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UNIVERSAL LEVENSTEIN AUTOMATA FOR
A GENERALIZATION OF THE LEVENSHTEIN DISTANCE

PETAR MITANKIN, STOYAN MIHOV, KLAUS U. SCHULZ

The need to efficiently find approximate matches for a given input string in a large
background dictionary arises in many areas of computer science. In carlier work we
introduced the concept of a universal Levenshtein automaton for a distance bound
n. Given two arbitrary strings v and w, we may use a sequence of bitstrings x(v, w)
obtained from v and w in a trivial way as input for the automaton. The automaton is
deterministic. The sequence x(v,w) is accepted iff the Levenshtein distance between
v and w does not exceed n. We showed how universal Levenshtein automata can be
used to efficiently select approximate matches in large dictionaries. In this paper we
consider variants of the Levenshtein distance were substitutions may be blocked for
specific symbol pairs. The concept of an universal Levenshtein automaton is extended
to cope with this larger class of similarity measures.

1. INTRODUCTION

The problem of how to find good correction candidates for a garbled input
word is important for many fundamental applications, including spelling correction,
speech recognition, OCR-recognition, error-tolerant querying of search engines for
the world wide web and other kinds of information systems. Due to its relevance
the problem has been considered by many authors (e.g. [2, 13, 21, 1, 18, 19, 7, 25,
4. '

If an electronic dictionary is available that covers the possible input words, a
simple procedure may be used for detecting and correcting errors. Given an input
word w, it is first checked if the word is in the dictionary. In the negative case,
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the words of the dictionary that are most similar to w are suggested as correction
candidates. If necessary, appropriate statistical data can be used for refinement of
ranking. Similarity between two words can be measured in several ways. Popular
distance measures are the Levenshtein distance ( (8, 23, 12, 22, 15, 11]) or n-gram
distances ([ 1, 12, 20, 5, 6]).

In previous research we have shown that for each bound n there exists a finite
state automaton - the so-called universal Levenshtein automaton, which represents
- in some sense - the set of all couples of words (w,v) such that the Levenshtein
distance between w and v is at most n: Given two arbitrary strings v and w, we may
use a sequence of bitstrings y(v,w) obtained from v and w in a trivial way as input -
for the automaton. The sequence x(v,w) is accepted iff the Levenshtein distance
between v and w does not exceed n. The fact that the automaton is deterministic
and does not depend on the particular words but only on the bound n makes the
universal Levenshtein automaton very suitable for practical applications. We can
use this automaton to extract very efficiently all words from a dictionary that are
sufficiently similar to a given input word.

In this paper we show how to compute universal Levenshtein automata for a
generalization of the Levenshtein distance. The usual Levenshtein distance repre-
sents the minimal number of edit operations required to transform one of the two
words into the other. Edit operations are substitution (replacement of one symbol
of the word with another), deletion or insertion of a symbol. Here we restrict the
set of possible substitutions, thus obtaining a more general and flexible notion of
string distance. A set S is fixed that consists of couples of symbols. When we
transform one of the two words into the other, i.e. when we calculate the distance,
we allow to replace the symbol a with the symbol b only if (a, b) € S. When §
contains all possible couples, we have the usual Levenshtein distance.

The research on this generalization is motivated by the fact that in many prac-
tical applications some of the symbol substitutions are not possible. For instance in
a spell checker it would be relevant to restrict S to those couples of symbols whose
corresponding keys are situated close to each other on the keyboard or which can
have similar phonetic realizations.

The main result presented in this report is a construction of the finite au-
tomaton that represents in some sense the set of all couples of words {w,v) for
which the generalized (via §) Levenshtein distance between w and v is at most
n. This automaton has properties analogous to those of the universal Levenshtein
automaton.

Ths paper is structured as follows. In Section 2 we start with formal prelim-
inaries. In Section 3 we introduce a non-deterministic variant of the Levenshtein
automaton for the generalized distance with restricted substitutions. Section 4
presents a determinization procedure. In Sections 5 and 6we define the correspond-
ing universal automaton. In Section 7 we represent some properties of the universal
automaton for the new distance measure. We also present some statistics on the
universal automata for bounds n < 5. The role of each type of automaton will
become clearer after reading the formal preliminaries.
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2. PRELIMINARIES

Let ¥ be finite alphabet and § C ¥ x X. We define d - function that gene-
ralizes the usual Levenshtein distance.

