Ha cMyTeHuTe BUXpPH B ycToitunBa Kapmanosa ynuua,
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Temata Ha JoKTOpCcKaTa AucepTaunsg na ba. Hdonanuues e 3amatena or Hpar-
Th1. Ha aMiragus yucH ¢ OpeIoKCHO ja H3CJACABA TPAeKTOPHUTE Ia CMYTCHHTC
BHUXPH KaKTO 3a yCToli'InBa, Taka 1 3a neycroiiunba Kondurypanms na Kapmanosa
BuxpoBa yania. C rasnu zagatia Joaaniues ce cnpasst ycliemHo, KaKTO ce BUKIA
ot nybuukamaTa My L IpiHoc KuM crabusmTera Ha Karman’oBure BUXpenu YA
H TPAaeKTOPHHTE Ha OTJACJAHNTe Buxpu’, ortcvarana B Crnucanve na BAH, xm.
57/1938 r.(149 - 211). ®ur. 7 e 3ammcrsana o7 Aucepranmsita Ha Homanunes n
WIOCTPUpa TPACKTOPHATE Ha JABoiikaTa cMyTenu suxpu O'n 0" or dur. 6 kakTo B
JIMEEHHO (MeNPeKbCHATHTE TOMYOKPLKIIOCTH U OKPBIKHOCTH ), TaKa H B HEJIUUCHHO
HpUOIIMKeHHC — TVHKTHPHUTEe KPUBH (¢ TOMNOCT /IO KBAAPATHIHY 4ICHOBE).

Comecrsenusr npunoc Ha Josamines B 06JaCTTa 118 BUXPOBUTC YJIHi obare
ce cbeToH B 0000menneTo Ha KapManoBoTo yejioBye 3a yeTORTHBOCT BLPXY JBYIIa-
pamerpiiny suxposu yanni. o onpeaenenue (. dur. 8) ToBa ca jise yenopeann
BHXPOBH DEJMIIM, OTMECTCHH Ha MPOM3BOJHO pa3crosiaue d ¢iHa COpPsIMO JIpyra B
HALTBKHO HApaBJeue, kvaero 0 < d < 1/2.

" o e
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®ur. 8. [ByrniapaMeTpHIHH BUXPOBH YIHIH

Honacrosmem noaytdenoro ot Jonanuues yeiaosue 3a yCTONIHBOCT HA, JIBY-
napaMeTpUYla BHXPOBa YIHLIA € H3BECTHO KaTo ycjobue Ha Maye-/lonantines
(Maue-Dolaptchiev) u ce npeacrass LB BUIA

shﬂ = sin 11 (10)
) l
Ovesunno npn d = [/2 roproto yciopne ce cBexkAa 10 ToBa Ha KapMan,

HamwusaT 0630p e 6bje HelrbJen, ako He otbesexxum craruata Ha ba. Hoaan-
“weB (B chaBroperso ¢ Bi. Cennos), nybnukysana B Joxknamm na AH ma CCCP
(1. 128, 1959, 53 - 56) u MocBeTeHa Ha €1HA AJTEPHATHBHA CXCMA 34, IPCCMATAHC Ha.
CBIPOTHBICHUETO HA LIIAHILD B HeBUCKo3eH (aynl. Tazy cxema e npejioxkcena or
®pomr (L. Foppl, 1913) n Py6ax (H. Rubach, 1916) u uaxoxaa ot Koudurypanusta
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SR LP-BAXPOBA JBONNA", ToKasana Ha ¢ur. 4. KoMIVICKCHUAT [OTeHINA Ha
TOBa Te4YCHUE MOXKE JIa CC 3alliile B CJICANHS BUI:

_C_?) +£ln (C‘Zl) (C"zl_l) ) (11)

d=U1{(
(” 2n "~z (C-21))

To'ikoBHATEe BUXPH ¥ TOKOBHTE JIMHHUNA, ChOTBETCTBAIM Ha TO3H MOTEILHAT, €& CKU-
nupann #a ¢dur. 9.

Awomcray
»

®ur. 9. CuMmerprynHo 00THYUAHE HA KPBrOB UMJIMHIBLD ¢ JBOMLA BAXPH 33 HEro.

B ropecnomenartata nybsmkanua Ba. Joaamiues npemiara bjHO KaucCTBEHO
M3CJIC/IBANC HA TPACKTOPHATE Ha BHXPHTE, PE3YATATHTE OT KOCTO ¢a H300pas3ci na
dbur. 10.

Ha ropuata ¢urypa (CHMETPHIHA CHIPSIMO XOPHU30HTAINATa 0OC) KpHBaTa Ha
Dnor ¢ noKasaa ¢ myHKTAP. Tasd KPpHBa ¢ TeOMETPUTHOTO MSICTO HA pABHOBECHHTE
(nerozBizKHATE) KONDUTYPATMK Ha BUXpoBaTa Asoulla. [Ipy Manku cMyDienns Ha
JABoHIATa (HO 3aMa3Ballld CHMETPHUATA HA TCUCHMETO) TPACKTOPHUTE HA BUXDHTC
ce npeobpPa3yBaT B 3aTBOPEHN KPUBH OKOJIO TOUKHTE Ha papHosecue. ChinecTByBa
He32TBOPCHA KPUTHYHA TpaekTopus (HoMmepupana Ha dur. 10 ¢ C = 7,844), xosrro
OT/€JIS 3ATBOPEHHTE OT HE3aTBOPEHHUTE TPACKTOPUH

B zakmaouenue me ce crnpa na nocaegnara pabota na Hojamuues, Hanucana
[0 BpEeMeTO Ha TEeXKOTO My Doje/yBaHe H H3IA3Ja Cjell CMbPTTa MYy: ,BLpxy
cana Henosnarta kiacudecka Teopema (Ha SYNGE) B eaun crap XuapoausaMiyicH

48 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 39-50.



-“<ve
3

@ur. 10. Kpusa na Ppoiit u TPaeKTOPHE HA JABOULA BUXPH 33/1 KPBrOB LMJIHHIBD.

npobaem (na KARMAN)”. B Hest Toii ny6ankysa (Popumnuk na CY, 1. 67, 197273,
355 - 362) eano ¢Tporo MaTeMaTHYCCKO JOKA3aTesCTBO Ha CUHI — M3TBKHAT yHeH
ot Upnanackara Kpajicka akagemust. JJoKa3aTeJICTBOTO € HANPaBeHo 1o Moi0a Ha
Jonanvnes u ce OTHACH 38 CKOPOCTTA, KOSITO €UH TOYKOB BUXbLP UHAYIHPA BLPXY
JApyrT TOUKOB BUXBP. C Hero Geilie TOTBBPIAEHO MHTYHUTHBHOTO NPHEMAaHE, KOCTO
HJonamines Hamupaine 3a HeyJIOBJIETBOPHTEIHO, i€ BCEKH BUXDBLD JeHCTBa BbLPXY
CHCEJIEH HA HEro BHXbD [0 CbIIMs HAYHMH, KAKTO H BBLPXY NPOU3BOIHA (DIyHIHA
YACTHUIA, HE3ABMCHMO OT 06CTOATEICTBOTO, e BUXPUTE Ca 0COOEHHM TOUKH B I10JICTO
HA TCUEHHAETO. _

Haxpas me 3apbpina ¢ gymurte ua npod. JYobanos — Hafl-OIMBKUSIT CHTPYLHIK
n Kosiera Ha npod. Jonanyunes. Te 6sixa Kazanu mpes Bb3NOMEHATENHATa HAYIHA,
cecusi 1o noBoA 20-TaTa roAMIIHHHA OT cMbpTTa Ha npod. donammes: ,Jokaro
nprupanure mybinkanun ga KapMan ca paborn na unxenep, cratuure na Josan-
9HCB B HOBOOTKPHTHTE TEPHTOPUH — OT II'bpBaTa J0 MOCIEAHATa — ca paboTH Ha
maremMaTuk. OTTYK H HMeTO My B Tasu obsact... Toit 6e aBropurer B Ta3n 061aCT H
[IOpaJy TOBa OXOTHO KAaHCH M BHHMATEJIHO M3CJAYIIBAH HA BCHYKH OHE3W KOHI'DECU,
KOH(MDEPeHIIMH, CeCHI, CCMHIAPHU 1 IIP., Ha KOUTO ¢ IPUCHLCTBAI U JOKAaBaJ. ¢

* % k
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SakmounTrenna 3abesaexkka: B TekcTa ca usnosi3BaHM CICAHUTE OPUTHHAJHA
durypn ot cvorBerHHTe Tpynose Ha Ba. Jonamuues: dur. 3. 6, 7, 8, 9, 10.

Hoayuena na 28.01.2006

C. Pazges

WHCTHTYT 10 MaTeMaTHKa 1 HH(POPMATHKS,
Buarapcka akazemust Ha HaykuTe

1113, yn. Axkan. I'. Bonues, 651. 8, Codus
B'bJITAPUS

E-mail: stradev@imbm.bas.bg
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FOOUINTHUE HA COPUNCKUSA YHUBEPCUTET , CB. KIUMEHT OXPUACKU*

PAKYJITET IO MATEMATUKA U UTHPOPMATHKA
Tom 98

ANNUAIRE DE L’UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI”

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 98

BbPXY UBCJAEABAHUATA HA YI.-KOP. BJI. JOJIAITHUEB
110 AHAJTUTUYHA MEXAHUKA !

JIFOBOMUP JINJIOB

Main results of corresponding member of the Bulgarian Academy of Sciences Professor
Dolapchiev in the field of Analytical Mechanics concerning motion equations are pre-
sented. They are based on the variational principles of mechanics and can be applied
to both holonomic and nonholonomic systems.

Ille sanouna c¢ yuupuresnnus ¢axt, 1e o 1965 r. mpod. Honamimes HaMa
HUTO ciHa paboTa Mo aHAJIATHYHA MEXAHHMKA, BLIPEKU Ye 3BAHMATA ,, JOLEHT “ 1
,Japodecop®, KOUTO € MOy IiIl, Ca TOYHO [10 AHAJUTHIHA MeXaHHKa, 8 oT 1951 1. e u
pbKoBoauTen Ha KarenpaTa no anannTina Mexannka B CobuicKHs YHABEPCHTET.
KakTo ceuaeresictsa npod. Yob6aHoB, TOBOJ, 1a 3amotiHe H3CIeBauA B 001aCTTa.
Ha HEXOJOHOMHHUTE CHCTEMH e eIuH eJieMeHTapeH Kypc no Mexamika ot Humzen
(Nilsen, J. Vorlesungen uiber elementare Mechanik. Berlin, Springer, 1935), B koiiTo
Kypc npod. Jonamines ce HATbKBa Ha Heno3HaTa (popMa Ha ypaBHeHUs Ha JBUKe-
HHe, KOHTO TOM B cjeApaliuTe cv mybiaukanuu Hapuda ypasuenus Ha Humsen.
Hayxara Tpsi6Ba fa e 61arofapHa na ToBa, 061110 B3€TO, C1y4aiiHo cbOUTHE, 3aI0TO
TO3U HAYAJIEH MOMEHT OTKJIIOYUBA e/[Ha KHUIISIA M3C/IeA0BaTeICKa JeHHoCT, A0BEIa
10 nybmukyBaneTo Ha 23 paboTH, mONYYHIN CBETOBHO IPU3HAHUC U JOHECTH Ha
CH3JATEdA CH 3aciayxkena ciasa. Ipes 1965 r. npod. Jonamuues e Touno na 60
T'OJHHN U C TEe3U U3CJACABaHUA TOM M3XKHUBABA BTOpaTa CH MaTEMaTH'ICCKa MJIaO0CT.
Pesynrature My B apaJHTHYHATAa MeXaHHKa Ca €JHH OT Ha#-100puTe, ako He M
Hafi-mobpure, KOUTO Toil e mocTurHasi Kato yuen. Te mpogbaxkasaT u obobmasar

1 Moxsaz, usHeceH Ha decTBaneTo Ha 100-FOMMUITHMHATA OT POMKIAEHHETO MY.
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H3caeBaHNuATa Ha aKaJl. lleHoB, apyr 6barapckn yucH, HAMePHJ CBCTOBHO IPU3HA-
HHE ¢ U3BEJCHUTE OT HEro YPABHCHHS 33 HEXOJIOHOMHH CHCTEMH, U3BECTHH JIHEC KaTo
ypaBHenus na llenos, Taka 4e BbpxXy Ta3u 06J1acT Ha MEXAHHKATA € CJIOXKEH CHIIEH
HBLArapCcKy OTNIEYATHK U MOXKe Jia Ce TOBOPH 3a Gbjrapcka HaydHA IIKOJA.

I\'IHOFO € TPYJAHO, aKO H€ 1 HCBb3MO2KHO Ja ¢e ni3JjaratT pe3yarartu, 1peariosia-
raiy no3HaBaneTo Ha crnelpdnien abcTpakTen MaTeMaTHIECKH ANIApaT Hpe, HeX0-
morenta aynuropusi. Ille ce onuram mo BB3MOXKHO Hafi-e€JleMeHTapeH Ha'lH Ja
MPEACTaBs CHIMHOCTTA Ha MOCTHXKEHMATAa Ha, npod. JosamiueB B obsnacTra Ha
AHAJIITHIHATS MEXaHUKA.

Heka na umame cucrema ot N MaTepHaJiyM TOUKH C MACH 1M, PaJUyC-BEKTOPH
r.{Zy,Yv, 2,), Ha Komro meiicrear cuam F, (v = 1,2,...,N). Ako cucremata e
cBoboaHA, TO CLIJIACHO BTOPHUS 3aKOH Ha, HIOTOH JBUYXEHUETO Ha TOUKHUTE Ce OIICBa
¢ YpABHEHUSTA,

m,r, =F, (t, I‘,I,,I‘“) , v=1,..,N. (1)

Nmame 3N nudepeniuaiiiy ypaBHEHUS 3a TOJIKOBA CKaJIapHH HEU3BCCTHH Ty, Yy, Sy -
HeKa cera Ha cucTeMaTa ca HAJIOXKEHU d Kpal'/'lHI/I WU reOMeTPpUYHH BPL3KU:

fa(t,r,) =0 (a=1,..,d). . (2)

Taxapa cucreMa ce Hapu4a X0J0HOMHa. [la NpeanonoKuM, e Ts ¢ paspelileHa
1 d OT NPOMEHJIMBUTE Ca NPEJCTABEHN KaTo GpyHKUMA Ha octaHamure n = 3N — d
W 10-06II0: PAAHYyC-BeKTOPHTE HA TOMKHUTE Ca MPEJCTABEHH KATo (DYHKIMH Ha
BPCMETO U N apaMeTpH, Hapedenn o6o0meny KOOpANHATH:

r, =r, (t7QI7q2a “'aq'n.)a

" MO TaK'bB HAYHH, *I¢ yDABHEHHUSATA Ha BPBL3KHTE (2) ce yI0BAeTBOPABAT T'h2KAECTBEHO.

fn (t,l',, (tﬂha(h, aQn)) =0 (a = la »d)

TFeomeTputinnTe BPB3KH HAJArAT OTPAHUYEHHS HE CAMO BbHPXY MOJIOKEHUsITa
Ha TOYKHTE, HO M BbDXY TeXHHTE CKOPOCTH M yckopenus. lecficTBuresntio ciex
CJHOKDATHO U JBYKPaTHO JudepeHIMpaHe Ha yPAaBHEHUSITA HA BPbL3KUTE HAMHDPAMe

Ofa . Ofa
Zaruor-}—at =0, (3)
a _ Ofay, Ofay Olay i _ ity itik,

or, Oz, oy, 0z,

Zar,, i ig(af) bt 5 () o (@)
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; 1 .
Axo zamectnu onpeaenenure ot (1) yekopenus: ¥, = —F, (t, r,,T,) B AByKDATHO
m

AncepeHIppaniTe ypaBHCHAS Ha BpBL3kuTe (4), TO Te nysma Ja ce yIoBJjaeTBopsT. B
TO3N C/Iyvail MaTepuajHo OCbHUIECTBEHUTE BPb3KU JEHCTBAT HA TOYIKUATE C JOIIbJI-
HHTEJHH CHJIM, HAPEUEHH peaklfy Ha BPB3KUTE WM CAMO PeaklMu, Taka e ccra
JBHKCHHCTO Ha, TOUKUTE C€ MOMMHHABA HA yPABHCHUSATA

myty =F, +R,, v=1,.,N (5)

1 oupegenenate ot (5) ycKopennus y/I0BJIeTBOPABAT yPaBHEHUATA Ha BPBIKHUTE (4).
PeakuunTe obate npeaBapuTeHO He & U3BECTHH H T€ BbBEXJIAT AOMbJIHHTEIHH
3N wuemssectuu (Ryyz, Ry, Ry.) 3anayaTa Ha MCXaHHKATa CTaBa HEOMPEIC/ICHA —
HeO6X0MMMH ca, o1ue . = 3N —d. CLbOTHOILIEHH S, KOUTO /3 JOMBIHAT ChOTHOIICHUATA
(2) u (5). Tesu cuoTHOWEHNS Ce TOTYYaBAT, AKO Ce IPHeMe NOCTYJIATDLT 38 UACAJHOCT
Ha spb3kure: CymaTa OT ejleMeHTapHuTe pafoTy Ha PEaKLUUTC HA BPL3KUTE 33
IPOM3BOJIHO BUPTYAJHO IIpeMeCTBale Ha cucTeMaTa 0r, € paBHA Ha HyJa.

Hoc'ry.na'r 3a HAeaJIHOCT Ha BP'Bb3KHTE:

N
§'A=Y R, edr, =0 (6)

v=1

Kakpo e Bupryanno npemectsane? ToBa ¢ cbBbpiieHo dyizamMenTases BBLIPOC,
H3SCHSBAHETO Ha KOHTO € OTHENO JICCETHIICTUS, aKO HE ¥ CTOJICTHsI, U KOHTO 1epuo-
JUYHO ce AHCKYTHpa. Jopd U B Hamu auu. Ilo Bpemero ua Jlarpamk nemara ca
H3TIEeK IAH ICHA U BUPTYAJHUTE IPeMeCTBaHus ca 61N ONPeRENANH KaTo Pa3JInKy
MEXJy JiBe BL3MOXKHH (JOMycKaHu OT BPL3KHTE) eJeMEHTApHH IpeMecTBanus 3a
€J110 M C'BIIO MOJIOKEHHUE Ha CHCTEMAaTa B €IMH U C'bII MOMEHT OT BpeMe:

oty = (f',, _ r,,) dt,

-/ .
KbBJCTO CKOPOCTHTE I' H I YIOBJIETBOPABAT NpoAudepeHIMpainuTe yPaBHEHs Ha
BpL3KUTC (3), T€.

ANETH
or,

odr, = 0.

v=1

Axo 3amectnm peaxuuute oT (5) B (6), HamMupaMe clenHaTa GopMa Ha OCTYIA-

Ta 3a UICATHOCT Ha BPB3KUTE, H3BECTHA KATO 00LI0 ypaBHeHHe Ha IUHAMUKATA WM
npunnun Ha Janambep-Jlarpamxk:

Z (mviv - Fv) eér, = 0. (7)

v

Or O6IHOTO ypaBHCHHE Ha AWHaAMHKaTa JIarpamK JAUPEKTHO H3BEKIa IIpe3
1788 r. 3HAMEHUTUTHUTE CH YpaBHEHUS 38 XOJIOHOMHH CUCTEMH
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doT T .
Eia—qi—b—a—Qi, (1~l,...,n).

KbLAECTO T e xkunern4narta eHeprusa Ha CUCTEMaTa

1
.2
T= 3 VE:1 myr,,.

PasButneTo na rexuukaTa J0BEXKIIa obaxe A0 IIeO6XO,H‘I/IMOCTTa B aHaJHUTHUHATA
MEXaHHUKa Ja e PasryexXkjaT i HeXOJIOHOMHH CUCTeMHU, T.€. HCCBO6OJHII/I CHCTEMH, Ha
KOUTO Ca HaJ0XKCHH ,zmd)epenmmmm HEHHTErPYEMH BP'b3KH, CbAbP2Kailld CKOPOC-
TUTC!

w3 (t,ru,i',,) =0 (f=1,..,,9).

Kato npamep ma pasriefiame ABUXKEHHETO Ha cdepa 10 PaBHHHA, KATO TIPEI-
nosiarame abGCoOJIOTHO I'panaB KOHTAKT, T.e. chepaTa He MOKe [a C€ XJIb3ra U Ja
OYKCYBa, a ce ThPKAJA N0 PABIHHATA.

@ur. 1

Yenosnero, de cdepaTa He MOXe Ja Ce XIb3ra, O3HayaBa, 9€ CKOPOCTTa Ha
KOHTaKTHaTa To'UKa Q € Hy/a, KOeTo BOAHM IO JBe HCHHTCTPYCMH CLOTHOUICHHS B
Ta3! 3a/a1a.

YpabreHnsTa na JIarpatx ca HeBaIHAHM 3a HEXOJOHOMHH cucTeMu. B necern-
JICTHATA B CTOJIETHsITA cJlef Jlarpamx ce nosiBsaBaT pasnndiy GOpMH Ha YPABHCHHS
3a HEXOJIOHOMHI CUCTeMH, Ta 9aK 10 Hamu gun. [a cnomena ypasnernara na Routh
(1877), Voss (1885), Maggi (1896), Yanasirnn (1897), Volterra (1898), Appelle
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(1899) - Gibbs (1879). Boltzmann (1902) - Hammel (1904). Ocobetio enerantnu ca
ypasaenusra na Appelle (nonyvenn 20 roguny npean sHero ot Gibbs u ocranamn
Hezabesnasann):

KbJETO

AN
SZ 52777,,,.1;,2,

v=1
€ CHeprusaTa Ha yCKOpeHudATa. Tozn n3pa3 OOHMKHOBCHO € MIIOT'O CJI0XKEH U Ce IIPECMs-
Ta J0CTa MO-TPYAO OT KHHETU'IHATA eHeprud. T’prCﬁKIA bamanc MEXKIY Joares10-
BHUTC ypPAaBHEHNA 33 HCXOJIOHOMHH CUCTCMH, KOUTO UMAT CJIOXKHa (bOpM&, HO 60p‘dB$IT
¢ HO-TIPOCTUA H3pa3 Ha KHHeTU'IHATa eHeprusd Hu ypaBHCHHATa Ha AHQ.)L axKani.
HCHOB, KOUTO € y'4YeHHK Ha ArI(-’J], JOCTHTa JO cjieJHaTa d)opma ypaBHeHnuA Ha
JABH2KEIIHE, H3BECTHH JHCC KaTO ypaBHCHH:A Ha HQIIOB (1952) ‘

1{orT orT 0 (=1 )
= -3/ | =W, i=1,...,n).
2\ 0q, Jdq;
Tosa ca ypaBHeHisi 3a XOJOHOMHHM CHCTEMH, HO M3BEJACHH ¢ OLVIeJ Ha IPHJIO-
YKCHHETO MM 32 HCXOJIOHOMHH cucTeMu. B uprupanust no-rope yucbuux na Husen
npod. Jonamiues ce naTbKBa 1a ciacauaTa GopMa ypaBHCHHSA Ha JABHKCHHC:
or oT .
5‘.*"25——2(21‘, (1:1,...,n).
q; qi
Exnaksata cTpyKkTypa Ha apere (opmMu Aaa uMmityiac na mpod. Jonaniues
Jla 3alovie HHTEI3HBIN H3CIeABanas u npe3 1965 r. toit moctura no mafi-obmara
¢dopma ypaBHCHUST HA JBUXKEHHE

(n)
1[0 T
:]—1 ——(Z; *(7l+1)% :qu, (i=1,...,77/),
g a Qi (IZ

KOUTO Toi napuya o6obmenn ypapuenus na Jlarpamk. Tyx (1";) =d"T/dt" . Ilpu
n = 1un =2 ce nosy4asar cLoTseTHo ypasHennsiTa Ha Humsen u Henos. Ilo apyr
HaMHUI Te3U YPaBHCHHS ca U3Begenn ope3 1962 r. ot Mangeron, D., Deleanu, S. B
paborata M “Sur une class d’equation de la mechanique analytique au sens de L.
Tzenoff. Comptes renducs d. Ac. Bulg. Des sciences, Bd. 15, 1962”. Tosa, xocTo
npoc. Hosmanunes npasu mokede or Mangeron u Delcanu, e, 1e Toit npuxasa Ha
Te3W ypaBHCHUS W ANCJIOB BUJ

R,

(n)
d4q;

ZQi (i=1,...,n),
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KBAeTo R, e noaxoxsmo onpejcaena ¢yHkuus. Tazu ¢popMa Pa3sKpUBa HOBH BL3-
MOXKHOCTH, KOraTO Te3U YPABHCHHs! Ce IIPUIOKAT 3a HeXOJOHOMIIH cucTeMu. 3abe-
JICXKUTEJIHO TOCTHKEHMe Ha npod. Jonandnes e nasmubT 10 KOHTO TOit cBbp3Ba
obobmennre ypastcnud 1a Jlarpamk ¢ BapuannonnrTe NPAHHMAIH Ha MEXAHHKATA.
Ho nauasnoro na XX Bek ocsen npunmuna Ha Janam6ep HIHPOKO ¢ GHI H3BECTCH
1 NpUHUUMNLT Aa Faye 3a nafi-madxara npunyga: ,, Bb BCCKM MOMEHT MCTHICKOTO
JABHIKEHHE Ha €/1Ha MeXaHHYHA CHCTEeMa, OTUNHEHA HA WACAJHH BPB3KH, Ce OT/IU-
IaBa OT BCHMKH OCTanai KHHEMATHICCKH BL3MOXKHH (T.¢. IPH CHUMTE BPL3KH)
JBHIKCIHS, KOITO CHCTEMAaTa OH H3BLPILIIIA OT ChIATa KOH(DHUTY DAl ¥ CbC ChIH-
T€ CKOPOCTH, HO IPH JAPYTH YCKOPEeHHs, IO TOBa, ‘i€ 3a HCTHICKOTO H JABMKCHHE
dbyuxnusITA

1 1 .. 2
Z = 5 Z; o (moty — Fy)7,

Hapedena punyaa (Zwang)“ uma munuMyM.* KaTto u3pasuM BapHaLMOHHOTO TBBHP-
JAeHue B npuuna na Fayc, mwe mosrynm

z (m’vf'v - FU) -or, =0, ' (8)
[
KaTO TMOJIOXKEeHHSAT4 U CKOPOCTHTE Ha TOUKHTe He ce sapupar or, = or, = 0, a ce
BAPUPAT YCKODCHHMSITA I, [0 TaKbB HAYMH, YC Ja.H€ CC HAPYIIABAT HAJOKCHHTE
BPB3KH.
Kakro or6ensizsa upod. Homanuames, easa npes 1909 r. 2Kypuen 3abensi3ba,
e BCBIIHOCT MEXIY ABaTa Hpuniuna (7) u (8) cuiecTByBa pa3HAHA B MOXKC Ja
ce dopMyrpa cIeHAAT BAPUAIHMOHCH TTPHHIAL

Z (m,,i‘v - F,,) -ér, =0,

v

B KOHTO KOH(wurypammsata nHa cucreMara ¢ (pukcupana 6r,, a ce BapupaT CaMo
CKOpPOCTHUTE.

Ho-kbeno Jlaittuarep 3abensasa, de npuHiansT Ha 2KypleH cieasa JUPEKTHO
oT npuHnuna #a Jamambep 1pes nbauo audepennupane Ha (7) 0 BpeMeTo, KaTo
ce ILPKH CMCTKa 3a ChbOTHOIICHHECTO

d dr,

—ér, = 6—

dt dt
U ce MOJIOKH cief Tosa or, = 0. [lo cbmus vadua ot npunnuna na ZKypaen ce
noJy4asa npuHiprbT Ha Daye. Habi-obutata dopma, 10 xosiTo ce goctura no To3u
Ha'HH, e Aateda ot Hopaxaiim:

Z (m/vi;v - F’U) -6 (r?i/) =0 (9)
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- .(n—1) (i) . B .
mpu dr, = 01, = ... =94 1, =0, gpicro ¢ I, = d'r, / dt' ¢ o3HaucHa i-TaTa

IpOU3BOAHA MO BpemeTo Ha ry,. pummnsTt (9) e mapeuen or npod. Jdodanruwesn
©606men npunun na Janambep” . Ot o6obwenns npusnun na Janambep npod.
Honammes AHPEKTHO NoJAyHaBa cBoute 060bHicHR ypaphennss Ha JlarpaHx 1o
noxobeH Hauull, KakTo Jlarpamk ¢ moJy'ns cBOHUTE YPABHCHHA OT NPUHIMNA Ha
Hanambep. ITo To3u naru ce NOJMYIaBa €10 KPACHBO CHOTBETCTBUE MK Y Pa3/IH -
HuTe POPMH YPABHCHUS Ha JIBIKCHHUC ¥ CbOTBCTHIST BAPUAIMONCH IPAHIMIL:

e pn dor,, # 0 — npunun na Janambep:

> (mu¥y — Fy) - 61, = 0;

v

— ypapHeHus Ha Jlarpamx:

d 8T oT
——_—— —— = is | = 17 seeg ).
dt 8¢, 0g; Q (@ n)

e npu or,, =0, ér, # 0 — npuunun sHa 2Kypaen:

Z (mvi;v - Fv) - 0Ty = 0;

v

- ypasraennst #a Hrusen:

8@«5 dq; -

e nipu or,, = dr, =0, Jr, # 0 — upunmun na layc:

Z (7711,f7; t Fv) : 61‘1} = 0;

v

- ypaBHenns na [lenos:

1 (0T . oT
— _— - g = iy ;= 1, ey .
2 6qi (')qi Q (Z n)
.. (n—1) (n)
empuér, =0r,=...6 r, =0,8r, #0; - o606men npunoun #Ha lanambep:

Z (an)fu - F'n) 0 (1-1;) =0.

v

N
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— 06001eHK ypasuenus Ha Jlarparx:

(n)
1{oT ar
- —(n 1)— = (), ) = RPN .
n ((;) (n+ )(')q,i Qs (=1 n)

Bentikn ypaBHEHIS Ha JBIDKCTIHE ca HACHTHYIHA [OMEXK/Iy CH U BapHALMOHHUTE
OPHHIMITH ¢a PABHOCTORHH, KOTATO C¢ OTHACAT 38 XOJOHOMHH CHCTeMH, [PH KOUTO
€ Bb3MOXKIIO Jia ObJaT BbBegenn o6obienn koopaunata. He Branarm ofadc toBa
€ BBL3MOXKIO. 3a TAKUBA XOJOHOMHH CHCTEMH U 33 BCHUKH HCXOJOHOMHM CHCTCMU
M3NOA3BAHETO Ha €N WA JApYT BaPUAIMOHEH PHHUHUII MOXE 13 JO0BEJC J0 Cl-
mieeTsenn npeanMersa. Hpod. Jomanaues cnenpanno ¢ pasrienan To3u mpobiaeM u
TO ¢ PCUIN N0 creanus naand. Tol npeicrass 06o6menns nprumun na Jdassambep
KaTO YC/IOBHE 32 CTAlMOHAPHOCT Ha (hyHKIMATA Z;,.

i () ‘ (n—1)
87z, =0, §=0r,, br,=0r,=---=46r, =0, 10)
Ly = Z (mvf'v - Fv) : (I‘T:})) (

v

. . (n)
aKO BCJIUIIHarTra (‘I?I;;I‘vu - F,,) HC 3aBUCH OT Ty, . BaI)I/Ipa.HCTO B riocJicgHaTa Q)opmyﬂa
(n) .
CC BOJAN 11O Iy, . Tazu (byHK[II’IH TpH6BEl, Ada ¢e pa3rjiex/ja KaTto (bym{mm CaMoO Ha
(n
BCJIHYIHHUTC Ty, W CTAIIMOHAPHOCTTA Ce pa'sﬁnpa ODHN H3IMTBLJHEHUC Ha HaJIOXKCHUTC

Ha CHCTCMATAa BPDL3KH:

(m.—1)

I (t, Ty, Tyyeery Ty ) =0, ms>1 (s=1,..,1). (11)

Heka m = Iil&i(l Mmg. ypaBﬂelmma Ha BPBL3KHATE (11) 11e 3aIllulIIeM B C,III‘III()O6~
1<s<1

pasna dopma, KaTo B cayuas m, < m audepenuupaMe ChOTBETHOTO ypasuenue
(m — m,) mbTH BaHO NO Bpemeto t. Taka MoJay4aBaMe CHCTCMATA

" (f ro, m,,...,("%;”) —0 (s=1,...,0). (12)

. (m—1)
AKO He BCHMKM yPaBHCHHS Ha CHCTCMA (12) cbavpxar ammefino T, , caen

ome eno apdepennupare, Kakto or6ens3sa npod. Jonamdues, noiyiaBame Bpbi3-
K, KOHTO ¢a BeYC JIHHCHIIN [0 OTHOUICHNC Ha YCKOPCHHSITA OT Hal-BUCOK Pl

df, (m)
E —£—~5rv +...=0Q.
(m—-1)
v d 1y,
ITo rosu mawmn, axko n e gocrarbuno roasmo (n > (m — 1) ~ B cayyas Ha
. (m~1)
JHeAnocT Ha ypasuemns (12) 0o OTHOUIEHHe HA T, , MU 1 > 1 — B CJIytas Ha
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HeJUHeHHOCT), MOXKEeM BHHATH Ja CMATaME, Y€ CTalOHApHOCTTa Ha Z, B (10) mo

OTHOLIEHHE [ (;:) e IpH JuHeiiHA 3a (I?v) orpanuticanst. OTTYK KPUTCPHAT, KOHTO
dopmymupa npod. Jonaniues 3a H3M0JA3BalETO Ha ¢JIUH WM ADYr BapHalyolen
[PMHLMIL, € CJIeAIHAT: 130upa ce OHOBA 1, 33 KOCTO YPaBHEHUATA 113, BPLIKUTE €a
JHHEfIHY 110 OTHOIICHUC HA BapHalluuTe.

Kpatknar obsop Ha uscacapanusta Ha npod. lojamiues mo anaInTuHa
MCXAHHKa, KOfITO HaNpaBUX, NOKa3Ba 3HATHMATA CJICIa, KOATO TOI ¢ OCTaBUI B
TO3M 511 Ha Mexanmkara. He 6upa ga 3abpapdAMe, UC aHAMTHUNATA MeXaiHKa ©
HAl-CTApHAT 1 Ha MEXAHHKATa, KLJACTO ¢ M3BBHPEAHO TPYAHO Ja CC Halpasy
Hello HOBO. TOMKOBa TOBEUC CJICABA Ja ce FOPACCM C M3CJeABalUATa Ha npod.
Jonamiues u aka. Ilenos, najgy A0CToeH OBLATAPCKH NPMHOC B CBCTOBHATA HAYKA.

Ioayuena na 27.11.2005

JTrvwobomup Jinnos

daxynTeT NO MareMaTHKa U MH(OPMATHKA
Coduiicku yuupepcuter ,, Cs. Kaument Oxpuacku
1164 Codus, n.k. 64, BbJITAPUSA

E-mail: lilov@fmi.uni-sofia.bg
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A JUMP INVERSION THEOREM
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In this paper we study partial regular enumerations for arbitrary recursive ordinal. We
use the technique to obtain a jump inversion and omitting theorem for the infinite
enumeration jump for the case of partial degrees.
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1. INTRODUCTION

In |2] Soskov. introduces the notion of regular enumerations. Using them he
proves the following jump inversion theorem:

Theorem (Soskov). Let k > n > 0 and By,..., By be arbitrary sets of
natural numbers. Let A C N and Q be a total set such that P(By,...,By) <. Q
and AT <. Q. Suppose also that A £, P(Bo,...,B,). Then there exists a total
set F having the following properties: ‘

(i) Foralli <k. B; € Eiﬂl;

(i) Foralli1<i<k.F9 =, F®P(By,...,B;i_1);

(iii) F® =, Q:

(iv) A £, F(™,

Here P(By,...) is the polynomial set obtained from By, B, ... as defined in
Section 2.
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In [1] Soskov and Baleva generalize the notion of regular enumeration and
obtain the following result for the infinite case:

Theorem (Soskov, Baleva) Let { By }a<c¢ be a sequence of sets of natural num-
bers. Let {Ay}y<c also be a sequence of sets of natural numbers, such that for all
7 < ¢ s true that Ay L. Py. Finally, let Q be a total set such that P; <, Q and
@7« Aﬂy' <. Q. Then there is a total set I' such that:

(1) For all v < ¢ it is true that B, <. F) uniformly in ~;

(2) For ally < ¢, if y =B+ 1 then F =, F o Py uniformly in y:

(3) For all kmit v < ¢ it is true that FO) =, F & P.., uniformly in

(4) F©O =, Q:

(5) For all ¥ < ¢ it is true that A, £, FO).

In this paper we will prove that this result also holds if we want the target
set I’ to be partial, i.e., the degrec d.(F) to be partial. Namely, we will prove the
following theorem:

Theorem 1.1. Let { B, }a<c be a sequence of sets of natural numbers. Let also
{A}y<¢ be a sequence of sets of natural numbers, such that for all v < C it is true
that Ay £, Py. Finally let Q be a total set such that P; <, Q and ®7<C Av <. Q.
Then there exists a set I such that d.(F) is partial and:

(1) For all vy < ¢ it is true that B, <, F uniformly in «;

(2) For all vy < (. if y=B+1 then FO) =, Ft @ Pl uniformly in vy;

(3) For all limit ordinals v < ( it s true that FO) =, Ft @ P~ uniformly in

¥
(4) FO =, Q:
(5) For all vy < ¢ it is true that A, £, FO,
(6) F is quasiminimal over By, i.e. for all total sets X if X <, F then

X < e 0.

2. PRELIMINARIES

Let Wy,...,Wj,... be the Gédel enumeration of the r.e. sets. We define the
enumeration operator I'; for arbitrary set of natural numbers by I';(A4) = {z |
(Hx,u) € Wy)(D, C A)}, where D, is the finite set with canonical code u. We
define the relation <. over the sets of natural numbers by

A<, B & Ji(A=Ti(B)).

The relation <. is reflexive and transitive and defines a equivalence relation =.
We call the equivalence classes of =, enumeration degrees.

The composition of two enumeration operators is also an enumeration operator.
Beside this the index of the resulting operator is obtained uniformly from the
indexes of the other ones. This means that there exists a recursive function ¢ such
that I';(T';(A)) = I'¢(; jy(A) for arbitrary set A.

62 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 61-85.



We define the "join" operator ® by A B = {2z | z € A}U{2z+1 | x € B}. We
set At = A® A. We say that a set A of natural numbers is total iff A =, A*. We
say that the enumeration degree a is total iff there is a total set A € A. Otherwisc
we say that the enumeration degree is partial.

We define the enumeration jump to be A’ = L}, where Ly = {(z,i) | @ €
I';(A)}. Using ordinal notation we can define the infinite enumeration jump. More
precisely:

Let 5 be a recursive ordinal and let us fix an ordinal notation e € O for 7.
For every ordinal @ < 17 we will use the corresponding notation which is < then

e (for an introduction on ordinal notations see [3]). Then. not distinguishing the
ordmal from its notation, we define the o jump for a < 7 by means of transfinite
induction:

(1) AD = 4
(2) If @ = B+ 1 then Al = (ADY
(3) If a = lim (a(p)) then A(® = {(p,z) |z € Al*P)},

Naturally the definition depends on the choice of the ordinal notation of a.
Despite this, we can prove that if a1 and a are two different notations of ¢, then
Al =, Al2) (gee [1], [3]), as in the case of the turing infinite jump.

We define the "polynomials" P, of the sets By,..., B,,... with

Definition 2.1. Let ¢ be a recursive ordinal and let {B,}a<¢ be a sequence
of sets of natural numbers. Then we define using transfinite induction the sets P,

in the following way:

(1) P() - B()
(2) if o =3+ 1 then P, = P;, @ Ba:
(3) if & = lim (a(p}) then P, = Pco ® By, where

P<<w = {(P, CIT> ! TE PLY([))}

We also introduce the following notation:
For an arbitrary sequence of sets {Cq }a<c We define the set @, Co to be

P Cu = {(a,2) | 7 € Cu}.

a<(

We will consider partial functions f : N —— N. We will say that f <, A iff
(f) <. A, where (f) is the graphic of f. We will use "partial” finite parts 7 for
which 7 : [0,2¢ + 1] — N U {L}. We define the graphic of 7 to be (1) = {(z,¥) |
r<20+1& 7(x) =y # L} and we say that 7 C f iff (1) C (f). We define
Ih(r) = 2¢+2

We will assume that an effective and reversible coding of all finite sequences is
fixed. Thus we have an effective and reversible coding for all finite parts. As usual
from now on we will make no difference between a finite part and its code. Even
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more: we say that 7 < p iff the inequality holds for the codes of the finite parts p
and 7. By 7 C p we will mean the usual extension property.

Finally we will say that the statement 3iP(i,x1,...,Zn, A1,..., Ag), where
1, T1,...,o, € N and Ay,..., 4, C N, is uniformly true in z,,...,z, for all
Ay, ... Ay iff there exists a recursive function h(zi,...,Zn) such that for cvery

T1,...,Zn € N and every A;,..., Ay C N the statement
P(h(xl,...,In),l‘l,...,.T,'n,Al,...,Ak)

is true.

Of course the construction of h is quite difficult and uninformative. Hence,
when we have to prove that some statement is uniformly true, usually we will show
a construction in which all the choices we have to make will be effective.

3. REGULAR ENUMERATIONS

The proof of the theorem in most of its parts repeats the proof of Soskov,
Baleva theorem. A complete proof of the last onc can be found in [1].

Let us first fix a recursive ordinal ¢ and a sequence of sets {Ba }a<c-

The following definitions of ordinal approximation and predecessor as the
proofs of their basic properties are due to Soskov and Baleva.

Definition 3.1. Let o be a recursive ordinal. We will say that @ is an ap-
proximation of «, iff @ is finite sequence of ordinals @ = (a9, ay, . .., an,a), where
=0, <o < - <a, <aandn > -1.

Definition 3.2. Let o be a recursive ordinal and let 8 < a. Let also @ = (o,
Q... ,0m,) is an approximation of . We define recursively the notion of j3-
predecessor of @:

a) if 3 = a; for some 0 < i < n then set B = {ap,aq,...,04);

b) if a; < 8 < ;4 for some 0 < i < n then set 3 to be the A-predecessor of
(o, e,y aiq1) s

¢) if @, < B < « then

Difa=6+1and 3=14set 3= (g, aqy ..oy, B):

2)if o = 6+1and 3 < 4 then set 3 to be the F-predecessor of {ag, @y, .. . am,0);

3) if a = lima(p). po = ppla(p) > ay] and p; = ppla(p) > ] set B to be the
g-predecessor of {ag, o1, ...y, a(po),a(po + 1), ..., a(p1)).

" The following lemmas give the basic properties of the ordinal approximation
and predecessor. The full proofs can be found in [1].

Lemma 3.1. For every ordinal approzimation @ and every 8 < « there is a
unique [-predecessor 3 of «.
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Lemma 3.2. Let @ = (ag, 1, ..., 0y, @) be an approzimation of a. Then:

(D) IfB<a; for some0<i<n then3<ae f=a

(2) If for some 0 <i<n,a; < B < aand (Bo,P1,....Bk) is the 3-predecessor
ofatheni <k anda; =0 foralll =0,...,1

(3) Leta=6+1, an, <6 and § < 9. Then B <@ < B < (ag,a1,...,0n,0)

(4) Let o = lima(p) be a limit ordinal and let py = pplo, < a(p)]. Let also
p1 > po be such that 8 < a(p’]). Then

B=ae f=<{aa,. .. ona(@),alpy +1),...,0(p1))

Lemma 3.3. Let v < 8 < a be ordinals, 7 < B and B <a. Theny < @.

Let us fix an approximation @ of a. We define the notions of G-regular finite
part, @-rank and @-forcing by means of transfinite recursion over a.

(i) Let first & = 0. Then @ = (0). O-regular are those finite parts satisfying
the condition:

If z€ 2N + 1, z € dom (7) and 7(z) # 1, then 7(z) € By.

If dom (7) = [0,2¢ + 1] we set the O-rank |7]o of 7 to be ¢ + 1.

We will use the notation R for the set of all O-regular finite parts.

For arbitrary finite part p we define:

plko Fi(z) <= Jv((z,v) € W; & D, C (7)),
p ko ~Fi(z) < (V7 € Ro)(T 2 p = 7 Iffo Fi(x)).

Now suppose that for all 3 < a the G-regularity, B-rank and B-forcing are
defined. We will also assume that for all 3 < « the function B-rank denoted by
AT.|7|5 has the property:

If 7 and p are two 3-regular finite parts such that 7 C p, then |7|5 < |plz. In
particular |7|5 = |plz <= T =p.

(ii) Let now a = 3+ 1. Let 3 be the B-predecessor of @. Denote the set of all
B-regular finite parts by Rﬁ‘ Let also
Xip = (p€Rg | g F()},
S§ = RgNTi(Ps),
where I'; is the j-th enumeration operator.
If p is an arbitrary finite part and X is a set of B-regular finite parts we define
the function uz(p, X) by:

ut[t 2 p & 7 € X], if there is such 7 (a)
pz(p, X) = qurlr2pk € R3l, if (a) is not satisfiable (b)
-l if (a) and (b) are not satisfiable (c)
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_ Definition 3.3. Let 7 be a finite part and let m > 0. We say that p is
B3-regular m-omitting extension of r, iff p is B-regular extension of 7, defined in
[0,¢ — 1] and there are natural numbers go < ¢ < -+ < ¢y < @mt1 = g such that
a)plg =1
b) for all p < m, it is true that pgp41 = 1 (p[(q,, +1), Xg)q >)

It is clear that if p is G-regular m-omitting extension of 7, then go, g1, ..., gm+1
are unique. Even more: if p; and p2 are two (-regular m-omitting extensions of 7
and p; C pa then p; = pa. In other case the function f is not single valued.

Now we are ready to define the notion of @-regular finite part:
Let 7 be a finite part defined in [0,q — 1] and let v > 0. We say that 7 is an
a-regular finite part with @-rank r + 1 iff there are natural numbers

O<np<lo<bhy<my <l <by < < np <l <bp < Nypy1 =4,
such that for all 0 < j < r the following assertions hold:

(1) 7lng is a B-regular finite part of B-rank 1;

@) 711 = w5 (7 1ns +1),87) 5

(3) 71b; is B-regular j-omitting extension of 7|,

(4) 7(b;) € Bas

(5) TInjy1 is a B-regular extension of 7 (b; + 1) of rank |7 Ibjlg + 1.