Definition 2.1. d*;f Y x Y- N
Hw=corx=¢
s def .
dL('va) = maa(|w],]$[)
Qw#cand r Fe
Let w = wywo...w, and T = T122... Tk
d ) . ;
ds¢ (w, x) lef min(  if(w) = o1, d3 (Wo... Wp, T2...Zk ), 00),
1+ d5 (wa...wp, T),
1 +d7(w, z2...xk),
if((wi,21) € 8,1+ dF (wa..wp, T2...Tx),00) )

The following proposition shows that we may think of d? in the terms of sub-
stitution, deletion and insertion.

Proposition 2.1. Let us consider that ¥ and Y’ are equal but the symbols
in ¥ are black and the symbols in ¥’ are red. In other words, let ¥’ = {a'|a € P
» be a biection from X into ¥’ and XN Y’ = ¢. For each black symbol @ € ¥
with @’ we denote the corresponding red symbol r(a). Let v € (EUX)*. We
say that v is transformed into w via deletion of a symbol iff v = vivz...v, and
W = Uye..Vi_1Vip1...v; for some i such that 1 < 4 < t and v; € 3. We say
that v is transformed into w via insertion of a symbol Hff v = viv2...v4 and w =
v1V2...0:b'Vi41...v¢ for some i such that 0 < 4 < ¢ and b € ¥. We say that v is
transformed into w via substitution iff v = vive.. vy and w = V1V2... V1 b'vip1.. Ut
for some i such that 1 <i <t v; € X, € ¥ and (v;,b) € S. If, w,z € ¥*, then
d}(w,z) is the minimal natural number k for which there exists sequence of words
wg, W1, ..., W such that

1) wo = w,

2) if 0 <@ < k — 1 then w; is transformed into w;41 via deletion of a symbol,
insertion of a symbol or substitution,
a; ifa,€¥

3) if wk = a1as...a; then x = byby...by where b; = { ¢ ifa € and d = a;

In fact this proposition shows that the order of applying the operations that
transform w into v is not crucial. For eaxample, if § = ¢, then df(abc, acd) = 2.
We could apply first the deletion and after it the insertion: wo = abe, w, = ac,
wy = acd’. But we could also aplly first the insertion and after it the deletion:
wo = abe, wy = abed’, wy = acd’.

Is it true that df is a distance? It is true that di(w,z) =0 & w = z and
the triangle inequality holds for dj. But df is not always symmetric, i.e. df is not
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always distance. d3 is distance only when the relation S is symmetric.

How can we compute d7 (w,z)? Wagner and Fischer show how dynamic pro-
gramming scheme can be used to compute the usual Levenshtein distance ({23]).The
same tehnique can be used for df(w,z): we find recursively the values M;; of a
(Jw] + 1) x (Jz] + 1) sized matrix M:

DAM;=j—1lfor1<j<|zj+1land Mj =i~1forl <i<]uw|+1

2) Let us suppose that we have found M;;, M;q1; and M; ;1. Then

A[i+1\j+1 = . mzn( if(uw =Ty, A’fij, OO),
1+ A’[i,j+1 y
1+ M,
if({wi, x;) € 8,1+ M;;,00) )
After we have found the values of M, we have that df (w.T) = My 11,10)41-

Let n € N. We use df to introduce a criterion for proximity of two words. We

consider that the word  is proximate to the word w if d (w, r) < n. With L(w,n)
. de
we denote the set of all words that are proximate to the word w: L{w,n) 44

{z|d?(w,x) < n}. It turns out that for each word w and each n we can build
finite automaton AP (w), such that its language L(AP(w)) = L(w,n). We give a
definition of AP(w) in section 3. The main result of this report is the so-called
universal automaton AY - deterministic finite automaton that represents in some
sense L(w,n) for each word w. We call AY ‘universal’ because, in contrast to
AP (w), AY does not depend neither on particular word w nor on the set S, but it
depends only on n. We give a definition of AY in section 4.