Note that directly from the definition it follows that if 7 is an @-regular finite
part, then 7 is also a B-regular finite part.
The definition of a-forcing for an arbitrary finite part p is:

p ks Fi(z) < ((v,z) € W; & (Yu € D) ((u = (buy 24, 0) & p 5 Fy, ()
V(4= (i 20,1) & plig =F, (20)))

plrg =Fi(z) <= (Vr € Ra)(p C 7 =7 Wz Fi(3))

(iii) Finally let « = lima(p). Let @ = ag, a1, ..., an, a and let py = ppla(p) >
o). Let also for all p, a(p) be the a(p)-predecessor of @. Note that for p > po
according to Lemma 3.2

El’(?) = <O((),a1, s 7an’a(p0)’a(p0 + 1)a .. '7a(p)>'

We say that the finite part T defined for [0,q — 1] is a-reqular of @-rank r + 1
if there are natural numbers

O<no<by<ng<by <--<nyp < by < Nypyp1 =g,

such that 0 < j <, it is true that:
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(1) TIng is a (o, @1, . .., an)-regular finite part of rank 1;
(2) 71b; 45 a alpo + 27)-regular finite part of rank 1:

(3) 7(b;) € Ba:

(4) TInj41 i85 a a_(m—regular finite part of rank 1.

Note that in this case, T is a a(pg + 27 + 1)-regular finite part of respectivly
rank 1.

For every finite part p and every i,z € N we define:

p kg Fi(z)e=v (('U,m} € Wi & (Vu € Dy)(u = (pu, tu, Tu) & p b5y Fi, (Iu))>v
p g —Fi(z)e= (V7 € Ra)(p C 7 = 7 ¥g Fi(z)).

This concludes the definition. The next Lemma gives the correctness of the
definition and the validity of the assumption for the S-rank.

Lemma 3.4. Let a < ( and let T be a-regular finite part. Then the following
statements are true: _

(a) Let o« = B+ 1. Let also njy, 1y, bh,...nL, IL,bl,nly and ng,lg, by, ... ng,
by o, be two sequences of natural numbers satisfying (1)-(5) from (ii). Then
r=p, .. =n/y; and for all 0 < j <r we have n} = n;-’, = l;’ and b; = by.

(b) Let o = lima(p) and let nj, b, ...nL,bL,nl,y and ng, by, ...y, by ny
are two sequences of natural numbers satisfying (1)-(4) from (iii). Then r = p.
nl =nl, and for all 0 < j <7 we have n; = nf and b; = bj.

(c) Let p and T be @-regular finite parts and let T C p. Then ||z < |pla. In
particular |tz = |plg &= T=0p.

Proof. (a) Let o = 3+ 1 and let n}, 15,8}, ..., nl, 1%, b, and ng, Ig, bg, . - -
ny, Ly, by, ny .y be two sequences of natural numbers satisfying (1)-(5) from (ii).
Without loss of generality we may assume that 7 [ ngy C 7 | ng. Beside this, we
have |7 [ nglz = |7 | nglz = 1. Then considering the properties of B-rank we
obtain 7 [ n = 7 [ nlj. Therefore n) = nj. Let now the equality n; = nJ hold.
Then 7 [} = pz (T[?l;,S?) = pz (T[ﬂ}’,Sf) = 7 [1}. Therefore I = lj. Now
considering the property of the j-omitting S-regular extensions (mentioned after
the definition) we obtain 7 [b} = 7 [ b and therefore b}; = by. Now again without
loss of generality we may consider 7 [ nj,, C 7 nf;;. But|r [nfplg = |71
Vilg+1=|rbjlz+1=|r [n7 1z Therefore from the property of the B-rank we
obtain n},; = nj,,. Now the statement r = p is obvious.

(b) The proof is analogous to the previous one.

(¢) Let 7 and p be two @-regular finite parts and let 7 C p. From the proof
of (a) we obtain that the sequence corresponding to 7 and satisfying the definition
of the @-regular finite parts is an initial part of the sequence corresponding to p.
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Therefore |7z < |pla. If T C p then we have |7|z < |pls, since in the contrary case
we would obtain that the sequence of p is not monotone. O

From the definition of @-regular finite part and Lemma 3.4 we obtain

Corollary 3.1. Let a« = 8+ 1. @ be an approzimation of o and let 3 be
B-predecessor of &. Then every G-regular finite part T is B-regular and ITlz > I7l=-

Lemma 3.5. Let 1 < a < ¢ and let @ = {ag,a,...,an,a). Then every a-
regular finite part is (o, ..., an)-regular and the (o, ..., a,)-rank of T is strictly
greater than |Tlz.

Proof. We will use transfinite induction over a. First let @ = 1. Then@ = (0,1)
and now the statement follows from Corollary 3.1.

Let now a = 3+1 and let § be the B-predecessor of @. Then again (from Corol-
lary 3.1) we obtain that 7 is S-regular finite part and |75 > |7|z. From Lemma 3.2
we know that 3 is of the form (o, @1, .. . sQn, Bty - - - »Bn+i), where i > 0. Then
applying i times the induction hypothesis we obtain that 7 is {ag,a1,...,q,)-
regular and the (g, a1,...,a,)-rank of T is greater or equal to 7|5 and therefore
strictly greater than |7|5.

Finally let @ = lima(p). Let also ||z = r + 1 and let py = ppla(py) >
¢,]. From the definition of @-regular finite part we obtain that 7 is a (g, 1,4 -,
on,a(po), ..., a(pp + 2r + 1))-regular finite part of rank 1. From the induction
hypothesis 7 is a (ag,1,..., an,a(po),. .., @(po + 2r))-regular finite part of rank
at least 2 and since 7 is a (@, @1, . .., an, a(pp))-regular finite part of rank at least
2r+2, then 7 is {(ap, 01, ..., ap)-regular of rank at least 2r+3 and therefore strictly
greater than r + 1. |

Lemma 3.6. Let o < ( and let @ be an approrimation of a. let also § < @.
Then there is a natural number k"aj: such that every @-regular finite part of rank
5 18 d-regular.

greater or equal to k.

Proof. We will use transfinite induction over . When a = 0 the statement is
trivial.

Now let o = 3+ 1 and let 3 be the S-predecessor of @. Let § < @ (which is
the interesting case). Then § < . According to the induction hypothesis there is
ak= kﬁ’g, such that every G-regular finite part of rank greater or equal to k is
d-regular. Let us set k55 = k. Then according to Corollary 3.1 we obtain that k
has the desired property.

Finally let o = lima(p), @ = (ag,a1,...,an,a) and § < @. Let also py =
ppla(p) > on], let p1 > py be such that a(p;) > 6 and let us denote the a(p)-
predecessor of @ with a(p). Applying Lemma 3.2 we obtain § < @(p1). Then
according to the induction hypothesis every @(p;)-regular finite part with rank

greater or equal to k&(pl).g is d-regular. It follows from the proof of the previous
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Lemma that there is a natural number r, such that every G-regular finite part of
rank at least r + 1 is @(p))-regular of rank greater or equal to kg, ) 5- Let us set

kﬁﬁ =7r+41 O
Corollary 3.2. Let a < (, @ be an approzimation of o and B <@. Let also T
be @-regular finite part of rank greater or equal to kg7 + s. Then }TIB— > s.

Proof. From the definition of the @ regular finite parts we obtain that there
are natural numbers gy < g1 < --- < g5 such that 7[¢; = 7 and for all j the finite
parts 7; = 7 | g; are a-regular with @-rank at least k. 5 and therefore (-regular.
But o €1 € -+ G 75 and therefore lTj|§ < lTj+1lE.7 Finally ITOI/—, > 1, which
completes the proof. O

Lemma 3.7. Let a= lima(p). Let@= (a0, a1,-..,0n, @) and
po = upla(p) > an]. Let also pr > po and 7 be a (ao,al_,...,an,a(pgl, apo +
1),...,a(p))-regular finite part of rank 1. Then for every B8 < @, if T is B-reqular
then B8 < a(m).

Proof. In order to obtain a contradiction assume that 7 is a B-regular finite
part for some 8 such that § < @ and a(p1) < < . Then {3 is the B-predecessor
of

(g, @1y -y Qs a(po), (po + 1), ... alpr + k)Y,

where k > 1. According to Lemma 3.2 A is of the form
(ao,al,...,an,a(po),...,a(pl),...,ﬂ).

As the B-rank of T is at least 1 then from Lemma 3.5 we obtain that the (o,
a1, .00, 0{po), ..., a(p1))-rank of 7 is greater than 1 which is a contradiction. 0

Let @ be an ordinal approximation and let 7 be a finite part. We introduce
the following notation:

Reg(r,@) = {B | B 2 & & 7 is B-regular }
Then the following is true:

Lemma 3.8. Let o < (, let @ = (g, 1, - - ., Qn, @) be an approzimation of &
and let T be an @-regqular finite part. Then:

a) ifa=686+1 and 3 is the §-predecessor of @ then
B € Reg(r,@) «> B=a V B € Reg(r,0);

___b)leta = lim a(p). Let also pp = ppla(p) > an) and for every p > po let
a(p) be a(p)-predecessor of @. Let also p1 > po and let 7 be E(_z—)l_)-regular of rank
1. Then

B € Reg(r,a) <= B=aV Be Reg(t,a(p1))-
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Proof. The statement a) is obvious and the statement b) follows directly from
the previous Lemma. [

Definition 3.4. We say that the sequence Ay,..., A,,... of sets of natural
numbers is e-reducible to P iff there is a recursive function h such that for every
n Ap = pey(P). We say that the sequence is T-reducible to P iff there is a
function x recursive in P, such that for every n Ar.x(n,z) = xa,. where x4, is
the characteristic function of A,,.

From the definition of the enumeration jump, the e-reducibility and the 7-
reducibility of sequences to set we obtain the following Lemma.

Lemma 3.9. Let P be a set such that the sequence {An} is e-reducible to P.
Then
(1) The sequence {A,} is uniformly T-reducible to P’;
(2) If R<. P then the sequences {A,NR} and {C,} for whzch
Crn={z] Ely((y, ) € R & y € A,} are uniformly e-reducible to P.

"The full proof can be found in [2].
We introduce the following notations:

75 ) = {r € Ra | 7z ~F(j)}
02, = {p| pis @regular j-omitting extension of 7}

Proposition 3.1. For every ordinal approzimation @, where o < ¢ the fol-
lowing are true:

(1
(2
(3
(
(5

) Rz <c Pa uniformly in @.
) The function Ar.|tlz is partially recursive in Py uniformly in &;
) The sequences {S5'} and {XT} are e-reducible to P, uniformly in a;
4) The sequence {Z5'} is T-reducible to P., uniformly in @;
) the functions A, j.pig ('r X "‘) and AT, j.ux (T S"‘) are partially recursive in
Po uniformly in a; ,
(6) The sequence {ij} is e-reducible to P! uniformly .

Before proving the proposition let us note some properties of the sets P

Lemma 3.10. (a) If B < a < ¢ then Pg <. P, uniformly in o and 3.
(b) If B < a < ¢ then Bg <. P, uniformly in o and 3;
(c) The sets P<, are total.

Proof. (a) We must find a recursive function g, such that if 3 < a < ¢ then
Ps = Tg(a.5)(Pa). We will define g by recursion over the ordinals o < ¢. If o = 0
then g(0,0) = 49, where iy is a fixed index for the enumeration operator identity.
If @ = 3 then again g(a, ) = ig. Now let 8 < a.

70 ' Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 61-85.



First consider & = § + 1. Then Pg <, Ps and therefore Pg = I'y(5. /3)(735). But
Ps =T, (Tp, (Pa)). where jo is a fixed index for which A =T,,(4") and po is such
that A =T, (4 ® C) (jo and po exist and do not depend on A and C). Then

g(a, B) = ¢(g(8, 8), (o, Po))-

For the definition of ¢ see Section 2.

Finally let @ = lima(p). Then there is a recursive function pr not depending
on a, such that Py iy = pr(iy(P<a). The function m(a, B) = ppla(p) > G, defined
for the limit ordinals & < ¢ and all ordinals 3 < «. is partially recursive. Then
Pﬁ <e ’Pm(aﬂ) and Pm((y,ﬂ) = Fpr(rn(a,ﬂ))(P<a)' We set

g(a, B) = ¢ (g(m(e, ), B), ¢ (pr(m(e, ), po))-

(b) Follows directly from (a).

(c) Let @ = lima(p). We must show that N\Pca <c P<a- - Recall that
Pea = {(p,x) | * € Pupy}- Therefore z € N\Peoy < &€ Pca & T =
(p,y) & y & Pagn. Now according to the definition of the enumeration jump we
obtain that for arbitrary set C and every z

2@ C <= 2(z,i0) +1 €,

where ig is a fixed index for the enumeration operator identity. Now from the proof
of (a) we obtain that the sequence P:!(p) is e-reducible to P, uniformly in a(p)
and therefore the condition z € N\P«q is e-reducible to Pq. 0

Proof of Lemma 8.1.  Transfinite induction over . In the case o = 0 the
statements are clear. Now let the statements be true for every 8 < a. First we will
prove (1).

(1) First consider a = §+ 1 and let 7 be an arbitrary finite part. Then we set
the number ny to be ng = uglrq € RE]' F indi_x—lg ng or proving that such number
does not exist is recursive in 'P;, uniformly in 3, since according to the induction
hypothesis R5 <. P uniformly in G. If there _is no such ng then 7 € Ry. Le_t n; be
defined for some j > 0. Then, if g (T [, S?) is defined and b5 (7’ fnj, Sf) Cr,
we set [; = lh (,uﬁ ('r n;, S][-i )) Since the function pgz is partially recursive in Pj

uniformly in 3, defining ; is r.e. in ’Pé uniformly in 3. If we have defined ; then
we set _
bj = NQ[Q > lj &rige O?,-uj,j)]

We know from the induction hypothesis that the sets O?p ;) are e-reducible to Py
(which is a total set) uniformly in B and (p, j), and therefore setting b; is again r.e.
in P} uniformly in 8. Finally if there is a g, such that 7[¢ € Rz, we sct
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njt1 = pglg>b;+1& 71q € Ry

Knowing b;, defining n;11 is recursive in Py uniformly in /3, and therefore is
r.e. in P[, uniformly in 5. Then 7 € R iff there is n,.; 1, which is obtained following
the construction above, such that 7 [n,;1 = 7 and for every 0 < j < r it is true
that 7(b;) € B,. The first condition is r.e. in the total set Pj. The second one is
e-reducible to B,. The two of them are uniform in @&@. Therefore Rz <. ’P[’j @ Byg.

Now consider o = lima(p). Let 7 be an arbitrary finite part. According to
Lemma 3.10 we obtain that the sequence {Py(p)} is e-reducible to P, uniformly
in @. Since the sets 72 ) are e -reducible to Py, uniformly in a(p) we obtain
that the sequence {R } is e-reducible to P, uniformly in @. Analogously to the
case @ = 3+ 1, we can gind r.e. in P, and uniformly in @ a sequence of numbers
ng, bo, 1, by, . .. satisfying the conditions of the definition of the @-regularity of 7.
If for some of the numbers n,; is true that n,,; = lh(r) and for every 0 < j < r
7(b;) € By then 7 € P,. These conditions are e-reducible to P, uniformly in @.

(2) Follows directly from the proof of (1).

(3) The sequence {S7} is e-reducible to Py, uniformly in @ ds 57 = ReNl';(Pa)
(Lemma 3.9). In order to prove the statement for {X g j>} let us first assume that
a = 3+ 1. According to the definition XZ“_Z‘J.) ={r € Rz | 7tz Fi(j)}. Also

Tlhg Fi(j) <= o ({jv) e Wi &

(Vu € Do)((w = (0,1, 20) & 7lbg F;, (zu)) V (u = {1,y 2u) & 7 b5 =F, (24))
According to the induction hypothesis the conditions 7 k3 Fi,(z.)) and 7 I3
—F;, (zy)) are recursive in 'P[; uniformly in i,, z, and 3 (the sequences {X?} and
{ZE} are T-reducible to Pj uniformly in B). Therefore the condition 7 Iz Fi(j)

is e-reducible toP[, uniformly in i, j and 3. Therefore the sequence {X o ]>} is
e-reducible to P, uniformly in @.

Now let a = lima(p). Then
Tlhx Fi(7) <= 3u({j,v) € Wi & (Vu € Dy)(u = (D, tu, Tu) & T k50 Fi, (z4)))

But the sequence {Pqy,)} is e-reducible to P, uniformly in a. The sets X z(;) are
e-reducible to P, () uniformly in i, j and @(p). Therefore the sequence {X (ﬁ L) is
e-reducible to P, uniformly in @. As P, is a total set the sequence {X & } is
r.e. in P., uniformly in & Then the condition 7 Fapy) Fiu(Tu), if T € X2 (i p I
r.e. P<, uniformly in @. Finally we obtain that the sequence { X@ G tise reduclble
to P, uniformly in &.

(4) Since the sequence {X g’j)} is e-reducible to P, uniformly in @ then the
condition, for given 7 it is true that (3p € XZ)(p 2 7), is r.e. in P, uniformly
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in i and @. Then the question, if for given 7 is true that (Vp 2 7)(p & X7). ie.,
if 7 € Z7, is r.e. in P, uniformly in i and @ Therefore the sequence {Z7} is

T-reducible to P}, uniformly in @.
(5) Follows directly from the definition of the function iz and the proof of (4).

(6) The reasoning is analogous to the proof of (1) and uses the fact that the
function A7, i.uz(7, XF) is partially recursive in P;, uniformly in @. ]

Definition 3.5. Let 7 be @-regular finite part with rank r + 1. We define BZ
by:

a)if @ =0, then BZ={z |z € dom (1) & z € 2N + 1}

b) if @« = B+ 1 and ng,lo, bo, - - -, My Lr, br, gy are the numbers from the
definition of the regular parts, then BZ = {bo,b1,... b, }

¢) if @ = lima(p) and ng, by, - . ., Ny, by, Nr41 are the numbers from the defini-
tion of the regular parts, then BZ = {bg, b;,...,b,}.

Definition 3.6. Let { be an approximation of (. We say that the partial
function f from N in N is a regular enumeration respecting Ciff:

(1) for every finite p C f there is a C-regular finite part 7 2 p such that 7 C f:

(2) if @ < € and z € B, then there is an @-regular 7 C f such that z € 7(Bg).

It is clear from the definition, that if f is a regular enumeration, then f has
C-regular subparts with arbitrary large rank. Then if @ < ¢ and p C f there is an
@-regular finite part 7 C f such that p C 7. In particular there are G-regular finite
subparts of f of arbitrary rank.

If f is regular and @ < ¢ then with Bé we will denote the sct

BL={b| (3rC f)reRa&be BL)}.

It is clear that f (B-({-) = B,.

Proposition 3.2. Let f be a reqular enumeration. Then:

(1) Bo <¢ f;

(2) f a = B+1 <, then By <. f* ® Py uniformly in a;

(3) if a < ( is a limit ordinal, then B, <. [T ® P<qo uniformly in a;
(4) Py < £ uniformly in a.

Proof. Let f be a regular enumeration. It is clear that B! = 2N +1. It follows
from the regularity that By = f (B(’; ). Therefore By <. f.

We will prove (2) and (3) using transfinite induction over a.

Let first « = 3+ 1. Let @ be the a-predecessor of ¢, and let 3 be the j-
predecessor of @. Since f is a regular enumeration, then for cvery finite part p C f
there is an @-regular finite part 7 C f, such that p C 7. Therefore there is a
sequence of natural numbers

O<ng<lp<h < ---<n. <l <b <...,
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satisfying the conditions from the definition of the @-regular finite parts, and also
satisfying that 7. = f [ n,y; is an @-regular finite part with |7.|g = 7 + 1 for all
r > 0. Therefore Bl = {bg,b1,...}. We will prove that there is a recursive in
fro Pﬂ uniform in [)’ procedure, which draws out the numbers ng, lg, bo, . . ..

We know from the definition, that 7p = f | ng is an @-regular finite part with
rank |7z = 1. According to Proposition 3.1 the set 'R is recursive in P’ B uniformly

in 3. Usmg the oracle f* we may obtain suc cesslvely all the finite parts f [ ¢ for

qg=0,1,--. . Lemma 3.4 guarantees that 7¢ is the first from the so obtained finite
parts which is in Rj3. Thus we obtain ny = lh().
Now let r > —1 and let the numbers ng,lo, by, ..., n,, L, by, ny4 1 have been

obtained. As S B is recursive in P! 3 uniformly in B, using the oracle /g we may
obtain f ;41 = 3z (f[(nrH + 1),Sj)‘ Thus we get [,.11 = h(f [lr+1). We know
that f[b,41 is a f-regular, r 4 1-omitting extension of f [l;+1. Therefore there are

numbers I11 = ¢gp < g1 < -+ < gr41 < gr42 = bryq such that for every p < r +1,
it is true that:

flaprr =g (ff(%“‘l) Xg?q >)

Therefore, since the sets X 7B are recursive in Pﬂ uniformly in 3, using successively
the oracles f* and Pj, we may generate the finite parts f[(g,+1) forp=0,1,...7+
2. At the end of this procedure we obtain the number b,,.1. In order to obtaln Nyt2
we generate using the oracle f* the finite parts f [ (b1 +14¢) for g =0,1,....
Then n, o = Ih(f [ nry2), where f | n,.yo is the first of the generated parts whlch
isin Rz .

Thus we obtain that the set Bl = {bo, b1, ...} is recursive in ft & P[’j and
therefore B, = f(Bl) <, f* @

Now let a = lima(p). It is clear, that the sequence {73,,(,,)} is uniformly
e-reducible to Pco. Let @ be the a-predecessor of ¢ and let a(p) be the a(p)-
predecessor of @. Since f is a regular enumeration, we can assume that f is the
union of @-regular finite parts. Therefore there are numbers

O<ng<by<n <b < ---<n, <b, <...

satisfying the conditions of the definition. Since for every p the sets R— are
uniformly e-reducible to P/, (p)® they are also uniformly e-reducible to P, Honce
applying the procedure from above we can get the numbers ng, by, ..., 1., by, ...
recursively in f* @ Pc,. Therefore B, = f(Bf) <. f* & P<q.

Thus in both cases the sets B are r.e. in f* &P} and f* & Pcq, and besides
this the procedures are uniform over 4 and a. Therefore the reducibilities in points
(2) and (3) of the theorem are uniform over a.

We will prove statement (4) with transfinite induction over a.
In the case a = 0 the statement is (1). Now let o = §+1. Then P, = P& B,.
According to the induction hypothesis Py <. f uniformly in § and therefore
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’P[’, <e f (@) uniformly in o. Beside this Bq <. f T ’P/’f,, uniformly in @ and
therefore By <. f(® uniformly in a. Thercfore Py <. f (@) yniformly in c.

Finally let @ = lima(p). Then Py = P<ca @ Ba. According to the induction
hypothesis Pupy <e f(P) yniformly in —(p—) Therefore Pypy <e f (o) yniformly
in a{p) and therefore Peo <o f(® uniformly in «. Beside this B, <. fT®Pea
and therefore P, <. f(*) uniformly in a. O

Corollary 3.3. Let f be a regular enumeration. Then B, <. fle,
Proof. From (5) of the proposition P, < f*. But By < Pq which proves the

corollary. O

Definition 3.7. Let f be a partial function from N to N, let a be a recursive
ordinal and let i,z € N. We define the relation =, by:

a)a=0
f Eo Fi(z) & Jv({v,2) € Wi & D, € (f));
bya=§+1

f Eo Fi(x) & o({v,z) € Wi & (Vu € Dy)({u= (i, T, 0) & f = Fi, (24))
\/(u = <iu’$ua 1)&f ,:ﬂ -F, (TU))))

¢) a = lima(p)

f Eo Fi(x) & Fo((v,z) € Wi&(Vu € D,)(u = (Puybus T)& f Fa(pa) Fi (Tu)))-
d) for all other cases
f F(x —‘E(x) A4 f %(y FL<I)

The following Lemma is true:

Lemma 3.11. There is a partial recursive function h such that for every re-
cursive ordinal o and every enumeration operator I';, it is true that

z e Ti(f(*) <= f Ea Fhan (@)

Before proving the Lemma let us note that for arbitrary set Cifa=p+1
then

C(a) =e {u ! (U = (0, Ty 171:,> &r, €T, (C(ﬂ))) \ (u = (11 iu7$1t> &a, ¢ 15, (C(ﬂ)))}v
and if @ = lima(p) then
C@ =, {u|u= (Pusiunta) & 2, € s, (CPD)

uniformly in .

Proof of Lemma 3.11. We will show that there is a sequence of recursive
functions {Aj.ha(j)}a<c uniform in a such that for every o < ¢ and every 4 the
statement

z e Ti(f¥) <= f Ea Fu,1)(2)
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holds. We will use transfinite induction over « < ¢. First let o = 0. We set
ho(i) = 1. It is clear from the definition of k= that h¢ has the desired property.
Now let « =+ 1. Then

z € T;(f*)

0
Fv((z,v) € W; & D, C £l

)
Fv((z,v) € W; & (Yu € Dy)((u = (0,4, z4) & 2, € Ty, (fP))V

(= (L, 20} & 2o & T, (F))).

Then from hg we obtain
z € Ty(f ™)

7
Fo((x,v) € W; & (Yu € Dy,)((u = (0,14, zu) &f 5 Fy i (xa))V

(u=(1iu,2u) &f Fp Fh/«,(iu)(wu))))'

Consider the set W such that (r,v) € W iff there exists v/ such that (z,v') € W;
and
V{t, i, x)({t, hs(i),z) € D, <> (t,i,z) € Dy)

Since the function hg is recursive uniformly in 3, then we can obtain recursively
and uniformly in 3 the finite sets D, from the finite sets D,/. Therefore the set W
is r.c. with G6del index ip. Thus we obtain x € T'ymy <= f |54, (). Beside this,
W is obtained uniformly from the index i of the r.c. set W; and the function hg.
Then 4y is also obtained uniformly from ¢ and hz. We set h, (i) = 1.

Finally let & = lima(p). Then z € [,(f(¥) <= Jv((z,v) € W; & (Vu €
D) (u = (Dusin,xy) &z, € Ty (f@PD)))). Then, according to the induction
hypothesis ¢ € [i(f¥) <= Fv((z,v) € Wi & (Vu € D)1 = (pu,Zu,iu) &
I Eap.) Fho,,,i.)(@a). Let us consider the set W, for which (z,v) € W iff there
is a v’ such that (z,7v") € W; and

Y(p,i,2)((p, hagp) (i), ) € Dy < (p,i,2) € Dy).

Then, exactly as above (as the sequence of recursive functions {hp) } is uniform in
a(p)), the finite sets D, are obtained recursively from the finite sets D,/, uniformly
in {a(p)} and therefore uniformly in . Then the set W is r.e. with index jy, which
is obtained uniformly from the index i and a. It is clear that x € T;(f(*)) <=
[ Ea Fj(z). We set hy(2) to be hy(i) = jo. '

In both cases h,(7) is uniformly obtained in ¢ and a. O
Corollary 3.4. Let f be a partial function from N to N and let o« be a recursive

ordinal. Then A <. f'®) iff there is an i such that for every x the condition
T € A< [, Fi(z) is satisfied.
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Let us note that for every @ < 3 the relation Iz is monotone, i.c., if 7 C p are
a-regular finite parts and 7 -5 Fi(x), then p bz Fi(z), and also if 7 Ik —~Fi(x),
then p bz —Fi(x).

Lemma 3.12. Let f be a reqular enumeration. Then:
(1) for every @ < (. f FFa Fi(z) & (37 C f)(7 € Rz & 7lk5 Fi(2)):
(2) for every & < (. f o ~Fi(x) & (37 C f)(r € Rz & 7 k5 ~Fi(x)).

Proof. We will use transfinite induction over a. First let @ = 0. Then the
validity of (1) follows from the compactness of the enumeration operators I';. Now
let us prove (2). Let f =g —F;{x). In order to obtain a contradiction assume that,
for every O-regular 7 C f, is true that 7 Iff5 —Fi(z), i.e., for every O-regular 7 C f
there is p € R such that p 2 7 and p by F;(x). Consider the set S = {p €
Ry | p kg Fi(z)}. It is clear that S <. Py and therefore there is an index j, for
which S = S;J. Let o C f a I-regular finite part such that |ujy > j. Such one exists,
because f is regular and 1 < ¢. According to the definition of the I-regular finite
parts there is a O-regular finite part py C u such that pg € S? = S8. Then py C f
and from (1) f o Fi(z), which is a contradiction.

Now suppose that (1) and (2) are true for every ¢ < a. We will show that the
assertions are also true for a.

a) o = 3+ 1. First we show (1). Let f o Fi(x). Then there is v such that
(v,z) € W; and (Vu € D,)((u = (iu, Tu, 0)&f s Fi, (zu))V (u = (tu, Tu, Y& S 5
=F; (z.))). According to the induction hypothesis we obtain 79,7 C f such that
(Vu € Dy)((u = (iu, 20, 0)&70 b5 Fi, (zu))V (U = (iu, T, 1)y b5 ~Fi, (24)))-
Since one of the finite parts is extending the other and the forcing relation is
monotone, we may assume 79 = 71 = 7. Then from the definition of the @-forcing
we obtain that 7 b5z Fi{x).

The reverse is analogous.

Let us now prove (2). The reasoning is analogous to that of the case «« = 0. Let
f Ea —Fi(z). In order to obtain a contradiction assume that for every t-regular
7 C f is true that 7 ¥z = Fi(z), i.e., for every @-regular 7 C f there is p € Ry such
that p O 7 and p Iz Fi(x). Consider the set S = {p € Rz | p kg Fi(z)}. It is
clear that S <. P, and therefore there is an index j for which S = Sja. Let p C f
be such an a + I-regular finite part that |ul;77 > j. Such finite part exists as f is
regular and o+ 1 < (. According to the definition of the a + 1-regular finite parts,
there is an @-regular finite part po C p such that py € SJ‘T = 8. Then py C f,
po 5, () and form (1) we obtain f =, Fi(x), which is a contradiction.

The opposite follows directly from (1).

b) @ = lima(p). First we prove (1). Let f ko Fi(z). Then there is a v
such that (v,z) € W; and (Vu € D,)(u = (Pu, tu, Tu)&f Fa(p,) Fi.(zu))- Then
according to the induction hypothesis, for every u € D,,, u = (py, iy, Ty) there is
T, C f such that 7, H—m F; (z,). Since D, is finite, then there is 7 C f such

u
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that 7, C 7 for all u € D,,. As the forcing is monotone 7 IFW) F; (x,) for every
u € D,.. Then according to the definition of the a-forcing 7 b5 Fy(x).
Now suppose that therc is 7 C f such that 7 -z Fi(z). Then therc is v

such that (v,x) € W; and (Vu € D,)(u = (pu, iy, 2,)&T IFp Fi, (7). Without

opa)
loss of generality we may assume that 7 is «(p, )-regular for every v € D,. Then
according to the induction hypothesis f k=) Fi, (z,) for every u € D,. Therefore
The proof of (2) repeats the proof for the case o = 3 + 1. O

Proposition 3.3. Let f be a regular enumeration. Then f is quasiminimal
over By, i.e.. By <. f and for every total set X is true that:

XS(’,f:>XSCBO'

Proof. First let us prove that By <, f. We know from proposition 3.2 that
By <. f. It remains to show that f <. By. In order to obtain a contradiction
assume that f <. By. Then the sct R = {7 € Ry | IzIy(f(z) = y& f(x) # 7(y))}
is e-reducible to Bg. Then therc is an index ig for which R = S?U. As f is regular
there is a 1-regular finite part 7 C f such that |7]3 > i5. According to the definition
of the 1-regular finite parts, there is a number [;, such that 7o = 7 [, either is
in S or no O-regular extension of 7 is in Sp. Since o C f it is clear that the
first casc is impossible. On the other hand, we may extend 7y and obtain the finite
part 7 in such a way, that 7y € 7 and 7 € R. Therefore the second case is also
impossible. Therefore, f £, By.

Let us now prove the second part of the quasiminimality condition.

Let A be a total set such that A <, f. Since A is total, then there is a
total function v such that () =, A. Since ¥ <. f, then there is an i such that
(¢¥) =T;((f)). Now consider the set of 0-rcgular finite parts

S={reRo | Iy Tp(y1 #v2 & 7 ko Fi({z,11)) & 7 ko Fy((z,y2))}

The condition selecting the finite parts is r.e. and therefore S <. Bg. Then
there is a j such that § = S;?. Let p C f be a finite part such that |p|; > j + 1.
Such a p exists, because f is a regular enumeration. Let ng, lo, bo, ..., 75,15, b;, . ..
be the numbers satisfying the definition of the 1-regular finite parts for p. Then
pll; = py (p[(nj + 1), Sf’) According to the definition of u either p[l; € S? or
none of its O-regular extensions is in S?. Let us assume that the first holds. Then
pllilo (z,y1) and p[l; kg (z,y2) for some z and y; # y2. Then f |=¢ (z,y1) and
f o (z,y1) and therefore ¥(r) = y1 # y» = ¥(x) which is not possible. Therefore
none of the 0-regular extensions of p is in SJQ_.

Now consider the set
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| |(7‘2pflj) & (361,85 € Rg)(lh )>lh(61/2) &
S ={TeRG| (V22 ) (01pa(2) # L= p(2) = L) &
| 303y 3ya(y1 # y2&1 Ik Fil(z,11)) & 62 kg Fi((z, 12)))

As above, S’ = S?, for some j' and there is a finite part 7y € f such that either
T € S?: or no O-regular extension of 7 is in S?. Let us assume that the first one
holds and let 61, 65, 2, y1, y2 satisfy the condition. As v is a total function, ¥ (z) =y
for some y. Without loss of generality we may assume y # y;. Then there is a
O-regular finite part 7, C f such that 71 D 7y and 7 kg F;({z,y)). Thercfore
Ih(r;) > Ih(é;) and 6,(z) # L = 71(z) = L. The last one guarantces the existence
of a finite part 7{ such that (r{) = (r1)U(d1). Then 7{ 2 p|l; and 7{ k5 Fi({z,)),
and 7] kg Fi({x,11)). Thercfore 7] € S which contradicts the property of p [ ;.
Thus none of the 0-regular extensions of 7y is in SJQ.,.
Finally consider the set

R={reR5| 727}

It is clear that R <. By. All O-regular finite subparts of f arc in R and therefore
() C {{x,y) | (3r € R)(7 ko F;({(z,y))}. For every two finite parts p1,p2 € R
if p1 kg Fi({x,y1)) and p2 by Fi({x,y2)). then y1 = y2. In the (ontxary case the
0- rogular extension 7; of 7y havmg the property 1h(r;) = max{lh(p;),lh(p2)} and
(Vz > th(70))(72(2) = 1) is in S’. But this contradicts the property of 7o which was
proved above. Then {(r,y) | (37 € R)(7 Ir¢ F; ((ar y)} C () and therefore these
two sets coincide. But {(z,y) | (37 € R)(r ko Fi({z,y))} <. Bp and therefore
<,¢’> <e BO' O

Proposition 3.4. Let f be a reqular enumeration and o« < (. Then the

following assertions hold:
(1) ifa=8+1. then f(¥ <, ftoP.;
(2) if o is a limit ordinal then £ <, f* ® Pcq.

Proof. First let a = 3+ 1. Recall that f{®) = f( m» where Ly = {{y,2) |y €
I.(f))}. There is a 2y not depending on 3 such that L., = I, (f(?'). Therefore
f izﬁ Fh(ﬁ z”)( ) = T E Lf (8) .

Now applying Lemma 3.12, we obtain
€ € Ly = (31 C f)(7 € Rz & 7 Ib5 Fiyp.2) (),

A S N\Lf(d) & (Ir C f)(T € RE &t ”‘B —'Fh(ﬁ,zu)(m))-

Therefore, according to Proposition 3.1, and as the condition 7 C f is uniformly
recursive in f¥, we obtain that L s and N\ L5 are uniformly e-reducible f T }’3

Therefore f(® <, f* ® Py
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Now let @ be a limit ordinal. Then there is a zg not depending on «, such that
@) =T, (f(@)). Therefore

7€ f1 = (31 C )7 € Ra & 7 g Fiia.z0))-

According to Proposition 3.1 we obtain f (a) < f* @ P,. According to Proposition
3.2, Py <¢ fH & Py Therefore f(¥ <, f+ @ Py, 0

From Proposition 3.2 and 3.4 we obtain the follovﬁng _

Corollary 3.5. Let f be a regular enumeration and let o < (. Then:
(1) if a =G+ 1, then fo) =, f+ & P}
(2) if a is a limit ordinal, then f(®) =, f+ ® Pc,.

The following two definitions will be helpful in proving the existence of regular
enumerations.
Let us fix a total function o, such that for every a <  o(a) € B,.

Definition 3.8. Let o < ¢ and let @ be an approximation of a. We say that
T is @-complete for o if

B € Reg(r,@) = o(f) € T(B%).

Now let us fix a sequence of sets of natural numbers { A, }y<¢ such that (Vy <

O(Ay £e Py).

Definition 3.9. let o < ¢ and let @ be an approximation of a. We say that
the finite part 7 is @-omitting in respect to {A,} iff for every f € Reg(7,@) the
following is true:

If 3=48+1, 6 is the § predecessor of B and |T|[—, =7+ 1, then for every p <r
there exist a ¢, € dom (7) and a é-regular finite part p,y; C 7 such that

a) pp+1 bz Fplap) & 7(gy) € As:

b) ppy1Ih5 ~Fy(gp) & 7(gp) € As.

Note, that, as for all x the assertion z € A5 V x € A; holds, then the conditions
a) and b) are equivalent to

a,) T((Ip) ¢ A5 = Pp+1 ”‘E Fp(q;));

bl) T(Qp) € A5 - Pp+1 ”—X —"Fp(qp)'

If § = (8o, 81,... ,0) is an approximation of 4 and § < a, then we will note the
approximation {(dy, 81,...,d, @) of @ with {5, a).

Now we are ready to prove that the regular enumerations exist.
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Proposition 3.5. Let a < ¢ and let @ be an approzimation of a. Then the
following assertions hold:

(1) For every @-reqular finite part 7 and every y € N there is a Q-regular
extension p of T such that |plg = ||z + 1. p(lh(7)) = y. p is G-omittimg and
@-complete.

(2) For every § < &, for every d-regular T of rank 1 and every y € N there is
a 3, a-reqular extension p of T of rank 1 such that p(lh(7)) =y, p is 8, a-omitting
and 8, a-complete.

Proof. We will prove simultaneously (1) and (2) with transfinite induction over
a. ‘

a) o = 0. In this case (2) is trivial. Now let us consider (1). Let 7 be O-regular
finite part and let y € N. Set p to be

(z), x < lh(T)
)y x = lh(7)
P=) =9 5(0), z = th(r) +1
=l, z>Ilh(r)+1
Then p is a O-regular finite part satisfying all the desired properties.
b) Let @ = 8+ 1 and let. 8 be the B-predecessor of @. First we prove (1).
Let 7 be @-regular finite part and let y € N. Let also dom (7) = [0,q — 1]
and |r|z = r + 1. Note, that according to the induction hypothesis for (1), it is
true that for every f-regular finite part 6, every set Z C Rz and every y € N the

function “73(0 %y, Z) has a value. Let us denote n,.y; with ¢. As 7 is F-regular,

then p' = pz(7 * y,Sfirl) is defined. Then let [,.1 = lh(p'). We will construct
a special f-regular r + 1-omitting extension of p’. We will define with induction
over p < r + 2 the fB-regular finite parts p, and the numbers g,. Set go = 41 and
po = p'. Assume that for some p < r + 2 the number ¢, and the finite part p, are
defined. Consider the set

C={x|3@p2p)p€R5& plgp) =z & plkg Fr(gp)}-
Note that
e C <= (VpeRp)(p2(pprz) = pl; Fy(gp))-

From the definition of C' and Proposition 3.1 we obtain C <, P and therefore
C # Ag. Let o be the least number such that

.’I?()GA/}&.I()¢C \ .’L‘ogAﬁ&xoGC.
Then set = 5 (pp * 20, X7, and = ]h( ).
Pp+1 = Hg |\ Pp* T0s A, 0y dp+1 Pp+1

Now we obtain that p"” = pry2 is a (-regular r + l-omitting extension po.
Set b.y1 = lh(p”). Finally set p to be a S-regular extension of p”, such that
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lolg = 0”5+ 1, p(br11) = o(a), p is a f-omitting and B-complete. Then p satisfies
(1) from the theorem. Indeed, from the construction of p we obtain that p is an &-
regular extension of 7y and |plg = |T|a+ 1. In order to show that p is @-complete
in respect to ¢ recall that according to Lemma 3.8

5 € Reg(p,@) <= d=a V & € Reglp,B).

Now fix a § € Reg(p,a). If § = @ (i.c., & = a) then o(a) = p(by41). If 8 €
Reg(p, B), then, since p is S-complete finite part, there is a bs € dom(p), such that
o(8) = p(bs). Therefore p is a-cornplete.

Now let us prove that p is @-omitting. Fix § +1 € Reg(p,@). Then again
according to Lemma 3.8 either § = 3 or § + 1 € Reg(p, B3) holds. First let § = 3.
Then as |plz = r+2, fix a p < r+ 1. Consider the finite part pp+1 and the number
gp from the construction. If p,i1(gp) € Ag, it follows from the construction that
Pp+1(¢p) is Dot in the corresponding set C. Now according to the note made after
the definition of C'. we have py11 -5 =F},(gp). Therefore the condition (a') from the
definition of the @-omitting holds. On the other hand, if p,41(gy) & Az holds, then
Pp+1 18 the least F-regular extension of p, * (pp+1(gp)) such that p, b5 Fplap)
and there for the condition (b') from the definition of the @-omitting is satisfied.

If § + 1 € Reg(p, 3), then we obtain the omitting conditions from the fact that
p is a B-omitting finite part.

Now let us prove (2). Let 6 < @ and let 7 be a é-regular finite part of rank 1.

1) 6§ = 4. Then & = J and beside this G is the G-predecessor of 8, . Let
ng = lh(7) and py = 1z (T * U, S{;). Let also p; be a 0-omitting, S-regular extension

of po, built as above, let b; = Ih(p;), and let p be a F-complete, F-omitting extension
of p1, such that pi(b;) = o(@) and |plz = |pilz + 1. Tt is clear that p is a (8, a)-
regular finite part with rank 1, which is a-complete and q-omitting.

2) 6 < 3. Then according to Lemma 3.2 the 3-predecessor of (3, a) is (8, 5)
and § < /3 holds. Using the induction hypothesis extend 7 to a (3, B)-regular finite
part p; of rank 1, such that p1(lh(7)) = y. Then we extend p; to a (3, a)-complete
and (4, )-omitting finite part p of rank 1 as in the prove of (1).

c) Let a = lima(p). Let @ = (ag,@1,...,an,a) and let py = upla, < a(p)].
As in the previous case, let us first prove (1).

Let 7 be an a-regular finite part with rank r+1 and let y € N. It is clear that
T is an a(po + 2r + 1)-regular finite part with rank 1. According to the induction
hypothesis for (2) there is an (a(po + 2r + 1), a(po + 2r + 2))-regular extension pg
of 7 of rank 1 such that po(lh(7)) = y. Set b,,1 = lh(pp). Again, according to the
induction hypothesis for (2), we construct a (a(po + 2r + 1), a(po + 2r + 2), a(po +
2r + 3))-regular extension p of py of rank 1, such that p(b,11) = o(a) and p is
(afpo + 2r + 1), apo+2r+2), a(po + 27 + 3))-complete and (a(po + 27 + 1), a(po +
2r +2), a(po + 2r 4 3))-omitting. Note that (a(pg + 27 + 1), a(po + 2r + 2), c{po +
2r + 3)) = a(po + 2r + 3). Therefore p is an @-regular finite part of rank ~ + 2. It
remains to show that p is @-complete and &-omitting. Let 3 € Reg(p,@). Then
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B =aor B € Reg(t,a(po + 2r + 3)). In both cases it follows from the construction
that o(8) € p(B”)

In order to bhOW that p is @-omitting, let us assume that § = § + 1. Then
B # o and therefore § € Reg(r,a(py + 2r + 3)). As p is a(py + 2r + 3)-omitting
then it satisfies the omitting conditions in respect to 3.

Finally let us show (2). Let § < @ and let 7 be a é-regular finite part with rank
1. Let y € N and let also ps = pp[d < a(p)]. According to the induction hypothesis
for (2), there is a (6, a(ps))-regular extension p; of 7 such that p;(lh(7)) = y and
p1 has (3, a(ps))-rank 1. Then again according to the induction hypothesis for (2)
we obtain a (4, a(ps), a(ps + 1))-regular extension p of p;, which has rank 1 and
for which p(by) = o(c) holds and which also is (6, (ps), a(ps + 1))-complete and
(3, a(ps), a(ps + 1))-omitting. Then p is (5, a)-regular extension of 7 with rank 1
which is (3, a)-complete and (5, @)-omitting. O

Note that from the proof we have that the construction is recursive in the set

Pah) eoe Pa

¥<¢

Now we are ready to prove the main theorem.

Proof of Theorem 1.1. Let us fix an arbitrary approximation ¢ of ¢. We will con-
struct recursively in @ a sequence of finite regular parts {7,} such that 7o C 754,
and that the partial function f = |J, 7, is a regular enumeration. Using the pre-
vious propositions and some additional reasoning we will see that the set F' = (f)
has the desired properties. +

As Q is total and P; <. Q then according to Lemma 3.2 there are a recursive in
Q function o(y,1), such that for every v < ¢ the function Xi.o(v,1) is enumerating
B,. Let us fix ¢. When constructing the sequence {7}, we will ensure that every
ﬁmte part 7, is C-regular of (-rank equal to s+ 1, and 7441 is C-omitting in respect
to {A,} and (-complete in respect to o, = Ay.o(7, (s)1) where s = ((s)o, (s)1). Let
us also fix a recursive in () enumeration yo,¥1,---,¥s,--- of @.

We begin by setting 7 to be an arbitrary C regular finite part with (-rank 1.
Let 7, be constructed. Then according to Proposition 3.5 we can obtain recursively
in Q a (-regular extension 7441 of 7, such that 7,11 (th(75)) = ys, ITs41l7 = ITslz+1
and T,y is C-omitting and (-complete in respect to 5. Note that 754, is strictly
extending 7.

First let us show that f is a regular enumeration.

Note that f is a partial function from N in N, and for every p C f there is an
index s, such that p C 7,. Then consider 7 < Cand z € B,. Let us fix an s such
big that every C-regular finite part of (-rank at least s is J-regular (such an s exists
according to Lemma 3.2). We can also choose s such that z = o(v,(s)1) holds.
Then as 7,4, is of (-rank s + 2 and is (-complete in respect to o5 = Xy.0(7v, (5)1)
we obtain that z € Ts+1(B$“). Therefore f is a regular enumeration.
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Now we show that f(¢) =, Q.