How does AY represent L(w,n) for each word w? Let w be a word and n be
a natural number. For given word x € £t we want to know whether z € L(w,n).
We suppose that |z] < w| +n. (If |z] > |w| + n, then z & L(w,n).) &7 (V¥ is the
alphabet of AY) consists of couples of binary vectors, i.e. £¥ ¢ {0,1}*x{0,1}*. By
w and x we build in some way a word a = a10...a4;; whose symbols are couples
of binary vectors, i.e. a; € {0,1}* x {0,1}* for 1 <4 < |z|. Then a € L(AY) &
z € L(w,n). We build « in the following way: o = aqaa...aqz) as o = (8;, (55):)
for 1 <4 < |z| and

1) 8i = x(&;, wi—pWi—ny1...wy ), where

k=min(lwl,i+n+1), w_py1 = w_p, = ... = wg = $ for n > 0, § is such
symbol, that $ ¢ X,
1, ifc=ugq;
0, ifc#a;
2) (Bs)i = xs(®i, Wi—n41Wi—nt1...wk), where
E=min(lul,i+n—-1),w pio=w_np1=...=wg=%forn>1
1, if{aj,c) €S
0, if{a;.c) ¢S

and x(c,a,a...a;) = b1by...b, as b; = {

and xs(c,a1a2...a,) = biba...b. as b; = {
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Example. Let us consider that ¥ = {a,b,c,...,z} and S = {(a,d), (d,a),
(h,k),(h,n)}. Let w = hahd and z = hand. We want to know whether r €
L(hahd, 1). We construct the word a = ajazasay:

= <61a (65)1> = <X(ha $hah), Xs(h’h» = <010170>

Qg = <ﬁ23 (ﬁ9)2> = (X((l, hahd)v Xs((I"a)) = (01007 0)

03 = (/33a (,35)3> = <X(n’~ "’h'd)v Xs(nv h)> = <000’ 1)

ay = (ﬂ‘h (Bs)4) = <X(d.~ hd), xs(d, d)> = (OLO)

The automaton A is depicted on fig. 1. On fig. 1 the notation £ means 0 or
1 and the bracketed expressions are optional. For instance from the state {I —
1#1 [#1 [ 4 1#!} with (010(z), ) we can reach the state {I#!}. This means that
from {1 — 1#1 [#! | + 1#1} we can reach {I#!} with (010,0), (010, 1), (0100,0),
(0100,1), (0101, 0) and (0101, 1). So we start from the initial state {7#°} and with
the symbols (0101, 0), (0100, 0}, (000, 1) and (01,0) we visit the states {I#0}, {I#0},
{I —1#1 1#1} and {M#'}. {M#!} is final state. Therefore hand € L(hahd,1).

With the notions and notations introduced above, the structure of the paper
may now be rephrased as follows. In Section we build nondeterministic finite
automaton AN (w), such that its language L(ANP(w)) is L(w,n). In Section
we determinize in a specific way A% (w). As a result we obtain the deterministic
automaton A”(w). In Section we define the universal automaton AY and show
the connection between AP (w) and AY. In Section we represent some properties
of AY, that are based on our previous research. We also show some final results for
AY when n < 5.

3. NONDETERMINISTIC FINITE AUTOMATON AYP (W)

Definition 3.1. Let w € ¥* and n € N.
ANP () Y (5, QIP,0#0, 637, FNP)
Let |w| = p. The set of states of AYP(w) is QNP Wit <i<p&o<
e < n}. (With i#¢ we denote the couple (i,e).) The set of the final states is
def . . . . ;
FND %S {i#¢|p—i < n—e}. The initial state is 0#0. §¥P C QNP x (LuU{e}) x QNP
is the transition relation. Let ¢ € £ U {e} and ¢1,¢q2 € QYP. Then
de
(a,c.q0) € 60
Q=i &c=wip &g =1+ 1% or
q=1*&ce &g =i#tl or
=i &c=ekqg=1i+1%#t or
q = iFe & <U.’,j+1,C> eES& g =1+ 1#etl
The automaton Aé" D(wiwowswyws) is depicted on fig 2. where we use Sy, to
denote {c|[{w;,c) € S} U {e}.
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Fig. 2 AéVD(U’lwgw:;w4 wr,)

If we think of d5 in the terms of the operations substitution, deletion and inser-
tion, we can draw the following analogy between AN D(w) and dj: each transition
(i%¢,e,i + 1#et1) in ANP (w) corresponds to deletion of the symbol wit1, each
transition (i#¢,¢,i+1#¢T!) forc€ X corresponds to substitution - replacement of
the symbol z;41 with ¢, each transition (i#e, c,i#etl) corresponds to insertion of
the symbol ¢. The e in the state i#¢ indicates the aumber of the operations that
have been applied on the way from the initial state 0%0 to i#*.