It is clear that f* <. Q. Beside this as f is regular then, according to Propo-
sition 3.4, f©) <, f+ ® P; <. Q. From the proof of Proposition 3.2 we obtain a
recursive in f* @ P, procedure which gives us the sequence g, = lh(7,). It is also
true that

YeQ < Is(y = f(gs)),
and f(g;) is always defined. Thus Q <. f© and therefore f(© =, Q.

It remains to prove that for every v < ¢, Ay £ ) is satisfied.

To obtain a contradiction assume that for some v < ¢, Ay < f(*) holds. Then
the set f~'(4,) = {z | Iy ((z,y) € (f) & y € A,)} is also e-reducible to f{V.
Then there is an index 7, for which

r€(C < fE, Fx).

Let ¥ + 1 be the v+ 1-predecessor of ¢ and let 7 be the y-predecessor of ¥ + 1. Let
s be so big that every (-regular finite part is ¥ + 1-regular of ¥ + I-rank greater or
equal to i (such an s exists according to Lemma 3.2). Then 7,4 is 7 + l-regular
and [Typ1|557 > 4. As ey s E—omitting finite part there is a ¢ € dom (7441) and
a J-regular finite part p C 7,4, such that:

plbs Filg) & 11 (@) € Ay V plbg <Fiq) & 7o (g) € Ay
Therefore
flg) € Ay = (Fp C fllplts Fi(g) & f(q) € Ay = (30 C f)(p b5 ~Fi(q))
Then according to the Truth Lemma (Lemma 3.12),

fEy Filg) <= q¢C,

which is a contradiction. O
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1. SOME PRELIMINARIES

According to Definition II.1.1 in [5], a combinatory space is a 9-tuple
S=(FICI,LRET,F),

where F is a partially ordered semigroup, I is its identity, C € F, I : F? — F,
L:F3— F, L R,T F e F, and the following conditions are identically satisfied,
when ¢, 1,8, x range over F, and a, b, ¢ range over C:
Ye(pe > ic) = ¢ 29,
Ii(a,b) € C, LTI(a,b) = a, RII(a,b) = b,
(g, ¥)c = O(pc, ¥c), M(1,4c)d = T(8,9c), H(c, )8 = T1{c,6),
T#F TceC, Fcec(,
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E(T,p,¢) = o, B(F, e, Y) =¥, 05(x,0,9) = X(x, 0o, 00)
2()(7 2 7/’)0 = E(ch pe, ’lﬂC)a 2(1? we, wc)g = 2(07 wc, 1/10)7
gz, 02x = X(I,0,0) > Z(I,9,X)

(the same notion is named “semicombinatory space” in [3,4]). The definition implies
that multiplication, IT and ¥ are monotonically increasing operations. If for some
given o, x in F the equation 6 = (v, 6o, I) has a least solution §, and this solution
has certain additional nice properties, then the solution in question is called the
iteration of o controlled by x, and it is dengted by {0, x]. ! In the present paper it
will be also called the S-iteration of o controlled by x, and the notation [o, x]° will
be also used for it. '

The triple (F,I,C) will be further called the kernel of the combinatory space
(F,I,C,1II,L, R, %, T, F). We shall often consider pairs of combinatory spaces hav-
ing one and the same kernel. The following statement concerning such pairs can
be obtained as an immediate corollary of the definition of iteration.

Lemma 1.1. Let S; = (F,I,C,11;, L;, R;, X, T}, F,), i = 0,1, be combinatory
spaces. let xo, x1 be elements of F such that Lo(x0, 9, V) = T1(x1, 9, V) for all ¢,
in F. and let 0,¢ be elements of F such that 1 is the Sy-iteration of o controlled by
Xo. Then v is also the S;-iteration of o controlled by ;.

A combinatory space § = (F,I,C,II,L,R,L,T,F) is called iterative if the
iteration of o controlled by x exists for any o and x in F. A notion of com-
putability in iterative combinatory spaces was studied, and some versions of the
First Recursion Theorem and of the Normal Form Theorem are among the results
about it (intuitively, the elements of F play the role of functions in that theory,
ordinary computability in the set of the natural numbers and abstract first order
computability in the sense of Moschovakis [1] being particular instances). The con-
sidered computability is a relative one, namely for any subset B of F some elements
of F and some operations in F are called S-computable in B (however, mainly the
particular case of an empty B will matter for the present paper).

Numerous examples of iterative combinatory spaces are given in the books [2,5].
A class of such examples (actually the simplest ones) is indicated in Example I1.1.2
of [5], the iterativeness of the corresponding combinatory spaces being established
in Section I1.4 of [5]. The construction of these examples looks as follows. We
take an infinite set M, an injective mapping J of M? into M, partial mappings
L and R of M into M such that L(J(s,t)) = s, R(J(s,t)) = t for all s,¢t in
M, as well as two total mappings T" and F of M into M and a partial predi-
cate H on M such that H(T(u)) is true and H(F(u)) is false for any u in M
(any 7-tuple (M, J,L,R,T, F, H) with such components is called a computational
structure). Then we consider the 9-tuple (F,1,C,1I,L, R, %, T, F), where F con-
sists of all partial mappings of M into M, the multiplication in F is defined by
oY = Au. p(¢(u)), the inequality ¢ > 1 means that ¢ is an extension of 1, I is

}The precise definition of iteration can be found in Section 11.3 of [5], and, up to an exchange
of the second and the third arguments of %, also in {3,4].
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the identity mapping of A onto itself, C consists of all total constant mappings
of M into M, I(p,¥) = Au.J(¢(u),¥(u)) for any ¢ and ¢ in F, and we have
S(x, ¢, ¥)(u) = v iff either H(x(u)) is true and ¢(u) = v, or H(x(u)) is false
and v(u) = v. It is shown that each 9-tuple constructed in such a way is an
iterative combinatory space, and the equality [0, x](u) = v holds iff there are a
non-negative integer m and a finite sequence wy, w1, . . ., Wy of elements of M such
that wo = u, Wy, = v, H(x(w;)) is true and wj; = o(wy) for j =0,1,...,m -1,
whereas H(x(w,,)) is false. The combinatory spaces of this kind will be called
here pf-spaces (combinatory spaces of partial functions). A pf-space will be called
ordinary if its last two components are constant functions. Without naming them
so, the ordinary pf-spaces are considered already in {2] — they actually form the
content of Example 1 in Section I1.1.3 there, and their iterativeness is shown in
Section II1.3.2 of the book.

The next two examples indicate certain concrete pf-spaces corresponding to
computational structures whose first component is the set N of the non-negative
integers.

Example 1.1. Let J be the bijection from N? to N defined by

(s+t)(s+t+1)
2

J(s,t) = +s,

L, R, T, F be the functions from N to N defined by the equalities
L(J(s,t)) = s, R(J(s,t)) =t, T(u) =1, F(u) =0,

and H be the predicate that is false at 0 and true at all other elements of N.
Then (N,J,L,R,T, F,H) is a computational structure, and we may consider its
corresponding pi-space.

Example 1.2. The same as the previous example, except that T is defined by
means of the equality T'(u) = u + 1 (the corresponding pf-space is not an ordinary
one).

Let § = (F,I,C,II,L,R,Z,T,F) be an iterative combinatory space. The
notion of S-computability (coinciding with S-computability in the empty set in
the terminology of [5]) is defined as follows. An element of F will be called S-
computable if this element can be obtained from the elements L, R, T, F by means
of multiplication, the operation I and S-iteration (if B is a subset of F then an
element of F is called S-computable in B if this element can be obtained from
elements of the set {L, R, T, F} U B by means of the three operations in question).
A mapping I" of F” into F will be called S-computable if for arbitrary 6;,...,6, in
F there is an explicit expression for I'(61,...,8,) through L, R, T, F,6,,...,6, by
means of multiplication, the operation IT and S-iteration, the form of this expression
not depending on the choice of 6y, ...,8, (S-computability of I' in a given subset
B of F is defined similarly, but the expression for I'(dy,...,6,) may contain now
also notations for some fixed elements of B).
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Remark 1.1. By the equality [c, F] = I, the function [ is S-computable. The
mapping ¥ is also S-computable, since (as shown in Section IL5 of [5])

2(x, 0, %) = [Ro)[R2@RIT(x, Ly ),

where [o] = R[oR, L], L, = I(T,I), R, = II(F,T). Hence adding I to the initial
elements and ¥ to the used operations in the above definitions would not enlarge the
set of the S-computable elements of F and the set of the S-computable mappings
of F” into F.

Example 1.1 (continuation). Let $ = (F,1,C,II,L,R,%, T, F) be the com-
binatory space indicated in Example 1.1. Then all S-computable elements of F
are one-argument partial recursive functions. However, the converse statement is
not true. For instance the primitive recursive function 6 defined by the equality
O(u) = |u — 1] is not S-computable. To prove this, we consider the family of all
pre-images of the sets {0} and N\ {0} under products of finitely many L’s and R’s
(the function I being also regarded as such a product). Let 7 be the topology in
N having as a prebase this family. The functions J, L, R, T, F can be easily shown
to be continuous with respect to 7. It follows from here by Exercise 11.4.21 of [5]
that all functions from F have open domains and are continuous with respect to
7. On the other hand, the function # is not continuous with respect to 7 since
9='{0} = {1}, and the set {1} is not open in 7 because any open set contain-
ing 1 contains also some number distinct from 1, namely some number of the form
J(0,J(0,...J(0,J(0,2))...)).

Example 1.2 (continuation). Let § = (F,I,C,II,L, R, %, T, F) be the com-
binatory space from Example 1.2. Then again all S-computable elements of F are
one-argument partial recursive functions, but now the converse statement is also
true. In view of Theorem 1.3.1 of [5] it is sufficient to show the S-computability of
the function Adu.u = 1, where u =1 is u — 1 for u € N\ {0} and 0 for u = 0. Its
S-computability is seen from the fact that R(J(u,u)+ 1) = u — 1 for any positive
integer u, and therefore Au.u = 1 = X(I, RTII, I), F). ?

2. REDUCIBILITY OF AN ITERATIVE COMBINATORY SPACE
TO A GIVEN ONE

We shall again be interested in pairs of combinatory spaces having one and the
same kernel (as in Lemma 1.1).

Lemma 2.1. Let (F,I1,C,1L;, L;, R;, %, T}, F}), i = 0,1, be combinatory spaces,
and 7 be such an element of F that Iy(a,b) = 71I;(a, b) for all a,b € C. Then
Ho(p,¥) = i (p,¥) for all o, € F.

2Actually a slight generalization of Theorem 1.3.1 of [5] holds that allows an arbitrary function
from F coinciding with the function Au.u = 1 on the positive integers to be used instead of it.
RTTI(I,1} is such a function already (the functions RT2TI(8, T) with 8 € {L,R, T, F} are also
such ones).
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Proof. Let ¢, be arbitrary elements of 7. Since Ii(a,b) =11; (a,1)b, 1 =0,1,
we see that Ilo(a, I)b = 7II;(a, )b for all a,b € C, hence Ilg(a,I) = 7L (a, I) for
all a € C. Therefore

(I, pe)a = To(a, ¥e) = Mola, e = il (a, e = 711 {(a,vc) = I (I, ¥c)a
for all a, ¢ € C, hence Ho(I,v¢) = 7 (I,%c) for all ¢ € C. Tt follows from here that
HU(‘Pv ¢)C = HO(SDC, wc) = H()(Ia ¢C)SOC = THl (Iﬁ wC)LPC = TH] (‘pcv 1/)0) = TH] (¢‘ L/})C

for all ¢ € C, and this proves the equality Ilo(p, ¥) = 7L (p,%). O
Whenever S; = (F,I,C,11;, L;, Ry, 5i, T3, F;), i = 0,1, are combinatory spaces
with one and the same kernel, we set

P§ = (Lo, Ro), Q5 = S1(Lo, ToRo, FoRo), @5, = 1(1,To, Fo).

Lemma 2.2. Let S, = (F,1,C,11;,L;, R;, %, T}, Fy), 1 =0,1, be combinatory
spaces. Then

Hl(‘P, (/J) = P:SS“] HO(‘P? IL'J), Z1 (Xa ¥, d’) = ZO(Q‘;(‘]HO(X7 I), ¥, ¥

for all p,2,x in F. If Ty and Fy belong to C then Qg(ﬂﬂo(x,l) = Q'g(')x, thus
S1(x, @ ¥) = Zo(Q2 X, ¢, ¥) in that case.
Proof. The first of the equalities follows by Lemma 2.1 from the fact that
10, (a,b) = P§'To(a, b)

for all a,b € C. For the general case in the rest of the proof we first observe that

QS{)HO(X’ ) 21(X7 TOaFO)

for all x € F (we get this equality by applying Proposition 1I.1.8 of [5] to the
- “mixed” combinatory space (F,I,C,Io, Lo, Ro, £1,T1, F1)). In the case when T
and Fy belong to C, we also have the equality

Q3 x = T1(x, To, o),

because then, by Proposition I1.1.2 of [5], we have Ty = Toc, Fp = Fye for any
¢ € C. On the other hand, Zo(Z1(x, To, Fo), ¢, ¥) = Li(x, ¢, %), since

So(21(x, To, o), ¥)e = Eo(E1(xe, Toc, Foc), e, o) =
Yo(I, g, e)Ty (xe, Toc, Foc) = Ei(xe, Lo(I, pe, ¥e) Ty, Yo(1, pe, Ye)Foc) =
T1{xe, Bo(Toc, we, ), To(Foc, e, e)) = Ea(x, To(To, ¢, %), Zo(Fo, 0, v))e =
Zi(x, s ¥)e.
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foralleecC. O

Corollary 2.1. Let Sy and S be two combinatory spaces with one and the
same kernel (F,1,C), and let Sy be iterative. Then S, is also iterative, and for any

o,x € F the equality
[0,x0%" = [0, Q5 o (x, 1)}

holds. Thus if Ty and Fy belong to C, then |0, x]5' = [o, Qs(, x]5e.

Proof. By Lemma 1.1 and the above lemma. O

fS=(FI1,C,I,L,R,E,T,Fyand &' = (F,I,C,II',L',R, X/, T', F') are two
iterative combinatory spaces with the same kernel, then S’ will be called reducible to
S if the elements L/, R, T", F' and the mappings IT', £’ are S-computable. Clearly
the space S is reducible to itself {(thanks to the S-computability of ). Making use
of Corollary 2.1, we see that the iteration operation in any iterative combinatory
space reducible to S is a S-computable mapping of F? into F, and therefore the
introduced reducibility of iterative combinatory spaces is transitive. The iterative
combinatory space S’ will be called equipowerful with S if S’ is reducible to S and
8 is reducible to S'.

The space 8’ will be said to be quasi-reducible to the space S if all §'- computable
elements of F are S-computable. Of course, if 8’ is reducible to S then &’ is quasi-
reducible to & (thanks to the S-computability of the &'-iteration). We do not know
whether the converse implication holds, however the equipowerfulness of S and S’
turns out to be equivalent to their mutual quasi-reducibility (i.e. to the equality of
the set of the S-computable elements of F and the set of the S’-computable ones).

Theorem 2.1. Let S; = (F,I,C,II;,L;, R;, %, T}, F;), i = 0,1, be iterative
combinatory spaces. Then the next three conditions are equivalent:
(i) Sp is equipowerful with Sy;

(i) the set of the Sy-computable elements of F coznczdes with the set of the S;-
computable ones,

(iif) the elements P an Ly, Ry, Ty, Fi of F are Sy-computable, and its ele-
ments Pg:‘, Q‘g‘], Lo, Ry, Ty, Fo are S;-computable.

In the case when Ty, Fy, Ty, Fy belong to C, the condition (iii) can be replaced by

(iii") the elements Pg', Qg{‘), Ly, Ry, T, B\ of F are Sy-computable, and its ele-
ments PS" QS" Ly, Ry, Ty, Fo are S;-computable.

Proof. The implication (i)=>(ii) is clear from what was said in the paragraph
before the theorem. The implications (ii)=>(iii) and (ii)=>(iii') follow from the fact
that multiplication, II; and X; preserve S;-computability for i = 0,1. The validity
of the implication (iii)=-(i) in the general case and of the implication (iii')=>(i) in
the case when T, F, T', F' belong to C are seen from Lemma 2.2. (J
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Now several examples concerning the notions introduced follow (Corollary 2.1
is used in some of them for showing the iterativeness of the constructed new com-
binatory spaces).

Example 2.1. The pf-space considered in Example 1.1 is reducible to the one
considered in Example 1.2, but these two spaces are not equipowerful.

Example 2.2. Let § = (F,I,C,II,L,R, ¥, T, F) be an iterative combinatory
space that is symmetric in the sense of [5], i.e. the equality II(pc, )8 = II(pc, #)
holds for all ¢, € F and all ¢ € C (in particular, S can be any pf-space). Let
S = (F,I1,C,1,R,L,%, T, F), where II; is the mapping of 2 into F obtained
from IT by exchanging its arguments, i.e. IT1(p,¥) = II(1), ) for all ¢, 4 € F. Then
S is an iterative combinatory space that is equipowerful with S (as indicated in
Exercise I1.1.2 of [5], the combinatory space & is also symmetric).

Example 2.2 (continuation). The assumption in Example 2.2 about the sym-
metry of S cannot be omitted without making other changes in the example. How-
ever, the definition of II; is equivalent to another one that makes the symmetry
assumption superfluous. In fact, an application of Lemma 2.2 in the situation from
the example shows that IL; (e, ¥) = II; (L, R)II(p, ¢), hence the equality '

I (¢, ) = II(R, L), ¥) (2.1)

holds for all , 9 € F. Now it is clear that we would get the same combinatory space
& = (F,I,C,II1,R, L%, T, F) in the considered situation if we would define II;
by means of the equality (2.1). However, such a definition of S; has the advantage
that S; turns out to be always an iterative combinatory space equipowerful with
S (no symmetry of S is already needed). Checking everything in this statement is
straightforward except for the fact that S is reducible to S;. The reducibility of §
to &) can be shown by proving the equality

H(‘pa ¢) =1II; (L7 R)Hl (SOMP), (22)
and this equality follows by Lemma 2.1 from the fact that, as it is easy to be
verified, II(a, b) = I1;(L, R)[I; (a,b) for all a,b € C. ®

Example 2.3. Let § = (F,1,C, 11, L, R, %, T, F) be any iterative combinatory
space, and let

S() = (]:)I,C7H7L’R3207F7T)v
S =(F,LCILL R Y, IT, I),II(F, I)),
Sy = (F,1,C,1I, L, R, £5,TI(I, T), I(I, F)),

where 35,31 and ¥ are defined by means of the equalities

3 A proof of the equality (2.2) by using Lemma, 2.2 is also possible, namely
YR, LYIYR, L)I(p,¥) = TI(R, LY (v, ¥) = [{p, ¥).
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ZO(X,SD,I/}) = Z(Y-w#’), EI(X» ©, d)) = E(LX»LPJP)» ZZ(X:%U’) = 2(RX7 P, '(/))

(cf. Exercise IL.1.1 in [5]). Then Sp, S1 and S, are iterative combinatory spaces
that are equipowerful with S (the equalities

E(X) QP» ‘P) = El(H(X7 I)’ ¥y 1/)) = 22(1—‘[([7 X)v D 1#"),
T = LI(T, 1) = RI(I,T), F = LTI(F, I) = RI(I, F)

are used in the proof of the reducibility of §; and S, to S).

Example 2.4. Let M be an infinite set, mg and m; be two distinct elements of

M, and J be a bijection from M? to M such that J(mg, mg) = mg, J(mg, m1) = m1

(we may for instance set M =N, mg =0, my = 1, and take J as in Example 1.1).
Let L and R be the mappings of M into A defined by means of the equalities

L{J(s,t)) = s, R(J(s,t)) = t. Then clearly L(mg) = R(mg) = L(m1) = my,

R{my) = m,. We define a new mapping J’ of M? into M by means of the equality

J'(s,8) = J(L(s), J(R(s), 1)).

It is easily seen that the equality J'(s,t) = u is equivalent to the pair of equalities
s = J(L(u), L(R(v))), t = R(R(u)). Therefore J’ is also a bijection from M? to
M, and after setting

L'(u) = J(L(u), L(R(u))), R'(u) = R(R(u))

we have L'(J(s,t)) = s, R'(J'(s,t)) = t for all s,t € M. Moreover, we have
also the equalities J'(mg, mg) = mg, J'(mo,my) = my. Now let us consider the
computational structures (M,J,L,R,T,F,H) and (M,J',L’,R,T,F, H), where
T(u) = my, F(u) = mgp for all w € M, and H is a partial predicate on M
such that H(m,) is true, H(my) is false. Let § = (F,[,C,II,L,R, £, T, F) and
S = (F,I,C,IU', L', R, ¥, T, F) be the pf-spaces corresponding to these two com-
putational structures. Since IT'{(p,v¢) = II(Lyp, H{Rep,v)) for all p,¢ € F, and
the equalities L’ = TI(L,LR), R’ = R? hold, the pf-space &' is reducible to S.
However, we shall show that & is not equipowerful with S, i.e. § is not reducible
to &’. This will be shown by proving that the S-computable element II(T, F') of
F is not §’-computable. For that purpose, let us denote by A the smallest sub-
set of M containing the elements mq and m and closed under application of J'.
It is easy to show by induction that the image of A under any S’-computable
function from F is a subset of A. On the other hand, II(T, F)(u) = J(m,mo)
for all u € M, but J(mi,mp) does not belong to A, because mg # J(m;,mo),
my # J(mi,mp), and J'(s,t) # J(my,my) whenever s # J(my,mg), due to the
equalities L(mg) = L(m;) = mo and L'(J(my, mp)) = J(my, mp).

Remark 2.1. The above example shows how to construct an infinite sequence
S0, 81,83, . .. of pf-spaces not differing from one another out of their fourth to
sixth components and having the property that S; is reducible to S; without being
equipowerful with it, whenever j > i.
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Remark 2.2. Let S; = (F,I,C,11;,L;, Ri, L, T3, F;), i = 0,1, be iterative
combinatory spaces with one and the same kernel, and let

D={P5.Q%,Li, R, T1, Fy}

(or Tp, Fy € C, D = {Pg:,Qg{‘),Ll,Rl,Tl,Fl}). An application of Lemma 2.2
shows that the operations Il;, ¥ and consequently also the iteration in S; are Sp-
computable in the set D, hence all S;-computable elements of F are Sy-computable
in D. If Sy is reducible to S; then also the converse is true, hence in this case the
S,-computability of an element of F is equivalent to its Sp-computability in D.
Intuitively, an iterative combinatory space can be considered as a certain kind
of programming system. The intuitive interpretation of the reducibility of the space
S’ to the space S is as emulability of all &'-programs (including the ones that may
use oracles) by corresponding S-programs. The quasi-reducibility of &’ to S can be
interpreted similarly, but with having in view only the programs that do not use
oracles. Of course, the equipowerfulness will be interpreted as emulability in both

directions.

3. ON A STATEMENT OF JORDAN ZASHEV

If (M,J,L,R,T,F,H) is a computational structure whose component J is a
bijection from M? to M, then the corresponding pf-space (F,I[,C,II,L,R, X, T, F)
has the property that II(L, R) = I. In a remark on page 78 of [7] Jordan Zashev
indicates a way for improving the exposition of the theory for iterative combinatory
spaces with this property (assuming that the elements T and F belong to C).
According to him the examples of combinatory spaces given in [2,5] do not give
reasons to consider the abandonment of the equality II(L, R) = I as essential for
the scope of the theory, since, as he writes, “all of them have more or less obvious
variants in which the last equality is true”. No definition is given in [7] for the
used notion of variant, and of course no proof or disproof of the quoted statement
can be expected without such a definition. We shall present now a refutation of
the statement in question for the case when “variant” is interpreted as an iterative
combinatory space that is quasi-reducible to the given one. Of course this will also
show the failure of the statement for the stronger interpretations as an iterative
combinatory space reducible to the given one or as an iterative combinatory space
equipowerful with it.

Let us call an iterative combinatory space (F,I,C,11, L, R, %, T, F') a Z-space if
the equality II(L, R) = I holds. We shall indicate some ordinary pf-spaces to which
no Z-space is quasi-reducible, and this will be the promised refutation, since, as we
mentioned in Section 1, the ordinary pf-spaces and all pf-spaces are the subject of
some examples in {2] and in [5], respectively. The following lemma will be used.

Lemma 3.1. Let (M,J,L,R, T, F,H) be a computational structure, and let
the corresponding pf-space S be such that some Z-space with the same kernel is
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quasi-reducible to S. Then there is an S-computable bijection from M to the range

of J.

Proof. Let S = (F,I,C,1I,L,R, X, T, F), and let (F,I,C, I, L', R, %', T, F")
be a Z-space that is quasi-reducible to S. Then the element II(L', R’) of F is S-
computable thanks to the S-computability of L’ and R’. By Lemma 2.2, the equal-
ity (L', R") = II'(L, R)TI(L', R’) holds, hence I"(L, R)II(L', R') = I. Therefore
II(L', R") is an injective mapping of M into M. Taking into account the definition
of II, we conclude that in fact II(L/, R') is an injective mapping of M into the
range of J. To show that any element of the range of J is a value of II(L’, R},
let us consider such an element u. Then u = J(s,t) for some s and ¢ in M.
Denoting by a and b the elements of C with values s and ¢, respectively, we con-
sider the element II'(a,b) of C. Let v be the value of this constant function. The
equalities L'Tl'(a,b) = a, R'II’(a,b) = b imply that L'(v) = s, R'(v) = t, hence
I(L, R} (v) =w. O

Having the above lemma at our disposal, we shall proceed by indicating some
computational structures (A, J, L, R, T, F, H) such that T' and F' are constant map-
pings of M into M, and, if S is the corresponding pf-space, then no S-computable
bijection from M to the range of J exists.

Example 3.1. We consider a computational structure (M. J, L, R, T, F, H)
of the following kind. The set M is the closure of A under formation of ordered
pairs, where A is some non-empty set, and none of its elements is an ordered pair,
J is the function from M? to M defined by the equality J(s,t) = (s,t), L and
R are the functions from the range of J to M defined by means of the equalities
L(J(s.t)) = s, R(J(s,t)) = ¢, T and F are the constant functions from M to M
with values (0,0) and o, respectively, where o is some distinguished element of A,
H is the predicate on M that is false on A and true everywhere in M \ A. Let
S=(FI1C,I, L RZT,F) be the pf-space corresponding to this computational
structure. Under the additional assumption that A is finite and has more than one
element, we shall show that no Z-space with the same kernel is quasi-reducible to S.
Let A have k elements, where k > 1. Suppose there is an S-computable bijection
8y from M to the range of J. Then 8y is a computable bijection from M to M \ A.
From here a contradiction will be produced as follows. We define inductively a
family M of subsets of M by the clauses that A € M and X x Y € M whenever
X, Y € M. One proves by induction that all members of M are non-empty finite
sets, and, whenever Z € M, then either Z = A, or the cardinality of Z is divisible
by k2. Another induction shows that each element of M belongs to exactly one
member of M. By means of a third induction we prove that whenever 8 is an
S-computable element of F, the image by # of any member of M is a subset of
some member of M. In particular, the mapping €y will have this property. Since
o is a bijection from M to M \ A, each member of M different from A will be
the union of its subsets that are images by #y of members of M, and these subsets
will be pairwise disjoint. Let Z be the member of M that contains as a subset
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the image by 6y of the set A. Clearly Z # A, and therefore the cardinality of Z is
divisible by k2. On the other hand, this cardinality must be equal to the sum of &
and some numbers divisible by &%, and this is a contradiction.

Remark 3.1. We could reason in the same way as above if we would make the
functions L and R total by additionally setting L(u) = R(u) = u for all w € A. On
the other hand, as seen from [6], the situation would become essentially different if
we would make them total in the way from [1], namely by setting L{o) = R(0) = o,
L(u) = R(u) = {0,0) for all u € A\ {0}. Then, independently of the cardinality
of A, there would be a Z-space having the same kernel as § and reducible to it.

4. AN EXTENSION OF THE CONSIDERED REDUCIBILITY

The application of an iterative combinatory space S = (F,I,C,II,L,R, %, T, F)
for the characterization of some concrete computability notion usually makes use
of S-computability in certain subset B of F. The intuitive interpretation of §
as a programming system can be transferred also to pairs (S, B) by replacing S-
computability with S-computability in B. The case of S-computability will then
correspond to the pair (S,9). It is natural to extend the reducibility notions intro-
duced in Section 2 for the case of two pairs (S, B) and (S, B’), where § and &’ are
iterative combinatory spaces with one and the same kernel, and B, B’ are subsets
of their first component. Here are the corresponding definitions.

¥S=(F.1,CI,L.RET,F)and & = (F,I,C,II',L',R, ¥, T, F’) are it-
erative combinatory spaces, and B, B’ are subsets of F, then the pair (S, B') will
be called reducible to the pair (S, B) if the elements L', R', T, F’, all elements of B’
and the mappings I, ¥’ are S-computable in B. The pair (S, B') will be said to
be quasi-reducible to the pair (S, B) if all elements of F that are &’-computable in
B’ are also S-computable in B. If each of the pairs (S, B) and (§’, B’) is reducible
to the other one then these pairs will be called equipowerful.

As in Section 2 the reducibility is seen to be reflexive and transitive, and
it implies quasi-reducibility. Also, Theorem 2.1 remains valid after replacing the
combinatory spaces with pairs of the considered kind, the proof being quite similar.
Here is the result of the replacements. '

. Theorem 4.1. Let S; = (F,I,C,11,,L;,R;,%;,T;, F}), i = 0,1, be iterative
combinatory spaces. and Bg, By be subsets of F. Then the next three conditions are
equivalent:

(i) (So,By) is equipowerful with (Sy,B);

(i) the set of the elements of F that are So-computable in By coincides with the
set of the ones that are S;-computable in By;

(iii) the elements of the set {PS“‘ , Qg&, Ly, Ry, Ty, F1 YUB; are Sp-computable in By,
and the elements of the set {Pg}“, Qg‘:’ Ly, Ry, Ty, Fy} U By are Sy -computable
mn Bl .
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In the case when Ty, Fy, Ty, Fy belong to C, the condition (iii) can be replaced by

(iii") the elements of the set {PS1 , Qs(, Ly, Ry, T, F1}UB; are So-computable in By,
and the elements of the set {PS" QS” Lo, Ry, Ty, Fo} U By are S;-computable
in B;.

The statements in Remark 2.2 can be strengthened in the following way.

Remark 4.1. Let §; = (F,I,C,11;, L;, R, X, T;, F;), i = 0,1, be iterative
combinatory spaces with one and the same kernel, and let

D={P5', Q3 L1, R, T1, Fi }

(or Ty, Fyp€C, D= {Pg;, s L1, R1, Th, F1}). Then the pair (Sy,0) is reducible
to the pair (Sp, D). If Sy is reduc1ble to &y then (81,0) and (Sp, D) are equipowerful.
The following obvious monotonicity can also be mentioned: if Sy and S; are
iterative combinatory spaces with one and the same kernel (F,1,C), and By, B;
are subsets of F such that the pair (Sp, Bo) is reducible to the pair (Sy, By), then
for any subset £ of F the pair (Sp, By U &) is reducible to the pair (Sy,B; UE).

Acnowledgements. Thanks are due to Jordan Zashev for attracting the au-
thor’s attention to such a kind of reducibility problemns, especially by constructing
an iterative combinatory space (F,I,C,II,L, R, %, T, F) with II(L, R) = I (men-
tioned in Remark 3.1) that is reducible to the iterative combinatory space straight-
forwardly connected with Moschovakis’ abstract first order computability on a given
set.
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For a graph G the symbol G %= (p, p) means that in every 2-coloring of the vertices of
G, there exists a monochromatic p-glique. The vertex diagonal Folkman numbers

Fu(p,pip+1) = min{]V(G)| : G = (p,p) and Kp41 ¢ G}

are considered. We prove that F,(p,p;p+ 1) < %p!, p>4.
Keywords: Folkman graphs, Folkman numbers
2000 MSC: 05C55

1. NOTATIONS

We consider only finite non-oriented graphs without loops and multiple edges.
We call a p-clique of a graph G a set of p vertices, each two of which are adjacent.
The largest positive integer p such that the graph G contains a p-clique is denoted
by cl(G).

In this paper we shall use also the following notations:

V(G) — the vertex set of G;

E(G) - the edge set of G;

G - the complementary graph of G;

G[X], X C V(G) - the subgraph of G, induced by X;

G~ X, X CV(G) - the subgraph of G, induced by V(G)\ X;
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K, — the complete graph on n vertices;

I'¢:(v) - the neighbors of v in G;

C,, — the simple cycle on n vertices;

a(G) - the independence number of G, i.e. (G) = cl(G);

Aut(G) - the group of all automorphisms of G.

Let G and G be two graphs without common vertices. We denote by G + G2
the graph G for which V(G) = V(G;) UV(G2) and E(G) = E(G1) UE(G2) U E',
where E' = {[z,y] : z € V(G1),y € V(G2)}.

Let G1,Gs,...,Gy be graphs and V(G NV(G;) =10, i 7éj We denote by
k

| G: the graph G for which V(G) = U V(G;) and E(G) = U E(G)).

[E3] i=1
The Ramsey number R(p, g) is the smallest natural number n such that for an

arbitrary n-vertex graph G either cl(G) > p or a(G) > q.

2. RESULTS

Definition 2.1. Let G be a graph and p, ¢ be positive integers. A 2-coloring
V(G) :V1UV2, ‘/10‘/2 =®

of the vertices of G is said to be (p,q)-free, if V; contains no p-cliques and Vs
contains no g-cliques of G. The symbol G % (p, ¢) means that every 2-coloring of
V(G) is not (p, q)-free. The vertex Folkman numbers are defined by the inequality

Fy(p,g;5) = min{|V(G)| : G = (p,q) and cl(G) C s}.

The numbers F,(p, p; s) are called diagonal Folkman numbers.

In this paper we consider the diagonal Folkman numbers F,(p,p; p + 1). Only
two exact values of these numbers are known:

F,(2,2;3) = 5; (2.1)

Fy(3,3;4) = 14, [5] and [14)]. (2.2)

The equality (2.1) is well known and easy to prove. The inequality F,(3,3;4) <
14 was proved in [5], and the inequality F,(3,3;4) > 14 was verified by means of
computer in [11].

The following bounds are known for these numbers:

Fop,pip+1) < [2p(e—-1)] -1, p>2, [4

Fy(p,p;p+1) < |ple) —2, p >3, [6].
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In [10] N. Nenov significantly improved these values proving that

35
F,(p,pip+1) < ﬂp!, p>4. (2.3)

The inequality (2.3) was proved using the following
Theorem 1. Fy(p+1,p+1ip+2) < (p+ DE(ppip+1), p22

As this result was only stated in [10], we shall supply the proof of Theorem 1
here. In this paper we shall improve the inequality (2.3) by proving the following

13
Theorem 2. F,(p,p;p+1) < Ep!, p >4

Theorem 2 is proved by induction on p. As the inductive step follows trivially
from Theorem 1, it remains to prove only the inductive base p = 4, i.e.

Theorem 3. F,(4,4;5) < 26.

We shall note that from Theorem 1 it follows that F,(4,4;5) < 35, [9]. In [9]
it was also proved that F,(4,4;5) > 16.

Let G and G be two graphs and V(G) % V(G)) be a homomorphism of
graphs (i.e. if [a,b] € E(Q), then [p(a), p(b)] € E(Gy)). f ViU V3 is a (p, q)-free
2-coloring of V(¢(G)), then it is easy to see that o~ (V1) U™ (V2) is a (p, q)-free
2-coloring of V(G).

That is why we have the following

Proposition 2.1[10]. Let G and Gy be graphs and V(G) 2 V(GY) be a
homomorphism. Then from G %> (p,q) it follows G1 = (p,q).

3. PROOF OF THEOREM 1

In the case when p < 3 Theorem 1 follows from (2.1}, (2.2) and Theorem 3. So
we can now consider p > 4. Let G be a graph such that G % (p, p), cl(G) = p and

V(G)| = F.(p,pip+1). (3.1)
We consider the graph
P=G; UGQU...UG,,_H UKP-Ha

where each of the graphs G;, 4 = 1,2,...,p+ 1 is an isomorphic copy of G and
V(Kpt1) = {ai1,...,ap41}. The graph P is obtained from P by connecting the
vertex a; with every vertex from G;, i = 1,...,p+1. The graph L is obtained from
P by adding a new vertex b such that

p+1

rL) = | V(G).
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We shall prove that
LS (p+1,p+1). (3.2)

Assume the opposite and let V3 UV, be a (p+ 1,p + 1)-free 2-coloring of L.
Without loss of generality we can consider b € V). Define the sets

W, =V(G)U{ba;},i=1,....,p+1.

It is clear that L[W,] = K2+G;, where V(K3) = (b, a;). As G % (p,p) we have
a; € V1, i =1,2,...,p+ 1. We have obtained that V] contains the (p + 1)-clique
{ai,...,apy1}, which is a contradiction. Thus (3.2) is proved.

From the definition of L and cl(G) = p we have

cd(G)=p+ 1. (3.3)

From (3.1) we have
V()| =@+1)EF@pnp+1)+p+2 (3.4)
In each of the graphs G;, i = 1,...,p (i.e. without G,+1) we choose vertices

zi, ¥i € V(G;) such that [z;,y;] € E(G;) (as G; is not a complete graph then such
vertices exist). Define the sets:

Xi =T¢g(xi)U{a;} U {b} (3.5)

and
Y = Lo, () Ufasb U B}, i =1,...,p.

From cl(G;) = p it follows that I'¢,{z;) and I'¢, (y;) do not contain p-cliques.
As the vertices b and a; are not adjacent we have

X; and Y; do not contain (p + 1)-cliques for i = 1,...,p. (3.6)
Let us note that
[p(x:) = X; and T (y:) = Vi (3.7)
We denote by R the graph that is obtained from L by deleting the vertices
Zi, Y5, t = 1,...,p and the edges connecting them and by adding two new vertices
z and y such that
P ?
Tr(z) = | Xi Tr(y) = | V. (3.8)
=1 =1

It is clear that
[V(R)| = [V(L)| - 2(p—1).

From the last equality and (3.7) we have

[V(R)| = (p+ 1)F(p,p;p+1) —p+4.
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As p > 4, we have
V(R)| < (p+ 1)F,(p,pip+ 1) (3.9)
We shall show that
cd(R) <p+2. (3.10)

Assume the opposite, i.e. cl(R) > p+2 and let A be a (p+2) - clique of the graph
R. As L — {x,y} is a subgraph of the graph L and cl(L) = p+1, it follows that
r € Aory € A. Without loss of generality we can assume that x € A. We consider
the (p+ 1) - clique A’ = A — z. From (3.8) it follows that

p
AclXii=1..p (3.11)

i=1

As |A’] = p+ 1 from (3.11) it follows that some of the sets X; contain two vertices
from A’. Without loss of generality we can assume that X contains two vertices
from A’. As b and a; are not adjacent in R, from (3.5), i = 1 it follows that there

is a vertex w such that
we A Nlg, (1)

As
Crw)NV(Gi—zi—yi)=0,i=2,..,p+1

and az,...,apt1 & Ir(w) it follows that A’ N V(G ~ z; — ;) = 0,7 > 2, and
az, ..., Ap41 ¢ A
As
Lg,(zi) S V(Gi — zi — ¥3),
we conclude that

AnNX;=0or ANX;,={b},i=2,...,p+1

Hence from (3.11) it follows that A’ C X, which contradicts (3.6). Thus (3.10)
is proved.
Consider the mapping V(L) % V(R), which is defined as follows:

v&0, fvdr,vFy, i=1,2,...,p;

xiix, yii»y, i=1,2,...,p.

From (3.7) and (3.8) it follows that ¢ is a homomorphism from L to R. From
(3.2) and proposition (2.1) we have R = (p + 1,p+1). This fact and (3.10) give

F,(p+1,p+1Lp+2) <|V(R).

This inequality and (3.9) complete the proof of the theorem.
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4. (4,4)-FREE 2-COLORING OF THE GRAPH OF GREENWOOD AND
GLEASON

The complementary graph of the graph of Greenwood and Gleason Q is given
on figure 1. This graph has the property

(4.1)
Fig. 1. Graph Q — @
Using this graph Greenwood and Gleason proved that R(3,5) = 14.
In 7] N. Nenov proved that
Q% (3,4). (4.2)
It is easy to see that 2-coloring
V(Q) = {v1,v2,v3,v4,v5, V6,9, v1i0} U {v7, U8, 11, 012, v13) (43)

is (4,4)-free and hence Q £ (4,4).
The complementary graph @ contains the 13-cycles:

C(l) _
13 = {U1a712,1’3,114,05,Uﬁ,U7,US7U9,U10,U1170127U13},

0(2) _
15 = {v1,v6, v11, V3, v8, V13, V5, V10, V2, U7, V12, Vg, Vg } -

Let us note that E(Q) = E(Cf;)) U E(Cg))
These two cycles are equivalent as the mapping

o= U U2 vz U4 Us Vg V7 Vg Vg Vg V11 Uiz Vi3
Ut Vs V11 VU3 Vg Uiz Us Uip V2 Uy Uiz 4 Vg

= (v1)(v2, v6, 13, Vo) (v3, V11, V12, v4)(vs, V8, V10, U7)
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is an automorphism of @ (and hence of Q) and ¢ (C{},)) = Cl(g), P (Cﬁ)) = Cfé) .
We shall also need the cyclic automorphism of Q:

g__ Vi V2 V3 Vg Vs Vg V7 Vg Vg Vo Vi1 Vi2 Uiz
vy vy Vg Us Vg V7 Ug Vg Vo Vil V2 Uiz V1)

A straightforward computation shows that
pE=E%. (4.4)

Let (p,€) be the subgroup of Aut(Q), generated by ¢ and {. From (4.4) it
follows that (£) is a normal subgroup of (i, £). Hence from (4.4) it also follows that
o, &) = 52. As Aut(Q) acts transitively on Q, we have |Aut(Q)| = 13|St(v1)]-
It is easy to see that |St(v;)| = 4 and hence [Aut(Q)] = 52. Thus we proved the
following

Proposition 4.1. Aut(Q) = (p,§).
From this and (4.4) we obtain:

Proposition 4.2. Fach element of Aut(Q) is of the kind £k, where 0 < k <
3,0<1<12.

Define the following sets:
M = {v1,v3,v3, 4,5, V6, V9, Vi0}

S = {U] y U2, U3,V4, Vs, U7, Ug}'
We shall use and prove the following propositions:

Proposition 4.3. Let V; UV, be a (4.4)-free coloring of V(Q) such that
[Vi| = 8 and |Va| = 5. Then there ezists ¢ € Aut(Q) such that Vi = ¢(M).

Proposition 4.4. Let V; UV, be a (4.4)-free coloring such that [Vi| = 7 and
[Va| = 6. Then there exists 1 € Aut(Q) such that either Vi C (M) or Vi = 9(S).

Define the following sets:
]\'10 = {vla V2, U3, Vg, Us, Vg, Vg, le} = ]\/-[v

My = {vq,v2,v3,v4, Vs, Vg, V10, V11} = 0% (M),
My = {v1,v6,v11, 03, V8, V13, V2, V7 } = (M),
My = {v,ve,v11, V3, Vs, V13, U7, V12 } = £ (M),
So = {v1,v2,v3,v4,v6,07,V9} = S,

S1 = {v1,v2,v3,v4,V,v7, 12} = £@(S),

Sy = {v1, 2,03, va, Vo, V11, V12} = E30*(S),
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S3 = {vy, v2,v3,va, V6, V11, V12 } = £29°(S).

Using Propositions 4.2, 4.3 and 4.4 it is easy to prove

Proposition 4.5. Let V1 UV, be a (4,4)-free coloring of V(Q). Then there
exists an integer 0 < k < 12 such that Vi C €¥M; for some 0 <i < 3 or Vi C £%S;
for some 0 < i < 3.

In order to prove these propositions we shall need the following lemmas:

Lemma 4.1. If C is a simple {-cycle and if C' is an induced subgraph of Q
then there exists ¥ € Aut(Q), such that C = ¢ ({v1, v2,v6,v7}).

Lemma 4.2. If D is a simple chain of length 4 and if v1 is the starting point
of D and vs - the endpoint of D, then

1) D= {711,’(/9~010,U5} or

2) D = {v1,v9,v4,v5} 0T

3) D = {v1,v2,v10,v5}.

Lemma 4.3. If D is a simple chain of length 4, and if v, is the starting point
and vy — the endpoint, then

1) D= {Ul,lllg,’vm,lﬁ} or

2) D = {vi,v13,v8,v7} or

3) D = {vy, vy, g, v7}.

Lemmas 4.2 and 4.3 are trivial and their proof is a straightforward check of all
possibilities.

Lemma 4.4. If Q contains an induced subgraph isomorphic to Ceytq for some
positive integer s, then this subgraph contains at least 3 consequent vertices in at

least one of the two cycles: C’g) and Cg) of Q.
Lemma 4.5. Q does not contain an induced subgraph isomorphic to C.

_ Lemma 4.6. If C is a simple 5-cycle, which is an induced subgraph of
Q, then there is vy € Aut(Q) such that C = ¥ ({v1,v2,v3,v4,09}) or C =
w({vlavZ»U:ﬁ’US,vg})'

The detailed proofs of all the propositions and lemmas from this paragraph
with the exception of lemmas 4.2 and 4.3, which are obvious, will be supplied in
part 7.
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5. DESCRIPTION OF THE MAIN CONSTRUCTION

We consider two isomorphic copies @ and Q' of the graph Q (see Fig. 1).
Denote

V(Q) = {v1,v2,v3, V4, Us, Us, U7, Us, Vg, V10, Vi1, V12, V13 },

13
V(Q') = {w1,v2, w3, Wi, Ws, W, Wr, W8, Wy, Wi, W11, W12, W13},

We consider the graph L such that V(L) = V(Q)UV(Q'). E(L) will be defined
below.
We define

() NV(Q) = o(M) = {v1,ve, V11, U3, Us, V13, V2, U7}

PLw)NV(Q) =" Tr(w))NV(Q)), 1 £i<13.

E = {[w,-vj] l w; € V(Q’), vj € I‘L(wi) N V(Q)}
Now we define the edge set of L:

E(L) = E(Q)UE(Q)UE".

We extend the automorphism ¢ of  which is defined above to a mapping from
L to L, namely:

£= ('Ula172a'U3,U4’1’5»'U(ia'U'(,'USaUQsUlO,”lhvl‘zavl:%)(whw27w3»w4»w5aw63u’7v

Wy, Wo, Wio, W11, W12, W13).

From the construction of L it is easy to see that this extension of § is an
isomorphism of L, which we shall also denote by ¢.

As L has 26 vertices, it will be enough to prove that L - (4,4) and cl(L) < 5,
in order to prove Theorem 3.