Proposition. L(ANP (w)) = L{w,n)

Proof. With 6)P" we denote the extended transition relation, that is defined
by induction as usual:

1) (. e,m) € OND”

2) (m.v.7') € NP & (' a, ") € SND & (r" €, m2) € §ND* = (my,va, ) for
v € * and a € TU {e}

3) 6MP" is the smallest w. 1 .t. C relation for which the conditions 1) and 2)
are true. -

We check that L(i#¢) 2 {v e ©*3r € EYP : (i#v.m) € SNDT} =
{1’!d§(u’i+lwi+2...'wp,’U) <n—e} = Lwiy1Wiy2-Wp, N~ e), where p = |w|. When
i#e = 0#0, we have L(ANP(w)) = L(0#¥%) = L(w,n)-

Automata that are similar to AND(y) are used for approximate search of a
word w in a text T ([24, 3]). If we add a X loop to the initial state 0%°, the language
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of the automaton will be ©*.L(w,n) and we could use the automaton to traverse
the text T

4. DETERMINISTIC FINITE AUTOMATON AR(W)

In this section we determinize the automaton ANP(w) in a specific way. In
result we get the deterministic automaton AP(w). 1In the standard subset con-
struction for determinization each state of the deterministic automaton is subset
of QNVP. We also define each state of AP (w) as a subset of QYP. The difference is
that we use the so-called relation of subsumption <,C QNP x QNP <, is defined
in such a way that 7, <, m3 = L(m) 2 L(my). This allows each state Q of AP (w)
to be built such that Vo', 7" € Q : 7’ Ly 7. i

The construction that we represent here is analogous to one presented for the
usual Levenshtein distance in [17].The main differences are the additional charac-
teristic vector x, that depends on .S and the additional relevant subword.

4.1. THE RELATION OF SUBSUMPTION <s

Definition 4.1. ), {i*?lic Z&0 < e<n}

Definition 4.2. </C Q, x Q,,
j#e i e J# e fi - 1#€+],i#”+],i + 1#e+1}

Proposition 4.1. Let i#¢ j#/ ¢ QND_ Then i#e <L §#F = L(i*°) D
L(5#7). '

Definition 4.3. <,C Qn X Qy
<, is the transitive closure of <.

Corollary 4.1. Let i#¢, j#/ € QNP Then i#e <, j#f = L(i%¢) D L(5#/).
The next proposition gives a direct way to compute whether i#¢ < j#f.
Proposition 4.2. i#c < j#/ & F—i<f-ekf>e

The set {r € Q)YP[3#° <, 7} for n = 2 and |w| = 5 is depicted with bold
circles on fig. 3.

12 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.




©» ® © 0 @ ©

Fig. 3 {7 e QNP|3#% <, n}

1.9. CHARACTERISTIC VECTORS. RELEVANT SUBWORDS
Let us consider that ANP(w) is fixed. Let 7 € QP and a € X.

Definition 4.4. R(7,a) = (7' € QYP|m,a,7’) € syp*
We call R(m,a) the set of all states reachable from 7 with a.

To determinize AYP(w) we have to know R(m,a) for each m € QNP and for
each a € ¥. We introduce w, and w"ﬂ - subwords of w. We call w,) and 'wfﬂ
resp. relevant to ™ subword of w an s-relevant to m subword of w. For each
symbol a € £ and each word a1a2...ax € X we introduce also the binary vectors
v(a.aras...ax) and x,(a, a103...ax). We call them resp. characteristic vector and
s-characteristic vector of a w. 1. t. ajag...ax. We define the relevant subwords and
the characteristic vectors in such a way that if we know x(a,wx) and xs(a, Wix))
then we know R(r,a). In ANP(w) there are four types of transitions (di. ¢, g2):

g =i*¢ c=wit1 and go =i + 1#e

2) q1 = i#¢, c € ¥ and gp = i1

g =i*,c=cand g =i+ p#et!

4) i = i*°, (wit1,c) € Sand g2 =i + 1#etl

To know all states 7' € R(m,a) means to know all sequences

(*) (m, e, 1), (m1, €, 2), T2, €, 70r), (7 @, ), (mh, €, mh), (T, € 7).
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Of course, if we know 7 then we know all sequences (*), for which the transition
(my,a,77) has the type 2). So we define the relevant subwords and the characteris-
tic vectors in such a way that if we know x (=, a), then we know each sequence (*)
for which the transition (r,,a, 7}) has the type 1) or 4):

Definition 4.5. x : £ x £* — {0,1}”

1 ifa= i
x{a, a1as...ax) = bybs...by where b; = { 0 ifasx Zi

Definition 4.6. y;: ¥ x Z* — {0,1}*

)(S((l, (1,1(12...0,1‘«,) = b]bg..,bk where b,‘, =
Definition 4.7. w(;: Q)P — £*

de . .
Wiie] ief Wit 1Wip2... Witk Where k = min(n — e + 1, jw| — ).
Definition 4.8. w{, : ND _,

def ) .
W) = Wik1Wit2. Witk where k = min(n — e, jw| — i).

4.3. 6 - THE FUNCTION OF THE ELEMENTARY TRANSITIONS

If we apply the standard subset construction for determinization of AN (w)
and A is some state received during the determinization, then B = {J .4 R(m,¢)
will be also state of the deterministic automaton for ¢ € . But if m;, 72 € B and
m <s 72, we can continue the determinization with B’ = B\{r3} instead with B,
because (J, <5 L(m) = U, cp L(7). So we can remove from B each 7 for which we
can find 7’ € B such that #' <4 w. This means that we can remove from B all
states that are not minimal w.r.t. <,. We denote with | | B the set of all states that
are minimal in B w.r.t. <,. We use also AU B to denote | J(AUB) and | |, . , f(7)

to denote | {(U,c 4 f(7))-

Definition 4.9. Let A C QNP

UAY (re A3 e A(x' <, 1)}

Proposition 4.3. Let A C QN?. Then

U= U L

gEA qel_l A

We define function 62 : QNP x £ — P(QNP), such that §°(w,a) = | | R(r, a).
The function 67 is called function of the elementary transitions.

Definition 4.10. 67 : Q, x {0,1}* x {0,1}* — P(Q,)
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8P (i#e. 8, 3) “f Au Ag, where

{i+ 1#} if1<g
{i#““} if e < n& =0 for some k; € N
A= {i#et) G kFR T ik > 2805 M < B&et+ ki —1<n
o otherwise
4,_{ G+ TR ik >0&0% 1 < B, &e+k<n
T e ohterwise

Definition 4.11. 60 : QNP x ¥ — P(QND)
5P (n,a) def 5P(m, x(a. wix))s Xs(@, wfﬂ] )

Proposition 4.4. | |R(r,a) = 62 (7, a)

4.4. DETERMINISTIC FINITE AUTOMATON AR (W)
Definition 4.12. AP(w) % (£.QP, {0#°},52, FD)
The set of states of AP(w) is QP def {AJA C QNP & Vmy,mp € A(my £,
m2) & 3i € [0, jw|]Vr € A0 <, )\ {8}
The set of final states is F,° e {A € QPIANFND £ ¢}.
8D is partial transition function:
67 QP x T —>Qy

D) Urea 00 (m,0) = ¢
In this case 87 (A, a) is not defined.

2) Unpea 00 (m.a) # ¢
57?(14’ C) d;f UWEA 56D(7ra C)

The following two propositions give us the correctness of the definition of sb.
Proposition 4.4. Let i < |w|. Then V7 € §P(i#¢,a) : i + 1%° < 7.
Proposition 4.5. Vr € 62 (jw|#¢,a) : |w|#¢ < 7.