6. PROOF OF THEOREM 3

We shall first prove that c/(L) < 5. Assume the opposite. Let S be a 5-clique
in L. As Q and Q' are isomorphic, by (4.1) we have cl(Q) = cl(Q") = 4. Hence
S¢ Qand S ¢ Q. Therefore we have the following 4 cases:

First case. |SNQ|=4,[SNQ'|=1.
Using ¢ without loss of generality we can consider w; € S.
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But T'z(w1) N Q = ¢(M), which is isomorphic to M, which has no 4-cliques by
(4.3).

Second case. |SNQ|=1,[SNQ| =4.
Now using &, without loss of generality we can consider that v; € §. From the
construction in Section 5 via trivial computation it follows that

Lp ()N Q" = {wi,wi3, wiz, wy, ws, wr, wy, wo}

= ¢® ({w1, w2, w3, wq, ws, we, wo, wig }) -
This subgraph is isomorphic to M, which has no 4-cliques by (4.3).

Third case. |SNQ| =3, |SNQ| =2
Using &, without loss of generality we can consider wy € S. Again using £ we
reduce this case to the following subcases:

Subcase 3.1. SNQ’ = {w,,ws}. Now from the construction in Section 5 we

have:
Lp(w) NTp(wa) NQ = {vq,v3,vs8,v13},

which has no 3-cliques.

Subcase 3.2. SNQ" = {w1,ws}. Now
Ip(wr) NTr(ws) NQ = {v1,v6, 011,03},

which has no 3-cliques.

Subcase 3.3. SN Q" = {wy,ws;}. Now
Lr(w) NTL(ws) N Q = {v11, ve, v7, 2},

which has no 3-cliques.

Subcase 3.4. SN Q" = {w,w;}. Now
Pp(un) NTr(wr) NQ = {v7,vs,v13, v1, 06},

which is isomorphic to C; and has no 3-cliques.

Fourth case. |SNQ'|=3,|SNQ|=2.
Using &, without loss of generality we can assume that v; € S. Again, using &,
we reduce this case to the following subcases:

Subcase 4.1. SN Q = {vy,v3}. Now from the construction in Section 5 we
have: ’
FL(ill) N I‘L(’Uif) N Ql = {wly Wy, Wy, 1‘“2}7

which has no 3-cliques.
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Subcase 4.2. SN Q = {v1,v4}. Now

Tr(v) NT () NQ = {wa, wr, wa, w12},
which has no 3-cliques.

Subcase 4.3. SNQ = {v1,vs}. Now
Cr(vi) NTp(vs) N Q" = {wi3, wiz,ws, ws},

which has no 3-cliques.

Subcase 4.4. SN Q = {vy,v7}. Now
Pp(w) NTL(vr) NQ = {wy, w3, ws, wr, wa},

which is isomorphic to C and therefore has no 3-cliques.

Thus we have completed the proof of the fact that cl(L) < 5.

It remains to prove L - (4,4) only.

Assume that Vi U Vs is a (4,4)-free vertex coloring of L. Then Vi N Q and
Vo N Q must be a (4,4)-free vertex coloring of Q. Then, according to Proposition
4.5 and having in mind that & can be continued to an automorphism of L, we have
the following five groups of cases (totally 32 cases).

First group of cases: when thereis 0 < n <12, n € N, such that Vvin@ C
£"(My). Thus without loss of generality we can assume that V1 NQ C M.

Case 1.1. When Vi D M = {v;,vq,V3, V4, Us, Vs, Vg, Y10},
Vo D {vy,vs, v11, 12, v13}. Now we have:
vg, 2,05 € Vy, therefore wg € Vo, w3 € Va;
V2, Vs, V5 € Vi, therefore ws € Vo,
Vo, V2, Vg € Vi, therefore wg € Va;
wg, ws, w3 € Vo, therefore wiy € Vi;
wg, w5, v7 € V,, therefore we € V).

Now we, wig, V1,4 is a 4-clique in Vi. We have completed the proof of case
1.1. Note that v4 € V2 and vy &€ Vi because of the 4-cliques v7,vg,v11,v13 and
v4,v7,V11,v13. Therefore we have only 6 other cases in this group of cases:

Case 1.2. Replace vy, Le.
Vi D {v2, v3, v4, U5, Ve, Vg, 10}, Vo D {v1, 07,08, V11,012, V13 } -
We have {vg, v2,v6} C ViNIT'L(wg) and {v1,vs,v11} C VoI (wyg). So whatever

the color of wyg, elther {wg,v1,vs,v11} or {wy,v9,v2,v6} is a monochromatic 4-
clique.
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Case 1.8. Replace vy, i.e.
Vi O {vr, vs, va, 05,06, v9, 010}, Va D {ug, 7,08, V11, V12, V13 } -

We have vy, vg,v1, € Vo NT 1 (we) and vg,v3,v6 € Vi NT L (ws).
So whatever the color of wy, either {wg,vy,vg,v11} or {we,ve,v3,v6} is a
monochromatic 4-clique.

Case 1.4. Replace vs, i.e.
Vi D {vy,v2,v4, 05,06, v9, 10}, Vo D {vs,v7, 08,011, V12, 013}

The proof is similar to the one in case 1.1. We have:

vg, v, Us € V1, therefore wg € Va2, ws € Vo
v9,v4,v6 € V1, therefore ws € Vs;
Vg, U2, g € V1, therefore wy € Vy;
vr, ws, wg € Vo, therefore we € Vi;
ws, ws,wg € Vo, therefore wip € V4.

Now wq, w9, v1, vy is a 4-clique in V3.
Note that the proof was precisely the same as the one of case 1.1.

Case 1.5. Replace vs, i.e.
Vi O {w, v2, 03, v4, 6,09, v10}, Va D {us,v7,08,v11, 012,013} -

Now {vs,v7,v11} C Va NI (ws) and {ve,v4,v6} C V2 NI (ws).
Now whatever the color of ws, either {ws,va,v4,v6} or {ws,vs,v7,v11} is a
monochromatic 4-clique.

Case 1.6. Replace vg, i.e.

Vi D {1, v2,v3, 04,05, v9,v10}, Va D {ve, vr,vs8, 011, V19, 013} -

We have:
1,703,019 € V7, therefore wg € Vi

vy, V2,05 € V1, therefore wg € Vp;
Vg, Ug, V1 € Vz, therefore wy € Vi,
wg, Vg, V11 € Vo, therefore wy; € Vi,
wr, Wi1,v4 € Vq, therefore ws € Vo
ws, Wy, ve € Vo, therefore wis € Vi;

wi2,v1,v4 € V7, therefore we € V5.
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Now {wa, ws, ws, v7} is a 4-clique in V3.

Case 1.7. Replace vy, i.e.
Vi D {v1,v2, 03,04, 05,06, 09}, Vo D {v7,v8, v10, 11,012,013} -

We have vz, v19,13 € Van T (wg) and vy, va,v5 € Vy NTL(ws)-

Now whatever the color of wg, either {ws,v7,v10,v13} or {ws, vy, v2,v5} is a
monochromatic 4-clique.

Second group of cases: when there is 0 < k < 12, k¥ € N such that Vi N
Q C &F(M,). Without loss of generality we can assume that V; N Q C M, =
{v1,v2,v3,v4,vs, Vg, V10, v11 }. We have the following cases.

Case 2.1.
Vio {0131)291’371’4av55Uﬁavl()avll}> Va2 {U7,Us,vg,1)12,7113}~

We have:
v11, V4,02 € Vi, therefore wyg € Va3

v11, V5,01 € Vi, therefore wiy € V5.

Now {wi0, unz, v, v12} is a 4-clique in V5.
Now note that vj;,vs € V2 because of the 4-cliques {v7,vg,v13,v11} and
{vs,v7,v9,v13}. So only 6 other cases are possible in this group.

Case 2.2. Replace vy, i.e.
Vi D {2, v3,v4, 05, V6, v10, V11 }, Vo D {v1,v7,08, V9,012, 013} .

We have:
v, 8,012 € Vo, therefore wy € Vi;

7,9, V13 € Vo, therefore wg € Vi,

V11,4,V € Vi, therefore wig € Va;
w1, Vg, V12 € Vo, therefore wip € Vi;
wo, wg, w12 € Vi, therefore wg € Vy;
vg, Ug, U3o € V1, therefore wg € Vi

Us, Wg, Wy € Va, therefore wy € Vi;

V10, %4, € V1, therefore wy € Vy;
Wy, We, Wro € Vo, therefore wiz € Vi.

Now {ws, w13, ve,v5} is a 4-clique in V;.

Case 2.3. Replace vy, i.e.

Vi D {v1,v3,v4,Us5, 06, V10, V11 }, V2 D {v2, 7,8, V9, V12, 13} .
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We have:
V2, Vg, V12 € Vo, therefore w;y € Vi;

vy, Vg, V13 € Vo, therefore wy € Vi;
vr, vy, 13 € Vo, therefore w; € V.
Now {ws, w7, wyg,v4} is a 4-clique in V;.
Case 2.4. Replace vy, i.e.
Vi D {1, v, v3,vs,v6, V10, v11}, Vo D {vs, v7, 08,09, 12, V13 } .

We have:
v1p, V6, U3 € V4, therefore wy € Vo;

v11, V2,05 € Vy, therefore wy € VQ;

1711,'1,75, vy € V4, therefore wyy € Vo
vy, V9,13 € Vi, therefore wy; € Vi;
w12, Ve, V12 € Va, therefore wig € Vi;
ws, Wy, Wy € Vo, therefore wy € Vi;
wy, wio, w3 € V1, therefore w3 € Vo
ws, v3,v5 € Vy, therefore wg € V5.

Now {ws, w13, 7,113} is a 4-clique in V5.

Case 2.5. Replace vs, i.e.
Vi D {v1,v2,v3,v4,96, V10,011 }, V2 D {us, v7,vs,09, 012,013} .

We have:
vy, 3,011 € Vi, therefore wyy € Vo

v11,V4,v2 € V1, therefore wig € V5.
Now {w1g, w12, v9,v12} is a 4-clique in V5.
Case 2.6. Replacing v, i.e.

Vi D {w,v2,v3, 04, vs,v10,v11 }, Va D {we, v7, Us, Vg, V12, V13 } .

The proof is word by word the same as the proof of case 2.5.

Case 2.7. Replacing vy, i.e.
Vi D {1, va, 03,04, 05, V6, 011}, Va D {v7,vs,v9,v10, V12, 013} -

The proof again is word by word the same as the proof of case 2.5.
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Third group of cases. Let there be such 0 < k < 12, k € N, such that
VinQ C £°(Ms). As ¢ is an automorphism of L, we can consider without loss of

generality Vi N Q C My = {v1,ve, V11, V3, Us, V13, V2, U7 }.

Case 3.1. Let

Vi O {v1,v6,v11,v3, Vs, V13, V2,v7}, Va D {v4, vs, Vg, V10, V12} -

We have:
vy, v11,v8 € Vi, therefore wg € Vo;

vs, U3, v13 € Vi, therefore wg € Va;
v2, v, 013 € Vi, therefore wng € Va3

v7,v1,v3 € Vi, therefore wy € V5.

Now {ws, ws, we, w3} is a 4-clique in V5.
Now note that vs,v; ¢ Vo because of the 4-cliques {vs,vs,vg,v12} and

{va2, v5,v9,v12}. So we have only 6 other cases in this group.
Case 3.2. Replace vy, i.e.
Vi D {vs, v11,v3,V8,v13, V2, 07}, Va2 D {v1, 4,5, V9, V10, V12} -

Now vy, vs,v12 € Vo N T (w;3) and vz, ve, v13 € Vi NTr(wi3) so whatever the
color of wiz either {wi3,v1,vs5,v12} or {wis,ve,vs, v13} Will be a monochromatic

4-clique.
Case 3.3. Replace vg, i.e.

Vi D {v1,v11,v3,08,v13, V2, U7}, Va D {vg,v4,V5,v9, V10, V12} -

We have:
vy, Vg, V19 € Vo, therefore wy € V1;

v1,v11,V8 € V4, therefore wg € Va;

v7,v11, V13 € V;, therefore wg € Va;
v7,v1,v3 € V], therefore wsy € V5;

wa, We, W € V7, therefore wyg € Vi;

wa, w13, v1 € V4, therefore w; € V5.
Now {wr, w9, v, vg} is a 4-clique in V5.
Case 3.4. Replace vy, i.e.

Vi D {v1,ve,v3,vs,v13,V2,v7}, V2 D {v11,v4, V5,09, V10, V12} .
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We have, similarly to case 3.1:
ve, V3,13 € Vi, therefore wg € Va;

va, Ug, Vg € V1, therefore wg € Vo
vy, v1,v3 € V7, therefore we € Vo;
vg, vg, V13 € Vi, therefore wysz € Va.
Now wq, wg, we, wis € Va2 is a monochromatic 4-clique.

Case 5.5. Replace vg, i.e.
Vi D {vy, v, v11, 3,013, V2, 07}, V2 D {vs,v4,v5,v9,v10,v12} -

Now vg, v5,v12 € VoI (ws) and ve, v3, 113 € V1N (wg). Whatever the color
of we, either {we, vs, vs,v12}, or {ws, Ve, V3, v13} will be a monochromatic 4-clique.

Case 3.6. Replace vy3, i.e.

Vi D {v1, v, v11, v3, Vs, V2, U7}, Vo D {13, v4, Vs, v9,v10,V12} -

We have:
v1,v11, U8 € V1, therefore wi,wy € Vs;

v7,u1,v3 € V7, therefore we € Vo;
vs, V12, Vg € Vo, therefore wiy € V71;
v13,V10,Vs € Vo, therefore wy,ws € V4.
Subcase 3.6.1. Let wg € V. Now wg, v3, v € V1, therefore wy € V5.

Also wg, w3, w12 € V7, hence wyg € Va.
Now. {wyq, w4, V10, V4 } is a 4-clique in V5.

Subcase 3.6.2. Let wg € V.

We have ws, wg, wy € Vo, hence wiz € V;.
Now w3, v1,v7 € V1, therefore wy € V5.
From ws, w3, ve € Vi follows wig € V.
Now {wr, w10, v12, U9} is a 4-clique in V;.

Case 3.7. Replace vy, i.e.

Vi D {v1,ve,v11,v3, V8,13, v2}, Vo D {v7,v4,Vs5,v9,010,v12} -

We have: v
vy, Vs, V11 € Vi, therefore wg € Vo

Vg, vg, V13 € V1, therefore wiz € Vo

vg,v3, 113 € V1, therefore wg € V5;
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we, Wy, w3 € Vo, therefore wy € Vi
v7,05,09 € Vo, therefore wg € Vi;
v7,V4, V10 € Vo, therefore wy € Vy;

wy,ws, ws € Vq, therefore wyy € Vs,

Now {v19, w3, wr1, Wy} is a 4-clique in Va.

Fourth group of cases.

Assume there is k € N, 0 < k < 12 such that Vi N Q C ¢F(M3). As £ is
an automorphism, without loss of generality we can assume that Vi NQ € M3 =
{v1,v6,v11,v3, v8, V13, V7, Vi2}

Case 4.1. Let

‘/] D {Ul,vﬁ,U]],Ug,'UB,U]g,U7,'U[2}, V2 D {USaUIO)Ullavgva} .

We have:
v1,v11,v8 € V1, therefore wg € V5;

vg, U3, v13 € Vi, therefore wg € Vo;

vy, v1,v3 € V1, therefore wy € Vi,
woy, W, g € Vo, therefore wyz, w13 € Vi;

wa, Vg, v2 € Vo, therefore wy € V.

Now {ws, w12, vg,v12} is a 4-clique in V5.
Now note that vi;,vio & Vo because of the 4-cliques {vi2,v2,vs,v9} and
{v11,v2,v5,v9}. So we have 6 more cases in this group of cases.

Case 4.2. Replace vy, i.e.

Vi D {wve, v11,v3, v8, 013, V7, V12}, Vo D {v1,vs,v10, V4,9, V2 } .

We have:
vi2,V8,vs € V4, therefore wg,wy € Vo;

Vg, Us, Vg € Vo, therefore ws, wg € Vi;
V1,4, 019 € Vo, therefore wy € Vi;

wy, V3,6 € Vi, therefore wy € Vo
Subcase 4.2.1. Let wyy € Vi. We have:
wy, wg, w1 € Vi, therefore wy € Vo

Wa, Vg, V4 € Vo, therefore ws € Vi;

ws, Vg, g € Vo, therefore wg € V;.
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Now {w;1, ws, we, v11} is a 4-clique in V;.

Subcase 4.2.2. Let w1y € V. We have:
wy, wy, w1 € Vo, therefore wg € Vi;

ws, Vg, V12 € V1, therefore wyny € Vo
ws, wg, v7 € V1, therefore wy € V.

Now {ws,w12,v1,v4} is & 4-clique in V5.
Thus case 4.2 is over.

Case 4.8. Replace wvg, ie.
Vi D {v1,v11, v3, v8, 113, v7,v12}, Vo D {vs,v10, Vs, V9, V2, V6 } -

Now vy, vg,v9 € VoNT'1(we) and vy, vs, v11 € ViNIL(we). Whatever the color
of wyg, either {wy, v, vs,vg}, or {wyg,v1,vs,v11} is a 4-clique.

Case 4.4. Replace v3, i.e.

Vi D {1, ve, V11, U, V13, V7, 12}, Vo D {v3, V5,010, V2,04, V9 } .

We have:
v1,v11, V8 € Vi, therefore wg € Vs;

vy, V11,013 € Vi, therefore wg € Vy;
vy, 012,08 € V1, therefore we € Vo;
Wy, We, Wy € Vé, therefore wqs, w13 € Vq;
wa, V9, V4 € Vo, therefore ws € V.
Now {ws, w12, Vs, V12} is a 4-clique in V;.

Case 4.5. Replace vg, i.e.
Vi D {v1,v6, 11,03, 013,07, 012}, V2 D {vs, vi0, Vg, Y, V2, U8} .

Now vg,v2,v4 € Vo NT(w2) and v7,v1,v3 € Vi NI (we). Whatever the color
of wy, either {wo, vs, v2,v4}, or {we,v1,vs,v7} is a 4-clique. :

Case 4.6. Replace v;3, i.e.

Vi O {v1, v, v11, v3, V8,07, v12}, Vo D {v13,Vs5,v10, V2,04, Vs } .

We have:
vy, 11,08 € Vi, therefore wg € Va;

V19,03, € Vi, therefore wg € V3;

vr,v1,v3 € Vi, therefore wy € V5
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wy, We, Wy € Vo, therefore wiz € Vi;
wa, Vg, vq € Vo, therefore ws € V.
Now {ws, w12, vs, v12} is a 4-clique in V3.

Case 4.7. Replace vy, ie.

Vi D {1, v6, v11, v3, U8, V13, v12}, Vo D {vs, V10,4, V9, v2,07} -

We have:
v, v8, 11 € Vi, therefore wg € Vo

v, vg, V12 € Vi, therefore wo € V5;
v3, vg, 113 € V7, therefore wg € Vo
wa, we, wo € Vo, therefore wio € Vi;

U4, V7,019 € Vo, therefore wy € V.

Now {ws, w12, v6,v12} 18 a 4-clique in V).

Fifth group of cases.

Now we assume thereis k€ N, 0 <k <12and 0<i<3that QnV, = S,.
We have the following possibilities:

Case 5.1.
Vi D {v1,v2,v3,v4,v6,v7,v9}, Va D {vs,v8,v10,v11, 12,13} -

We have:
v, U3, 07 € Vi, therefore w; € Va;

v, v4, 07 € Vi, therefore wy € Vo
U3, U7, ¥9 € V3, therefore wyg € Va;
vy, Vg, Vg € Vi, therefore wy € Vs.
Now {wy,wy,wr, wip} is a 4-clique in V3.
Case 5.2.

Vi O {v1,v2,v3, 04,06, v7, 012}, Vo D {vs, vs,v9, V10, v11, 013} -

Now vs,v8,v11 € Vo NTr(ws) and vs,ve,v12 € Vi NT'p(ws). Whatever the
color of wg, either {ws,vs,vs,v11}, or {ws,vs3, ve,v12} Will be a monochromatic a
4-clique.

Case 5.3.

Vvl ) {Ul,'UQ,'Ug, U-ia’US);UIMUIZ}a ‘/2 ) {'U5,’U6,’U7,'U8,’U10,’U13} -
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Now va,v9,v11 € V1 NT(wg) and vg, vg, v1g € VoM (we). Now whatever the
color of wy, either {wo, vy, v9,v11}, or {wy, vs, vg,v19} will be a monochromatic a
4-clique.

Case 5.4.
Vi D {v1, 2, v3, 04,06, 011, v12}, Vo D {vs,v7,vs,v9, 10,13} -
/e have:
vy, 3, v12 € Vi, therefore wy € Vo
v, 4,011 € V7, therefore wy € Vs;
vs, Ug, V12 € Vi, therefore wg € Vo;
V9,06, V12 € Vi, therefore ws € V5.

Now {w;3, ws,ws, we} is a 4-clique in V5.
The above considerations, Proposition 4.5 and the fact that £ is an automor-
phism of L prove Theorem 3.

7. PROOFS OF THE PROPOSITIONS AND LEMMAS FROM SECTION 4

Proof of Lemma 1. Let C be the wanted 4-cycle. Then using ¢ without loss
of generality we have:

|E(C)n E(CYY > |E(C)nE(C?)), ie.
[B(C)NE(C)] > 2.

Case 1. H |E(C)N E(Cm)l = 4, then using £ we may assume that C =
{v1,v2,v3,v4}, but Q ({v1,v2,v3,v4}) is not a simple 4-cycle.

Case 2. If |[E(C )ﬂE(C(l) )| = 3. As 3 > 2, then there are two edges in E(C')N
(C’(l)) with a common vertex. Then using £ we may assume that {vy, v, vs} C
V(C).
But I'g(v1) UT'G(vs) = {v2} and hence this case is impossible.

Case 5. If |[E(C)N E(C(]) | = 2. If there are two adjacent edges in F(C) N
E(C’(l)) then using £ we would have {vi,ve,v3} C V(C), which is impossible as
mentioned above. Then the two edges in E(C) N E(C{é)) are not adjacent. Using
§ we can assume that {v;,v2} € V(C). Now we must have at least one edge from
vy or v in E(C)N H,.

The possibilities are vyvg, 1105, V2119, V2U7.

Thus we obtain two 4-cycles {v1,v2,v10,v9} and {vy,vs,vs,v7}, which are
equivalent: o ({vi,v2,v10,v9}) = {v1,v6, v7,02}. .
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Thus the lemma is proved. [
The proofs of Lemma 4.2 and 4.3 are trivial.

Proof of Lemma 4.4. As E(Q) = E(C](,:))UE(CI(?) and using ¢ we can consider
that |E(Cass1) N E(CI)] > |E(Caasr) N E(CD)).

Therefore |E(Cas41) N E(Cy (1) W >s + 1 and as 2s + 1 is odd we have at least
two adjacent edges in E(Csy1) ﬂ E(CY). 0

Proof of Lemma 4.5. Assume that C' is an induced subgraph of @, isomorphic
to C7. Using the previous lemma and € we obtain {vi,ve,vs} C V(Cr).
Assign V(C) = {v1,v2,v3,a,b,¢,d}.
Then
d € Tg(v1)/{v2} = {ve, vo, vi3} (7.1)
a€ Fa(’t)g)/{’l)g} = {vg,vs,v11} '

Now let us observe that

C does not contain 4 consequent vertices (7.2)
in any of the cycles C\3 and C(3 . ’

Indeed, if (7.2) is not correct, using ¢ and £, we can assume that {v1, vo, v3,v4}
C V(C). But each vertex of @ is adjacent to at least one of these 4 vertices. As '
has 7 vertices, it cannot be a simple cycle. Thus (7.2) is proved.

From (7.2) we have that d # v13,a # vs4.

Case 1. Let a = vs. Now b # vy as v1,vs, U3, Ug, Ug is a simple 5-cycle.

Also b # v13 by (7.2).

As b e Fa(a)/{vg}'—'—‘ {v7,vg,v13} it Temains b = vy, but v9,v7 € E(Q), which
is a contradiction.

Case 2. Let a = vyy.

Then b € FZJ—(U“)/{’U:;} = {1}10,1)12,’06}.

As vg, 1, V10, V2 € E(Q), it follows b = vy2

Now ¢ € Fa(vlg)/{’v]l} = {’1)13, V4, ’U7}.

But v13,v1, v4, v3, v7,v2 € E(Q), which is a contradiction.
The lemma is proved. O V

Proof of Lemma 4.6.

From Lemma 4.4, using &, we have {vy,ve,v3} C V(C). Assign V(C) =
{1)1, V2,3, C, d}

If C contain 4 consequent vertices on one of the two cycles CB , Cv,(i), ie.
without loss of generality V(C) = {v1, v2,v3,v4,d}, then

de FQ‘(U]) N Fa(l);;) = {Ug}.

Hence C = {vy, v, v3,v4,09} and we are through.
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So we can consider

C' does not contain 4 consequent vertices )
(1) ~(2) (7.3)
on any of the cycles Cn , Cls

Then ¢ # vy, d # v13.
Case 1. If ¢ = vy1. Then

de Fa(’l)u) N Fa(vl) = {’U(;},

and hence
C = {vy,v2,v3,06,v11} = ¢~ €3 ({v1, v2,v3, 04,09},

and we are through.

Case 2. If ¢ = vg. Then
de Fa(’l,’g) N Fa(m) = {vg, v13},

but d # v13 and hence C' = {v1, vz, v3,vs,v9}. The lemma is proved. O
Propositions 4.1 and 4.2 are trivial.
Before proving proposition 4.3 we shall introduce the following notation.
Assign:
pj =&t j=1,...,13;

(i.e. ¢ = ¢ — we shall continue to use both ¢ and ¢; farther).
P .
n=¢; i=1...,13

= ¢’
(we have 17 = 7y in these assignments).
The ” geometrlc mterpretatlon of these automorphisms is the following:

@; replaces 013 and C” , leaving the vertex v; fixed;
n; is a reflection around the vertex v;.

Proof of Proposition 4.3. From the statement of the theorem, we have |Q[V}]| =

a(QW1]) < 4, cl(Q[W1]) = 2. We shall use the classification of all such graphs,
glven on p.194 in [3].

Note that all the three Lonﬁguratlons contain a simple 4-cycle wywswswy and
two simple 4-chains wjebws, wacdwy. We already know from Lemma 4.1 that
any simple 4-cycle can be obtained from {v1,vg, v7,v2} via an automorphism v €
Aut(Q). So without loss of generality we have {v1,v9,v7,06} C V;. Now using
v2vs = &(1nws) and Lemma 4.2, we have the following possible simple 4-chains
vacdug:

1) vaviguiive  2) v2viovsvs  3) V3V11V11VE. (7.4)
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Using Lemma 4.3 we have the following possibilities for vjabvy:
1) viviavi2vr  2) V1U13V8V7  3) U1 UoURYT. (7.5)
Combining (7.4) and (7.5), we have:

__ ¢9 .
Vi = {vy1,v13, V12, V7, V2, V10, V11, V6 } = & Mio(M);
Vi = {v2, v10, V11, Vs, U1, V13, V8, U7 }.

Now Va = {w3, v4,vs, Vg, v12} contains 4 clique vzvsvgviz.

Vi = {2,010, V11, Vg, V1, Vg, Vs, v7} = £ (M);
V1 = {wa, v10, Vs, Vs, U1, V13, V12, U7} = £ p(M);
Vi = {va, V10, V5, U6, V1, 113, Vs, U7 } = £ pmo(M);
V1 = {v2,v10, U5, Vg, V1, Vg, Vg, U7 } = Emo(M);
Vi = {va,v3, 011, V6,01, 013, V12, 07} = £ (M);
Vi = {vg,v3, V11, V6, V1, V13, Vg, U7} = p(M);
Vi = {va,v3, 11, Vg, V1, V9, Us, U7} = ¥ omo(M).
Proposition 4.3 is proved. O

Proof of Proposition 4.4. From the statement of the theorem it follows that
QVi]] = 7, «(@[V1]) < 4, cl(Q[Vi]) = 2. We shall use the classification of all such

graphs on p.194 in (3].
We shall need the following corollary from this classification, which can be

easily proved independently:

If G is a graph with |G| =7, a(G) <4, cl(G) = 2. (7.6)
Now G contains either C7 or Cs as an induced subgraph. '

Now from (7.6) and Lemma 4.5 we see that Q[V4] contains an induced subgraph,
isomorphic to Cs. From Lemma 4.6 we have the following cases:

Case 1. Let Vi D {v1, v2,v3,04,0s, 09}

Now we have as vjvq is (4,4)-free:

vy, Vg, Vg € Vi, therefore vig,vi1 € Vo

V9, V4,vs € Vi, therefore vg,vy1 € Va.

Then for the seventh vertex of Vi we have the following possibilities:

Us, U7, V13, V12.
If the seventh vertex of V; is vs or vy3, then V; C {vi3, v1,v2,v3, V4, U5, Vs, Vg } =

£ (M)
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If the seventh vertex is either v7 or vi2, then V4 C {vq,v2, v3, V4, V7, V8, V9, v12} =
§p(M).

Case 2. Let Vi D {vy,vo,v3,vs,00}.

Now we assume that v4 € V;, (otherwise we fall in the conditions of the previous
case).

We can consider v13 € V.

Otherwise, i.e. if vi3 € Vi, then n2(V1) would be a 7-vertex subgraph of @
with the wanted properties and 172(V1) C {v1, v2, vs,v4,v8,v9} and this lead to the
previous case.

Now note that vqvrviiv13 is a 4-clique in Q. As cl(Q[Vz]) < 4 and as we already
proved vy, v13 € Vo then vz € V) or v17 € V4. From the clasification on p.192 in (3]
we see that there must be an edge outside the 5-cycle. So we have the following
possibilities for the remaining 2 vertices of Vi: vrvg; v7v12; v11V6; V110125 V11V10.

We have

Subcase 2.1.
-5 A
Vi = {v1,v2,v3,06,07, 08,09} C {v6, 07,08, V9,011, 01,2, 03} = E Somo(M).

Subcase 2.2.
- —_ ¢—5 y
Vl = {,Ula Vg2, U3, Vg, Vg, Vg, vll} g {'Uﬁ,’U7,’l)g,Ug,1)11,’U1,’U2,’U3} - é- ‘PnlO(Ju)

Subcase 2.3.
Wi = {U131’157U77U87U9’U12} C {01,712,1)3,1’471)7,Us,vg,vlz} = §<P(M)~

Subcase 2.4. Vi = {v1,v, v3,vs, 9, v11,v12}. Now Vo = {vy, vs, 6, v7, V10, 13}
and hence G(V2) contains the 4-clique vy, v7, v19, V13-

Subcase 2.5.

_ . — =B (N
Vi = {v1,v2,v3,v8,v10,v11} C {vs, Vo, V10, V11, V1, V2, V3, Vs, } = € Pp(M).
Case 2 is over.

Case 3. Let Vi D {v1,v2,v3,v4,00}, but vs € V3, i.e. vg € Va.

Using 1y we can consider as in the previous case that vy € Va.

As there must be an edge outside the 5-cycle we have the following possibilities
for the other vertices in Vi: vsv13; vsts: Vev11: VgU7; V11V12; V12V13; V1907,

Subcase 3.1.

Vi = {v13, 01,02, 03,04, 05,09} C {v13, 01,02, 03,04, 05,08, 09} = E~L(M).
Subcase 3.2. _

Vl = {1)1,‘1)2,’03,’U4,’U5,U6,’Ug} C {1)1,’02,173,’04,’05,”U(;,Ug,’l)lo} = M.
Subcase 3.8,

Vi = {v1,v2,v3,v4, 06, v9, v11} C {v1,v2,v3,v4, v6, V9, v10,v11} = E3m10(M).

Subcase 3.4.
‘/1 = {'Ul,’UQ,U3,U4,'U()', 'U7,Ug} = Sl'

Subcase 3.5.
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Vi = {v1,va, vg, v4, vo, Vi1, V12 } = E30*(S).

Subcase 3.6.
_ , _ 2 ,
Vi = {v12,v13, 01, 2, V3, Va, Vg } C {v12,v3,v1, V2, V3, V4, Vg, V9 } = E *nmio(M).

Subcase 3.7.
i = {711,1?2,113,11.1,1)7,Ugﬁvlz,lw} C {1’1,1127'0377)471’7,7)871)12} = &p(M).
This proposition is proved. O

Proof of Proposition 4.5. As R(3,4) = 9 we have two possibilities only: [V1]| =

8, |Va| =5 and [Vi| =7, [Vi| = 6

10.

Ann.

Now Proposition 4.5 follows from (4.4) and propositions 4.1, 4.3, 4.4. O
All statements from Section 4 are proved.
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EDGE (3,4)-GRAPH WITHOUT 8-CLIQUES
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In [6] we computed the edge Folkman number F(3,4;8) = 16. There we used and
announced without proof that in any blue-red coloring of the edges of the graph Kj +
C5 + Cs + Cs there is either a blue 3-clique or red 4-clique. In this paper we give a
detailed proof of this fact.

Keywords: Folkman graph, Folkman number

2000 MSC: 05C55

1. INTRODUCTION

Only finite non-oriented graphs without multiple edges and loops are consid-
ered. We call a p-clique of the graph G a set of p vertices each two of which are
adjacent. The largest positive integer p such that G contains a p-clique is denoted
by cl(G). A set of vertices of the graph G none two of which are adjacent is called
an independent set. In this paper we shall also use the following notations:

o V(G) is the vertex set of the graph G;
e E(G) is the edge set of the graph G;

N(v), v € V(G) is the set of all vertices of G adjacent to v;

e G[V], V C V(G) is the subgraph of G induced hy V;

e x(G) is the chromatic number of G;
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e I, is the complete graph on n vertices;
o (), is the simple cycle on n vertices.
The equality Cy, = v(v2 . ..v, means that V(Cp) = {v1,...,vn} and
E(Cy) ={[vi,vig1],i=1,...,n — 1} U{[v1, va]}

Let G and G be two graphs without common vertices. We denote by G + G+
the graph G for which V(G) = V(G1) U V(G2) and E(G) = E(G1) U E(G2) U E'
where E = {lr.y]: 2 € V(Gy),y € V(G2)}.

Let G and H be two graphs. We shall say that H is a subgraph of G and we
shall denote H C G when V(H) C V(G) and E(H) C E(G).

Definition 1.1. A 2-coloring
E(G) = E1UE,, EiNE; =9, (1.1)
is called a blue-red coloring of the edges of the graph G (the edges in E; are blue
and the edges in E3 are red).
We define for blue-red coloring (1.1) and for an arbitrary vertex v € V(G)
Ni(v)={z e NWw) | [v.z] € E;}, i=1,2;
Gi(v) = G[N:(v)].
Definition 1.2. Let H be a subgraph of G. We say that H is a monochromatic
subgraph in the blue-red coloring (1.1} if E(H) C Fy or E(H) C E». I E(H) C E)

we say that H is a blue subgraph, and if E(H) C E,; we say that H is a red
subgraph.

Definition 1.3. The blue-red coloring (1.1) is called (p, g)-free, if there are
no blue p-cliques and no red g-cliques. The symbol G — (p,q) means that any
blue-red coloring of E(G) is not (p, q)-free. If G — (p,q) then G is called edge
Folkman (p, g)-graph.

Let p, ¢ and r be positive integers. The Folkman number F(p,q;r) is defined
by the equality

F(p,g;7) = min{|V(GQ)| : G - (p,q) and cl(G) < r}.
In [1] Folkman proved that
F(p,q;r) exists <= r > max{p, ¢}.

That is why the numbers F(p,q;r) are called Folkman numbers. Only few
Folkman numbers are known. An exposition of the results on the Folkman numbers
was given in [6]. In [6] we computed a new Folkman number, namely F(3,4;8) = 16.
This result is based upon the fact that Ky + Cs + C5 + C5; — (3,4), which was
announced without proof in [6]. In this paper we give a detailed proof of this fact.
So, the aim of this paper is to prove the following
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Main Theorem. Let G = K, +C§1) +CF(,2) +C’é3), where Cs(l), C’ém, 05(3) are
copies of the 5-cycle Cs. Then G — (3,4).

2. AUXILIARY RESULTS

Lemma 2.1. Let E(G) = E;UE; be a (3, 4)-free red-blue coloring of the edges
of the graph G. Then:

(a) Gi(v) is a red subgraph. v € V(G);

(b) (E(G2(v))NE\)U(E(G2(v))NEy) is a (3, 3)-free red-blue coloring of E(Ga(v)),
v € V(G). Thus Ga{v) 4 (3,3).

Proof. The statement of (a) is obvious. Assume that (b) is not true. Then, since
there is no blue 3-clique, G2(v) contains a red 3-clique. This red 3-clique together
with the vertex v form a red 4-clique, which is a contradiction. ]

Corollary 2.1. Let E(G) = E, UE; be a (3,4)-free blue-red coloring of E(G).
Then:

(a) cl(G1(v)) <3, v e V(G);
(b) cl(Ga(v)) <5, ve V(G);
(c) Ga(v) 2 K3+ Cs. v € V(G).

Proof. The statement of (a) follows from Lemma 2.1(a). The statements of (b) and
(c) follow from Lemma 2.1(b), since K — (3,3), [4] and K3 + C5 — (3,3), [2]. O

Lemma 2.2 ([5]). Let G = Cs + H, where V(H) = {z,y,2} and E(H) =
{[z,y], [x,2]}. Let E(G) = E1UE; be a (3,3)-free blue-red coloring of E(G). Then
H is monochromatic in this coloring.

Lemma 2.3 ([3]). Let G = Cs5 + K2 and E(G) = E; U E» be a (3,3)-free
blue-red coloring of E(G) such that E(Cs) C E;. Then E(K3) € E;.

Lemma 2.4. Let G = K +C§I)+C§2)+C§3), where Cél), C’é2). Cé3) are copies
of the 5-cycle Cs and V(K1) = {a}. Let E(G) = E1 U E; be a blue-red coloring of
E(G) such that cl(Gy(a)) € 3 and Ga(a) 4 (3,3). Then, up to numeration of the
5-cycles C’5(U, 05(2) and CF()S). we have:

(a) Mi(a)D V(Cél)) and Ni(a) N V(CéQ)) is an independent set;

(b) Nz(a)D V(Cés)) and Na(a) NV( éz)) is not an independent set.
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1 2 3
Proof. Let CE(, ) = V1 VU3 V4 Vs, Cé ) = uUuzuglts and Cé ) = Wi Waw3waws. We

shall use the following obvious fact
x(Cs) = 3. (2.1)
It follows from (2.1) that
Ni(a) NV( 5(7)) or Na(a) NV( /éi)) is not an independent set, 7 = 1, 2,3; (2.2)

By (2.2) and Corollary 2.1(b), at least one of the sets Na(a) N V(Céi)), 1=1,2,3,
is an independent set. Thus, at least one of the sets Ny(a) N V(Cé")), i=1,2,3,is
not an independent set. Without loss of generality we can assume that

Ni(e)n V(Cél)) is not an independent set. (2.3)

It follows from Corollary 2.1(a) and (2.3) that Ni(a) N V/( éQ)) = 0 or Ni(a)N

V(CE®) = 0. Let for example Ny(a) N V(CSY) = 0. Then
Na(a) > V(). (2.4)

We have from (2.3) and Corollary 2.1(a) that Ny(a) N V(CF()Z)) is an independent
set. Thus, it follows from (2.1) that NQ((L)QV(Cé2)) is not an independent set. This
fact, together with (2.4) and Corollary 2.1(c), gives Na(a) N V( 5()1)) = (). Hence,
Ni(a) 2 V(Cél)). The Lemma. is proved. O

Lemma 2.5. Let G = K + Cél) + 05(2) + Cég), where Céi). i=1,2,3, are
copies of the 5-cycle Cs. Let E(G) = Ey U Ep be a blue-red coloring such that
some of the cycles Cgl), Cém, CéS) is not monochromatic. Then this coloring is not
(8,4)-free.

Proof. Let V(K;) = {a}, Cél) = Uy Ual3U4s, C}()z) = ujugususs and CéS) =
wiwewswaws. Assume the opposite, i.e. E(G) = FE1 U E;y is (3,4)-free. Then by
Corollary 2.1(a) we have cl(G1(a)) < 3 and by Lemma 2.1(b) we have Ga(a) /
(3,3). Thus, according to Lemmna 2.4 we can assume that

Ni(a) 2 V(C) and Ny(a) N V(C?) is independent; (2.5)

Ny(a) D V(C’ég)) and Na{a) N V(C’éZ)) is not independent. (2.6)
It follows from (2.5) and Lemma 2.1(a) that
E(CsY) C B, (2.7)

~ We have from the statement of the Lemma 2.5 that at least one of the cycles
éz), 1 = 1,2, 3, is not monochromatic and since £ (Cél)) C FE, it remains to consider

the following two cases:
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Case 1. /5(2) is not monochromatic. Let for example [uy,us] € F; and
(u1,uz] € Ep. If uy,ug, us € Na(a) by (2.6) we have Ga(a) D Cé'?) + Gluy, ug, usl.
It follows from Lemma 2.2 that G3(a) contains a monochromatic 3-clique. This
contradicts Lemma 2.1(b). So, at least one of the vertices uj, us, us belongs to
Ni(a). Therefore, we have the following subcases:

Subcase 1a. uy € Ni(a). Since there are no blue 3-cliques it follows from (2.5)
that

Na(u1) > V(CEY). (2.8)
As [uy,a], [ur,us) € Ey and cl(G1(u1)) < 3 (see Corollary 2.1(a)), the set Ny(u1)N
V(CéB)) is independent. Therefore, Ng(ul)ﬂV(CéS)) is not independent. This fact,
together with [u,us] € E2 and (2.8), gives Go(u;) D K3 + Cél), which contradicts
Corollary 2.1(c).

Subcase 1b. up € Ny(a) and u; € Na(a). Since there are no blue 3-cliques it
follows from (2.5) that

Nay(ug) o V(CEV). (2.9)
If Na(u I)OV(Cél)) contains two adjacent vertices then these vertices together with
uy and uy form a red 4-clique according to (2.7) and (2.9). Hence Na(u; )ﬂV(C’él)) is
independent and, therefore, N; (ul)ﬂV(Cél)) is not independent. Since u; € Ni(u1)
and cl(G(u1)) < 3 (see Corollary 2.1(a)) we have Nj(u1) N V(Cés)) = (. Hence

Na(u) D V(CP). (2.10)

By (2.6) and (2.10)
V(CP®) C Ny(u) N Na(a).

Since {a,u1] € By and there are no red 4-cliques we obtain that
E(CP C Ey. (2.11)

As there are no blue 3-cliques from (2.11) it follows that Nj(uz) N V(C§3)) is in-
dependent. Therefore, Na(uy) N V(CéB)) contains two adjacent vertices. This fact,
together with [u1,us] € F; and (2.9), gives G2 (up) D K3 + Cél), which contradicts
Corollary 2.1(c).

Subcase Ic. us € Ni(a) and uj,uz € Na(a). Since a,uy € Na(uy), it follows

from Corollary 2.1(b) that at least one of the sets Na(u1) N V(Cs(l)) and Na(u1) N
V(Cé3)) is independent. Hence at least one of the sets Ny (u;)N V(Cél)), Ni(u1)N
V(C’és)), is not independent. Assume that N;(ui) N V(Cél)) is not independent.
This fact, together with us € Ny(u;) and Corollary 2.1(a), implies

Ny(w) D V(CP). (2.12)

As [a,u1,us] is a red 3-clique and [a, u1, uz,w;] is not a red 4-clique, i = 1,...,5,
it follows from (2.6) and (2.12) that [ug,w;] € E1, i = 1,...,5, i.e. Ni(uz) D
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V(Cé‘”). We have from Lemma 2.1(a) that E(C§3)) C E,. Thus, according to (2.6)
and (2.12), the vertices a and u; together with two adjacent vertices of C5(3) form
a red 4-clique, which is a contradiction.

Let us now consider the situation when Nj(uy) N V(C_§3)) is not independent.
Corollary 2.1(a) and us € N;(u;) imply

Na(up) o V(C{M). (2.13)

If Nz(ul)ﬂV(CéB)) # 0 then from a, uz € N2(u1) and (2.13) it follows that Ga(u;) O
K+ C’él), which contradicts the Corollary 2.1(c). Hence Na(ui) N V(Céd)) = ),
ie.

Ni(uy) > C. (2.14)

Since there are no blue 3-cliques, we obtain from (2.14) and Lemma 2.1(a):
E(C®) C Bs. (2.15)

If N2(U2)ﬂV(C§3)) is not independent then according to (2.6) and (2.15) an edge in
Ni(uz) ﬂV(CéS)) together with a and u; form a red 4-clique. Let Na(uz)N V(Cg3))
be independent. Then N;{(uz)N V(C§3)) is not independent. Thus, it follows from
Corollary 2.1(a) that N;(uz2) N V(C’él)) is independent and Nz(u2)N V(Cél)) is not
independent. Then an edge in N(u2) N V(Cgl)), together with the vertices u; and
ug, form a red 4-clique, according to (2.7) and (2.13), which is a contradiction.
Case 2. C’és) is not monochromatic but Céz) is monochromatic. Without

loss of generality we can assume that [wy,ws] € B; and [wi,wz] € Fs. Since
a,wz € Na(w,) it follows from Corollary 2.1(b) that at least one of the sets Na(w;)N
V(CE()I)) and Na(wp) N V(Csm) is independent. Hence at least one of the sets
Ni(w) N V(Cél)), Ni(w) N V(CéQ)) is not independent. We shall consider these
possibilities:

Subcase 2a. Nl(wl)ﬂV(Cél)) is not independent. Since [wy, ws] € E; it follows
from Corollary 2.1(a) that Ny(w;) N V(C;EQ)) =0, ie.

Na(w,) > V(CP). (2.16)

By Lemma 2.1(b) G2(w) does not contain a monochromatic 3-clique and Go(w;) D
C5(2) + [a,w2]. Since Céz) is monochromatic and [a,ws] € Ez, it follows from
Lemma 2.3 that

E(C?) C B, (2.17)
We see from (2.6), (2.16) and (2.17) that the vertices a and w;, together with an
edge of C5(2) form a red 4-clique, which is a contradiction.

Subcase 2b. N, (wl)ﬂV(Cé2)) is not independent. Since ws € Ny (w;) it follows
from Corollary 2.1(a) that :
Na(un) D V(CM). (2.18)
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Corollary 2.1(c) and Ga(w1) D CiV + [a,wo] = Ka + ¢tV imply
Ni(wy) D V(C#). (2.19)
Lemma 2.1(a) and (2.19) give
E(C?) C B, (2.20)
Since there are no blue 3-cliques and [w;,ws] € E; it follows from (2.19) that
Na(ws) D V(CP). (2.21)

We see from (2.6), (2.20) and (2.21) that the vertices @ and ws together with an
edge of Céz) form a red 4-clique which is a contradiction. 0

3. A PROPERTY OF THE GRAPH C5 + C5 + Cs

Let G = C(l) +C(2) + C(a) where C’r ,i=1,2,3, are copies of the 5-cycle Cs.