From the propositions in 3.3 it follows that L(AP (w)) = L(AYP(w)) = L{w, n).
The automaton AP (hahd) is depicted on fig. 4. The set S is the one defined in the
example in section 1.
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Fig. 4 AP(hahd)

5. UNIVERSAL AUTOMATON AY,

We define the universal automaton A% in such way that for each execution of
AY on some word « we can evaluate the execution of AP (w) on x, where w and z
are those words from ¥*, for which we have built the word a in the way described
in section 1. The states of AY are sets, whose elements have the type I + a™? or
M+a#? (fig. 1). I and M are parameters. When we replace these parameters with
appropriate numbers, the states of AY are transformed into the states of AP (w).

Let gf = {0%°}, ¢...., ¢P be those states of AP(w), that we visit with the
word z € E*. 0 < f < |z|. In some cases we may have f < |z| because 67
(the transition function of AZ(w)) may not be defined. Let [z < |w| + n. Let
@ = (jQ3...0)z be built from w and z in the way defined in section 1. Let also
a5 = {I*%, ¢V ..., gy be those states of AY, that we visit with the word a. Then:

)g=/,

2) for 0 <i < f it is true that ¢ is final state iff ¢° is final state,

16 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.
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3) for 0 < i < f it is true that g/ is transformed into gP by replacement of
each I in ¢f with i and each A with |w|.

Example. Let us look the execution of AP (w) on the word = = hand for the
example in section 1. The automaton AP (w) is depicted on fig. 4. So qf = {0#*°},
gP = {1#0}, g = {2#%}, ¢} = {2#! 3#1} and ¢P = {4#'}. In section 1 we saw
that qf = (I#0}, gf = {I#0}, qf = {I#°}, ¢§ = {I - 1* I*} and ¢ = {M*#'}.
If we replace in ¢f I with i and M with |w| we get @°.

To the end of section 4 we present the formal definition of the universal au-

de

romaton AY & (SY,QY, {I#°}, FY, 83).
v OV v
5.1. X%, Qy AND Ff,

Definition 5.1. ©¥ C {0.1}* x {0,1}*
¥ 4 18 318, 8, € {01} & 1< |B] < 2n+2&0 < |B,] < 2n -1}

Definition 5.2. <,C QL x QL
QY (r+itlie Z&L0<e<n}
[+t <, I+ % G ite < j#7

Definition 5.3. <,C Q) x QM
Ml ar g i€ Z&0< e <n)

M+ ite <, M+ j#1 & j#e < j#1

Definition 5.4. I, C QL, M, c QM
L% (14ite|li|<e&e<n}

M, (M it le>—i-n&i<0&0<e<n}

Definition 5.5. Isates C P(Is), Mstates C P(M)
de
Istates :f {AiA g Is &V(I1,Q2 € A(Q] %s 02)}\{45}

de
Matates " {AIAC M, &Vq1,42 € Als £5 02) &
33F(M + j#F € A& M + j#5 <, M#7) & i € [-n,0¥g € A(M +i#0 <, ¢)}

de

Q\ZL ;f Istates U A[states
d

FZ ‘i‘f ]\’Istates
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6. 6% - THE TRANSITION FUNCTION

6.1. 5VE - THE FUNCTION OF THE ELEMENTARY TRANSITIONS

Definition 6.1. r, : (I, UM,) x {0,1}* — {0,1}*

def Tn+i+1Tn4it2---Tntith

1) 7"7:.([ + i#caxlz?"xk) = not defined

where h =min(n —e+ 1,k —n —1).

def | Tr4it1Th+it+2---Lhtith

2) r (M 4i#¢, z120..7%) = ot defined

where h = min(n — e+ 1, —1).

Definition 6.2. r$ : (I, U M,) x {0,1}* — {0, 1}*

def Tn+ilntitl--Tntith—1

l) T‘,‘i(] +i#€,x1x2...zk) = ¢

where h = min(n — e,k —n —i+1).
2) 78 (M +i#°, z179...2) = .
where h = min(n — e, —i).

Definition 6.3. I : P(Q,) — P(Q})

I(A) % {1 40— 1#e)i#e ¢ A}

Definition 6.4. M : P(Q,) — P(Q})

M(A) Y (M +itejite € A}

Definition 6.5. 6" : (I, UM,) x &Y. — P(I,) U P(M,)

Let A € I, U M, and (B, 3s) € &Y.
1) (A, B) is not defined
~ In this case 67 (4, (3, 53,)) is not defined.
2) (A, B) is defined
21)Ael,

Let ¢ = i#¢ where i and e are such that A = I + i#°.

53(A,(8,8.)) € 1(5P(q,7a(A, B), 75 (4, B,)))
2.2) A € M,

Let q = i#¢ where i and e are such that A = M + i¥e.

5Y(A, (B, 85)) E M(62(q,7(A, B),75(A, B,)))

def { Thtit+1Tk+i+2---Thtith

ith>0
ifh<0

fh>0&k+i+1>0
otherwise

fh>0&n+i>0
otherwise

fh>0&k+i+1>0
otherwise

18 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 5-23.
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6.2. FUNCTIONS THAT RESTRICT THE LENGTHS OF 3 AND (g

Definition 6.6. rm : Iiates U Matates — 15 U Mg
Let A € Istates U Mtates-
Let f — { pzl3edi(z=e—i&I+i*c e A if A€ Lyates
pz[3edi(z=e—i&M+i*c € A if A€ Myates
With pz{X] we denote the least z such that the X is true.
rm(A) def{ [+i#e ifI+i**ec Ake—i=t
M+i#e ifM+i#°e Ake—i=t

rm(A) is called right most element of A.

Deﬁnition 6.7- V(l : Istates U A'[St{ltES had P(N)
) A = {I#0)

v,,(A) YW lkln<k<2m+2)
2) A € Ltates & A # {I#°}
Let rm(A) =1 +i%e.
va(4) {k|2n+z——e+ 1<k<2n+2}

) A € A[states
Va(A) < {k € NI¥g € AGif(k < n, M#"=F M +n - k#°) <, q)}\{0}

Definition 6.8. [,, : N x N — {true, false}

Ln(ky, ko) = true & (ky = 2n+2& ko = 20— 1)0r(k1_2n+1&k2_2n—1)
Ol‘(l</x1<2n&k2—k1—l)

6.3. SOME OTHER FUNCTIONS AND 4%

Definition 6.9. f, : (I, UM,) x N — {true, false}

e def [ true ifk<2n+1&e<i+2n+1-k
1) full 377, k) = { false otherwise
true ife>i+n

. e 1.\ def
2) fa(M 4370 k) = { false otherwise

Definition 6.10. m,, : (QLUQM)x N - QL uQ¥
(A, k) % def [ M4i+n+1—~k#* if A=1+i#°

" I+i—-n—1+k#* if A=M +i#e
mn 1 (P(QL) UP(QM)) x N — P(QL)U P(QY)
ma(A k) Z {ma(a,k)la € A}

Definition 6.11. | |: P(P(I,))U P(P(M,)) — P(I,) U P(M,)
% {g€eUA]-3¢ e VA : ¢ <, q}

Definition 6.12. 67 : QY x &Y — QV
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Let AeQY and (3,8,) € £Y.
1) 18] € Za(A) or Ln(18].18:]) = false

In this case 67 (A, (3, Bsubs)) is not defined.

2) |0] € va(A)&ln (181.18s]) | = true

21) quA e(q» <f3 ﬁcub‘:>) =
In this case 6V(A (B3, Bsubs)) is not defined.

2.2) quA P (q <ﬂ Bsub6>) # o
Let A = qu4 p <8 ﬁsub9>)

¢ a2, def [ A if f(rm(A), = false
Sl A Pouns)) = { (O3 I SN 130 = e

7. SOME PROPERTIES OF A},

When S = ¥ x T df is the usual Levenshtein distance that we denote with
dr. In [27] and [26] we have shown that for d;, one can build universal automaton
which here we denote with A¥ = (¥¥ Q¥, {I#°},5%, F¥). In this section we show
the connection between AY and A* and some corollaries.

XY is the set of the ﬁI‘bt projections of the elements of ©¥, ie. L* = {3 €
{0,1}* |1 < 18] < 2n+2}. To define A we use the sets I, and M,, the relation
<s and the sets Lsqates and Miqes defined in section 4. So each state in QY, just
like each state in QY, is a subset of I, or subset of M. In [26] we have shown the
following:

1) for A% it is true that if ¢ € Iat0s U Mytares, then g is useful in the sense
that ¢ is reachable from the initial state {I#°} and some final state is reachable
from g,

2) A% is minimal.