Let us consider the blue-red coloring where E; = E(Cj 1)) U E(C(Z)) U E(C(z))
is clear that this coloring is (3,4)-free. Thus G / (3,4). However the followmg
theorem holds:

Theorem 3.1. Let G = C(l) +C§2) +C5(3) where Céi), 1=1,2,3, are copz‘es of
the 5-cycle Cs. Let E(G) = E1 U Ey be a blue-red coloring such that E(C(l))
E(C; 2)) CE; and E(C(g)) C E;. Then this coloring is not (3,4)-free.

Proof. Assume the opposite, i.e. that there are no blue 3-cliques and no red 4-

. 1 2
cliques. Let C’é ) = V1U2U3V4 V5, C’é ) = U U2U3 U4 U, Cé = W WeW3WaWs. Since

the cycles Céz) and C§3) are blue and there are no blue 3-cliques, the sets N1(v;) N
V(C’é2)) and Ny(v;) N V(Cg‘”) are independent. Thus, we have

IN2(0) NV(CP) 23, [Na(w) NV(CE)] 238, i=1,...,5.  (31)
It follows from (3.1) that
No(z) N Na(y) NV(CE) £0, i=2,3, z,yeV(C). (3.2)
Let z,y € V(Cél))‘ We define

Bi(z,y) = {v € V(C?) | [z,v], [y, v] € En},
By(z,y) = {v e V(C) | [z, 0], [y, v] € Ez}.

We see from (3.2) that

Bi(z,y) #0, i=12 z,yeV(CP). (3.3)
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We shall prove that
if [z,y] € E( /él)) then B;(xz,y) is independent, i = 1, 2. (3.4)

Assume the opposite and let for example v',u” € Bi(z,y) and [v/,u"] €
E( (2)). By (3.3) there exists w € Ba(z,y). Since there are no blue 3-cliques,
then at least one of the edges [u/,w], [u”, w] is red. Hence [z,y, v/, w] or [z,y,u",w]
is a red 4-clique, which is a contradiction.

Let ' and «” be adjacent vertices in C{?. Since [w',u"] € E; and there are
no blue 3-cliques, we have '

Ni(w') N N (@) nv(CiY) = .
Thus |Ni(u') N V(Cél))l <2o0r |[N(u”)N V(Cél))l < 2. Hence
[N2(u') NV(CED)| > 3 or [Ny(u”) NV (CE)] > 3. (3.5)

So, (3.5) holds for every two adjacent vertices in Cé2). Hence | Na(u) NV( 5(,]))| >3
holds for at least three vertices in C§2). Thus, there exist two adjacent vertices in

é2), for example u; and ug, such that
INa(u1) NV(CV)| > 3 and |Nay(ug) N V(CV)] > 3. (3.6)

If the both inequalities in (3.6) are strict then Na(u1) N Na(uz) N V(Cél)) contains
two adjacent vertices v’ and v”. Since u;,us € B(v',v"”) then this contradicts (3.4).
Thus, we may assume that \Ng(ul)ﬂV(CéD)l = 3. Hence Ng(ul)ﬂV(C(I)) contains
two adjacent vertices, for example vz and v4. Now we shall prove that the third
vertex in N z(ul) N V(C’( )) is the vertex v;. Assume the opposite. Then vy €
Na(u1) N V(CED) or vs € Na(us) N V(CY). Let vy € Ny(uy) N V(CEY). Then
v1,v5 € Ni(up). Since vy, vs,us € Ni(u;) it follows from Corollary 2.1(a) that
Nl(ul)ﬁV(C§3)) = 0. Thus, G2(u,) contains C§3)+[vg, vg] = Ko+C. According to
Lemma 2.1(b) G2(u;1) does not contain monochromatic 3-cliques. As E (C“) ) C

and [vs,v4] € E,, this contradicts Lemma 2.3. We proved that vy ¢ Ng(ul)
Analogously we prove that vs ¢ Na(u1). So,

v1,V3,v4 € No(u1) and ve,vs € Ny(ug). (3.7)

By (3.3) we can assume that w; € Ba(vs,vs). Since [v3, V4, u1,w] is not a red

4-clique, we hhve
[ul,'w1] € E. (3.8)

As there are no blue 3-cliques and [u1,vs), [u1,vs5] € Ey, it follows that (w1, v,
[wy,vs] € By. Taking into consideration w; € B (v3, v4), we have

[wl,vi] € Fy, i= 2,3,4,5. (39)
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By (3.3) there is u € B;(va,v3). Since [va,u1] € E; then u # u;. We shall prove
that v = ug or u = uy. Assume the opposite. Then u = uy or u = us. Let, for
example, u = uy. Since [v2, V3, u2,w1] is not a red 4-clique, it follows from (3.9)
and up € By(vy,v3) that [us, ] € E;. We obtained the blue 3-clique {1, w2, und,
which is a contradiction. This contradiction proves that u = u3 or u = uq. We can
assume without loss of generality that u = uz. We have

[us,un] € Ex, (3.10)

because [va, 3, u3,w;] is not a red 4-clique. By (3.3) there exists u € Bi(v4,vs).
Repeating the above considerations about u € Bj(vs,v3) we see that u = w3 or
U = u4.

Case 1. u = uy. Since [vs, Vs, w1, uq] is not a red 4-clique, we have [ug, w1] €
E;. Hence [u3,u4, w1] is a blue 3-clique, which is a contradiction.

Case 2. © = us. In this case we have ug € By(vq,v3) N Bi(vy,vs), i

[u;;,vi] € Fy, 1=2,3,4,5. (311)

As [v1,w;,u3] is not a blue 3-clique, it follows from (3.10) that [vi,u3] € E» or
[vl,wl] € Fs.

Subcase 2a. [vi,u3] € Ez. By (3.11) Na(u3) D C’él). Since there are no blue
3-cliques N»(u3) contains two adjacent vertices w',w” € V(Cé:”). Thus Ga(uz) D
Cél) + [w',w"]. By Lemma 2.1(b) G2(u3) contains no monochromatic 3-cliques.
This contradicts Lemma 2.3 because E(C\") C E; and [w/,w"] € E.

Subcase 2b. [vi,w1] € E;. By (3.9) we see that Np(w;) D V(Cél)). Since
there are no blue 3-cliques N2(w;) contains two adjacent vertices u', u” € V(CéZ)).

Hence Ny(w1) D C8 + [/, w”] which contradicts Lemma 2.3.
The theorem is proved. O .

4. PROOF OF THE MAIN THEOREM

1 2 3
Let Cé ) = U1 U934 Vs, C’é ) = U UU3U4US, Cs( ) = wiwawzwaws and V(K,) =

{a}. Assume the opposite, i.e. there exists a (3,4)-free blue-red coloring £y U E»
of the edges of K; + Cél) + Céz) + Cés). By Lemma 2.4 we can assume that:

Ni(a) D V(Cél)) and Ni(a)N V(C’é2)) is independent; (4.1)
Ny(a) > V(C) and Ny(a) N V(CE?) is not independent. (4.2)

We shall prove that

E(CYYCE,, i=1,23. (4.3)
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By (4.1) and Lemma 2.1(a), E'(Cél)) C E,. According to Lemma 2.5 each of
the 5- cycles C(z) and C§3) is monochromatic. By (4.2) G2(a) D C§3) + e where
ee€ E(C'5 ) By Lemma 2.1(b) G2(a) contains no monochromatic 3-cliques. Thus,
it follows from Lemma 2.3 that the edge e and the 5-cycle Cé'g) have the same color.
Therefore, the 5-cycles C; () and CEES) are monochromatic of the same color. Thus, it

follows from Theorem 3.1 that E(CF(,Q)) ¢ E; and E(Cé3)) ¢ E;. We proved (4.3).
Now we shall prove that

Ny(a) = V(CEP)uv(CP). (4.4)
Assume the opposite. Then it follows from (4.2) that N;(a)N V(Céz)) # 0. Let for
example u; € Ni{a) N V(ng)), L.e. [uy,a] € Ey. We see from (4.1) that
la,uz) € Es. (4.5)
As there are no blue 3-cliques by (4.1) and [u;,a] € E; we obtain

Na(uy) > V(CY). (4.6)

We see from Corollary 2.1(a) that at least one of the sets Ng(Uz)ﬂV(Cég) ), Na(u2)N
V( 5])) is not independent. If No(uz) N V(C(l)) is not independent, it follows

2

from (4.6) and (4.3) that the vertices u; and us together with an edge of Cél) form
a red 4-clique. If Np(uz) N V(C(d)) is not independent, by (4.3), (4.5) and (4.2),
the vertices a and us together with an edge of Cé3) form a red 4-clique. This

contradiction proves (4.4).
It follows from (4.4) and Lemma 2.1(b) that

Céz) + Céa) contains no monochromatic 3-cliques. (4.7)
Now we obtain from (4.7) and (4.3) |
No(z) N V(Cé ) is independent, =z € V(C’éz)); (4.8)
Na(z)n V(C’S ) is independent, =z € V(ng)). (4.9)
Let us note that
Ni(z) nV(C)) is independent, z € V(CP)uv(C?). (4.10)

Indeed, let for example z € V(C(2)) By (4.8), M, (z)ﬂV(Cgs)) is not independent.
This fact and Corollary 2.1(a) prove (4.10).
We shall prove that

Ni(z)n V(C'(Z)) x € V(C’él)) is not independent <= N(z) D V(C’é‘g)); (4.11)
Ni(z)nV( (3)) zT€E V(Cé”) is not independent <= N,(z) D V(Céz)). (4.12)

136 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 127-141.



The statements (4.11) and (4.12) are proved analogously. That is why we shall
prove (4.11) only. Let Ny(z) N V(C(S)Q))7 T € V(C(l)) be not independent. Since
[z,a] € Ey, it follows from Corollary 2.1(a) that Nqy(z)NV( (3)) §, ie. Nao(x) D
V(CP). Now let No(r) D V(CY), z € V(CEV). Assume that Ni(z )m V(c§2>)
is independent. Then Ny(z) N V( S, )) is not independent. Since C5 is red,

Ga(x) O K3 + Cég) which contradicts Corollary 2.1(c). So, (4.11) and (4.12) are
proved. Using (4.11) and (4.12) we shall prove that

Ni(z)n V(C;() ), t = 2,3, is independent, z € V(C(])) (4.13)

Assume that (4.13) is wrong and let, for example, Ni(vi) N V(Cé2)) be not inde-
pendent (remind that Cél) = v1v9v3v4v5). Then by (4.11) Ny(vi) D V(Cés)). If
Nao(v 2)ﬁV(Cs‘ )) is not independent then vy and vy together with two adjacent ver-
tices from Ng(vz)ﬂV(C< ’)) form a red 4-clique, which is a contradiction. Therefore,
N1(1.)2)ﬂV( ) is not independent. Thus (4.12) gives Np(v2) D V( (2)) Repeat-
ing the above considerations about the vertex vy on v, we obtain No(v3) D V{ (3))

In the same way it follows from Ny(v3) D V(Cé;)) that No(vs) D V(C(z)) At the
end it follows from Na(v4) D V{( «éz)) that Na(vs) D V(Cés)). So, we proved that

Na(vy) N Na(vs) D V(CP).

Thus, it follows from (4.3) that v and vs, together with an edge of Céz), form a
red 4-clique, which is a contradiction. This contradiction proves (4.13). According
to (4.13) it follows from (4.11) and (4.12) that

No(z) 2 V(CY), i=2,3, zev(C). (4.14)

Let 2 € V( r(,2)) U V( 5()3)) By (4.10) [Ni(z) N V(C’“))I < 2. Thus, we have the
following possibilities:

Case 1. N1(z) N V(Cm) — 0 for some vertex z € V(C{P) U V( 5)3)) Let, for
example, Ni(u1) NV(Cy )) = {} (remind that Céz) = U ugu3Uss). Then No(ui) O

(C’m) We see from (4.10) that Na(uz) N V(Cél)) is not independent. Thus u;
and us, together with two adjacent vertices from Na(ug) N V/( 5(1)), form a red
4-clique, which is a contradiction.

Case 2. |Ni(z) N V(Crl))l = 1 for some vertex z € V(Cr )U V(Cé‘g)). Let,
for example, |N;(ui) N V(Cél) )| = 1. Without loss of generality we can consider
[u1,v1] € E1 and [u1,v;] € Es, i = 2,3,4,5. According to (4.14) we can assume
that [vy,w:1] € Ei. Since there are no blue 3-cliques, w1, w1] € Ez. It follows
from (4.10) that Nao(w;) N V(Cél)) contains two adjacent vertices. As

Na(wy) NV(C) € No(ur) N V(CE) = {wa,v3, v4,v5}

e
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we see that u; and w; together with two adjacent vertices in {va,v3,v4,05} form a
red 4-clique, which is a contradlctmn
Case 3. |Ni(z)nV( [ = 2 for every z € V( éz)) U V(Cm)). According
to (4.8) Ni(up) nV( (;)) is not independent. Thus, we can assume that wy,wy €
Ni(u)) nV(CP), ie

[wr, un], [u1, wq) € Ey. (4.15)
It follows from (4.13)
Ny(w) N Ny (wy) NV(CEY) = 0. (4.16)
In the case considered we have
[Ni(wn) NV(CED)] = N1 (wz) N V(CD)] = N () N V(CED)| = 2.
We obtain from (4.16)
Ni(w1) 0 Ny(wn) N V(CEY) # 0 or Ni(uy) NNy (we) nV(CED) # 0.

By (4.15) there is a blue 3-clique, which is a contradiction.
The Main Theorem is proved.

5. EXAMPLE OF FOLKMAN EDGE (3,5)-GRAPH WITHOUT 13-CLIQUES

Using the Main Theorem we shall prove the following

Theorem 5.1. Let G = K4+C(1)+C(2 +C(3)+C’(4) where Cy Z), i=1,...,4,
are copies of the 5-cycle Cs. Then G — (3,5).

In order to prove Theprem 5.1 we shall need the following

Lemma 5.1. Let E(G) = Ey U Ey is a (3,5)-free blue-red coloring of E(G).
Then:

(a) Gi(v), v € V(G). is a red subgraph;

(b) (E(G2(v))NEL)U(E(G2(v))NEy) is a (3, 4)-free blue-red coloring of E(G2(v)).
v € V(G). Thus, Ga(v) 4 (3,4).

Lemma 5.1 is proved in the same way as Lemma 2.1.

Corollary 5.1. Let E(G) = E;UE; be a (3,5)-free blue-red coloring of E(G).
Then:

(a) cl(G1(v)) <4. v e V(G);
(b) cl(G2(v)) <8, ve V(G);
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(c) Go(v) D Ky +Cs5 +Cs5;
(d) Ga(v) 2 K1+ Cs+Cs +Cs.

Proof. The statement (a) follows from Lemma 5.1(a). The statement (b) fol-
lows from Lemma 5.1(b) and K¢ — (3,4), [4]. The statement (c) follows from
Lemma 5.1(b) and K4 4+ C5 + Cs — (3,4), [8]. The statement (d) follows from
Lemma 5.1(b) and the Main Theorem. O

Proof of Theorem 5.1. Assume the opposite, i.e. there exists a blue-red coloring
E(G) = E; U Ey, which is (3,5)-free. Let V(Ky) = {a1,02,a3,04}.

Case 1. There exists a; € V(Ky) such that |Ni(a;) N V(K4)| = 3. Let, for
example, [a1,a2], [a1,a3), [a1,a4] € Ey. By Corollary 5. 1(a) at most one of the sets

Ni(a1) N V(Céi)), i =1,2,3,4, is not empty, i.e. Na(a1) contains at least three of
the cycles C{V, i = 1,2,3,4. Let, for example,

Na(ar) > V(ICPyuv(eP)yuvcs).

By Corollary 5.1(a) it follows that N; (al)ﬂV(C( ) ) is independent. Thus, Na(a;)N
(C(l)) # (). We obtained that Ga(a;) D K +C(2) +C53) +C'(4) which contradicts
Corollary 5.1(d).

Case 2. There exists a; € V(K,) such that |[Ny(a;) NV (K4)| = 2. Let, for
example, [a1,a2], [ai,a3] € E1 and [a1,a4] € Ep. Since [a),a4] € E2 if the sets
Na(ap) N V(Céi)) i = 1,2,3,4, are not independent then Ga(a1) D Ky, which
contradicts Corollary 5.1(b). Hence, at least one of the sets N1 (a1)N V(C'( )) 1=
1,2,3,4, is not independent. Let, for example, Nl(al)r‘lV(C5 )be not independent.
Accordmg to Corollary 5.1(a) it follows from this fact and [a1, az}, [a1,a3] € Ey that
Ni(a)NV( ())(Z) i=2,3,4, 1e Ng(a] ) D V( (1)) i=2,3,4. As [a1,a4] € Eo we
have Gz(a1) D Ky + C(Q) + C ) , which contradicts Corollary 5.1(d).

Case 3. There exist a; € V(K4) such that |Ni(a;) N V(K4)| = 1. Let, for
example, [a1,a2] € E1 and [a1,a3], [a1,a4] € E2. We see from Corollary 5.1(a)
that at least three of the sets Na(ai) N V(Cf)), i = 1,2,3,4, are not indepen-
dent. Let, for example, Na(a;) N V(C(2)) Na(a) NV( 5(,3)) and Na{a;} N V(Cé4))
be not independent. Since [aj,as], [a1,a4] € E» it follows from Corollary 5.1(b)
that Ni(a1) D V(C(l)) According to Lemma 5.1(a) it follows from this fact and
[a1,a2] € E; that at least two of the sets Ni(a1) N V(Csl ), 1 =2,3,4, are empty.
Therefore, we can assume that Na(a;) D V(C'“)) and Na(aq) D V(C )). Since
Na(a1) N V(Cs2)) is not independent we have Ga(a;) O Ky + V((},@) + V(Cé“),
which contradicts Corollary 5.1(c).

Case 4. E(K4) C E,. Since [a1,a;] € Ey, © = 2,3,4, it follows from Corol-
lary 5.1(b) that at least two of the sets Ni(ay) N V/( (1)) i = 1,2,3,4, are not
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independent. Let, for example, Ny(a;)NV/( (])) and Ny(a1)NV/( éz)) be not inde-
pendent. Then by Corollary 5.1(a) Ny (a;)nV(CY) = 0 and Ny(ay)nV(CY) =0,
le.

Na(a1) 2 V(CP)uv (). (5.1)
Since [a1,a:] € Es, i = 2,3,4', it follows from (5.1) and Corollary 5.1(c) that
Na(a;) N V(CS(I)) =0 and Na(a;) N V(C’éQ)) = 0. That is why, we have from (5.1)

Ni(a) = V(IC&yuvcs?). (5.2)

As the vertices a1, ag, a3, a4 are equivalent, in this case the above considerations
prove that

Ni(a;), i =1,2,3,4, is a union of two of the cycles Cél), C’((2) C(g), é” (5.3)
Lemma 5.1(a) and (5.2) imply
Cél) + CéQ) is a red subgraph. (5.4)
Since there are no red 5-cliques, we see from (5.4) that
Ni(@a) NV(C) #0 or Ny(a:) nV(CP) £0, =234
Thus, by (5.3) we have
Ni(a;) D V(CV) or Ny(as) D V(CE?), i=2,3,4. (5.5)
Hence, we can assume that
| Ny(az) o V(CV) and Ny(as) D V(CDY). (5.6)

Let CFS]) = v1v903v4v5. By (5.3) we have the following possibilities: ;

Subcase 4a. Ni{ag) D V(C’é])). According to (5.6) and (5.2) [v1,a;] € Ey,
i = 1,2,3,4. Hence, by Corollary 5.1(a) N;(v;) N V(Céi)) =0,i=234,.ie
Ga(v1) D Cém + C(g) + C(4) By (5.2) [v1,v2] € Ea. Thus, Gao(v1) O K; + C(z)
ng) + C75(4>, which contradicts Corollary 5.1(d).

Subcase 4b. Nl(a4)ﬂV(C(l)) 0, 1e. Na(aq) D V(C(l)) We have, from (5.2)
and (5.6), [v1,a;] € E1, i = 1,2,3, and [v1,a4] € E. By Corollary 5.1(a), at least
two of the sets Ny(v1) N V(C; ), i = 2,3,4, are empty. Thus, we can assume that

Ga(vy) > 4+ ¢V, (5.7)

It follows from Corollary 5.1(a) that Ny(v;) N V(C5(2)) is independent. Hence,
Na{v1)N V( (2) ) is not independent This fact, together with [v1, v2], [v1,a4] € E»
and (5.7), gives Ga(v1) D K4 + C (4), which contradicts Corollary 5.1(c).
This contradiction finishes the proof of Theorem 5.1.
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Since cl(G) = 12 and |V(G)| = 24, Theorem 5.1 implies
Corollary 5.2. F(3,5;13) < 24.

Lin proved in [7] that F(3,5;13) > 18. In [9] Nenov improved this result,
proving that either Kg + Cs + Cs — (3,5) or F(3,5;13) > 19.
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Nonlocal boundary-value problems for second order linear and nonlinear differential
equations of mixed type in a bounded multidimensional cylindrical domain are consid-
ered. Uniqueness and existence of a weak solution in the linear case are established.
Applying these results and Schauder’s fixed point theorem existence of a weak solution
in the nonlinear case is proved. A uniqueness result is also established.

Keywords: Partial differential equation of mixed type, nonlocal boundary value prob-
lem, uniqueness and existence of a weak solution.
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1. INTRODUCTION

Let D be a bounded domain in the space R™ ' of points T = (1, Tm—1),
where m > 2, with a boundary 8D € C?,if m > 3. Let G = {z = (z',z,,) € R™:
£ €D, 0<z, <h}, S={zecR™: 2 €8D,0< z,, <h},h = const.

We consider the operator '

m—1 m
Lu= Z a5 (TWz;z, + K(T)Us,, 2, + Zb,-(x)uzi +c(x)u ,
ig=1 i=1

1This work is partially supported by the Scientific research fund of the Sofia University under
the contract No 26/ 2004 and by the Ministry of Education and Science of Bulgaria under the
contract MM 904/ 99.
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m—1 m—1
where k,a,vj S CQ(G—), Qjj = Gjj for ,j=1,...,m—1; Z G7J(I')E7€] > ag Z 512
4,j=1 i=1
Vr € G and V¢ € Rm_l, ag = const > 0; k(:r/,O) = k(zl,h) <0 Vz € D;
bye CYG) fori=1,...,m; c € C(G). We denote Dy = {z € D: k(z,0) =0}
and D_ = {z' € D: k(z',0) < 0}. Assume that D_ # 0, (b,, — k;, )(z ,h) =
(b — ks, W' ,0) V2' € D and (b, — k2, )(2',0) # 0 V& € Dy. All the functions
in the present paper are real-valued. '
The operator £ is elliptic, hyperbolic, parabolic at a point z € G, if k(x) >
0, k(z) <0, k(x) = 0, respectively. In our case L is an operator of mixed type in
G, because there are no restrictions on the sign of k(z) for z € G.
First we investigate the following nonlocal boundary value problem for the
linear equation

Lu=finG. (1.1)

To find a function u(z) defined in G which is a solution of the equation (1.1)
and satisfies the boundary conditions

u=0onS, u(z,h)=Au(z,0) in D, (1.2)
Ug,, (m’,h) = Auy,, (x/,O) in D_, (1.3)

where f(x) is a given function and X\ # 0 is a given real constant.

In the case where k(z,0) = k(z',h) = 0 Vz' € D the problem (1.1), (1.2)
was investigated in [9], [11] for 0 < |[A] < 1, in [4] for 0 < A < 1 and in [12]
for A # 0. The problem (1.1) - (1.3) was investigated in [10] in the case where
k(r) < 0in G and 0 < |A] < 1. In [17] the problem (1.1) - (1.3) was considered
for 0 <Al <1, A=1, k = k(z), b; =0, a;; = &, where §7 is the Kroneker’s
symbol, 7,7 = 1,...,m — 1, in the following cases: k(h) > 0 and k(0) > 0; k(h) >
0 > k(0); k(0) < 0 and k(h) < 0. The problem (1.1) - (1.3) with A =1, b; =
0, aij = =68/, i,5=1,...,m—1, ¢ = ¢(z¢ ) was considered in [6]. Another nonlocal
boundary value problem for the equation

h(y)uyy = vz + a(z, y)uy + bz, y)u = f(z,y)

in {(z,y) : =<y <1, 0 <z <1}, where h(l) > 0 > h(—1), was investigated in [7].
The formally adjoint operator to the operator £ is

m~1 m
L= aij(@)ve,z; + k(@)vr,z, + 3 b (@)Va, + (@0
i,j=1 i=1

m—1
where b}, = 2k;,, — by, b = 2 E Qije;, —biy i =1,...,m~1, and c* = ¢ —
=1

m m—1
Z biz, + Z Qijzz; + Kz,,z2,,- The adjoint boundary conditions to (1.2), (1.3) are
i=1 ij=1

v=0onS5, v(:z:,,O) = )\v(xl,h) in D, (1.4)
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vz, (& ,0) = Avg,, (z ,h) in D_, - (1.5)

We denote by €2 and C? the sets of all functions belonging to C*(G) and
satisfying the conditions (1.2), (1.3) and (1.4), (1.5), respectlvely Let W1 be the

closure of C? with respect to the norm ||ul|; = (||ul|g+z l|tz, 12)!/? of the Sobolev
i=1

space W}(G). We use the notations (.,.)o and ||. ||o for the usual scalar product

and norm of Ly(G). Let W} be the closure of the set C'? with respect to the norm

lIll1- Let f € La(G).

Definition 1.1. A function u(x) is called a weak solution of the problem (1 1)
-(1.3), if u € W' and

(u, L*v) = (f,v)o Vv € C2. _ (1.6)

Definition 1.2. A function u(z) is called a classical solution of the problem

(1.1) - (1.3), if uw € C? and Lu(zx) = f(x) Vz € G.

Denote
m—1 m
Blu, v] = / [ (kv)s,, Us,, — Z (@30)z,;Ue, + (cu + Z biug, )v] dz
G .f=1 i=1

for u,v € W}(G). Let F(z,t) be a given function, defined in G x R. We assume
that F' € CAR , i.e. F(x,t) is continuous with respect to ¢ for almost every z € G
and it is measurable with respect to x € G for every t € R.

Further we consider the following nonlocal boundary value problem for the
nonlinear equation

Lu = F(z,u) in G. (1.7)

To find a function u(x) defined in G which is a solution of (1.7) and satisfies the
boundary conditions (1.2)and (1.3).

Definition 1.3. A function u(z) is called a weak solution of the problem (1.7),
(1.2), (1.3), if u € W! and

Blu, v] = (F(z,u), v)o Yo € WL. (1.8)

Nonlocal boundary value problems for different nonlinear equations of second
order of mixed type are considered in [4], [6], [13].

In the present paper we consider the case |A] < 1. In the section 2 we prove
some preliminary results and Theorem 2.1 for uniqueness of a weak solution of the
problem (1.1) - (1.3). In the section 3 we establish an important a priory estimate,
prove Theorem 3.1 for existence of a weak solution and Theorem 3.2 for uniqueness
of a classical solution of the same problem. Applying these results and Schauder’s
fixed point theorem, existence of a weak solution of the problem (1.7), (1.2), (1.3)
is proved in section 4. Using Lemma 2.5 we get uniqueness of that solution in
Theorem 4.2. Some of the results were announced in [14] without proofs.
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2. UNIQUENESS OF A WEAK SOLUTION OF THE LINEAR PROBLEM

Applying the Gauss - Ostrogradski’s theorem in (1.6) we get
Lemma 2.1. A function u(z) is a weak solution of the problem (1.1) - (1.3)
if and only if u € W' and the equality
Blu, o] = (f,0)o Yo e W} (2.1)

holds.
m—1

Denote 3; = b; — E aijz, for j=1,...,m -1 and v = h~1In A%, Obviously
i=1
v <0.

Lemma 2.2. Let u € C(G) and
h

V(z) = — /0 " exp(—vB)ulz’,0) d0+)\—i—1 O exp(—f)u(z ,0)dI  (2.2)

for x € G.Then a constant éo(A) > 0, depending only on A exists such that
[Vllo < éo(Mhlullo- (2.3)
Proof. Applying the inequality 2ab < a® + b2 for a, b € R and the Holder

inequality for integrals we obtain

h

V2(z) < 482(N)] / exp(—206) df]| / "2 0)dd),
J0O

0

where ¢2(X) = max(1, A>(A — 1)72). Since exp(—2v6) < exp(—2vh) = A~* for
1

|A] < 1, then (2.3) takes place with &(A) = 22711 — X\)~! for 5 <A <1 and

o(A) =222 for -1 < A< %, A#0.
It is not difficult to prove the following
Lemma 2.3. Let u € C? and V be the function defined by (2.2). Then

V, Vs, € C3(G), V satisfies the conditions (1.4) and V,, =0 on S, V,, (.’L‘/,O) =
AVe,(z,h)in D, i=1,2,...,m.

m

Lemma 2.4. For each w € W' a unique element V € W} exists with the
property: if {un}32, C C? is a sequence convergent to u strongly in W3 (G), and

T, h
Valz) = —/O exp(—v8)u,(z ,0)db + %/ exp(—v0)up(x ,6)d6  (2.4)
0

forz € G, n=1,2,..., then V, ":ZCV strongly in W3 (G). The inequality (2.3)
takes place for each w € W' and its corresponding element V € W’,}.
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Proof. Let u € W', {u,}2, ¢ C? and u,, — u strongly in Wy (G). Further
we shall omit the word ”strongly” It follows from Lemma 2.2 that ||V, — V;[lo <
Go(MNhllun — usllo Yn € N, Vs € N. Then V' € Ly(G) exists such that Vi, — V' in

Ly(G). Differentiating with respect to z; the integrals in (2 4) we calculate 5;3
k3

BV aun

inGforl<i<m

0 8 N — 8V —_
4 ”0 vn € N, Vs € N. Hence %nﬁmwl in Lg(G). Obv1ously o e
‘ exp( VI )u in La(G). Then the generahzed derivatives of V are V, = w;, 1 =

,...,m—1, V= —exp(—vzm)u (see [15], Ch. 1, Theorem 4.1). Hence Va s 14

in W}(G) and V € W} due to Lemma 2.3.
Further, if {i, }5%, C C? is convergent to u in Wj (G) and
Vale) =~ /0 " exp(=v0)iin(z ,6) d6 + /\% " exp(—vB)iin(z',0) dO
inG, n=1,2,..., then Vn“—:mf/ in W}(G). The inequality
IV = Vllo < IV = Vallo + Go(Whllun = nllo + Vo = Vo

implies that V' = V almost everywhere in G. Clearly the corresponding element V'
to u € C? is given by (2.2).

It follows from (2.4) and Lemma 2.2 that |[Vi]lo < &(Mhlunllo ¥n € N.
Taking a limit in this inequality, we obtain (2.3) for an arbltrary u € W' and its
corresponding element V € w1, .

Lemma 2.5. Let the derivatives bna,z,.s Kzpzmazm: Con €TISE and belong to
C(G). Let |A\| <1, v=h"1In)? and the following conditions

aij(l',,h) = aij(x/,O) vz € D, ij=1,....m—1, (2.5)
(2b,, — 3k,,, + vk)(z) > 201 in G, a1 = const > 0, ' (2.6)
m—1 m—1
3 [Fvay(a) - aije, (@) > a1 Y Ve e @
i,j=1 2 =1 s (27)
and V¢ € R™ ,al—-canst>—ma.x2ﬁ, 2
a3 st

2 _
vie = (bm = kz, )om] + o = (b — bz )2z, 2 o (Z |Bje; I) nG, (28)
J:
e = (b — kn,y )en)(@ 1) < [¢ = (b = K o) (2 ,0) in D (2.9)
hold. Then for every u € W1 and for its corresponding element V from Lemmad 2.4
one has

Blu, V] > %/ exp(—vTy,)u’ dz. (2.10)

x
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Proof. Let v € C? and V be given by (2.2). Using the equality u(z) =
~ exp(VZm ) Vs, () we express the first order derivatives of u by those of V up to the
second order and put them in Blu,V]. Then, applying the Gauss - Ostrogradski’s
theorem , we find

3
Blu, V] = _{/ exp(Vzm )(—bm + ikzm - gk)vr?m dz+
G

m-—1

1
+= / eXp Vwm Z (al]T,, + Vaz])vz, VJ:, dx—
2 G i,j=1
m-—1 m—1
/ exp(VE, ) Ve, Z B;iVz, dx — / exp(ve, \VV,,, Z Bjz; dx—
G G i
Jj=1 j=1

/ eXDWE)C — (b — Ko, o) + Cory — (b = kin Vv V2 d+
G

l\D““

6

1

+—/ exp(vZm)lc ~ (bm — ks, )z, |V m ds} = ZI]- .
2 Jac 1
The other integrals on dG are equal to zero. As usual, (nj,...,n,;,) is the unit
normal vector of 0G outward to G. Using the Hélder inequality for sums and the
inequality

lab] < gaz + 2—161)2 fora, b€ R and € > 0, (2.11)
we obtain the estimate
m—1 m—1
{3+ I4] < ——1— max Z 13 (2)]? / exp(vxm,) Z Vf7 dzr+
j=1 7=1

m—1
+ﬂ/ exp(vzm)V2 dz + i/ exp(umm)V2(Z 1Bjz; )2 dz.
2 G ay Jg j=1 ’
Then from (2.6) - (2.9) it follows that
al 2
Blu, V] > ?/ exp(vem)Vy dz.
G

Hence (2.10) holds for every u € C? and V from (2.2). The general case of Lemma
2.5 is a consequence of the considered case and Lemma 2.4.

Theorem 2.1. Let |A| < 1, v = h~'InA? and all the assumptions of Lemma
2.5 hold. Then the problem (1.1) - (1.3) can have no more than one weak solution.
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Proof. If u; and uy are two weak solutions of problem (1.1) - (1.3), then
u = uj; — uo is a weak solution of that problem for f = 0. We apply Lemma 2.5
with V| corresponding to u according to Lemma 2.4. It follows from Lemma 2.1,

(1.6) and (2.10) that 0 > %1/ exp(—vzm,)u? dr. Hence u = 0 almost everywhere
G

in G, i.e. w1 = uy almost everywhere in G.
3. EXISTENCE OF A WEAK SOLUTION OF THE LINEAR PROBLEM

Lemma 3.1. Let the derivative c,,, exist and belong to C(G). Let (2.5) hold
and p be a function, defined in [0, h], such that

p(0) > p(R)X?, (3.1)
p € CY([0, h)), p(zm) # O Yz, € [0, A], (3.2)
k(z , h)p(h)A% > k(z ,0)p(0) V& € D, (3.3)
oz, h)p(R)A? > c(z ,0)p(0) Vz € D, (3.4)
(ep' + pes,, )(z) <0 Vz €G, (3.5)
[(2b — kg, )0 — P'K](2) > 202 in G, az = const >0, (3.6)
in—1 m—1
Z (P'aij + paije,, )(T)&:€; > a2 Z & Vz e G and
ij=1 i=1 . (3.7)
ve' e R™, ay =const >0, az > 2 max Y [p(zn)5;(z)]%
@ ¢ o

Then a constant ¢, > 0 exists such that the inequality
(Lu, puz,,)o > & lull? (3.8)
holds for every u € C2.

Proof. Let u € C? and p(z,,) satisfies the assumptions (3.1) - (3.7). Applying
the Gauss - Ostrogradski’s theorem we obtain

m-—1 '
2(£uv puxm)O = / [2b1np - (pk)zmv]ug,.._ dzr + / Z (paij)rm Ug; Uz dw+
JG G .

,j=1

m—1 m—1

+2/ Pz, Z Bz, dr — / (pc)z,, u? dz —/ D Z Qij U, Uz ; N, A5+
G = G oG

1,j=1

m—1 8
+ / pku? nnm, ds + / peu’nuy, ds + / p Z 0igta, Uz, 0 = Z o
PYe g 8G G =1

ij=1
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where (n1,n9,...,n,,) is the unit outward normal vector of 9G.
Clearly

Js = /D[P(O)—p(h),\2] Z (aijuzluzj)(x’,o)dgc’,
Jg = /D[Is:(an',h)]D(h),\2 _k(x',o)p(o)]ugm(x'ﬂ) de’

Jr = /D[C(.’L',,h)p(h))\2 - C(.r’,O)p(O)]u2(x',0) diL’l.

It follows from (1.2), (1.3), (2.5) and (3.1) - (3.5) that Js = 0,J; > 0,1 = 4, 5,6,7.
Applying the Holder inequalities for integrals, sums and the inequality (2.11),
we obtain the estimate

m—1 m—1 m-1
1
!2/puz,,, Z Bius, dz| < (12/ u? dr+ ——/ pQ(Z 5]2)(2 u? )dz.
Ja = ¢ e O 7S

The Sobolev imbedding theorem ([1], 5.4) implies the inequality
lull3 < Ko 3 fua, I3 Vs € €2,
i=1

where K, is a positive constant depending only on G. From these estimates, (3.6)
and (3.7) it follows that
Tyt Ja + Ty > 26 |lulf?

N 1 . .
with é; = CY7eN min(az, az). This completes the proof.
0

Theorem 3.1. Let the derivative Ca,, exist and belong to C(G). Let (2.5) hold
and for some function p(z,,) the assumptions (3.2), (3.4) - (3.7) be satisfied. Let

p(0) = p(R)A2. (3.9)

Then for every f € Ly(G) there exists a weak solution U of the problem (1.1) -

(1.3) and the inequality
1Tl < &l fllo (3.10)

o D2
l == py= m)|-
holds with &, &P r[{)lf}z)]( [p(z:m)]
Proof. Let v € C2. The function

Tyn , h ,
() = / p O 0o+ 1 /O P~ Oz, 0) do
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is the unique solution from C? of the equation pu;, = v. The condition (1.3) is
valid on D because of (3.9). Obviously

IIUHO Sp‘z”uvlll' (311)

Let W~ be the Hilbert space with negative norm constructed by the spaces L2(G)
and W1 (see [3], 1.1.1). Denote its norm by |.||-1 and its inner product by (.,.)—1.
Thus »

(Lty, V)0 = (W, L V)0 < L] <1 ][t |l1-

Applying (3.8) and (3.11) to the left-hand side we obtain the estimate
Selello < £vl -y o € 2. | (3.12)
2

This estimate implies the existence of a weak solution U of the problem (1.1) - (1.3)
for the given f € La(G) (see [3], 2.3.4).

Indeed, consider the set Y* = {w € C(G) : w = L*v,v € C?}. Clearly
Y* C Ly(G) ¢ W' and Y* is a linear space. The mapping £* : C? — Y* is
one-to-one mapping, due to (3.12). Then the formula

o(w) = (f,v)o, w = L7V,
defines a linear functional on Y*. The Cauchy’s inequality and (3.12) imply

le(w)| < lifllollvllo < é2ll fllollwli-1, w e Y™

Hence ¢ is a bounded functional. It can be extended by the Hahn - Banach’s
theorem to a linear continuous functional ¢ on W ™! satisfying the inequality
lo(w)| < éllfllollwll—1 Yw € WL, This inequality implies that ||¢]| < &l f]lo-
Obviously ¢(L*v) = (£, v)o, Vv € C2.

Since W~ is a Hilbert space, the Riesz representation theorem provides the
existence of a unique element U € W~ such that ||¢|| = |U]|-; and

o(w) = (U, w)y_y Yw e WL,

Further, there exists an element U € Wt with the properties (see [3], 1.1.1)
(U, v)o = (U, v)—1 Yv € Ly(G) and ||U|ly = ||U||-1. It follows that U satisfies
(3.10) and (1.6), i.e. U is a weak solution of the problem (1.1) - (1.3).

Remark 3.1. If we take p(z,,) = exp(~vZrm), v = A1 InA? then (3.9) and
(3.2) are satisfied and the conditions (3.4) - (3.7) turn to

((2bm — kg, + vk)(x) > 202 in G, ay = const > 0,

m—1 m—1

Z (—vaij + agjz,, J(@)E:€5 > az Z ¢ vz € G and
hi=t =t (3.13)

m—1

ve' e Rma‘, ag = const > 0, ag > 2 max Z [[3]-(3:)]2,
az G =

(—ve+cp, )(x) <0in G, ¢(z',h) > e(z',0) in D.
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In Theorem 3.1 we can also take p(zm) = z,, + RA%(1 — A%)~! a5 in [10].
Example 3.1. Consider the equation

m—1

(kus, ), + Z Ua,z; + bz, +cu = f(z), (3.14)
i=1
h? h?
where k(z) = —(22, - hz,, + g), 0<g< R b=const. If g = T the equation

~ h? .
(3.14) is hyperbolic - parabolic in G. If 0 < g < R this is an equation of mixed

typein G. Let d(z') <0, d € C(D), v = h~'InA2. We shall notice the following
cases:

2 h ,
1/92%,b>§,0<]/\|<1,c=d(a:);
h? h o ,
2/O<g<z,b25,€ Sl/\l<1,0=d(1'),
h? h h g L h
-, = -, e < - = —(h—-2b), c=
3/0<g< 1 370> 5 - e <P <exp(=p), g 2g(h ) ¢
d(z );
h? h g -1 2
4/0<g<—4—,b>§~5,e > Al > exp(—p3), p2 = hlb+ (b* + g —
h% 1. h?

715 =207 e=d(@) or ¢ = d(a') exp(2m (2 — h)A-2).

In these cases the assumptions of Theorem 2.1 and (3.2), (3.9), (3.13) with
p(em) = exp(—vx,,) are satisfied.

Remark 3.2. It is shown in [11] that (3.6) is very important condition for
the existence of a weak solution of the problem (1.1), (1.2) in the case k(z, 0) =
k(z',h) =0Vz € D.

Theorem 3.2. Let the assumptions of Lemma 3.1 hold. Then the problem
(1.1) - (1.3) can have no more than one classical solution.

Proof. If u; and u; are two classical solutions of the problem (1.1) - (1.3), then
U = u) — uz is a classical solution of that problem for f =0. Applying Lemma 3.1
~we get 02 ¢ fjullf. Hencew =0in G, i.e. u; = uy in G.

4. THE NONLINEAR PROBLEM

Let us consider the problem ( 1.7), (1.2), (1.3). Assume that there exist positive
constants L, 7 and a function 4 ¢ L3(G) such that 1 > 5é,, where C9 is the constant
from Theorem 3.1, and

|F(z,t) ~ Fz,s)| < Lit— s| Yz € G, vt,s € R, (4.1)

1P, 6)] S 273 {A(z) + (@) "2 - 23|t} V2 € G, Ve R, (4.2)
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Theorem 4.1. Let the assumptions for F(x,t) and the assumptions of The-
orem 2.1 and Theorem 3.1 hold. Then the problem (1.7), (1.2), (1.3) has at least
one weak solution.

Proof. Let Ag = ||Aljo. Consider the set W = {w € L2(G) : fwllo < Aon™'}.
The inequality (4.2) gives (see [5], 12.10 and 12.11)

1F (@, w5 < 405+ [(E2) 7 = *llwils < A8(am) ™

for every w € W. Let w € W and U, be the unique weak solution of the problem
(1.1) - (1.3) for f(x) = F(x,w) due to Theorem 2.1 and Theorem 3.1. From (3.10)
and the estimate for ||F(z, w)|lo it follows

NUullo € Welli < élF(z,w)llo £ Aon™".

Hence U,, € WN WL

We define an operator 7' : W — W by the formula Tw = U,,. The equality
(2.1) shows that B{T'w, v] = (F(z,w), v)o Yv € W!. Applying the Schauder’s fixed
point theorem ([5], 30.11) we shall establish that this operator has a fixed point.

Obviously W is a bounded, closed, nonempty subset of the Hilbert space La(G).
It is a convex set, because ||pw1 +(1 = p)wallo < pllwillo+(1—p)ljwallo < Aoy~ for
every wy, wy € W and 0 < p < 1. Consider a sequence w;, wa, ws, ... belonging
to W. Let wo € W and |jw, —wollo_ —_0. Denote U, = Tw,, n=0, 1, 2,.... We
have T 3

B[U, — Uy, v] = (F(x,w,) — F(z,wp), v)o Yv € W,

i.e U, —Uj is the unique weak solution of the problem (1.1) - (1.3) for f = F(z,w.)—
F(z,wp). It follows from (3.10) and (4.1) that ||[U, — Uglle £ & F(z,wn) —
F(z,wo)llo € é:L|jw, — w0|[0 — 0. Hence the operator T : W — W is con-
tinuous.

In order to prove that T is a compact operator we have to show that the
set T(M) is a precompact set in Ly(G) for every bounded set M € W (see [1],
1.16 and [5], 3.10). Since T'(M) C T(W), it is sufficient to establish that T(W) is a
precompact set in L»(G). Consider an arbitrary sequence U, = Twy, n=1,2,....
It is bounded in W!, because

(Unll < 4om™!, n=1,2,.... (4.3)

This inequality and the Rellich - Kondrashov imbedding theorem ([1], 6.2) imply the
existence of a subsequence {U,, }52, strongly convergent in Ly(G) to an element w.
Since T(W) C W and W is closed, then u € W. Therefore T(W) is a precompact
set, i.e. T(W) is a compact set in Lo(G) ([8], Ch. 1, 5.1). Let us notice that W' is a
Hilbert space with the inner product of WJ(G). It follows from (4.3) and Theorem
1.17, [1] that the subsequence {Uy,;}?<; can be chosen to be weakly convergent in

W' to @ € W!. Then Un, — @ weakly in Ly(G) (see [15], Ch. 1, pp. 60 - 61).

70

Hence u =4 € W'.
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The Schauder’s fixed point theorem implies the existence of a fixed point U of

the operator T', i.e. U = T'(U). Thus U € W' and
B[U, v] = (F(z,U), v)o Yo € W,
i.e. U is a weak solution of the problem (1.7), (1.2), (1.3).

In the proof of Theorem 4.1 we have applied the same method as in [2, 16],
where local boundary value problems for nonlinear equations of mixed type in two-
and three-dimensional domains have been investigated.

Theorem 4.2. Let the assumptions for F(z,t) with L < a1[2hég(A)] ™2, where
¢o(A) is the constant from Lemma 2.2, and the assumptions of Theorem 2.1 and
Theorem 3.1 hold. Then the problem ( 1.7). (1.2), (1.3) has exactly one weak solu-
tion.

Proof. Let Uy, Uy be two weak solutions of (1.7), (1.2), (1.3} and u = Uy — Us.
Then v € W' and

Blu, V] = (F(z,Th) ~ F(z,03), V)o,

where V € W*l is the corresponding to u element due to Lemma 2.4. It follows

from Lemma 2.5 and (4.1) that %/ exp(—vay,)u? dr < Liluflo[[Vllo. Applying
G

(2.3) and the inequality 1 < exp(—vz,,) for z,, > 0, we obtain

9‘21”“”3 < Lhéo(A)Jjulff.

Suppose Jlujlg # 0. Since L < o1[2hég(X)]™1, then Lhéy(M)lfull? < %Huﬂg So we
have come to a contradiction. Hence u = 0 almost everywhere in G.
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THE BIQUARD CONNECTION ON RIEMANNIAN
QUATERNIONIC CONTACT MANIFOLDS *

IVAN MINCHEV

The conformal infinity of a quaternionic-Kahler metric on a 4n dimensional manifold
with boundary is a codimension 3-distribution on the boundary called quaternionic
contact structure. In order to study such structures O.Biquard [1] has introduced a
unique connection which preserves the structure and whose torsion tensor satisfies some
conditions. This paper is devoted to obtaining an explicit formula for the torsion tensor
and for the connection itself.

Keywords: connection, torsion, quaternionic contact structures
2000 MSC: 53C15, 51H25, 53C05

1. INTRODUCTION

The quaternionic contact structures have been introduced by O.Biquard in [1]
and [2]. Namely, a quaternionic contact structure on a (4n+3)-dimensional smooth
manifold X is a codimension 3 distribution V such that at each point z € X the
nilpotent Lie algebra V, @ T, X/V, is isomorphic to the quaternionic Heisenberg
algebra H™ & ImH, where nilpotent Lie algebra structure is defined by

_ [ mnxpv.ab] ifabeV;
[a, ] {0 otherwise (L.1)

and the Heisenberg algebra structure is given by the formula

!Partially supported by Contract 154/2005 with the University of Sofia “St. K1. Ohridski”.
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m m m.
[Z -Tiei,zl'ieijl = Imzfiyz‘- (1.2)
=1 i=1 i=1 ,

This is equivalent to the existence of a 1-form n = (9,12, n3) with values in
R3such that V = Ker 5 and the three 2-forms dm;y are the fundamental 2-forms
of a quaternionic structure on V. The 1-form 7 is given up to the action of SOz on
R3 and up to a conformal factor.

If we pick up such a 1-form # (globally defined), we obtain the quaternionic
structure on V' defining the three endomorphisms I; = (dy,) ™" o(dnjy) : V-V,
where (i, 7, k) is any cyclic permutation of (1,2,3). Obviously, this quaternionic
structure does not depend on the choice of . We also define the metric g on V by
9(X,Y) = dn,(X, LY). This metric is given up to the conformal factor because it
depends on the conformal factor of 7. Further, Biquard has shown ([1]) that there
exists a unique triple of vector fields {R1, Ra, R3}, which satisfy n,(Rx) = sk,
(ir.dns)yv = 0 and (ig dik )y = —(ir,dns);v. Using this triple we define the metric
g on the whole T; X, putting sp{R1, R2, R3s} L V and g(Rs, Ri) = dsx- This metric
does not depend on the action of SOj3 but it depends on the conformal factor of 7.
In my exposition I will assume that this metric is fixed. Also, in order to capture the
3-Sasaki structures, I will assume that the fundamental 2-forms of a quaternionic
structure on V are %dm,v instead of di);;y,. Obviously, these assumptions make no
restriction to the general case.

I also assume throughout the paper that the dimension of the base manifold is
4m + 3 > 7. The case dim X=7 needs a special approach ([3]).

The interest in quaternionic contact structures is motivated by the result of
Biquard 1] on Einstein deformations of HH™, which asserts that if a quaternionic
contact structure on S~ is close enough to the standard one, then it is a confor-
mal infinity of complete Einstein metric. This result of Biquard is a generalization
of a Graham-Lee [4] theorem on Einstein deformations of real hyperbolic space.

In the Salamon’s [5] construction of the twistor space of a quaternionic Kéhler
manifold one uses the Levi-Civita connection to define the horizontal space for
the fibration. In the case of quaternionic contact structure, there is no canonical
connection. So using the analogy with the Tanaka-Webster [6] connection in CR
geometry, Biquard [1] has introduced a unique contact quaternionic connection
which I will call the Biquard connection.

This paper is devoted to study the properties of the Biquard connection. Many
of its properties have been proved by Biquard [1], but he did not prove an explicit
formula for the torsion tensor. This I have done in Theorem 5.3 - (i), corollary
5.1 (together with Theorem 5.4) and corollaries 5.4, 5.5 and 5.6. The key point
in calculating the torsion tensor is the formula for the tensor @ (see Corollary 5.1)
which I have obtained redoing in completely different way the proof of the theorems
5.3 and 5.4.
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2. BASIC DEFINITIONS

Let (M, g) be an orientable Riemannian manifold of dimension 4n +3 > 11.

Definition 2.1. A triple (V,Q, ) will be called an Almost Contact Quater-
nionic Structure on M if

(i) V is codimension 3 distribution on A

(ii) @ is an almost quaternionic structure on V and

(iii) ¢ is a linear map from V+ to Q which preserves orientation and which
sends the unit sphere of V1 into a set of complex structures of Q.

Let Jl,JQ,J;g € Q,Jiz = J22 = J‘32 = ﬂl,J1J2 = —.]2]1 = J3 be the usual
quaternionic basis of (). Then the set of all complex structures in @ could be
thought as a two dimensional sphere {300 | 3, (@) =1} It is easy to see
that another triple Jl, Ja, Js € Q, J; = >k k J, forms quaternionic basis, too, if
and only if the matrix (a¥)s.3 belongs to SO(S)

We will denote with W the 3 dimensional distribution ¥V and with 5?2 the

unit sphere in W . Let &, £, & € S%. Then by definition (¢(&;))? = —1 and

Lemma 2.1. The triple p(€1), (&), p(€3) forms a quaternionic basis of Q if
and only if £1,&2,&y is orthogonal and oriented basis of W.

We will say that the map ¢ originates from the exterior derivative if across
any point in M one can find orthonormal local basis {£;,&2,&} of W such that
g((P(&)X,Y) = %d(bgz)(XaY)» X7Y € ‘/7 1= 172a3, where bfz(X) = g(gvX)a X €
TM.

Definition 2.2. An almost contact quaternionic structure (V,Q, ) on M is
called contact quaternionic structure if ¢ originates from the exterior derivative.

3. THE STRUCTURE GROUP

We consider the space R*"+3 = R" x R® =Vp+ W, with standard quaternionic
structure Qg on Vy = R*". Let I, Jy, Ko be the standard quaternionic basis on Qo
and {ey, ez, e3} the standard basis on Wy = R? . We consider the map ¢q : Wy —
Qo, woler) = Ip, pole2) = Jo, woles) = Ko. So we obtain a constant contact
quaternionic structure (Vp, Qg, wo) in RS,

Let G denote the group of all endomorphisms of O(4n + 3) which preserve the
structure (Vy, Qo, ¢o). Obviously G is a subgroup of SO(4n + 3).

Theorem 3.1. The manifold M admits an almost contact quaternionic struc-
ture if and only if its structural group could be reduced to the subgroup of G.
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Let A € Sp(n)Sp(1) and

A[()A_I = ailo + a]2J0 -+ a‘?Ko
AJ()A_l = a%I() + a%.]() + agK()
AI&,()A-L = a;l;I() + (J,%J() -+ a%K() .

Then the matrix (a¥)s,5 belongs to SO(3) and we obtain a homomorphism 7 :
Sp(n)Sp(1) — SO(3).
Lemma 3.1. The group G can be represented by
G ={(A7(4)) | A€ Sp(n)Sp(1) }
Corollary 3.1. The group G is isomorphic to Sp(n)Sp(1).

We denote this isomorphism with A : Sp(n)Sp(1) — G, M(A) = (4,7(A)), A €
Sp(n)Sp(1). ,

Let g be the Lie algebra of G. We will identify R® with sp( 1). For any matrix
A € sp(n) @ sp(1) let a = (a1,as,a3) be its projection in sp(1).

Lemma 3.2. An endomorphism t € gl(4n + 3,R) belongs on g if and only if
there exists a matriz A € sp(n) & sp(1) such that

tx+y)=Ar - 2aAy, z €R", yeR:

Proof: We compute (A A)(z +y) = Az + y1[4, o] + y2[A, Jo] + 3[4, Ko] =
Ar +2a ANy, where a is the sp(1) component of A, considered as an element
of R®. O

4. CONTACT QUATERNIONIC CONNECTIONS

Let on the Riemannian manifold M be fix an almost contact quaternionic
structure (V, @, ¢).

Definition 4.1. A Riemannian connection is called contact quaternionic con-
nection if its holonomy group is contained in the group G.

Theorem 4.1. An arbitrary Riemannian connection V is contact quaternionic
if and only if it satisfies the conditions:

(i) for any vector fields X € TM and v € V, Vxv € V (i.e. V preserves V
and W =V+4), .

(i1) V preserves Q,

(iil) Vi = 0.

Note: In fact, the condition (ii) follows from the other two.
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5. THE BIQUARD CONNECTION

For the rest of the paper we will assume that the fixed structure (V,Q, ¢) on
M is contact quaternionic, i.e. the map ¢ originates from the exterior derivative.
This means that in some neighborhood of any point on M we can find a 1-form
n = (M. n2,ns) with values in R?, such that V = Ker 5, the three 2-forms w;,
defined by

. .
wiy = §d7h:|v (5.1)
ixw; = 0, XeWw

are the fundamental 2-forms of the quaternionic structure ¢ and the three vector
fields (#m, #n2, #13) form an orthonormal basis of W such that g{o(#m:)(X),Y) =
wi(X,Y). We fix this form 7 and denote & = #mn;, I; = #w;. In particular we have

Liw =0, Ll = Iy, and I}y, = —idy (5.2)

where (i,j,k) is any cyclic permutation of (1,2,3)

Let D denote the Levi-Civita connection on M and let 7 be the orthogonal
projection from TM to V. We define VxY = w(DxY) for any two vector fields
X,Y € V. We may regard V as a part of Riemannian connection which preserves
the distribution V. Our purpose is to extend V to the connection on all Al which
preserves our contact quaternionic structure.

Let T denote the torsion of V. It is easy to see (Biquard [1]) that

T(X,Y)=-[X,Y]w, XYeV. (5.3)

Theorem 5.1 (Biquard [1). | V preserves the quaternionic structure Q of V
if and only if

(i) te,dnagy =0, a=1,2,3 and

(ii) ig,dngy = ~ig,dnajv, a # B.

More precisely. if these two conditions hold, we have

Vxwa = —dna(§s, X)wps + dny (§a, X)wsy, (54)
where X € V and (o, §,7) is a cyclic permutation of (1,2,3).
For any p-form w we denote mw(Xy, ..., Xp) = w(nXy,..., TXp).
Lemma 5.1. We have

. 3
2o = wds = dm — Y _ms Aig.dm) + Y dmilEs,Ems Ame

s=1 1<s<t<3
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Proof: We have 2w;(X,Y) = dn,(X — n(X),Y —n(Y)) =
=dni(X,Y) = dni(X, n(Y)) = di(n(X), Y) + dnu(n(X),n(Y)), etc. O

From now on we assume that the conditions of the Theorem 5.1 hold. Using the
equation V¢ = 0, we are able to determine (Biquard [1]) the covariant derivative
Vx€é, X e V.£ € W. We have

Vx€&=[X,&w (5.5)

Let H be a subgroup of Gl(4n,R) and h be the corresponding Lie algebra.
Suppose that on V is given an H-structure and an extension of our connection in
form V¢ X wich preserves the H-structure. Then, for the torsion T, we obtain

T(€,X) = VeX - Vx€~[6,X] = VeX —[6,X]y €V (5.6)
In particular, we may regard T'(,.) as an endomorphism 7; cof V.

Lemma 5.2 (Biquard [1]). For any H-structure on V' there erists a unique
extension of our connection in form V¢ X which preserves this structure and such

that
T; € ht, EeW.

Proof: Let V be an arbitrary extension of the covariant derivative which pre-
serves the H-structure. Then for any other extension V which preserves the H-
structure we have Ve X = V¢ X + ag(X), where a¢ 1s an endomorphism of V' and
ag € h. We obtain

T(EY) =T X)+a:(X), €W, X eV.

Obviously the tenzor ag¢(X) might be chosen in a unique way. [J

It follows the main theorem.

Theorem 5.2 (Biquard [1]). If the conditions

() ie,dnayv =0, @=1,2,3

(i) ie,dngy = —ig,dnav, a # 8
are satisfied, there erists a unique contact quaternionic connection V with torsion
T such that

(1) T(Xa Y)= -[X’Y]VV7 X,YeV

(i) Tg € (sp(n) ® sp(1))*, E €W

We call this connection the Biquard connection.

One may decompose the tensor T;(we regard it as an.endomorphism of V
which by the definition belongs to (sp(n) @ sp(1))*) in two components: T - the
symmetric one and a¢ - the anti-symmetric. We have

T =T +ae (5.7)

162 ‘ Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 157-170.



Note: Through the Lemma 5.2 one can construct connection V° using the
group H = SO(4n) instead of H = Sp(n)Sp(1). Then, according to the Lemma,
T, € so(4n)L, where T” is the torsion of V°. We have

Te(X) = To(X) + be(X), E€EW, X €V (5.8)

and since V and V' both preserve the metric, be € so(V). So we obtain again the
decomposition (5.7) and in particular T = T,.

My next aim is to calculate the torsion tensor T’ of the Biquard connection.
Theorem 5.3 (ii) and (iii) and Theorem 5.4 were originally proved by Biquard [1],
but in order to obtain an explicit formula for 7 I will remake there proofs in
completely different way.

We will use the following well known lemma:

Lemma 5.3 (Biquard [1]). Any endomorphism u of V might be decomposed
uniquely:
v=uttt fut T pum T u

where ut+tt commutes with oll three I;, ut~— commutes with I, and anti-commutes
with the others two and etc. In fact we have

Tt = u - Luly — Lul; — Iuls.
dut™ " = u— Liuly + Luly + Iyuls.
4=t =u+ Luly — Luly + Iuls.
qu=~t = u+ Liuly + Iuly — Izuls.

We . define L'X(Y) = 7Lx(Y), X,Y € TM, where L denotes the Lee differ-
entiation. If we regard the distribution V as a vector bundle over M, then we
may regard L'y and Vx as two differentiations of the tensor algebra of this vector
bundle. In fact, for any differentiation of V we have the following useful lemma.

Lemma 5.4. Let D be any differentiation of the tensor algebra of V. Then
we have

(l) D(Il)L = —IiD(Ii), 1= 1,2,3

(i) LD(I,)"" = LD(LL)*~~ (The other two identities could be obtained
through cyclic permutation of (1,2,3)).

Proof : We calculate
0 = D(=Idy) = D(I,L;) = D(I;)I; + I, D(1;)
and we obtain (i). To get (ii), we calculate
0= DI, + 1) = LD(I,) + D(I1)I; + D(I;)I, + ,D(L)) =
= I,(D(I) — bD(I)Iz) + h(D(I2) — L D(L)];) =
=LD(L) """+ LD(I)*"". O
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Theorem 5.3. For any X,Y € V the symmetric component T® of the torsion
T satisfies:

(1) 9(TE(X),Y) = 5Le,g(X,Y), i=1,2,3;

(i) (Biquard [1]) T2 (LX) = —~LT{(X), i =1,2,3;

(iii) (Biquard (1)) L(Tg))* =~ = L,(TQ)~*~ (The other two identities could be
obtained through cyclic permutation of (1,2,3)).

Lemma 5.5.

Le Iy =—2T8 " T Ip— 2sttdm (&2, &)i+5 (d7)1(§2,§3) dna(€s, &1)—dns(§1,62)) I3
(5.9)

Le,Iy = —QT&_—+11+213ﬁ+d7)2(€1,52)12—%("(1771 (&2, &3)+dn2(&s,61)—dns (&1, &2)) I3
(5.10)

LI = =213 I + dm (&, €2) T2 + dm (€1, €5) 5 (5.11)

and siz more identities which may be obtained through cyclic permutation of (1,2, 3).
Here i is symmetric endomorphism of V which commutes with I;, I, and Is.

Proof: (Theorem 5.3 and Lemma 5.5) Let X,Y € V. Using (5.6), we calculate

1
Q(TgO,Xa Y) = 5(9(TEiX»Y) +g(T€iYaX)) =

= 36(Ve X ~[6X]y,¥) +9(Ve ¥ - [6¥]y. X)) =

1 1
= §(§1Q(X7Y) - g([ng]V’Y) - g([{tY]V,X)) = §L€79(X7Y)
We also have
L§iwj(X? Y) = §ig(IjX7 Y) - g(I][th]aY) - g(I]Xv [é.za Y]) =
= Lﬁig(IjX» Y) + g((Liilj)X, Y)
which leads to
#Lew; =201 + Le I (5.12)

On the other hand, using Lemma 5.1 and the well known 1dent1ty Lew; = ig,dw; +
dig,w;, we compute

Le,wipy = dni(&i,§5)w; + dni(§i, Ek)wr, (5.13)

where (2, j, k) is cyclic permutation of (1,2, 3). So we obtain
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Le, Ii = =2T8 L + dni(&i, €)1 + dmi(6i, k) I (5.14)

Now we apply Lemma 5.4 (i) for D = L’ and this completes the proof of Theorem
5.3, (i) and (ii).

We use the well known formula Le,ws = i¢,dwa + dig,ws and Lemma 5.1 to
compute

1 .. . )
(Leywa)yy = 5(d(ieydnz) — i, ditg Nigydn)yy - (5.15)

Next we apply the condition (i¢) of Theorem 5.1 to obtain

b

(Le,ws + Leywn )y = 5 (d(ie, dnz) + d(ig,dm)) )y =
= dm1 (&2, &1)w1 + dn2(61, E2)wz + (dn1 (€2, €3) + dn2 (61, €3))ws (5.16)
On the other hand, (5.12) leads to
90 Iy + L, I + 2T8 11 + Le, Iy =

= dn1 (2,61 + dna(&1,&2) 2 + (dm (€2, &3) + dna2(61, &) 5. (5.17)

Now we decompose (5.17) according to Lemma 5.3 to get

’ +—— -
Le I, = -2T¢, "I + dmy (&2,6)1h (5.18)
’ —t— o——+
L, I ==2Tg, L +dna(&, &) (5.19)
’ ’ ——+
(Le, I + L, 1) = (dm(62,&3) + dn2(61,863)) 13 (5.20)
T T L+T) T L =0 (5.21)

Obviously, (5.21) completes the proof of Theorem 5.3. Using (5.20), we define

i = ILy Ty 5 (G &) - dmlés, &) - dm(6, @)Idy = (5:22)

= —Iangle——+ + %(~dm(52,€3) +dn2(€3,61) — dms (€1, 62)) v

Applying Lemma 5.4 for D = L', we obtain the formulas in Lemma 5.5.
Now we shall show that @ is symmetric. For any X,Y € V according to (5.12)

we have
Le,w2(X,Y) = 29(Te 1 X,Y) + g(Le, L X,Y).

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2008, 157-170. 165



But L¢,w2(X,Y) is skew-symmetric and applying (5.9) we get
0= symm(ZTgol I, + L;l 1) = —Izantisymm(24) a

Let (4,4, k) be any cyclic permutation of (1,2,3). We define three 2-forms

As = Sr{d(rlic ) + (i, dny) A Gig.dm)} = (5.23)

1 . . .
= gm{d(icdi) + (ig, dny) A (ie,dne)} — dme (&5, &k )wn + dni(&i, &5 )ws
We put this into (5.15) to get
(Le,wa)y = As + dnz (61, §2)wa — dnz(€s, &1 )ws

On the other hand, using (5.9) and (5.12) we calculate

#Léu“’? = 2T, T L—2Li+dn (&, §1)11+%(d771 (€2,&3)—dna(&3,&1)—dnz(&1,&2)) I3

We decompose the last two identities to obtain
Lemma 5.6.

#ATT =210 L

#AT T =dn(&, &)

#ATTT = —dm(&,6) ],

#A; 7T = —2La + $(dm (&2, &) + dne(€s, &) — dna(€1, 2)) 3

Analogous formulas for A; and Ay may be obtained through cyclic permutation of
(1,2,3).

Corollary 5.1. For the symmetric tensor & we have

20 = LA™ + 3 (i (62,69) + dna(65,60) + dns(6r, €))Ly =

= L#FATTT + S (dm (&, 83) — dna(€s, &) + dms (&1, &) dy =

O] =

= Ty + 3l (€2,65) + dma(6a 1) — (6, £2)) Ty

and also

tr(a) = Str( AL + nl—dm(E2.E5) + dna(€an &) + dm(61.62)) =

= %tr(fz#fb) + n(dm(&2,€3) — dnz(€3,&1) + dns(€i, &2)) =

= %tr(fs#As) + n(dn (82, &) + dn2(€3,61) — dns (&1, &2)).
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Theorem 5.4 (Biquard (1]). For anyi=1,2,3 we have
va. = Tg + Lu.
Here u =4 — ( )Id‘/ and u is given in Corollary 5.1.

Proof: First we denote with 2 the space of symmetric endomorphisms of V
and with “ant” the projection

ant : End(V) = #XZ3(V) @ #A%(V) — #A%(V).
We have

4[T§I](}32€95p(”))_1_ = 3ant(T,)+Iant(Te, ) 1 + Toant(Te, ) Io + Izant(Tg, ) Is = (5.24)

; .
Z (ant(Te,) + Liant(T¢,)Is).

We apply (5.6) and for any X,Y € V, we obtain

3
94T ) pspn+ X5 Y) = = D_9((Ve L)X, LY )+ (5.25)
s=1
1 3
3 AL L)X LY) = g((Le, L)Y, LX)}
s=1

We have also

va‘ = [Tii](sp(n)EBsp(l))J- = Tgo, + [Tﬁi](z'z@sp(n))"‘ - [Tfi]SP(l)'

Now we apply Lemma 5.5 and the theorem follows. O

Corollary 5.2. Ix(Te,)* = = Ii(T¢, )™~ (The other two identities could be
obtained through cyclic permutation of (1,2,3)).

Corollary 5.3. Forany X, Y €V
1
g(VEin Y) - ELE.'Q(X» Y) + g([gh X]’ Y) + g(IiUX> Y)'
Corollary 5.4.

Ve I = —dni(&3,6) I3 + dm (&1, 52)12
Ve Ip = —dm(§1, &) + (- @ 1 L(dm (&2,&8) — dma(€s,61) — dns(€1,62))) ]
Ve, Iy = *(—%%Q + %(dm(&,&s) dn2(£37fl) dns(é1,E2))) 12 + dm(&s,61) 1
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Ve, I = ‘(—%(ni) + 3 (—dm (&, &) + dna (€3, 61) - dns (€1, &) s + dnz (&1, &)1,
Ve, Io = —dna (€1, &)1 + dnz({g,&s)[a
Veads = —dm (&2, &) Lo + (~ 58 4 L(~di (&2, &) + dna(E5. &1) — dia(6r, &)1

Ve i = —dm(&, &)1 + (58 4 L(—dn (&, &) — dnz(&3,61) + dnz(£1,62))) I
Ve lo = (=58 4 L(—dny (6, 6) - dn2(&3,&1) + dns(€1,&2))) 11 + dns (&2, €3) 15
Ve Is = —dna(§,€3) 2 + dns(€s, €)1,

Of course we may write all this formulas briefly as follows
VeI = —a;(€) Ik + ai(&5)1;, (5.26)

where a;(&) = —8ia(H2 + L(dni (&2, &) + dm(&,61) + dn3(€1,82))) + dns (. &),
s =1,2,3 and (i, 7,k) is any cyclic permutation of (1,2,3).

Proof: According to (5.6) we have
Veli = [Te L)+ Le I = [T, L) + ull,, 1) + Ly I,

We apply Lemma 5.5 to get the corollary . [J

Corollary 5.5.
Ve b = —a;(&)& + ar(€)E;,
Here (&) is the same as in (5.26), (i, j, k) is any cyclic permutation of (1,2,3)
and s =1,2,3.

Corollary 5.6.
tr(d)

(&, &) = - & ~ [&,&]v-
Here i,j,k is any cyclic permutation of (1,2,3).
Proof: Using Corollary 5.5 we compute

T(6:,65) = Ve & = Ve 6 — [€,&] = ~ tr7(1u)

&~ [&.&lv. O

6. THE 3-SASAKIAN CASE

Let on the Riemannian manifold (M, g) be given a 3-Sasakian structure. This
means there are given three Killing vector fields {61,£2,&3}, which satisfy

(I) g(&?vﬁ]) = (S’ij’ 77.7 =1,2,3

(ii) (&, &5] = —2&, for any cyclic permuatation (4,7,k) of (1,2,3)

(ili) (Dx L)Y = g(&.,Y)X —g(X,Y)&, i =1,2,3, X,Y € T'M. Where L(X) =
Dx&; and D denotes the Levi-Civita, connection.

We denote V = {1, &, fg}l. We shall use without proof the next well known
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Lemma 6.1. Let (i,7, k) be any cyclic permutation of (1,2,3). We have

Ii(&) = &; (6.1)
Lolj(X)=NLX, XeV; (6.2)
Lio(X)=-X, X€V; (6.3)

dn(X,Y) =29(LX,Y), X,YeV. (6.4)

If we define W = space{&1,82,&3}, Lyy = ji]\/’ Lyw = 0 and (&) = I; we
clearly obtain a contact quaternionic structure (V,Q = {I1,I,Is},¢) on M. In
this case it is easy to calculate

Lemma 6.2.

ig,,dn.,-w =0 foralli,j=1,2,3; (6.5)
dni(€2,63) = 2, dmi(&1,63) = dm(§, &) = 0; (6.6)
Ay = Ay = Az = 0; (6.7)

= %Idv. < (6.8)

Theorem 6.1. The contact quaternionic structure (V,Q,¢) satisfies the con-
ditions of the Theorem 5.2 and therefore it admits the Biquard connection V. We
have

(1) VXL‘ :O,X S Vq

(i) V¢, I, =0,

(i) Ve, I; = =21, V¢, I; = 21, here (i, 5, k) 1s cyclic permutation of (1,2,3).

(iv) T(&&5) = — 2%k

(v) T(£,X) =0, X €V.
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CYCLIC CODES AS INVARIANT SUBSPACES
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The description of the linear cyclic codes as ideals in the algebra §, = Flz]/(z" — 1),
where F is a finite field, is well known in the coding theory. The map cyclic shift is a
linear operator in F™. Our aim is to consider a new method of describing the cyclic
codes as invariant subspaces of F'" regarding this operator.

Keywords: Cyclic codes, invariant subspaces.
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1. INTRODUCTION

The linear cyclic codes are traditionally described using the methods of the
commutative algebra (see [2] and [3]). Since the linear codes have the structure of
linear subspaces of F™, the description of the linear cyclic codes in terms of the
linear algebra is natural. _

The main purpose of this paper is to study some properties of the cyclic codes
as invariant linear subspaces. Some generalizations for consta-cyclic codes are con-
sidered.

2. SOME LINEAR ALGEBRA

Let F = GF(q) and let F" be the n-dimensional vector space over F' with
standard basis e; = (1,0,...,0), e2 = (0,1,...,0),...,e, = (0,0,...,1).
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Let
) F'Il — F7L

) {(13113321""2:71) — (mn,l'l,---y-rn—l) )

Then ¢ € Hom F™ and has the following matrix
000...1
100...0
A=]010...0
000...0
in the basis e1,es,...,e,. Note that A* = A~! and A" = E. The characteristic
polynomial of A is

-z 0 0 ... 1
1 —x 0 ... 0
0 =(-1)"@"~1)

fa(z) = 0 1 =T

Let us denote it by f(z).
We show the following well known fact.

Proposition 2.1. Let U be a p-invariant subspace of V and dim pV = n. Then
foly (%) divides f,(z). In particular, if V=U ®W and W is p-invariant subspace

Of F™ then fxp(l‘) = fsolp(m)ﬁp!w (JJ)
Proof: Let dim pU = k and let g1, ..., gx, be a basis of U over F. We complement

this basis to a basis g1, ..., gk, gk+1, - - . , gn of V. Then the coordinates of the vectors
©(g1), ..., (gx) from the (k+1)-th vanish and hence in this basis ¢ has the matrix

a1y ... Q1% Ay k+1 ... Cip
A= Okl - Ok Qg ktl ... Qg (A B
10 0 ktprksr - aktin | -\ 0 A/
0 ... 0 ks -.. Qn.n
x1y ... Mk
The matrix A; = | .......... is obviously the matrix of ¢ in g,...,gr. Then
. Akl - Ol

fo(z) =det (A’ — zE) = det (Al -rE B ) _

0 AQ—.’EE

= folp (x)det (A3 —zE). O
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Let m be the multiplicative order of ¢ modulo n, i.e., m is the smallest natural
number with the property that n divides g™ — 1. Then GF(g™) is the splitting field
of f(z) over F. Let f(z) = (—1)"fi(z)... fu(x) be the factorization of f(z) into
irreducible factors. We assume that (n, q) = 1. In that case f(x) has distinct factors

fi(x), i =1,..., ¢, which are monic.
Let denote by U; the space of the solutions of the homogenecous system with

matrix fi(A) for each i = 1,...,t, i.e., U; = Ker fi(p).
Theorem 2.1. The subspaces U; of F™ satisfy the following conditions:

1) U; is a p-invariant subspace of F™;

) F'=U;®---® Uy

3) dimU; = degf,; = ki;

4) fol, (z) = (=1)* filx);

5) U; is a minimal p-invariant subspace of F™.
Proof: 1) Let u € Uy, i.e., fi(A)u = 0. Then f;(A)p(u) = fi(A)Au = Afi(A)u =0
so that o(u) € U,.

2) Let fi(z) = f(z) for ¢ = 1,...,t. Since (fl( )., fi(@)) = 1, by the

Euclidean algorithm there are polynomlals a1(z),...,at (x) € F[z] such that

a1 (@) fi(@) + -+ a(z) folx) =

Then for every vector v € V' the condition v = al(A)fl (Ayv+---+ ai(A) fi(A)v
holds. Let v; = a;(A)f;(A)v. Then f;(A)v; = a;(A)f(A)v = 0 so that v; € Us.
Hence

=U;+ -+ U,

Assume that v € U; N Z#i Uj, then fi(A)v =0, fi(A)v = 0. Since (fi,f,;) =1,
there are polynomials a(z),b(z) € F(z], such that a(z)fi(x) +b(z)f;(z) = 1. Hence
a(A) fi(A)v + b(A) fi(A)v = v =0, so that U; N 3., U; = {0}. Thus

Fn:Ul@@Ut

3) Let g € U; be an arbitrary nonzero vector and let £ > 1 be the smallest
natural number with the property that the vectors g, (g), . .., 9*~1(g) are lincarly
independent. Then there are elements cp,...,ck—1 € F, at least one of which is
nonzero, such that

¢*(g) = cog + c10(g) + -+ - + ck—10* 7 (g).

Consider the polynomial t(z) = z* — ¢cx_12*71 — .- —¢o € Flz]. Since (t(p))(g) =
(fi(¥))(g) = 0, it follows that [(t(z), fi(x))(¥)l(g) = 0. But (¢(z), fi(z)) is 1 or
fi(x). Hence (t(x), fi(x)) = fi(x) and fi(z) divides t(x). Thus k; = deg fi(x) <
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degt(x) = k. On the other hand, the vectors g, o(g),..., " (g) are linearly depen-
dent, since (fi(v)){g) = 0, and from the minimality of & we obtain k = k;. Then
dimU; > k;. Therefore

t a ¢
n=dimpF® =Y dimpl; > ki=) degfi=degf=n
i=1 i=1 i=1
and dim pU; = k;.

4) Let g{i),...,g,(c? be a basis of U; over F,i = 1,...,t, and let A; be the
matrix of @|y, in that basis. Let f; = felu, - Suppose ( fir i) = 1. Hence there
are polynomials a(z),b(z) € Flz], such that a(z)fi(x) + b(z)fi(z) = 1. Then
a(A;) fi(A:;) + b(A;) fi(A;) = E. Therefore b(A;)fi(A;) = E. We will show that
fi(A;) = 0, which contradicts the last equation.

By the property 2) we obtain that g§1), RN g,(cll), ey ggt), e ,g,(ctr) is the basis of
F™ and the matrix of ¢ in that basis is -

A
a=| ®
A
Beside this A" = T~'AT, where T' is the change basis matrix from the standard
basis of F™ to that one. Then

fi(A1)
’ f1(A2) -1 -1
fi(A") = . = fi(T7AT) =T~ fi(A)T.
fi(Ar)
Let gj(i) = )\g?e] 4+ .4 )\)(-267“ j=1,...,k;. Since g§i) € U;, we obtain

0 0 i
: : ’\.5'1)

A =T AT |1 | =T i | : | =0,
: : (1)
d d Ajn

where 1 is on the (k1 +--- + ki1 + j)—th position. According to the last equation,
fi(A;) = 0. Therefore (f;, f;) # 1. Since f; and f; are polynomials of the same
degree k; and f; is monic and irreducible, we obtain f; = (~1)% f;.

5) Let {0} # U C U;. Then by Proposition 2.1 we obtain f,,, divides f;. Since
the polynomial f; is irreducible, dim pU = dim pU; and U = U,. N}

Proposition 2.2. Let U be a o—invariant subspace of F™. Then U is a direct sum
of some minimal p—invariant subspaces U; of F™.
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Proof: Let ﬁz’ =UnU;,i=1,...,t. Then U, is {0} or U;, since U; are minimal.
Therefore :

U=UNF=UnU & al)=Ua ol =P U. O
U.<U

3. LINEAR CYCLIC CODES

Definition 3.1. A code C with length n over F is called cyclic, if whenever x =
(c1,¢2,...,¢,) is in C, so is its cycle shift y = (cp.c1,. .., Cn—1)-

The following statement is clear from the definitions.

Proposition 3.1. A linear code C with length n over F is cyclic iff C is a
p—invariant subspace of F".

Theorem 3.1. Let C be a linear cyclic code with length n over F. Then the fol-
lowing facts hold.

HC=U;, @ --&U, for some minimal p—invariant subspaces U;, of F™ and
dimpC =k, +--+ ki, =k;

2) foo (@) = (=1)*fi, (@) ... fi.(x) = g(x);

3) ce C iff g(A)e = 0;

4) the polynomial g(z) has the smallest degree with the property 3;

5) 1 (g(A)) = n — k.
Proof: 1) This follows from Proposition 2.2.

2) Let ggi"),...,gé’i"_) be a basis of U;, over F, r = 1,...,s. Then gfl),...,
g,(;;'l), .. .,gfi‘“), .. ,g,(c‘) is a basis of C over F and ¢|¢c has a matrix

A;,
A,

A,

in that basis. Hence
fole(@) = fi(@)... fi(z) = (1)t the £ (@) f ().

Note that A;, and f;, (z) are defined as in Theorem 2.1.

3) Let ¢ € C. Then ¢ = u;, + -+ u;, for some u;, € U; ,r = 1,...,8 and
g( e = (=1*[(fir -+ fi)(Awi, + -+ (fir - fi. )(A)ui,] = 0.

Conversely, suppose g(A)c = 0 for some ¢ € F” and let ¢ = uy + -+ + wy,
u; € Ui. Then g(A)e = (=D*[(fi, ... fi)(Aur + -+ (fi, - - fi. )(A)ue] = 0, so
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that g(A)[uj, +--- +u;] = 0, where {j1,...5i} = {1,...,t}\{i1,...,is}. Let v =
uj + -+ uj and
_ (Y- f()

9(z) g(z)’
Since (h(x), g(x)) = 1, there are polynomials a(z), b(z) € F|z] such that a(z)h(z)+
b(z)g(x) = 1. Hence a(A)h(A)v + b(A)g(A)v =v=0andc=u;, +---+u;, € C.
4) Suppose b(z) € F[z] is a nonzero polynomial of smallest degree such that
b(A)e = 0 for all ¢ € C. By the division algorithm in F[z] there are polynomials
q{x),r(z) such that g(z) = b(x)q(z) + r(x), where degr(z) < degb(z). Then for
each vector ¢ € C we have g(A)c = q(A)b(A)c+r(A)c and hence r(A)c = 0. But this
contradicts the choice of b(z) unless 7(x) is identically zero. Thus, b(z) divides g(x).
If degb(x) < degg(x), then b(z) is a product of some of the irreducible factors of
g(z) and without loss of generality we can suppose b(z) = (=1)kn Ttk g, £
and ¢ < s. Let us consider the code C' = Uy, @ --- ®U;, € C. Then b(z) = f,_.,
and by the equation g(A)c = 0 for all ¢ € C' we obtain C C C". This contradiction
proves the statement.

5) By the property 3} C is the space of the solutions of the homogeneous system
with matrix g(A). Then dim pC = k = n —r (g(A)), which proves the statement.[]

Definition 3.2. Let x = (x1,...,2,) and y = (y1...,Yn) be two vectors in F™.
We define an inner product over F by (z,y) = z131 + - + Tayn. If {(x,y) = 0, we
say that x and y are orthogonal to each other.

Definition 3.3. Let C be a linear code over F. We define the dual of C' (which is
denoted by C+) to be the set of all vectors which are orthogonal to all codewords
in C, i.e.,

Ct ={ve F"|{v,e) =0forallcc C}.

It is well known that if C' is k—dimensional, then C* is (n — k)—dimensional.
Proposition 3.2. The dual of a linear cyclic code is also cyclic.

Proof: Let h = (hy,...,h,) € C*+ and ¢ = (ci,...,cn) € C. We show that @(h) =
(hnyh1,... ha 1) € CL. We have

(p(h),c) = crhn + - + Cahnor = (hy @~ (c)) = (h, " (¢)) = O,
which proves the statement. O

Proposition 3.3. The matriz H, whose rows are arbitrary n—k linear independent
rows of g(A), is a parity check matriz of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector ¢ € C and
the fact that r (g(A)) =n — k. O

Let g,,...,91,_, be abasis of C+, where g;, is a l,—th vector row of g(A). By
the equation g(A)h(A) = 0 we obtain that {g;,,h;) =0 foreachi=1,...,n,7 =

176 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 171-179.




1,...,n — k. The last equation gives us that the columns h; of h(A) are codewords
in C.
We show that r(h(4)) = k. By Sylvester’s inequality we obtain r(0) = 0 >
r(g(A))+r (h(A))—n. Since r (R(A)) < n—r(g(A4)) = —(n—k) = k. On the other
hand, Sylvester’s mequahty applied to the product h(A) = (=1)n—k fJJ (A)... fi(A),
gives r(h(A)) > rj + -+ 15 —n(l=1) = nl - kjy — - —kj —nl+n =
n—(kj + - 4ky)=n—n—ki—-—k)=n- (n—k) = k. Therefore
r (h(A)) = k. Thus we have proved the following:

Proposition 3.4. The matriz G, whose rows are arbitrary k linear independent
rows of (R(A))', is a generator matriz of the code C.
Lemma 3.1. If g(z) € Flx], then g(A™") = g(A*) = (g(A))'. In particular. if n
divides deg g(x), then g*(A) = (g(A))', where g*(x) is the reciprocal polynomial of
9(z).
P7”00f Let g(z) = goz +91$k U+ + guo1T + gk, then g(A) = goA* +91Ak ! .t
st gk 1A+grE. Tranbposlng both sides of the last equatlon we obtain (g(A)) =

go(Ak) +g1(A" 1) +- Gk 1At+ng g()(At) +g1 (Af) + +QK— 1At+ng—-
g(A").

In particular, if degg(z) = ns for some s € N, then g*(A) = A™g(A™Y)

ns t
= AMg(A") = g(A") = (9(4))"- O

Let fo) ., (z) = h. By Theorem 3.1 it follows that h is the polynomial of the
smallest degree such that h(A)u = 0 for every u € Ct. Let h*(z) = h(:c)q(r)
r(z), where degr(x) < deg h(z). Then by Lemma 3.1 h*(4) = A"*(h (A)) =
h,(A)~(A) + 7r(A), hence for every vector u € C* the assertion A™~ k(h(A) v =
g(A)h(A)u + r(A)u holds, so that r(z) = 0. Thus h(z) divides h*(z). Since both
are polynomials of the same degree , h*(z) = ah(x), where a € F is the leading
coefficient of the product f} (z) ... f; (z). Thus

!
-1, 1 1., o
h==h"=(- k= =f5 ng—jrz(—n S PO
. r=1 r

where a;, is the leading coefficient of f7 (z). Note that the polynomials f (z) =
%f; (z) are monic irreducible and divide f(z) = (—1)"[z" — 1].

Now we show that C+ = U,, &---&U,,. By Theorem 3.1 C* is the space of the
solutions of the homogeneous system with matrix h(A). Let u € U = Us, ©---&U;,
and let u = ug, + -+ +ug, for us, € Us , v =1,...,1. Then

iL(A)u = (_1)n_k{(f31 s fsl)(A)usl +- 4t (f$1 e fsl)(A)usl] =0
Hence U < C2. Since dim pU = dim C*, then
CL 2U31 @...@USZ_

Thus we have proved the following:
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Theorem 3.2. Let C = U;,, & --- & U;, be a linear cyclic code over F and
{gi,- o} = {1,.. ., t\{i1,...,is}. Then the dual code of C is given by C+ =
Us, ®---® U, and fs(:v) = (=1)k £, (x) = ('l)k”"?{jf ;‘r(x), where f} (z) is the
reciprocal polynomial of f; (z) with leading coefficient equals to a;,, v =1,...,1L.

Let C' C F™ be an arbitrary, not necessary linear, cyclic code. Let us consider
the action of the group G = (¢) = {id,,...,¢" 1} = C, over F". Then the
following theorem holds:

Theorem 3.3. C' =, U...USQ,. where Q; are G-orbits and k; = || is a divisor
of |G| = n. In particural, |C| = Z k.
=1

4. CONSTA-CYCLIC CODES

In this section we give a generalization of the results obtained in the previous
sections.

Definition 4.1. Let a be a nonzero element of F. A code C with length n over F
is called consta-cyclic with respect to a, if whenever x = (cy,c¢a,...,¢,) is in C, so
is y = (acp,c1,...,cn1).

Let a € F. We consider the linear operator v, € Hom F™
Yo 1 (T1,%2, ..., Zn) — (ATn, T1y .oy Tn—1)-

Its matrix in the standard basis ey, es,...e, of F™ is

000...a
100...
B,=1[010...0

S

000...0
The relations B;! = BY and B? = aF hold. The characteristic polynomial of B,
is f,(x) = (=1)™(z™ — a). Let denote it by f,(x). We assume that (n,q) = 1. The
polynomial f, has no multiple roots and splits to distinct irreducible monic factors
fa(z) = (=1)"fi(z). .. fe(z). Let U; = Ker fi(v,). It’s easy to see that Theorem 2.1
and Proposition 2.2 are true in this case, too.
The following statement is clear from the definition.

Proposition 4.1. A linear code C' with length n over F is consta-cyclic iff C is a
e —invariant subspace of F™.

The next theorem is analogous to Theorem 3.1 and we omit its proof.
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Theorem 4.1. Let C be a linear consta-cyclic code with length n over F. Then the
following facts hold.
NC=U,& ---oU, for some minimal ¥, —invariant subspaces U, of F"
anddimpC=ki‘ +"'+ki.~ ._—_—k';
2) f#’nic(x) = (“‘1)kfi1 (:L‘) e fix (‘T) = g(z),
3) ce C iff g(By)c = 0;
4) the polynomial g(z) has the smallest degree with the property 3);
5)r{(9g(Bas))=n—k.
Proposition 4.2. The dual of a linear consta-cyclic code with respect to a is consta-

cyclic with respect to l
a

Proof: The proof follows from the equality

(1a(c), h) = (Bac,h) = (¢, Bih) = (¢, By h) = ale, 1" (R)) = 0
for every c € C and h € C+. 0

Acknowledgements. The authdrs are greatly indebted to Prof. S. Dodunekov
for posing of this interesting problem.
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CYCLIC CODES WITH LENGTH DIVISIBLE BY THE FIELD
CHARACTERISTIC AS INVARIANT SUBSPACES

DIANA RADKOVA, ASEN BOJILOV

In the theory of cyclic codes it is a common practice to require (n,q) = 1, where n is
the word length and Fy is the alphabet. However, much of the theory also goes through
without this restriction on n and q. We observe that the cyclic shift map is a linear
operator in Fg'. Our approach is to consider cyclic codes as invariant subspaces of F,;"
with respect to this operator and thus obtain a description of cyclic codes in this more
general setting.

Keywords: Cyclic codes, invariant subspaces.
2000 MSC: main 94B15, secondary 47A15

1. INTRODUCTION

The main purpose of this paper is the study of some properties of the cyclic
codes as linear subspaces without the requirement that the field characteristic is
coprime with n. We already considered the case of coprime field characteristic and
word length in [4]. '

The linear cyclic codes are traditionally described using the methods of commu-
tative algebra (see [2] and [3]). Since the linear codes have the structure of linear
subspaces of F™, where F is a finite field, the description of linear cyclic codes in
terms of the linear algebra is natural.
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2. SOME LINEAR ALGEBRA

Let F' = GF(q) and let F™ be the n-dimensional vector space over F' with the
standard basis e; = (1,0,...,0), e ={0,1,...,0),...,e, = (0,0,...,1).
Let ¢ : F™ — F™ be the linear map given by the formula o(z,22,...,2,) =

(To, T1ye ey Tn-1)-
Then ¢ has the following matrix
000...1
100...0
A=1010...0
000:..0
in the basis ej,eg,...,e,. Note that p(e1) = e2, p(e2) = es,..., plen—1) = en,
plen) = e1.
We observe that A® = A~! and A™ = E. The characteristic polynomial of A is
-z 0 0 ... 1
1 =z 0 ... 0
0= (-1)"(z"-1).

fA (_’E) =0 1 —x...
0 0 0 ...-2
We will denote the polynomial f4(z) by f(z).
We will assume that (n,q) = p° = d and n = dny, (p,n1) = 1, where p =TF.
Let z™ — 1 = fi(x)... fi{z) be the factorization of £™ ~ 1 into irreducible monic

factors over F'. Then the factorization of f(z) is
d

d d d

f@) = (1@ =) = ()" (" 1) = (-1)" (@) (L) .. (@)

Let us denote by U; the space of all solutions of the homogeneous system with
matrix fE(A) fori=1,...,t, i.e. U; = Ker f3{y).
Theorem 2.1. The subspaces U; of F™ satisfy the following conditions:

1) U; is a p-invariant subspace of F™;

20F"=U1®---® Uy

3) f(x) is the monic polynomial of minimal degree in Fx] such that f3(A)u =
0 for allueU; ;

4) folo, = (—l)ddeg fif,d. In particulor, dimU; = deg f,,, = ddeg fi:

5) There exist a vector u; € U; such that the vectors

Ui, (P(Ui), e 7(pdlm Ui—l(ui)

are basis of U;;
6)For each vector u in U; there exists a polynomial g € Flz] such that u =

(9() ().
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Proof: 1) Let u € Ui, ie. fi(A)u = 0. Then fi(A)p(u) = fHA)Au =
Af#(A)u = 0, so that ¢(u) € Us.

2) Let fi(z) = ff<f>) fori=1,...,t. Since (f1(2),..., fs(x)) = 1, then by the
Euclidean algorithm there are polynomials a1(z),...,a(z) € Flz] such that

a (@) fi(@) + - + ar(@) fu(z) = 1.

Then for every vector v € V the condition v = a; (A)f1 (Av+---+ at(A)ft(A)U
holds. Let v; = a;(A)fi(A)v. Then fE(A)v; = a;(A)f(Aw = 0, so that v; € Uj.
Hence

=Ui+-+U.

Let us assume that v € U; N Z];er Then f#(A)y = 0 and fi(A)v = 0.
Since (f¢, fi) = 1, there are polynomials a(z),b(x) € Fz, such that a(z)fi(z) +
b(x)fi(x) = 1. Hence a(A)f3(A)v + b(A)fi(A)v = v = 0 and we conclude that
Uin} ;. Uj = {0}. Thus

= Ul @ P @ Ut'

3) Let m;(xz) € F[z] be the monic polynomial of smallest degree such that
mi(A)u = 0 for all u € U;. By the division algorithm in F[z] there are polynomials
¢i(x),r;(x) such that f¥(z) = m;(z)qi(z) + ri(z), where degr;(z) < degm,(z).
Then for each vector u € U; we have f(A)u = ¢;(A)m;(A)u + r;(A)u and hence
ri(A)u = 0. But this contradicts the choice of m;(z) unless r;(z) is identically
zero. Thus, m;(z) divides f&(x) for all i = 1,...,¢. Therefore there are numbers
0 < s; < dsuch that m;(z) = f]'(z). Set m(z) = ml(a:) ...my(z). Sincem(A)u =0
for all v € F™ and m(z) divides the minimal polynomial z™ — 1 of A, we conclude
that z™ — 1 = m(z). Then

f@) . f@) =2 1= [ @) [ (@),

Now the statement follows from the uniqueness of the factorization of a polynomial
into irreducible factors.

4) Let k; = dimU;, i = 1,...,t and let fi(z) = fely,- We choose a basis
g(z),...,gk of U; over F, i = 1,...,t. Denote by A; the matrix of ©|y, in that
basis.

By property 2) we obtain that g(l) ..,g,(;) ,g$t), - ,g,(c) is a basis of F'"
and the matrix of ¢ in that basis is

A
Al = 42

Ay
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Besides A’ = T~'AT, where T is the change of basis matrix from the standard
basis of F™ to that one. Then

fi(Ar)
fia) = fildz) = [T AT) = T fi(A)T.

fi(A:)

Note that fi(Ai) = 0. Let gji) = /\;il)el +-.- +/\§i,)len, 3i=1,...,k;. Since g](-i) e U,
we obtain

i i 0
. /\;1) _ /\§1) . o]
| | =thayrt| | =TR[] =0,
(4) (%) :
)‘j n )‘j n o

where 1 is on the (k; + - + ki1 + j)—th position. Therefore f&(x) divides f; for
alli =1,...,t Let fi(z) = fi(z)gi(zx). Then

f@) = fil@) ... fule) = fi(2) ... f @)1 (2) .. ge(a).

It follows from the last identity that g;(z) = (~1)4de8 fi(z)
5)Let ey =uy +ug+---+u foru; € U, i =1,...,¢t. Then

e2= pler) = p(u1) + @luz) +---+ p(ue)
es= plez) = P*(w1) + @*(uz) +--+ ¢ (w) .

Let v be an arbitrary vector from F™. Then

V=A1e1 + Asea+ -+ Mg, =
= A +uz+ - +w) + da(p(ur) + o(ug) + - + olu))+
o A" ) + " u2) o 9" () =
= (M + Agp(ur) + -+ + A" H(wy))+
ot (Mg + Aop(ug) + -+ An™ H(wy))

Hence v; = Aju; + Ao(us) + -+ + An@™ 1 (u;) holds for each vector v; € U; and
all 4 = 1,...,¢. Therefore U; = I{u;, p(u;),...,9" }(u;)}. Since dimU; = k;, the
vectors
ui, (i), - .., % Huy)
are a basis of U;.
6)This follows from 5). O
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Theorem 2.2. Let U be a p—invariant subspace of U; for some 1 < i < ¢. Then
there exists a number 0 < k < d such that U = Im fikﬁﬂlu,) = Ker fid_k(‘ﬁw,.) =

Ker f{*(¢).

Proof: Let the vector u; € U; be as in Theorem 2.1 and let us consider the set
J=1{g € Fla | (9(4)) (w;) € U}.

It is easy to verify that J is a principal ideal in F[z]. Then there exists a monic
polynomial A € Flz] such that J = (h). We are going to show that U = Imh(yp), ).
First, let v € U. Then u = g(A)u; for a suitable polynomial g(z) € F|z] by
Theorem 2.1, 6). Since g(z) € J then g(z) = h(z)g:(z). Hence u = (hg1)(A)u; =
h(A)gi(A)u; = h(A)v;, where v; € U;. Thus u € Imh(g),, ). Conversely, suppose
u € Imh(yp, ), i.e. u = h(A)v for some v € U;. Then v = g(A)u; for a suitable
polynomial g(x) € F[z] and hence u = h(A)g(A)u; = (hg)(A)u:. Since h(z)g(z) €
J, we conclude that u € U.

Now we are going to show that h(z) = f¥(z) for some 0 < k < d. Since
fi(Ay; = 0, then fi(x) € J. Therefore h(z) divides fi(z). Since fi(x) is an
irreducible polynomial, h(z) = f¥(z) for some 0 < k < d. Hence U = Im fF(g,,. ).
It remains to prove that U = Ker f&* (¢),,,)- We have

fid_k(Ai)f'ik(A’i) = f'ld(Al)

where A; is the matrix of ¢, .

Since each column of fF(A;) is a solution of the homogeneous system with
matrix f&*(A;), then U = Im fz.’“(<p|l/,i) C Ker fid_k((,oh,i ). It is easy to verify that
Ker fid‘k(cp]ui) = Ker f;i_k(g)). Now suppose u € Ker fid_k(cp), Le. fid‘k(A)u = 0.
Then u € Ker f#(¢) = U; and u = g(A)u; for a suitable polynomial g(z) € Flz].
Hence fid"k(A)g(A)u,- = 0. Since f¢(r) is the minimal polynomial with the property
f3(A)u; = 0 we conclude that f¥(z) divides g(z). Thus g(z) € J and u € U, which
proves the statement. O

I

o,

Proposition 2.1. Let U be a p-invariant subspace of F™. Then U s a direct sum
of subspaces of F™ of the form Ker f7(¢), where 0 < s; < d.

Proof: Let U =UnNU,i=1,...,t Then (71- = Ker f]i(¢p) for some 0 < s; < d.
Therefore . ~
U=UnFr=UnU1® ---aU)=U1&---dU:. O

3. LINEAR CYCLIC CODES

Definition 3.1. A code C with length n over F is called cyclic, if whenever x =
(c1,¢2,...,cn) is in C, so is its cyclic shift y = (cp,c1,. .., Cn1)
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The following statement is clear from the definition.

Proposition 3.1. A linear code C with length n over F is cyclic iff C is a
w—1invariant subspace of F™.

Theorem 3.1. Let C be a linear cyclic code with length n over F. Then the fol-

lowing facts hold.
NC=U,®- Ui, for some p—invariant subspaces Uz = Ker f}" () of

" 0< s, <d, and dun rpC=3%"s.degfi =k;
2) fole(x) = (~1)¥ ff,’(z)---fi.',' () = g(=);
3)ceC iff g(A)c=
4) the polynomial g(J:) has the smallest degree with the property 3);
5)r(g(A)) =n—k.
Proof: 1) The first part of the statement follows from Proposition 2.1. Now we are

going to show that dim gKer fir = s;deg f;,. Let us consider the following chain of
linear subspaces of F™®

Ker f;, (p) C Ker fZ (@) C -+ C Ker f2(p) = U;

Since the characteristic polynomial of the restriction of ¢ to Ker fl (p) divides
folo, =(= l)ddeg fi. fd foralll = 1,...d, then for the dimensions of the respective

subspa('es we obtain the following mequalities of natural numbers
Lideg fi, <lapdeg fi, < --- <lydegf; = ddegfi, .
Thus l; = i for i = 1,...,d, which proves the statement. In particular, it follows

from the proof that fv’;&_ (z) = (=1)*rdesfin fir(x).

i

2) Let us denote ;, = dim (7 = srdeg f;, . We choose a basis ugi"), e ,u,(f,’ of
U, over F,r=1,...,m and denote by B;, the matrix of Pl in that basis. Then
uﬁ“) u((f,'l), ceay Uy 1“') u,(f,’:") is a basis of C over F and cplc has a matrix
B;,
B,
B.

in that basis. Hence
St @ = Foy, @)y, (@) = (“DRE @) 0 (2.

3) Let c € C. Then ¢ = u;, + -+ + u;,, for some u;, € U; 1,...,m and

9(A)e= (DR - for WAy, + -+ (£ fim)(A )uz,,];

Tm

186 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 181-189.



Conversely suppose that g(A)c = 0 for some c € F™ and let ¢ = uy +--- +
U, Ui € Ui. Then g(A)c (DR (A 4+ () i) (A)ue] =0

so that g(A4)[uj, + --- + u;] = 0, where {j1,...5} = {L,. St {i1, .- im}- Set
vj, = g(A)y,,, for all r=1,...,1L Hence vj, € U;, and v;, +- --+wv;, = 0. Therefore
vj, =0forallr =1,...L Sln(‘e (g, = 1 there are polynomials a(z),b(z) € Flz],

such that a(z)g(z)+ ( )f]d( z)=1. Then u;, = a{A)g(A)uy, +b(A)fﬁ_(A)uj,_ =0.
Thus ¢ = u;, + - +u;,, €C.
We omit the proofs of 4) and 5), since they are clear. d

Definition 3.2. Let z = (z1,...,2n) and y = (Y1...,yn) be two vectors in F™.
We define an inner product over F by (z,y) = z191 + -+ + Tn¥Yn. If (z,3) =0, we
say that x and y are orthogonal to each other.

Definition 3.3. Let C be a linear code over F. We define the dual of C' (which is
denoted by C* ) to be the set of all vectors which are orthogonal to all codewords in
C, ie.

={ve F"|(v,c) =0 for allc € C}.

It is well known that if C is k—dimensional, then C* is (n — k)—dimensional.
Besides the dual of a linear cyclic code is also cyclic.

Proposition 3.2. The matriz H, which rows are arbitrary n — k linearly indepen-
dent rows of g(A), is a parity check matriz of C.

Proof: The proof follows from the equation g(A)c = 0 for every vector ¢ € C' and
the fact that r (g(A)) =n — k.
O

Let us denote
h(z) = = = ()" (@) [ (@),

where 0 < s, <dforallr=1,...,t

Let g1,,...,q1,_, be abasis of Ct, where g, is a I, —th vector row of g(A). By
the equation g(A)h(A) = 0 we obtain that (g;,,h;) =0 foreach1=1,...,n,7 =
1,...,n — k. The last equation gives us that the columns h; of h(A) are codewords
in C.

We show that r(h(A)) = k. By Sylvester’s inequality we obtain that r (0) =
0 > r(g(A)) + 1 (h(A)) —n. Thus r (h(A)) <n -1 (g(A)) =n—(n-k) =k.

On the other hand, Sylvester’s ,inequality, applied to the product
h(A) = (—1)nFfa=s(A)... f27 ”(A) gives us that r (R(A)) > r(fE* (A)) +-- -+
r(fE5 (A)) —n(t—1) =nt —dzz, deg f; +ZZ , sideg fi —nt +n = k. Therefore

r (h(A)) = k. Thus we have proved the following:

Proposition 3.3. The matriz G, which rows are arbitrary k linearly independent
rows of (h{A))*, is a generator matriz of the code C.

Ann. Sofia Univ., Fac. Math. and Inf.. 98, 2008, 181-189. 187



Let f, . (z) = h. By Theorem 3.1 it follows that h is the polynomial of the
smallest degree such that 2(4)u = 0 for every u € CL. Let h*(z) = h(z)q(z)+7(z),
where degr(z) < degh(z). Then h*(A) = A"~ k(h(At )= h( Ja(A) + r(A), hence
for every vector u € C* the assertion A» *(h(A))'u = ¢(A)h(A)u + r(A)u holds,
so that r(z) = 0. Thus (z) divides A*(z). Since both are polynomials of the same
degree , h*(z) = ah(z ), where a € F is the leading coefficient of the product

(7 (@)™ ... (f} (@))**". Thus

b= 1h = (-1 "l(fl( DA (fr (@)t =

n kH (f (.’I‘) d—s; _( 1 n— kH d—s,

where a; is the leading coefficient of (f}(x))?~* . Note that the polynomials f,, (z)
are monic irreducible and divide f(z) = ( 1z - 1).

Now we show that C+ = U,, @ --- ® U,., where U,, = Kerfd Si(p). B
Theorem 3.1 C* is the space_ of the solutlons of the homogeneous system w1th
matrix h(A). Let u € U = Uy @ ®Up,, and let u = un, + -+ + Up, for up, €
Upn,,r=1,...,t. Then

B(AYu = (D)™ M ) (A, 4+ (FE L FE) (A, ] = O.
Hence U < C*. Since dim pU = dim pC*, then
Ct=U, & 0T
Thus we have proved the following:

Theorem 3.2. Let C = [71 B P [7t be a linear cyclic code over_F,_ where l7¢ =
Ker f(¢), 0 < s; < d. Then the dual code of C is given by C+ =U,, @ --- o U,
and fop-(2) = (1) L (f (2))4 = (1) fi7* (z) where (f}(x))=* is the

reciprocal polynomial of fd *(x) with leading coeﬁ'iczent equals to a;, i =1,...,t

Acknowledgements. The authors are greatly indebted to Prof. S. Dodunekov
for posing of this interesting problem.
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We establish an estimate for the outer measure v;(T") and the inner measure §3;(T)
of an operator T acting between some intermediate spaces constructed for n-tuples of
Banach spaces. We also show that many operator ideals have the strong interpolation
property for Sparr’s interpolation methods.
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1. INTRODUCTION

The behaviour of compact linear operators under real interpolation for Banach
couples or Banach n-tuples has been extensively studied by many authors. The
class of compact operators between Banach spaces is an injective surjective closed
operator ideal in the sense of Pietsch [11]. It is therefore natural to investigate
whether the similar results are valid for such ideals. There are two measures,
y1(T) (outer measure) and B;(T) (inner measure) of an operator T € L(A, B),
introduced, respectively, by Astala [1] and by Tylli [14], which show the deviation
of T from the ideal I.

It is known that

if I is surjective and closed, then v;(Ta,g) = 0 if and only if T € I(A, B) (see
[1])

and, analogously that
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if I is injective and closed, then 8;(T'a,g) = 0 if and only if T € I(A, B) (see
[14]).

Particularizing the operator ideal I, measures v; and 8; coincide with well-
known notion. For example, when I is the ideal of compact operator k, v (T) is
equal to the measure of non-compactness of 7' and S (7T') turns out to be the limit
of the Gelfand numbers of 7'.

The behaviour under real interpolation of measures v, and 3; in the case of
Banach couples has been pointed out by Cobos, Manzano and A. Martinez [3] and
Cobos, Cwikel and Matos [2]. They have derived estimates for the measures ;
and J3r provided that one of the couples degenerated into a single Banach space,
or that the ideal I satisfied the so-called Lp-condition (see [8]), without assuming
any condition on the Banach couples.

In this paper we establish an estimate for the measures v;(T") and 3;(T) of an
operator T acting between some intermediate spaces-constructed for n-tuples of Ba-
nach spaces. We consider here 4-tuples of Banach spaces and Sparr’s interpolation
method. We obtain similar results for n > 5.

We also show that weakly compact operators, Rosenthal operators, Banach-
Saks operators and Radon-Nikodym operators have the strong interpolation prop-
erty for Sparr’s interpolation methods.

2. PRELIMINARIES

Let A = (A, A1, Az, A3) be a Banach 4-tuple, that is to say, a family of 4
Banach spaces A; all of them continuously embedded in a common linear Hausdorff
space. If £ = (t1,t2,t3) and 3 = (s1, 52, 53) are triples of positive numbers, we set

15 = (tlS],tQSZ, t383), 22 = (2t1 s 2t2, 2t3), ﬁ‘ = tyioty

K, a,A) = inf {HGOHAO + > tillailla;, a= 3 ai, a; € A,} ,
; i=0

=1

ae E(Z) = Ag+ A1 + Az + Az
and
J(,a,A) = max {llall 4, tillalla;}s a € A(A) := AgN Ay N A N Ay
If A and B are Banach spaces, we denote by £(A, B) the space of all bounded
l_inear operators between A an B with the usual norm. Given two Banach _é_l:tuplﬁs
A = (Ag, A1, Az, A3), B = (BO,Bl,Bg,B;Q, we write T € £(A,B)or T : A — B,
meaning that T is linear operators from £(A) into £(B) whose restriction to each A;

defines a bounded operator from A; into B; (j = 0,1,2,3). For each T' € £(4, B)
we consider the norm:

1Tl = g (1T lla.m.}
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If one of the 4-tuples A or B reduces to single Banach spaces, i.e. if Ag = _Al =
Ay = A3 = A, or if By = By = By = B3 = B, then we write T € £(A, B) or,
respectively T' € £(A4, B). _
A Banach space A is said to be an intermediate space with respect to A if
A(A) — A — X(A),

where the notation «— means continuous inclusion. .
An intermediate space A is said to be interpolation for the 4-tuple A if, for all
operators T € L(A, B), there exists a constant C' = C(A, A) such that

ITla.4 < ClTlzz
If we consider only the one-dimensional operator T, i.e.
Tz = f(z)a, acA(A), fe(EA)

then the space A is called party interpolation, or rank-one interpolation.
Let A = (Ag, A1, Az, A3) be a Banach 4-tuples and let A be an intermediate
space with respect to A. For the triple £ = (t1,t2,t3) of positive numbers set

W(t) = ¢(f, A, A) = sup {K(f,a,4) : |lalla =1}

and

p(t) = p(t, A, A) =inf {J(f,a, 4) : a € A(A), |lala=1}.

Proposition 2.1. [6] Let A be a Banach 4-tuple and let A be an intermediate
space with respect to A. Then A is party interpolation space if and only if there
exists a constant C = C(A, A) such that

V(&) < Cp(d), for allt = (t1,ta,t3) € (0,00)>.

Let A = (Ao, A1, A2, A3) be a Banach 4-tuple. Then A(A) — Ay and A9 —
Y(A). We denote by A9 the closure of A(4) in Ag and by Ap the completion of Ag
with respect to ©(4) (or the Gagliardo completion of Ag in £(4)).

Proposition 2.2. (6] Let A = (Ao, Al,Al, As) be a Banach 4-tuple and let A
be a party interpolation space with respect to A
(i) If lim (%) > 0, then AJ — A
t—0

(ii) If lim (1/p(®) > 0, then A < Ay.

Let A be an intermediate space with respect to Banach 4-tuple A. We say that
A is of class €x (0, A), where § = (8;,602,63) € [0, 1]3 6, +0,+0; <1if thereisa
constant ¢ such that for all T = (t1,#2,t3) € (0,00)* and a € A

-9
|K

[t K (% a,4) < Cllala
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and of cla,ssfj(a, A) if there is a constant C such that for all § = (t1,£2,t3) € (0,00)>
and a € A(A)
N R
lalla < Clt7|J(E, a, A).

An important example of spaces of class €x(f, 4) is the real interpolation K-
space AepK = (Ao,Al,Az,Ag)e i (or Sparr’s K-space). We remind that for
1<p<ooand = (6,60,65) ¢ € (0,1)%, 81 + 02 + 03 < 1 the space Ae.p.K consists
of all a € £(A), which have a finite norm:

neZ?

1/p
( b (12-55]1;’(25,@2))1)) ifl<p<oo
lallg . =
sup {|277|K (27, q, 4)} if p=o0.
nez?
On the other hand, the real interpolation J-space :475’,)"] = (Ag, A1, Az, As)g .,

(or Sparr’s J-space) is an important example of space of class €;(8, A). We remind
that for 1 < p < oo and 6 = (61,0:,03) € (0,1)3, 6, + 6, + 65 < 1 the space A(9 J
consists of all @ € £(A) which can be represented in the form:

a= Z uz  (convergence in £(A4))

e,
g
o

with (ug)zezs C A(

3 (127J@7, um, A))P < oo

neZ?

(The sum should be replaced by supremum if p = c0.)
Moreover

1/p

lallg,., =inf§ { > (27 um Ay | a=Y ux

ne z3

defines a norm on A— B.p.J"

An operator ideal I is any subclass of the class £, of all bounded linear operators
between arbitrary Banach spaces such that the components (A4, B) = IN L(A, B)
satisfy the following conditions:

(i) I(A, B) is a linear subspace of £(A, B);

(ii) I(A, B) contains the finite rank operators;

(iii) if R € £(X,A), T € I(A,B) and S € £(B,Y) then STR € I(X,Y).

The operator ideal I is injective if for every isomorphic embedding J € £(B.,Y)
one has that T' € L(A, B) and JT € I(A,Y) imply T € I(A, B), it is surjective if
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for every surjection Q € £(X, 4) we have T € Z(A, B) and TQ € I(X, B) imply
T € I(A, B). The ideal I is closed if the components I(A, B) are closed subspaces
of £(A, B) (see Pietsch [11]).

The outer measure of T € L(A, B) is denoted by 7/(T) = v1(Ta,5) and is
the infimum of all positive numbers ¢ such that T(Ua) C oUp + R(Ugz) for some
Banach space Z and some operators R € 1(Z, B) (where Ux denotes the closed unit
ball of X). The inner measure of the same operator is denoted by Br(T) = B1(Ta.B)
and is the infimum of all positive numbers o such that for some Banach space Z
and some operators R € I{A, Z) the inequality

1Tz]s < ollzlla + | Rzl 2

holds for all z € A.

The ideal I possesses the strong interpolation property for a method F of
interpolation if the interpolated operator T : F(A4) — F(B) belongs to I when
the induced operators Trg : A(A) — X(B) is in I.

3. ESTIMATES FOR THE OUTER MEASURE ~,(T)

In this section we establish an estimate for the measure v;(T") when one of the
Banach 4-tuples reduces to a single Banach space.

Theorem 3.1. Let A = (Ag, A;, A2, As) be a Banach 4-tuple, let A be an
intermediate space with respect to A, and let B be an arbitrary Banach space. Let
I be an operator ideal. Then for each T € L(A, B) we have

1 1
VI(T) < 'l,[)(tl,tQ,tg) ’)II(TA().B) + E’YI(TAMB) + EWI(TAQ, ) + 71 TA,;, jl
(3.1)
for all t1,t2,83 > 0.

Proof. In view of the definition of v;(T4, B), fori = 0,1,2,3 and for eache >0
there exist Banach spaces Z; and operators S; € I(Z;, B) such that

T(UA1) c (5 + v (TA:'.»B))UB + S‘t(UZI) (32)

Now, consider an arbitrary element a € U4 and fixed positive numbers t1,¢2,t3 and

4. Since .
K(t1,t2,t3,a,A) < 8+ Y(t1, b2, t3) (3.3)

there exists a decomposition a = ag + a1 + a2 + ag, with a, € A; (1=0,1,2,3) such
that

laollao + tillailla, + tallazlla, + tallaslla, < &+ ¥(t1, b2, ta).
Thus ag € (5 + w(tl,tz,tg))UA(), a; € ti—l(é + Q/J(tl,tz,tg))UA‘, ao € t;l(é +
W(t1, o, t3))Ua, and az € t31(8 + ¥(t1, 2, t3))Ua,-
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From this and (3.2) it follows that

1 1 1
TN C G+bittants)) [T(UAO) +LTWUA) + TR + gﬂUAg)]
£ 1 €
C (G+9(ts,tnts)) [s 0 (Ta8) + £+ (T ) + S

1 € 1
+ g%(TAz,B) ot EW(TM’B)J Up + S3(Uz,) + S1(Uz,) +

+ Sé(Uzz) + S'IS(UZ:’,)
1 1
where S}, = (6+(t1, ta,t3))S0, S} = E(5+¢(t17t2»t3))sla Sy = 5(6+w(t1,tz,t3))52

1
and S5 = t—(5 + ¥(t1,t2,t3))Ss are operators belonging to I(Zy, B), I1(Z;, B),
3

I(Z,, B) and I(Z3, B), respectively. Let Z be the Banach space Z = Z; & Z, @
Z3 ® Z3 with norm II(I)%va)” = max(”z”zo, ”y”ZH”z”Zza “w“Z:;) and define
S§:Z — Bby S(z,y,z,w) = Sjz + Siy + Sz + Siw. Then S(Uz) = S4(Uz,) +
S1(Uz,)+85(Uz,) + S5(Uz,) and using the ideal properties of I and the projection
operators from Z onto Z;, i =0, 1,2,3, we have S € I(Z, B). Consequently

1 1 1
Y1(Ta,B) < ¢¥(t1,t2,t3) [71(Tag,B) + Z’I"YI(TAI,B) + Z;'YI(TA,,B) + Z;'YI(TA3.B)] a

Corollary 3.2. If A is a Banach space of class €k (0, A) with constant C, for
some 6 = (01,02,05) € (0,1)3, 8, + 05 + 05 < 1 then

1(Ta,B) < C(1—0y — 0y — 03)01 02405197019 7029285 5 (| 5)1=01-62-05

(T a,,8)" v1(Tay,8)"71(Ta,,8)%
(3.4)

Proof. Let o; > v1(Ta,.B), i = 0,1,2,3. By the definition of v;(T4, g) for
i =10,1,2,3 and for each € > 0 there exist Banach spaces Z; and operators S; €
I(Z;, B) such that

T(UAi) Co,Ug+ S,'(Uzi).

Since A € €x(0,A), given any € > 0, ¢t; > 0, t, > 0, t3 > 0 and a € A with
llalla < 1wecanfind a; € A;,i=0,1,2,3, 50 that a = agp+a;+az+az and ||ag| 4, <
(1 4 e)CtP 5718, laallay < (14 €)CtI 1452455 Nlaglla, < (1 + €)Ct 18527140,
llaslla, < (1 4 €)Ct4924%=2. The proof proceeds now in the same way as in’
Theorem 3.1 to obtain the inequality

1 1
< . 01,82 405 1 1
Y1(Ta,B) < Ctl>o,t}gfo,t3>0t1 ty°ts® |71 (Tay,B) + tIW(TAl,B) + t271(TAz,B)
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1
+  —71(Tas,B)| -
i3
This inequality implies the result. JJ

Corollary 3.3. If I is a surjective closed operator ideal and T € L(A, B) is

such that for some i, sayi =0, T € I(Ao, B) then T € I(4; , x, B).

Proof. Since v/(T") = 0 if and only if T € I and ng‘K is of class €k (0, A),
form (3.4) the result follows. O

Remark 3.4. When I = K the ideal of compact operators, vk (T') coincides
with the measures of non-compactness of T', so we recover well-known Lions’ and
Peetre’s compactness results [see [9], [4], [6], [10]).

Theorem 3.5. Let A = (Ag, Ay, Ay, A3) be a Banach {-tuple, let A be a party
interpolation respect to A, and let B be another Banach space. Let I be a surjective
closed operator ideal and T € L(A, B) such that T € I(A;,B), i =1,2,3. Then at
least one of the following conditions must hold

(i) T € I(A, B);

(i) A3 — A.

Proof. Since v1(Ta, B) =0, (¢ =1,2,3) from (3.1) we have

1(Ta,B) < 71(TA0,B)71ir%¢(t1,tz,ts,A,Z)-

Consequently, either T' € I(A, B) (i.e. v1(T4,B) = 0), or, alternatively, lim ¢(t1, t2,
i

—

t3, A, A) > 0, which, by Propositioh 2.3, implies that A} — A. 0

4. ESTIMATES FOR THE INNER MEASURE §;(T)

In this section we establish an estimate for the measure G;(T") when one of the
Banach 4-tuples reduces to a single Banach space.

Theorem 4.1. Let B = (Bo, B, B2, B3) be a Banach 4-tuple, let B be an
intermediate space with respect to B and let A be an arbitrary Banach space. Let
I be an operator ideal. Then, for each T € 'L(A, B) we have

Bi(T) < —— max {B1(Tua.5,) 161 (Ta.5,), t281 (Ta.5,), tsBr(Ta.5y)} (4.1)

— 1
= p(ti,t2,t3)
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for all t; >0, t2 > 0.t5>0.

Proof. By the definition of 3, (Ta,B,), for each £ > 0 there exist Banach spaces
Z; and operators S; € T (A, Z;) such that

ITalls, < (e + Br(Ta,))llalla + [|Siallz;, forallae 4, i=0,1,2,3. (4.2)
. J(t1,t,t3,b, B)
Since [[bllp < = F==m=r
ince ||bf| g < p(t1,ta,t3)

using (4.2) we obtain:

for all b € A(E) and all t; > 0, t5 > 0, t3 > 0 and

1
(Tallp < it 170 max(ITall gy, t1|Tal 5, , t2|| Tal s, t3)|Tal| 5,)
p(tl,tQatfi)
] v
7y max[e + B1(Ta,B,), t1(e + B1(Ta.,)), t2(e + Gy (T'a,8,)),
p(t17t27t3)

ta(e + B1(Ta,p,)lalla + [Spallz, + 1Siallz, + |1Ssallz, + |Shallz,

So r S .
p(t1,ta,t3)’ 5= pti,ta, t3)’ (=123

Let Z be the Banach space Z = Zo®Z1®Z>® Z3 with the norm ||(z, y, z, w)| =
lzllzo + lwllz, + |2l 2, + |lw]|z, and let the operator S : A — Z defined by Sa =
(Soa, Sia, Sya, Sha). Using the ideal properties of I and the canonical embeddings
of Z; into Z (i = 0,1,2,3) we have S € I{A,Z) and

where S} =

1
ITallp < _——max[g+ﬂI(TA,BL,)atl(5+ﬁI(TA,Bl)),t2(€+ﬂI(TA.Bg)),
P(t17t2»t3) ’

ts(e + Br(Ta,B,))]llalla + ||Sal 2, for all a€ A
This implies (4.1). O '
Corollary 4.2. If B is a Banach space of class €,(6, B) with constant C, for
some 0 = (601,62,63) € (0,1)3, 6; + 6, +63 <1 and 8;(Ta,p,) > 0. (t=0,1,2,3)
then

B1(Ta,B) < CBr(Tap,)t " 02053, (Ty g, )P Bi(Ta,B,)"2B1(Ta.5,)%. (4.3)

Proof. Since B € €,(8, B) and using (4.2) we obtain the inequality

ITalls < Ct7%7%5% max{B) (T4 p,), t181(Ta,B, ), t28:1(Ta,B,),
tg,BI(TAﬂgs)}”a“Aﬁ- HSa”Z, for alla € A and t1 > 0,t2 > 0,83 > 0.
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Taking t; = M (=1, 2,3), we get (4.3). O
1(Ta.8,)

Corollary 4.3. Ifi is an injective closed operator ideal and T' € f(A,F) is
such that for some i, say T € I{A, By), T € I(A, Bop 5)-

Proof. Since 3;(T) = 0 if and only if T € I and B ; is of class €,(0, A), the
result follows from (4.3). O

Theorem 4.4. Let B = (B, Bi1, B2, B3) be a Banach -tuple, let B be a
party interpolation space with respect to B and let A be another Banach space. Let
I be an injective closed operator ideal and T € L(A, B) such that T € I(A, B;),
(i=1,2,3). Then at least one of the following conditions must hold:

(i) T € I(A, B) ,

(ii) B — B,.

Proof. Since 8;(Ta.p,) = 0. (i = 1,2,3) from (4.1) we have

1
T < B(T lim ————
Pr(Ta.p) < Bi(Tap) im Z7——s.

Consequently, either T € I(4, B) (i.e. 8;(T4,8) =0), or, alternatively

lim ————— > 0, which, by Proposition 2.2, implies B — Bo. O
t- p(t1,t2,t3)

5. THE STRONG INTERPOLATION PROPERTY

In this section we show that many classes of operators ideals possess the strong
interpolation property with respect to Sparr’s interpolation method. To obtain the
strong interpolation property for the ideal I (without assuming any condition on
the Banach 4-tuples), we require the operator ideal I to satisfy the so-called > p-
condition (which was introduced by Heinrich [8]).

Given any sequence of Banach spaces (Fm)mezs we denote by [,(Esw) the
vector-valued [, space defined by

B = (O (lomlle)P) P < oo

meZ?

lP(EW) =3T= (xm) T

m

Denote by Qr : I,(Fwm) — Ex the projection Qp(zm) = xp and by Iy : Ex — I,(Em)
the natural (isometric) embedding Izy = (d%y), where 62 is the Kronecker symbol.

The operator ideal I satisfies the )  p-condition if for any two sequences
{Fm)mezs and (Fa)mezs of Banach spaces the following holds:
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it T € LUy (Em).ly(Fm) and QT Iz € I(Ex, Fy) for any 7k € Z°, then
T € I(lp(Em), bp(Fm))-

Theorem 5.1. Let 1 < p < o0, 8 = (61,02,03) € (0,1)%, 61 +62+63 <1
and let I be a closed injective and surjective operator ideal which satisfies the Y p-
condition. Suppose that A, B are Banach 4-tuples and T € L(A,B). Let Ts
be the induced operator from A(A) into S)(B). If Tis € I(A(A),Y(B)) then

Tel(A; .. B

6.p,J° 5,p,K)'

Proof. Define on A(A) and S"(B) the following equivalent norms
[|aflm=2=0m —02mz=bams jogm1 _gmz 9ms o A) ae A(A), =(m1, Mz, ma)€ Z°
“b“m-::Q—Gﬂm—02m2—93m3]{(2m1 oms oma b F) bEE(_B’) ‘fn‘:(ml 7772,777/3)6 ZS

Denote by Ag the space (A(A), || - |lm) and by B the space (B, | - lm)- 1
view of the definition of the space Ae, ,.; there is a surjection Q from I,(Awm) onto
; defined by

Ql(zm)m) = Z zm (convergence in Z(Z))
mez?
By the definition of the space _355‘ p.x there is an (isomorphic) embedding J from
Ea,p, x into l(Bg;) defined by
JW=(-vuy...)

Then the operator Qi JTQJ7 is the operator Tys from As = A(A) into By =
S°(B). So, it is an operator of the class I. Since I satisfies the }_ p-condition the
operator JT'Q belongs to I(l,(Aw), l,(Bm)). Now, the injectivity and surjectivity
of [ implies T € I(Zg,p,J’_B-é‘p,K)' 0

Corollary 5.2. Let T € L(A, B) such that for some i, say i = 0, T €
I(Ag, By), then T € I(Aopj, K-

Proof. Using the commutative diagram

A@) I (B
! T
A 5 B

and the ideal properties of I, we obtain Trs € I(A(A),3(B)). Consequently
Te I(Aep ,,Ba’qu). O

Remark 5.3. For the case of Banach couples Heinrich [8] has proved rezults
like those from theorem 5.1. He has also shown that weakly compact operators,
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Rosenthal operators, Banach-Saks operators and dual Radon-Nikodym operator
satisfy the )~ p-condition, for 1 < p < oo (these operators ideals are also injective,
surjective and closed) but the above condition is not satisfied by the compact
operators. So, Theorem 5.1 does not apply to compact operators, though we have
a similar result as in Corollary 5.2 for compact operators (see [4], [6]).

10.

11.
12.

13.

Ann.
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D

ACCURACY OF THE PLANAR COMPLIANT MECHANISMS

MUSTAFA HASAN, LJUBOMIR LILOV

In the recent years a class of devices called compliant mechanisms is in the focus of
many investigations. Their use in the design of modern devices, especially in micro-
electro-mechanical systems (MEMS), is inevitable because of the difficulty in fabricat-
ing rigid-body joints and assembling parts. Compliant mechanisms rely upon clastic
deformation to perform their function of transmitting and/or transforming motion and
force. Flexural pivot-based designs use narrow sections connecting relatively rigid seg-
ments. Thus, compliance is lumped to a few portions of the mechanism. The introduc-
tion of the elastic pivots instead of the rigid-body joints leads to certain deviations in
the performance of the compliant mechanisms compared with the analogous rigid-body
linkages. These deviations are the object of study in the paper. Based on the graph
theory, a method for effective estimation of the accuracy of compliant mechanisms with
flexural pivots is elaborated and practical examples are considered.

Keywords: Accuracy, Compliant Mechanisms, Flexure Hinges.

2000 MSC: 70B15

1. INTRODUCTION

The definition of compliant mechanisms can be found in the literature, based
either on the output motion, or on their design. Compliant mechanisms derive a
part or whole of the relative motion between its members from intentional elastic
deformation of the members rather than from conventional rigid body kinematic
pairs alone [1]. A compliant mechanism can be also defined, as a single-piece flexible
structure that delivers the desired motion by undergoing elastic deformation as
opposed to the rigid body motions in a conventional mechanism [2].
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Such mechanisms may be considered for use in a particular application for
a variety of reasons. The advantages of compliant mechanisms are considered in
two categories: cost reduction (part-count reduction, reduced assembly time, and
simplified manufacturing processes) and increased performance (increased preci-
sion, increased reliability, reduced wear, reduced weight, and reduced maintenance).

Generally, the categories of compliant mechanisms can be divided into three
kinds:

— Fully compliant mechanisms.
— Compliant mechanisms in which only the joints are compliant.
— Compliant mechanisms in which only the links are compliant.

Our interest is in the second one, in which the flexure hinges (flexure pivots)
act as of joints. A flexure hinge is a thin member that provides the relative rotation
between two adjacent rigid members through flexing (bending) where a conventional
rotational joint is compared to a flexure hinge [3]. Flexure hinge is a typical simple
and ingenious mechanical structure. Being made up of a monolithic material, it
possesses many outstanding properties which ordinary hinge does not have, and can
satisfies the demands for high accuracy and stability measurement and movement

[4].

The flexure hinges are incorporated in a large number of applications, both civil
and military, including translation micro-positioning stages, piezoelectric actuators
and motors, high-accuracy alignment devices for optical fibers, missile-control devi-
ces, displacement amplifiers, robotic micro-displacement mechanisms and so on.
Recently, increasing applications of monolithic flexure hinge mechanism have been
made to guide motions with precision. Micro-motion stages utilizing the flexure
hinge mechanism can have many advantages: negligible backlash and stick-slip
friction, smooth and continuous displacement, adequate for magnifying the output
displacement, of actuation, and inherently infinite resolution [5].

One kind of the flexure hinges is called super elastic hinges. These hinges are
made of a super elastic material such as shape memory alloy (SMA) having an
effect of super elasticity, so that they have the capacity to perform large bending
displacements [6].

Generally, the accuracy of a mechanical system is the quality of the system
characterizing closeness of the results of the execution of certain operations by the
mechanical system to the result of the execution of the same operations by the
ideal mechanical system. In this paper the performance of mechanism with super
elastic hinges is compared with the performance of mechanism with normal joints,
considered as an ideal system. A mathematical model and compact analytical
expressions allowing the exact estimation of the deflections in link positions of the
mechanism with super elastic hinges are presented. Widely used mechanisms are
considered as examples for application of the theory presented.
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2. MATRIX DESCRIPTION OF THE INTERCONNECTION STRUCTURE

Let us consider a planar mechanism consisting of n + 1 links interconnected by
m rotational hinges. We replace each rotational hinge by a super elastic plate and
in this way we arrive to a mechanism with compliance for which the interconnection
structure of the links is the same but the hinges are not more rotational pairs. The
deviation in the position of an arbitrary link of the new (compliant) mechanism
in the absolute plane with respect to the position of the same link of the primary
(rigid) mechanism is the object of study in the paper.

There are always two basic links in each real mechanism: the stationary base
(fixed link or frame) and another link, which plays a special role in the mechanism
and performs a preliminary given motion. This is the motion for which the mech-
anism is actually designed. This link is called characteristic link. In the formalism
developed further each link can be considered as a characteristic one if its motion
is of special interest. The fixed link will be considered as a link number 0 and the
characteristic link gets number ¢*. The fixed link together with the characteristic
link determine the basic open chain (possibly not the only one) in the mechanism.
This basic chain is unambiguously determined for some mechanisms like industrial
robots and manipulators but for others the basic chain may be chosen under some
possibilities. The links belonging to the basic chain get numbers 1,2, .. ., 1* starting
from the link next to the fixed link.

We represent the mechanism structure by a graph, whose vertices s; (i =
0,1,...,n) and edges u, (¢ = 1,...,m) symbolize respectively the links and the
hinges of the system. The labeling of the links and vertices, as well as the hinges
and edges is identical and it will be clear from the context when there is a question
of link or vertex, respectively of hinge or edge. We are talking about rotational pair
and more generally about hinge when two links ar interacting directly, i.e. each
rotational pair (hinge) connects exactly two links. The three links given in Fig. 1
sharing one rotational axis define in this way two rotational pairs.

Fig. 1
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The edge of the basic chain, which is incident with the vertex number i (i =
1,...,4*) gets the same number. The system graph is generally an arbitrary graph
and its transformation into a graph with a tree-like structure (so called skeleton
tree) can be reduced to the removing of i = m—n appropriately selected edges from
the graph. We assume that the removed edges do not belong to the basic chain. In
the tree obtained each pair of vertices is connected with one and only one simple
chain in which every vertex appears only one time. We label the vertices in such
a way, that the numbers of the vertices belonging to each simple chain beginning
from the vertex s¢ form a monotonously increasing sequence. Such labeling is called
regular. In this labeling the numbers from 1 to n are assigned to the edges of the
skeleton tree in such a way that one of the two vertices connected by the edge
number a has the same number i = a and besides, this edge belongs to the simple
chain connecting sy with s;. The nonsceleton edges get numbers from (n + 1) to
m. The simple chains which connect the vertices of the skeleton tree s; with the
vertex sg will be called direct paths and denoted by the symbol [sq, s;] [7].

When describing the relative motion in the hinge number a it must be specified
unambiguously which motion relative to which link is meant. As a basic link when
describing the relative motion in hinge number a we choose the link with the smaller
number. After the choice is completed we can define two functions % (a) and i~ (a)
(@ = 1,...,m) where it(a) means the number of the reference link and i~ (a) is
the number of the contiguous link. From the chosen rule of links labeling it follows
obviously that i~(a) = a for =1,2,...,n. By introducing the functions i*(a) and
i~ (a) we obtain the possibility to give a sense of direction to every edge and in this
way to transform it to arc assuming that i*(a) is the number of the vertex from
which the arc u, is pointing away, and i~ (a) is the number of the vertex toward
which the arc u, is pointing. The graph obtained is called oriented graph.

One of the basic matrices describing the structure of the introduced graphs is

the incidence matrix of the oriented graph I = (S;,) (i =0,1,...,n,a=1,...,m),
where .
1 ifi=1i%(a),
Sie =¢ —1 ifi=1i"(a), (2.1)

0 otherwise,

i.e. S;p = 1, if the arc u, starts at a vertex s;, S;o = —1, if the arc u, ends at
the vertex s; and S;, = 0 otherwise [8]. Obviously each column of the incidence
matrix contains exactly one element +1 and one element —1 because exactly two
vertices define each arc. The incidence matrix allows reconstructing entirely the
system graph and describes in this way unambiguously the system structure.

We introduce also the matrix I = (S}) (i = 0,1,...,n; a = 1,...,m) ac-
cording to the rule

0 otherwise.

S;:{ 1 ifi=1i%(a), (2.2)

This matrix is gained, obviously, from the matrix S replacing in it all —1
through zero.

206 Ann. Sofia Univ., Fac. Math and In_f., 98, 2008, 203-229.



Let us represent now the incidence matrix in the form

I~

Vv A
So So So }
- - s ,

A
S S
where:

\%
So=1(Sp.) (a=1,...,n); 0=(S,) (a=n+1,...,m)

fn< [n>

§0:(S()a) (a=1,...,m); :(Sz) (i,a=1,...,n);

A
S=(Sw) (=1,...,nya=n+1,...,m);
S=(Si) (i=1,...,n;a=1,...,m).

Another important matrix is the fundamental loops matriz (cyclomatic matriz)
® [8]. Let 1, P2, ..., Prm be the fundamental loops determined by the nonske-

leton arcs un11, Unis,-- ., Un. We choose the direction of the arc u,; as a positive
direction in the loop ®,;. The cyclomatic matrix is determined then as a 7 X m-
matrix & = (@nyip) ((=1,...,7, b=1,...,m) in the following way:

1, if up € ®,4; and has the direction of u,4;,
Prtib = —1, if up € ®,4; and has the opposite direction of w4, (2.3)

0, otherwise .

The last structure matrix we introduce is the matriz of direct paths ¥ = (14;)
(a=1,...,m;i=1,...,n) [7], where

1 if ug € [0, 8] and is directed towards so,
Yo =< —1 ifu, €sp,8;] and is directed from so,

0 otherwise.

This matrix has the form

T v
; ﬁ:m——n’ I:ﬁ‘l, I_:(Tai) (a,i:l,...,n)

Qﬁxn

U=

because of the introduced regular labeling. Here and further 0y, denotes matrix
with all elements equal to zero.

Let us consider as a first example the four-bar mechanism with coupler point
presented in Fig. 2. The four-bar linkage is the simplest possible closed-loop
mechanism, and has numerous uses in industry and for simple devices found in
automobiles, toys, etc. The device gets its name from its four distinct links (or
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bars). Link 0 is the ground link (the frame or fixed link), and is assumed to be
motionless. Links 1 and 3 each rotate relative to the ground link about fixed pivots
(Ag and By). Link 2 is called coupler link, and is the only link a point C of which
can trace paths of different shape (because the link is not rotating about a fixed
pivot). Usually one of the “grounded links” (link 1 or 3) serves as the input link,
which is the link which may either be turned by hand, or perhaps driven by an
electric motor or a hydraulic or pneumatic cylinder.

C rg

Fig. 2. Four-bar mechanism with coupler point C

For the given mechanism one possible choice of the functions i*(a) and i~ (a)
is represented in the following table

a 1 2 3 4
it (a) 0 1 0 . 2
i~ (a) 1 2 3 3
The corresponding oriented graph is given in Fig. 3.
52
Uy Uy
53
i
1 uy
So

Fig. 3. Graph of the four-bar mechanism
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The structure matrices I, ® apq have the form, respectively:

1 0o 1 0 -1 -1 0
-1t 1 0 o I U T
L= 0 -1 0 1]'2=[11 -1 1], %= 0 0 -1
0 0 -1 -1 0 0 0

As a second example we consider the six-bar Stephenson-I mechanism (Fig. 4).

¥

Fig. 4. Six-bar Stephenson-I mechanism with coordinate systems

The six-bar mechanism is considered as a multibody system consisting of six
bodies (including the frame) interconnected with seven revolute joints as shown in
Fig. 4. The moving links are numbered from 1 to 5 while the frame gets the number
0. The joints are numbered from 1 to 7. One possible choice of the functions i* (a)
and i~ {a) is given through the following table

a 1 2 3 4 5 6 7
i (a) 0 1 0 3 3 1 2
i (a) 1 2 3 4 5 5 1

The graph of the six-bar mechanism is a cyclic graph (Fig. 5). It can be
reduced to a graph with a tree-like structure by cutting exactly two appropriately
chosen arcs, for instance ug and wy.
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2

Uy

5y 53

L i

Sg

Fig. 5. Graph of the six-bar mechanism

The structure matrices have the form:

(1010000”
-1 1 0 0 0 1 0
A RIS
= 0 0-1 1 1 0 0]+ -1 - ’
0 0 0 -1 0 0 -1 .
| 00 0 0 -1 -1 0]
[ -1 -1 0 0 0]
0 -1 0 0 0
0 0 -1 -1 -1
¥=1 0 0 0 -1 0
0 0 0 0 -1
0 0 0 0 0
| 0 0 0 0 0]

The last example is the mechanism shown in Fig. 6 with nine links and ten
revolute joints (planar platform).
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Euyy [ A= efo’

_’
2
K %o
| 4

(8
€

Fig. 6. Nine-bar mechanism with the coordinate systems

One possible choice of the functions ¢* (a) and i~ (@) is given in the following
table:

a it(a) i~ (a)
1 0 1
2 1 2
3 2 3
4 3 4
5 4 5
6 ) 6
7 3 7
8 7 8
9 0 6
10 0 8

The corresponding oriented graph is given in Fig. 7.

Ann. Sofia Unsv., Fac. Math. and Inf., 98, 2008, 203-229. 211



53

Uy Hy
$9 $7
Uy
5 S8
uy o

S0

Fig. 7. Graph of the nine-bar mechanism

The graph of the mechanism is a cyclic graph and can be reduced to a graph
with a tree-like structure by cutting exactly two appropriately chosen arcs, for
instance ug and u39. The corresponding structure matrices have the following
form:

1 0o 0 0 0 0 0 0 1 1
-1 1. 0 0 0 0 0 0 0 O
0 -1 1.0 0 0 0 0 0 O
0 0-1 1 0 0 1 0 0 O

I={ 0 0 0 -1 1 0 0 0 o0 O],
0 0 0 0 -1 1 0 0 0 O
0o 0 0 0 0 -1 0 0 -1 0
0 0 0o 0 0 0 -1 1 0 O
0 0 0 0 0 0 0 -1 0 -1

o] 1 -1 -1 -1-1-1 0 010]

=" l-1 -1 -1 0 0 0 -1 -101

[ -1 -1 -1 -1 -1 -1 -1 -1]

0 -1 ~-1 -1 -1 -1 -1 -1
0 0 -1 -1 -1 -1 -1 -1
0 0 0 -1 -1 -1 0 0
U= o 0 o0 0 -1 -1 0 0
- 0 0 0 0 0 -1 0 0
0 0 0 0 0 0 -1 -1
0O 0 0 o O o0 o0 -t
0 0 0 0 0 0 0 0
| 0 0 0 0 0 0 0 O]
In link number ¢ (1 = 0,1,...,n) we chose a coordinate system O;x;y;z; in the

following way. The axis z; is the rotation axis of link i with respect to the previous
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link in the direct path from so to s;. All axes 2; are parallel and orthogona] to
the common motion plain of the links. If the link number ¢ is an inner one for
the skeleton tree and besides it is connected with one or more following links with
numbers j, k,...,l (j <k < --- <), then the axis z; is a common normal of »,
and z; in the motion plain, directed towards z;. The axis x; intersects the axes z;
and z; in points O; and Oj, respectively. We chose the first point as an origin of
the coordinate system Q;z;y;z; in which the axis y; lays in the motion plane and
complements the axes z; and z; to right-hand system. Analogously, on each of the
axes belonging to the link ¢ with numbers j < k < --- < points O;, Ok, ..., Oy are
defined (Fig. 8).

Yy

X

Fig. 8

In the peripheral links the axes x and y of the coordinate systems are chosen
arbitrarily but so that they built right-hand systems with the rotation axis z of the
peripheral link with respect to the previous one. In the fixed (zero) link the axis 2o
is chosen to coincide with the axis z; and the axes zy and yo are chosen arbitrarily.
In addition to the coordinate system O;z;y;2; in each of the links except the zero
one we will use a coordinate system with an origin in an arbitrarily chosen point
C; of the link and parallel axes with unit vectors egi), eg’ , e3) The position of the

link i~ (a) with respect to the link i*(a) we determine with the angle g, between

the z-axes of the coordinate systems C;e(® introduced, ¢, = £ (ez (@) gt (@)

Let us replace now the revolute hinges in the motion plane through thm plates
with lengths I, having super elasticity, while the system is in a certain position ¢*.
We assume that the rotation centers R, are located at the centers of the lengths
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of the elastic hinges and that the lengths of the plates are small quantities [, < 1
(Fig. 9). ~

Link i"(a)

i (ada
€

Fig. 9

3. RELATIVE DEVIATION

The basic considerations begin with the description of the relative motions in
the hinges. The relative positions of the links will be determined by a method
that is more complex than it is necessary when considering only a mechanism
with rotational (rigid) hinges, .but the method is equally applicable to the both
mechanisms. This approach gives us the opportunity to realize the desired compa-
rison. For this purpose for each hinge two hinge points Ci#(q)a in the corresponding
contiguous links are specified and the hinge vector z, = C;+ (a)aC (a)a I8 introdu-
ced. We denote the radius vectors of the hinge points Cit (a)q in the corresponding
bases by cio = C;Ci, (i = i*(a), a = 1,...,m) (Fig. 10). In order to describe the
relative motion in hinge a we introduce in each of the contiguous links additional
reference frames Cjx (,),e e(i*(@)a) rigidly attached to the corresponding links i*(a).

The position of the system C,i(a)ag(’ (2)) with respect to C,i(a)g“ (@) is determi-
.+ . a

ned by the position of its origin C;z ,), and the angle aF, o} = £ ( e ezl+( )a),

=/ ( ile) ¢ i"(a)a ) We choose as hinge points the ends of the super elastic
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plate. The axes e’;"(a)a and ei_(a)a are directed along the plate when it is in
undeformed state in position ¢* and then they remain fixed in the corresponding
links (Fig. 9, Fig. 10, Fig. 11, Fig. 12).

Link (" (@) Link (" ()

i* i"(a)

¢ @ \/ z, ¢ @a
Ci‘(a)a Ci (a)a
ci‘(a)xz cl"(a)a

i*{a)
Cs’*(a) &
¢ @ /V
C.
i~ (a)
Rf'(a) Rl"(a)
Oy ¢
Fig. 10

The vector z, and the basis €' () are functions of the chosen parameter of the
relative motion in hinge number q, i.e.

Zo = 24(¢a), € (V) = eli (@) (g,).

The position of the plate itself in undeformed state with respect to the coordinate

+
gystems in the contlguous bodies is determined by the angles o} £ ( 9 (a) (a)a)
and o £ (eﬁ (@) i ) (Fig. 9). For the initial (rigid) mechanism the relative
motion in hinge a is a rotation around the center R, which is the middle of the
plate and the vector z, has the form (Fig. 12)

Z, —C,+(a)a07 (a)a ~C+(a)aR + R, C;- (a)a

l la la e
= (—;- + 3 cosqa> gl (@e (2 sin qa> Haa,
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Here and further the index (r) (from rigid) is used for quantities connected with
the initial (rigid) mechanism. For the corresponding quantities of the mechanism
obtained after replacing the rotational hinges through super elastic plates we will
use designations without index.

The relative motion in hinge number a is realized by virtue of the elastic
deformation of the plate which replaces the rotation pair. The position of the system

Ci- (e (M7 with respect to the system Ci+(a)aei+ (a)a is determined through the
-+
1

angle 8, = / (el ("’“,e;"(“)“) (Fig. 11, Fig. 12).

i*(a)a

*(a)a

Fig. 11

.+ —_
Let ¢, mean in the elastic mechanism again the angle £ (el1 (@) g (a)). The

following relationship is evident (Fig. 11, Fig. 12, Fig. 13):
G=0a+0,-a =60, +q.

The links of the both mechanisms in an undeformed state when 8, = 0 take identical
position ¢* in the absolute frame.
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e;" (adu

elz”'(a)

v

({(a)

i (a)

cl"(a)d

Fig. 12

e:'(a)a 'lr (@)

e:” (a)+

Fig. 13

We assume that the form of the deformed plate is determined through the angle
0,. Then the translational displacement z, of the coordinate system C;- (a)aei_ (a)a
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with respect to the coordinate system Ci+(a)aei'*'(“)“ can be written down in the
form

% = Crr (myaCr—(ara = falfa)el @ 4 g (0,)el @°, (3.2)

where functions f,(6,) and g,(6,) are known through the equation of the neutral
line of the deformed plate found theoretically or from the experiment. The deviation
to be determined between the links of the elastic mechanism with respect to the
links of the initial mechanism is the difference between (3.1) and (3.2) (Fig. 12):

Az, =2, — 2], =

la la it(a)a i"(a)a (33)
= [fa(ﬂa) — <§ + gcosq,L):l e (@) [ga(B )— = smqa} e, ")

4. DEVIATION OF THE COMPLIANT MECHANISM

We choose as an absolute coordinate system Oe (reference frame) the coordi-
nate system in the fixed (zero) link Ope®. The position of each link of the mechanism
in this system is determined with the help of the radius-vector R; of the point C;,
fixed in this link, and the orthonormal basis e’; i = 1,...,n, introduced above
(Fig. 10). The relative motion in each hinge has only one degree of freedom and
in this way the position of the mechanism is determined by m generalized param-
eters ¢ = (q1,...,¢m)7”. We can write down for each pair of contiguous bodies the
formula (Fig. 10)

(Rit(a) + Cit(a)a) = (Ri=(a) + €i= (a)a) = ~Za, a=1,...,m. (4.1)

Taking into account the incidence matrix (2.1), we rewrite this relation in the
following way:

Y Sia (Ri+Cia) = S0aoa + I Sia (Ri+Cia) = 20, a=1,...,m. (42)

=0 i=1

Let us define now with the help of the incidence matrix the following matrix

J=(SiuCia) (i=0,1,...,n;a=1,...,m), (4.3)

where the vectors c;, are defined only for i = i*(a). We put them zero for the
remaining indices. The last matrix has the same structure as the incidence matrix:

]-[2)
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where

% A
—9—0 = (SOaCDa) (a =1,... vn)v .QO = (S()n.c()a) (a' =n+1,.. ~am)
A
C = (SiCia) (i,a=1,...,n), C=(SiaCia) (i=1,...,m;a=n+1,....,m),
Co = (Spatoa) (a=1,...,n), C=(Sinci) (i=1,...,na=1,...,m)
We define in the same way the matrix
J* = (S z4), (i=0,1,...,n; a=1,...,m) (4.4)
where S} are quantities defined in (2.2). The last matrix has the form
\Y . A
Ci; Cj [0
l: \ A = C* ’
g* g* Y
where
v + A
Ci=(5,2.) (a=1,...,n), Cg= (S’Oaza) (a=n+1,...,m),
v A
Q*z(S;;za) (,a=1,...,n), C*=(S Y2.) (i=1,...,n; a=n+1,...,m),

C' = (Sj;z,,) (i=1,...,na=1,...,m).

G = (S{)tlza) (@=1,...,m),

The vector z, can be represented in the form:
n
= Z S{flza.
i=0

From here for the matrix z = (21,. .. ,zm)T follows the relation

z= (J*)Tln+l’
where 1, ; is a column [(n 4 1) x 1]-matrix of unit elements. Now, defining R =
(Ry,--.,R,)T we are able to represent (4.2) in the following form:

(4.5)

R

Ir [ 0 } + 3,0 =~
or:
(4.6)

0 *
IT[R] (J+J) n+l"‘0mx1

Multiplying this relation from the left with @7 and taking into account the

relation [7]
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\IITIT = ("1na_E.n)7
Where £, is a unit n x n matrix, we find that

R=-3"J+J)7L,.,. (4.7)

This expression represents the radius-vectors R; (i = 1,...,n) of the points
C; fixed in the links with respect to the absolute coordinate system through the
hinge vectors and eventually through the generalized parameters of the mechanism.
Without loss of generality we can chaose Cy = C; and then ¢p; = 0. Partlcularly,
we have for the characteristic link

i1

i = Z Z; + Z (C'L i+1 cu) (48)

The last relationship determines the radius-vector of point C;« of the characte-
ristic link with respect to the absolute coordinate system. Outgoing from (4.8)
and taking into account that the quantities c;, are identical for both mechanisms
and the differences in the attitudes are due to the different values of the vectors
Z, in both mechanisms, we obtain the following expression for the deviation of the
characteristic point

T3

AR, = Z Az;.

The matrices (4.3), (4.4) J and J* for the four-bar mechanism have the follow-
ing form (Fig. 2):

Co1 0 Co3 0 z7 0 z3 O
J —-Ci1 C1o 0 0 J = 0 Z 0 0
- 0 —C29 0 C24 o= T 0 0 0 z4
0 0 —C34  —C34 0 0 0 0
The formula (4.7) is now
R, Zi + Co1 —C11
R | = | z1+2z2+cor +c12 — 11 —co
Rs Z3 + Cg3 — C33

The radius-vector R of the characteristic point (coupler point) C is (Fig. 2)

Re =R, +rzel?

and
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AR¢c = ARy = Az

Let us consider now the second example. For the six-bar mechanism the ma-
trices (4.3), (4.4) J and J" are (Fig. 4):

Co1 0 Co3 0 0 0 0
—C11 C12 0 0 0 Cig 0
J = 0 —C22 0 0 0 0 Ca7
= 0 0 -—c33 c3¢  c35 0 0 ’
0 0 0 —Cy4 0 0 —C47
0 0 0 0 —C55 —Cs6 0
r Z 0 Z3 0 0 0 0
0 zo 0 0 0 z5 O
J* = 6 0 0 0 O 0 =z
= 0 0 0 2z, zz 0 O
o 0 0 0 o0 o0 OO
0 0 0 0 0 00
The expression (4.7) has the form
R; co1 + 21 — C11
R, Z1 + 22 + Co1 — €11 +C12 — €22
R; | = Co3 + z3 — €33
R4 Z3 + 24 — €33 + Co3 + C34 — C4q
Rs z3 + 75 + Co3 + €35 — €33 — Cs5

Choosing point D as a characteristic point we have for its radius vector the
expression (Fig. 4)

Rp =Ra+hel?, &

D),
or
Rp =2, + 22 + Co1 — €11 + €12 — Cag,
and finally
ARp = ARs = Az + Az,.

The matrices (4.3), (4.4) J and J* in the last example — the nine-bar mechanism
(Fig. 6) are:
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Co1 0 0 0 0 0 0 0 Cpg Co10
—C11 Ci2 0 0 0 0 0 0 0 0
0 —C29 Ca3 0 0 0 0 0 0 0
0 0 —C33 Ca4 0 0 C37 0 0 0
l = 0 0 0 ~C44 C45 0 0 0 0 0 .
0 -0 0 0 —Cng Cs6 0 0 0 0
0 0 0 0 0 —Cg6 0 0 —Cgs 0
0 0 0 0 0 0 —C77  Cr8 0 0
i 0 0 0 0 0 0 0 —Cg8 0 —Cg10
[z, 0 0 0 O O O O 2z 2 |
0 zz 0 0 0 0 O O O O
0 0 zz 0 0 O O O O O
0O 0 0 zz 0 0 z O O O
J=10 0 0 0 2z 0 0 0 O O
0O 0 0 0 0 zg 0 0O O O
0O 0 0 0 0 0 0 O O 0
0 0 0 0 O 0 0 zz 0 O
| 0 0 0 0 0 0 0 0 O O ]
The formula (4.7) takes the form:
R, i Z1+Cp1—C11
R, Z1+22+¢Co1+Ci12—C11—C22
R, Z1+2Z2+23+Co1+C12+C23—C11 —C22—C33
R, z1+22+23+24+Co1+C12+HC234C34—C11 —C22—C33—Ca4
R; = ZL+ZQ+Z3+Z4+25+001+012+C23+C34+C45—011—022*033—6(344—055
Rg Z1+29+23+2Z4+25+Z6+Co1 +C12+C23+C34+Ca5+C6 (Z Cii)
i=1
Il:; J Z)+23+Z3+Z7+Co11+C12+C23+C37—C11 —C22—C33—C77
- | Z1+22+23+27+28+Co1+C12+Ca3-+Cg7+C78—Cy1—~Co2—C33—C77—Cs8 |

Choosing point F' as a characteristic point we have for the position vector the
expression (Fig. 6)

Rr =Ry +hel®,  |BF|=h,
or

ARp = AR, = Az + Azs.
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5. CONSTRAINT EQUATIONS

The availability of loops in the considered mechanisms leads to the appearance
of constraints between the generalized parameters g, imposed on the mutual motion
of the links forming a system of fundamental toops. Each of the fundamental loops
imposes 3 scalar constrains independent of the remaining loops. These constraints
express the trivial circumstance that the radius-vector of the origin of one (no
matter which) of the coordinate systems fixed in the links of the loop with respect
to this origin is the zero vector and, similarly. that the angular position of this
coordinate system with respect to itself is gi‘ven by the unit matrix. Following
from an arbitrary link of the loop in one direction and expressing these quantities
through the coordinate systems of the passed links, we find a formal record of
the constraints after accomplishing the cycle. Let us derive first the constraint
connected with the angular attitude of the links of the loop considered. Let the
loop &, consist of ares ug,, ..., up, (@ =n+1,....m) and the sense of direction is
determined by the direction of the arc u, . Let i and j be the contiguous links for
the hinge number by and let « be the an';.;le hetween the r-axes of the coordinate
systems fixed in the contiguous links, Obviously, if the link i is chosen as a reference
link and the value of the parameter b, 1s . then the value of g, will be (~a) if
the link j is chosen as a reference link. Therefore. starting the calculation from an
arbitrary link we find that the constraint, imposcd by the loop, will have the form

ot Qe vt Qi =qr, + Gho + o Gy {5.1)

where jy....,jn, are the numbers of the arcs with the same sense of direction as
the arc up,, and R, ..., kg, are the numbers of the ares with the opposite sense of
direction.

This result can be obtained in a formal way, as well. Let the transition matrix
in hinge by be G, and let the link number i be chosen as a reference body. Let
the value of the parameter gy, be a, then the matrix G, has the form:

. . Cosa —sina
G, =ePedT = | .
=he T == sin COS (x

If we choose as a reference link the mnhguous link, then the value of ¢, is
{—a}) and the transition matrix is Qb . Outgoing from the definition (2.3)
for the quantities o, we can write down thc re]dhon

q ¥

G”o""' Q}’:’"’,.--,Gi"b" =L, ([a=n+1,....m), (5.2)

where E, is 2 x 2 unit matrix. Each of the matrices in this relation is an anti-
symmetric one. It is an easy task to prove that the product of two antisymmetric
matrices is commutative

[¢5] b] az b2 J — [ ay bQ ty bl
—bl a) -b2 az —bg a9 —b] a1 i
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Consequently, in the left side of (5.2) we can first write down the matrices with
positive exponents ¢, and then — those with negative exponents. The product of
the former matrices has the form '

[ cos(qj, + @i, + -+ q5,,) —sin(g;, + g, +-+q5,,) ]
sin(gj, +qj, +---+¢q.,,)  cos(g;, +q, +--+a5,) |’

and the product of the latter — the form

cos(qk, + Qk, + -+ Gr,,)  Sin(gr, + Gk, + o+ Gr,,)
—sin(qk, + Gk, + - + qk,,) €08(qk, + Gry + -+ k) |

After multiplying these matrices the relation (5.2) obtains the form:

(0] ()] w(Ee)- G
—sin [(gj} q.n) - (21 q’ﬂ)} cos K; Qj') - (zé Qk’>]

what leads us again to the relation (5.1).

The remaining two constraints express the equality to zero of the radius-vector
of an arbitrary origin with respect to itself, or in other words, the radius-vector
of the coordinate origin of the link chosen as an initial one, expressed through the
sequence of vectors c;x(,) and z, along the arcs u, belonging to the considered
loop, is equal to zero. We can find these constraints by multiplying the relationship
(4.6) from left with the cyclomatic matrix @ following [7]. We find, after simple
calculations, the formula

o~

- o
———

I Loy + P2 =041
Using (4.5) we rewrite this relation in the form
271,41 + 02 = Oa1.
This relationship is fulfilled for both mechanisms, therefore
I —J")TL,,, + DAz = O
The vectors ¢;, have identical values for both mechanisms, i.e. J =J" and finally

PAZ = 0px1. (5.3)

Projecting (5.3) on the axes z and y in the motion plane we obtain 27 scalar
relations which are the constrain equations together with (5.1).

As an example, let us consider again the four-bar mechanism. We have only
one loop and the equations (5.3) are now (Fig. 2)

224 Ann. Sofia Univ., Fac. Math and Inf., 98, 2008, 203-229.



rgco8q1 + 6 Cos(q) + g2) — r4cosq3 — 11 =0 (5.4)
rosing: + 76 8i0(g1 + ¢2) — r4sings = 0. )

On the other hand, the relation (5.4) takes the form

@ +q2—q3+qs=0. (5.5)
From (5.4) we obtain
gs = arctan ( r2singi + 7o sin(gu + ) ) . (5.6)
T2 cO8q1 + 75 cos(qy + g2) — 1

Eliminating g3 by squaring and adding the equations (5.4), we get
3 — (1% + 12 4 r2) = 2rorg cos g — 27172 08 @1 — 27176 cos(qy + g2)-

This formula allows representing g» as a function of ¢; and further ¢3 and g4 through
{(5.6) and (5.5). Finally the constraint equations (5.3) have the form

AZ]
AZQ
AZ:;
AZ4

[1 1 -1 1] =0

or
Az + Azy — Azg + Azy = 0.

Let us now find the parameters of the displacement for the six-bar mechanism
through the generalized parameters qi, g2, g3, q4, g5, g6 and g7 (Fig. 4). To that
end, we use the loop-closure equations. The loop-closure equations of first four-bar
linkage O34 ABOp are written as:

acos(qr — ) —bcos(q; +¢e) —ccos(gz +B) —d =0 (5.7)
asin(gq, —a) — bsin(q1 + g¢) — csin(gz + ) =0 )
q—q3—gs+gs =0, (5.8)

where o = £(04A4,04C), 8 = L(OE,OB), a =|044|, b= |AB|, ¢ = |OpB]|,
d =|040g|. From (5.7) we get the formula

asin(gq; — o) — bsin(q + ¢¢) ) ) (5.9)

= arctan
B (acos(q1 —a)—bcos(qr +¢s) — d

In order to get rid of the angle g3 in (5.7), we square and add the equations.
We obtain

c? — (a® + b? + d?) = —2abcos(ge + ) — 2ad cos(q; — a) + 2bd cos(qy + gs)- (5.10)
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As ¢; is the input data and can be chosen as a generalized coordinate, then gg is
determined from (5.10) as a function of ¢y, hence g3 through (5.9) is a function of
g1. The relation (5.8) gives finally g5 = ¢q; — g3 — g6 as a function of ¢;.

The closure equations for the second loop — the five-bar linkage O4CDEQOpg
are given as:

ecosqy + hcos(qr + g2) — gcos(gs +g4) — feosgs —d =0 (5.11)
esing; + hsin{g; + ¢2) ~ gsin(qs + g4) — fsingz =0 )

G+ep—-g-—qp+eg=0 (5.12)

where e = |04C|, f = |OgE|, ¢ = |[ED| and h = |CD| are dimensions of the
six-bar Stephenson-I mechanism.
After squaring and adding the equations (5.11) we obtain

h? — (d? + €% + f2 + g?) = —2egcos|q; —(g3+qa)] —2ef cos(q1+q3)+2fg cos g
— 2de cos q + 2dg cos(qz + q4) + 2df cos q3.
(5.13)

From (5.11) we get

esing; — gsin(gs + q4) — fsings (5.14)
ecosq — gcos(qs +qq4) — feosqy —d’ ’

g2 = —q1 + arctan

The parameter ¢4 can be expressed from equation (5.13) as a function of the gen-
eralized coordinate ¢;. The generelized parameter ¢ is expressed as function of g;
from (5.14). Finally, the last parameter ¢; can be derived as a function of ¢; from
(5.12).

The constraint equations (5.3) for this mechanism have the form

Azy — Azg — Azs + Azg =0
Az + Azy — Azz — Azy + Azy = 0.

The nine-bar mechanism has nine links and ten revolute joints, consequently
10 generalized parameters ¢; (i = 1,...,10) (Fig. 6). As the mechanism has two
independent loops, the number of the degrees of freedom is four. We choose as
generalized coordinates the first generalized parameters ¢; (1 = 1,...,4). We have
from the loop (OABFGHI), the following constraint equations:

@1 +q@+a+g+qg+g —q =0 (5.15)

by cosqy + bacos(qr + g2) + hy cos(gr + g2 + g3)+
5

4
b4 cos (Z q,-) + b5 cos <Z q,;) +bgcosge —a=0
by singy + bz sin(gi + g2) + hisin(gr + g2 + g3)+

4 5
by sin (Z qi) + by sin (Z qi) + bgsingg = 0,
i=1 =1
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where hy = BF. From relation (5.16) we get

qo =

3 4
b1 cos q1+bz2 cos(q1+gz2)+hi cos (Z q,) +b4 cos (E )

1
3 4 5
b1 sin g1 +bo sin(g1+g2)+h, sin (Z q,») +b4 sin <Z ) +bs sin (Z q,)

i=1 =1

arctan

(5.17)

Now, ;a.dding after squaring the equations (5.16), we get
— (b3 + b3+ h2 + b2 + b2+ a?) =
4
2b1b; cos gy + 2b1hy cos(ga + g3) + 2b1bg cos (E q,')
i=2

5
+2by1 b5 cos (Z q,;) + 2byh, cos gy + 2baby cos(gz + qa)
=2

+2babs cos (Z q,-_) + 2h1bg cos g + 2h1bs cos(qs + ¢s5)
i=3

+2b4bs cos g5 — 2ab;y cos g1 — 2ab, cos(qy + ¢2)
4 5
—2ah; cos (Z qz) — 2aby cos <Z qi) — 2abs cos (Z q,~> .
=1 =1 i=1

This relation determines generalized parameter g5 as a function of the gen-
eralized coordinates, ¢s = h(q1,92,93,94). Hence, from (5.17) we have qg =

f(qla ‘12»(137614) and from (515) we get g6 = Q(QI,QZ,43,44)-
The second loop (OABCDE) delivers the equations (Fig. 6)

f1+g2+e+qr+qgs—qo=0 (5.18)

b1 cos q1+bg cos(q1+g2)+bs3 cos (Z q,) +b7 cos (q7+ > q,) +bgcosqig—c=0

i=1 =1
bising; + besin(qi + g2) + bz sin (z qi) + by sin <q7 +Y qi> + bg sin qig = 0.

i=1 i=1
(5.19)
From (5.19) we obtain the relations

3 3
b1 sing; + by sin{g; + g2) + ba sin (2 q,-) + by sin <q7 + 3 qi)

g10= arctan 3i=1 3 =1 ,
b1 cos q1+b3 cos(q1+¢2)+b3 cos (Z qi) +b7 cos <q7+ > q,-) —c
i=1 i=1

(5.20)
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b2 — (b2 + b2 + b2 + b2 + b2 + a?) =
2b1ba cos g2 + 2b1b3 cos(g2 + q3) + 2b1b7 cos(gz + g3 + ¢7)
+2babg cos g3 + 2b2b7 cos(qs + g7) + 2bsby cos g7
+2b3by4 cos qq + 2b3bs cos(gs + g5) — 2biccos gy

3 3
~2bgecos(q1 + q2) — 2bsccos (Z qi) — 2brccos (Q7 + 3 qi) .
i=1 i=1
The last relation determines the generalized parameter ¢; as a function of
three generalized coordinates, gz = hi(q1, g2, g3). Hence, from (5.20) we have ¢10 =

f1(q1,¢2,4q3) and further from (5.18) we get gz = 91(q1, ¢2, ¢3)-
The relations (5.3) for the planar platform are:

—(Azq + Azg + Azg + Azg + Azs + Azg) + Azg =0
—(Azy + Az + Azg + Azy + Azg) +4Az19 =0 )

6. CONCLUSIONS

The displacement of the mechanism with super elastic hinges is compared with
the displacement of the mechanism with traditional joints, considered as an ideal
system. Using the graph theory a mathematical model is suggested and compact
analytical expressions are given allowing an exact estimation of the deflections in
links positions of the mechanism with super elastic hinges. The results obtained
are applied on three famous mechanisms widely used in technics.
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Modeling and design of Learning Content Management Systems:
UML as a tool for learning system design

KORNELIYA TODOROVA

Problems in advanced e-learning like development and delivery of dynamic flexible
reusable and adaptive learning content are discussed in the paper. It is proposed
an extended learning content model which purpose is to demonstrate how required
flexibility can be achieved and it is offered a detailed description of design process
of learning system that supports management and delivery of reusable and adaptive
learning content. For this purpose advantages of UML as modeling tool for design of
learning systems are discussed in the paper and elements of different types of diagrams
and their implementation in the process of systems design are described. In the paper
UML diagrams are used to show how necessary functionality of leaning system can be
represented in clear and accurate manner and it is conducted overview analysis and
of existing tools for development of UML diagrams. The model proposed is explained
with several types of UML diagrams and a prototype of user interface is proposed that
will provide required functionalities related to learning content manipulation and other
activities related to leaning process like users profile management and their performance
agsessment.

Keywords: modeling, UML diagrams, state, class, system design, use case, collabora-
tive, sequence, statechart diagrams, ontology, learning content model, reusable, flexible,
adaptive learning content
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1. INTRODUCTION

Delivery and development of high quality learning materials are critical for
individuals and organization success in the conditions of globalization of informa-
tion society. Main task of experts and specialists in the field of e-learning is to

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2008, 231-242. 231



develop and support systems that allow effective learning materials to be created,
edited, stored and delivered. Basic problems related to development and delivery
of dynamic, flexible and adaptive to learners’ needs of education learning mate-
rials are discussed in the paper and an extended and modified learning content
model is proposed. Different types of learning systems are developed for the prob-
lem solution. Most complex of them are Learning Content Management Systems
(LCMS). They allow learning process to be managed and their most important
functions are related to learning materials manipulation. The goal in this paper is
to design LCMS following the Unified Process (UP) methodology and according to
it the development of high efficient system that supports e-leaning processes will
achieve. Development of effective software systems that cover users’ requirements
and expected functionality depends on following the phases of systematic develop-
ment process of learning systems. For this purpose users’ requirements have to be
gathered and documented and phases of analysis, planning, design, development,
implementation and evaluation should be implemented. One of the most important
phase and often missed or bad conducted one is design phase. Aim of the paper is
to analyze and design development of Learning Content Management System that
supports creation of reusable and dynamic learning content and learning process
management. The definition used in this paper of LCMS is that the functional-
ity of LCMS is an union of Learning Management Systems (LMS) and Content
Management Systems (CMS) functionalities ({3]):

LCMS = LMS + CMS[RLOs).

In this paper UML model of use cases that describe system requirements is
presented. Realization of the model should be analyzed and designed with class di-
agrams, sequence and collaboration diagrams and object and state chart diagrams.
Last type of diagrams used in the paper is deployment type diagrams. Their pur-
pose is to demonstrate the design process of LCMS as it is defined on the base
of basic and users’ requirements and to show how it will interpret the new model
of learning content described here. User interface that supports processes in the
proposed model is presented at the end of the article.

2. DESCRIPTION OF LEARNING CONTENT MANAGEMENT SYSTEM

2.1. LEARNING CONTENT MANAGEMENT SYSTEMS REQUIREMENTS-BASIC
REQUIREMENTS

Basic requirements [11] to the Learning Content Management Systems are

extensibility, granularity, usability and scalability . They are used in the process of
LCMS deign .
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2.2. DEFINITION OF LCMS

A common definition of Learning Content Management System proposed by
Maish Nichani in his paper (3] is following:

LCMS = LMS + CMS[RLO).

where LCMS is Learning Content Management System, LMS is Learning Manage-
ment System , CMS is content Management Systems and RLO is Reusable Learning
Object. Aim of RLOs is to present leaning content in the form of little independent
pieces and this way leaning materials can be combined in appropriate context ac-
cording to users’ requirements and needs of education LMSs have to provide support
for the following operations: development and delivery of course catalog, registra-
tion and management of users’ accounts, assessment of students performance, score
reports and support for different tools for synchronous and asynchronous commu-
nication. Content Management Systems have to allow creation, editing, approval,
publishing and storage of content. On the base of combination of its capabilities,
a LCMS has to offer, not only the management of the entire learning process, but
the following functionalities also:

¢ Creation of learning content

¢ Storage of learning content

¢ Editing of learning content

o Management and delivery of learning content in different formats

LMS oMS + RLO

DNV

KMS LCMS WCMS

Fig.1 Types of learning systems

3. DEVELOPED MODELS

In the paper a model for delivery of learning content is developed on the base
of main components of e-learning and knowledge management proposed by IMS
Global Consortium: learning environment, learning components, learning objects
structure, information object description and content assets as text, video, audio
etc.

First the general model by IMS will be presented.
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3.1. ID-BASED LEARING CONTENT MODEL

ID-based Learning Content Model is proposed by IMS Global Learning Con-
sortium[8]. Learning environment is defined by its components, used databases and
communications. Courses, curriculum and competencies are learning components
of the model and each learning object is defined as a combination of objective,
practice and assessments. Each information object describes different concepts,
principles and procedure in a separate knowledge domain. Content asset in the
terms of multimedia is described as a mix of text, video, audio and so on. All
described components have to be managed by a Knowledge Management System
and with addition of communications and databases that store them they pro-
vide e-learning. Dividing the entire e-learning system in small parts allows high
reusability of its components to be achieved. This way flexibility and adaptability
of learning materials is gained. Purpose of separation of courses in learning ob-
jects as combination of information objects and at the end as content assets is to
increase reusability and adaptability of learning content. But in the basic model
it is not clear how that reusability can be provided and supported. A proposal
how necessary level of flexibility can be achieved is given in the developed modified
model. Most important question is how all these small and independent parts to
be gathered and managed. For this purpose domain ontologies can be used and
this approach is presented in modified learning content model.

e-Learning
Knowledge Management
Learning Learning Learning Information Content
Envir t Comp t Object Object Asset
Objective
Components Course Concept Text.
Case Study Practice Audio
Databases Curriculum Principle Animation
Competency Assess Graphic
Communications Procedure Video
Content and Complexity
= Reusability +

Fig.2 Types of learning systems

We improved the IMS model by replacing learning components with domain
ontology concepts, relationships and rules in order to develop dynamic courses that
reflect learners’ preferences defined in learners profiles. The resulting improved
model is presented in the next section.
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3.2. MODIFIED LEARNING CONTENT MODEL

For the purpose of this paper ID-based Learning Content Model has been
modified. That modification replaces the learning components in the IMS model
with domain ontology that is used in LCMS design.

e-Learning
Knowledge Management

Learning Domain Learning Information Content
Envir tology Object Object Asset
Ontology
Concepts Objective
Components Concept Text
Rules for Practice Audio
Databases learning path Principle Animation
. selection Assess Graphic
C icat Procedure Video
Content and Complexity
- Reusability +

Fig.3 Modified Learning Content Model

Proposed modification allows elements of the learning materials to be orga-
nized in a hierarchical way in an subject domain ontology of concepts and learning
objects to present information for each concept. Ontology elements allow very de-
tailed level of learning content representation to be achieved. Each concept could
be implemented as independent small part of learning content and it could be de-
livered with other parts of learning content in different contexts according to learn-
ers’ preferences and needs of education. For this purpose technology of Reusable
Learning Objects (RLO) can be used. Generated this way learning content could
be searched, used in flexible form and different.

Relationships among concepts and rules are used for combination of different
learning objects in different leaning paths produces on the base of learning style
preferences and leaner characteristics.

The model proposed demonstrates how advantages of LO could be applied
when domain ontology is used to describe basic concepts of subject matter and rules
for learning path selection allow small and independent part of leaning content to
be combined on the base of defined relationships among them and rules defined by
subject domain expert and domain ontology specialist.

The proposed modification is necessary because in the IMS learning content
model it is not specified how courses will be created. Often and very important
problem in the field of e-learning is development of static content which does not
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allow learning materials to be used in flexible and adaptive to learner preferences
manner. That is why it is proposed in that section of learning components in IMS
learning model to be used domain ontologies that allow basic concepts of sub ject
domain to be defined and described. Thus it is possible to be created metadata
for each learning resource and learning resource characteristics to be compared
to users’ profiles and preferences and learning paths for content processing to be
dynamically generated.

Described technology allows flexible learning courses to be created and pro-
posed learning content to be most appropriate one for learning background, pre-
vious experience, level of expertise and needs of new knowledge and skills of a
separate user.

+

4. IMPLEMENTATION OF UML DIAGRAMS IN LCMS
CHARACTERISTICS DEFINITION

4.1. PHASES OF UNIFIED PROCESS

Systematic process of software development, according to UP methodology, has
the following phases: analysis of gathered users’ requirements, design of software
system, planning of process of development, implementation, testing and evaluation
of developed system. Four phases of Unified process have been followed to define
and analyze users’ requirements and to design LCMS according to them: inception,
elaboration, construction and transition [1].

In the phase of inception [2] it is conducted identification of components of
the system and needed functionality is discussed with subject matter expert. For
this paper main users of the Learning Content Management System are defined:
student, teacher, administrator and content developer. Necessary functionality is
defined on the base of LCMS characteristics- management of learning process like
users profile manipulation and features for creation, storage and delivery of learning
content. In the phase of the elaboration a detailed design of subsystems and objects
related to system is performed. For this purpose UML diagrams are used and they
are presented in next section of the paper. In construction phase the program code
has to be written. In transition phase delivery of system is conducted and it is not
discussed in the paper.

The model proposed allow created learning materials in the form of LOs to
be organized by domain ontology and on the base of defined rules and relations
among them to be executed processes of dynamic learning content delivery. For
this purpose a prototype of user interface that allow LO to be developed, edited
and deleted and users characteristics to be defined, is developed. Thus adaptive
and flexible leaning courses can be offered and delivered by designed LCSM.

"Tools for modeling of learning systems and their advantages and disadvantages
are very important for the process of design. When a software tool has to be chosen
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following factors influence on the decision- cost, features, scalability, and hardware
platform.

Other features that are overviewed in the process of tools selection are support
for the whole set of standard UML diagrams, easy navigation, multi-user support,
facilities for code generation, integration with other tools. It has been conducted
tools analysis according to listed criteria. Three of the most popular and common
used UML tools have been analyzed.

MS Visio [4] allows different elements like classes, objects, activities and states
to be created and exchanged among diagrams by drag and drop technique and it is
well integrated with other application of Microsoft Office. Rational Rose [9] allows
reverse engineering to be used and gives capabilities for classes and objects man-
agement and produced that way elements to be stored in a repository and change
in one diagrams to affect others. Poseidon [10] visualizes systems, communicates
effectively about architecture and code and allow documentation of users’ require-
ments to be done. The tool uses reverse engineering to get a visual model of existing
code and allows the model to be previewed and code to be edited within Poseidon
itself. Other capabilities are to export diagrams and document requirements with
UMLdoc and collaborate through standards-compliant export to XML

All these features are available in analyzed three most popular UML tools - MS
Visio, Rational Rose and Poseidon but most powerful one and most integrated with
other external tools is Microsoft Visio because it offers easy for use and intuitive
GUI and for this reason it is selected for system design.

4.2. DESCRIPTION OF PROPESED MODEL USING UML DIAGRRAMS

In the process of Learning Content Management System design different types
of UML diagrams will be used. UML (Unified Modeling Language) was developed
in 1994 [5]. Its purpose is to support Unified Process. UML is very appropriate
when a system design have to be developed and system has to be defined in different
points of view. [7]

Used UML diagrams are very useful for definition of different parts of the
designed LCMS and relationships among them and their place in the entire system.
Different types of UML diagrams allow states and processes inside the system and
interfaces that students use to exchange information with the system to be decribed.

Use case diagram is used to describe main participants and the entire system
architecture and relationships among them - LCMS and processes like registration
of users with their characteristics like professional background, level of competence
in subject domain, needs of education and preferred learning styles on one hand and
content development as RLOs and capabilities for their editing, updating and dele-
tion so proposed information to be accurate and up-to-date on the other. Another
functionality is grades recording for assessment of learners performance. Main par-
ticipants in the learning process are defined in their different roles: teacher, student,
administrator and content developer according to their duties and responsibilities..
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The most important relation is interaction of learning content developer that
creates and edits learning materials as LOs and dynamic generated courses could
be used by teachers and students as it is proposed in developed learning content
model. Class diagrams are used to define user class (main participants in the
system) with their attributes (characteristics) and operations (relationships with
other classes and subcalsses). It can be used generalization to summarize common
characteristics like it is shown on Diagram 1.

In this paper there is a class ”"User " with following attributes : username and
password and other personal characteristics -name, e-mail address and so on.

User

-personlD:unsigned long
-surname:(String
-givenName:CString
-Middlelnitial:char
~eMailAddress:CString
-username

-password

+ChangePassword( }

ZIL

|

Student

-Grades:CString|
+AddGrade( )
Developer
Administrator +AddContent()
+DeleteContent(
Teacher +AddCourse( )
+AddStudent( )
+DeleteCourse( }
HAddClass( ) +DeleteStudent( )
+RemoveClass( )

Diagram 1. User class and its generalized subclasses - student, teacher, developer and
administrator with their common and specific attributes and operations

Class diagram is used to define attributes and operation for each class- teacher,
student, administrator, developers. Each of them has username and password.
Entities of teacher subclass has classes that have to be taught as attribute and
operations for adding and removing classes. Student subclass has grades. Rela-
tionships between teacher, student and classes (courses) are defined by name of the
association (user role) and multiplicity (1:1,1:M, N:M).

Databases that will be used are described with composition and generalization
and types of learning content are defined as aggregation of text, video, audio and
graphic components. That way it is applied recommendation of the proposed model
learning resources to be created in different formats so they can be used in different
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contexts and that way to allow users with disabilities to have access to the proposed
learning materials.

Diagrams of interaction like sequence and collaboration diagrams are used to
describe messages that are sent between users and different parts of the system
: database, learning objects repository (LOR), web interface and log files. They
represent interactivity and communication among different parts presented in the
first section of proposed model- learning environment with its databases, different
types of communication among participant and LCMS components and subsystems
- web interface, LOR and learning materials.

Another requirement to advanced LCMS is to deliver high quality learning
content. For this purpose a view of systematic process of creation and publishing
of learning content is presented to assure the necessary quality. Activity diagram
on Diagram 2 defines the process of learning content submitting. For this purpose
developed content should be created and after the process of approval it has to
be published or edited. The processes described should be supported by each
LCMS and diagram represents the flow of processes that should be implemented
for development of high quality learning content.

[ CreateContent ’

' ReviewContent

[Not Approved Content|

|Approved Content|

PublishContent

Diagram 2. Activity diagram describes processes related to content management.
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Proper navigation is critical for effective education. It allows users to interact
with different components of LCMS and with learning content. This way needed
flexibility and adaptability are achieved. State chart diagram shown on Diagram
3 represents system menu and possibilities for navigation. It allows different users
to manipulate with system components so they can execute their duties and fully
used systems features and supported capabilities.

MainMenu

C— T

Diagram 3. Statechart diagram defines system menu

Following the proposed model a prototype of user interface has been developed
that will provide support for LOs manipulation. The main functionalities related
to learning content creation, arrangement and publishing are included in proposed
menu of user interface. A menu that will be used by content developer is presented
in Fig. 4 and in Fig. 5 - a menu that facilitates activities related to learning process
management: creation, editing and deletion of courses and students.

Newlo Learning object administration

Insect 1O

n-seume Using menu in the Jeft part of the window you may creste new leaming object {L.OJ, edit
LO editing it or delete it and you may insert developed learning object in a chosen course or delete it
it Lo form the course.

Jn course
Delete 1.O
Delete LO
from gourse
Search

M

Fig. 4. Developer memnu.
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New student Students and Courses administration

New corse
For studant and course management you Ity use mam on the loft and

Cowrse edtiting enter data of new student, edit student profile or delete student from the
system.

Delety student You can use mem to create new course, edif its features or delcte 8 separate course
from

Delete course the system.

Search You can usc scarch capability to find easy and quickly informstion about student or
course

on the base of one or several of its characteristics.

Fig.5 Administrator menu.

5. CONCLUSION

In this paper new learning content model is presented and discussed. Unified
Process is applied to design a system that supports the model proposed. Modifi-
cations and advantages of developed model and their implementation in designed
system are described by UML diagrams because UML is defined as the most appro-
priate and useful tool that has to be used in all phases of the UP. The conducted
analysis of existing software tools for systems design and development of UML
diagrams is presented.

A prototype system is designed following the UP methodology. Well designed
systems that cover users’ requirements and offer expected and necessary function-
alities are critical components for effective education.

Different types of static and dynamic diagrams help system design to be ex-
ecuted so precisely and accurate defining of processes, states and relationships of
system components and user interfaces to be gained. UML diagrams are used to
describe proposed modified model and to document basic and users requirement to
advanced LCMS. Learning Content Management System has to offer many func-

. tionalities and its parts, participant and communications among them can be well
described and presented to users of the system and developers. Thus high quality of
developed system and proper documentation for future improvements is achieved.
Developed learning content model presents the idea of domain ontology use in
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learning objects management and description and how they can facilitate deliv-
ery of flexible and adaptive learning materials which is one of the most important
tasks of advanced e-leaning. For providing described functionalities it is developed
appropriate user interface.

Future work will be related to design and development of learning systems
that support high interactivity with delivered learning materials, easy and useful
collaboration among participants in the learning process and development and man-
agement of dynamic, reusable , flexible and adaptive learning content which can be
used in different contexts according to learners needs of education. Another filed
for future research is development of new models for learning content manipulation
and implementation of learning systems that support proposed models.
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