Proposition 7.1 (for the connection between A% and AY). Let ¢ € Q% and
B =Xy Then 33, € {1}* : 6%(q, B) = 87(q, (B, Bs)) (either both the left expression
and the right expression are not defined or both the left expression and the right
expression are defined and equal).

Remark. That j3,, for which 6%(q, 8) = 63(q, (B, Bs)), is 85 = 1%2 where ky is
such that {,(|8), k2) = true.

It follows from the proposition for the connection that 1) and 2) hold also for

AY. Q¥ = QY. In [26] we have presented rough upper hmltatlon for [Q¥):
IISfatesl = (24n log, m)

”\Jstatesl = ( 24" log,, m)

In the table below we show some final results for AY when n < 5. The value
of the column ’transitions’ is [{{q1, b, g2)|{(g1,b,q2) € 67 }|.
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Table 1.

n | |Liates! | |Mstates| | transitions

1 8 6 320
2 50 40 39552
3 322 280 4480416
4 2187 2025 504895904
5 15510 15026 | 58028259232

8. CONCLUSION

Besides the operations insertion, deletion and substitution in many applications
there is a need for adding other operations. For example for spell checker it would
be relevant to add transposition {swap two adjacent symbols) - mistake that occurs
very frequently while typing text on keyboard. To correct text recognized by an
OCR program it would be useful to add merge (merge of two adjacent symbols into
one) and split (split one symbol into two others). In [17] and [26] we have shown
that in the case of adding transposition as well as in the case of adding merge
and split we can build deterministic automaton and universal automaton such that
the universal one simulates the deterministic one: The technique developed in this
research can be successfully applied if we restrict the allowed operations in these
cases. For instance restricting the allowed substitutions, the allowed merges and the
allowed splits results in universal automaton whose alphabet consists of fourtuples
of binary vectors: besides x and xs we add two other characteristic vectors that
depend on the allowed merges and the allowed splits.

Here comes the problem for characterization of all functions d: ¥* x ¥* — N
for which universal automaton can be built. Our future research will be devoted
to this problem. '
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MONADIC SECOND-ORDER LOGIC ON EQUIVALENCE
 RELATIONS !

G.GEORGIEV, T. TINCHEV

This paper is devoted to exploring expressible power of monadic second-order sentences
over the class of all relational structures containing only finite number of equivalence
relations which are in local agreement {i.e. for any point of the universe the corre-
sponding equivalence classes with set theoretic inclusion form linear order). Using the
pebble games we prove the finite model property and establish an effective translation
of these sentences in the first-order language preserving the models. So, the monadic
second-order language over the considered class of relational structures has the same
expressible power as the first-order language and the monadic second-order theory of
this class of structures is decidable.

Keywords: MSO sentences, equivalence relations, finite model property, elimination
of second-order quantifiers, decidability.

2000 MSC: Main 03C52; Secondary 03C13, 03C85

We consider purely relational finite languages for the first-order predicate cal-
culus with only unary and binary predicate symbols. Let £ = (Py,... P, Ry ... R,)
be such a language, with Py,..., P, and Ry, ..., R, being the unary and the binary
predicate symbols, respectively. Take the class of structures where the interpre-
tations of the binary predicate symbols are equivalence relations. In [3] Ershov
announces that the monadic second-order logic of this class of structures is decid-
able for n = 1. Furthermore, in [2| Janiczak shows that the first-order logic of this
class is undecidable for n > 2.

We further restrict the equivalence relations and consider the class of struc-
turcs in which the binary relations are interpreted by equivalence relations in local

!Partially supported by Contract 27 with Sofia University.
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agreement. We then show the decidability of the resulting monadic second order
logic and demonstrate that there is a translation of every MSO sentence ¥ to a
first-order sentence ¥ such that ¢ and ¢’ have exactly the same models.

From now on, unless explicitly stated otherwise, we consider all languages to
be finite and purely relational with only unary and binary predicate symbols. We
also fix a language £ = (Pr,...,Pr,Ry,...,Ry), with P,...,P. and Ry,..., R,
being the unary and the binaty predicate symbols, respectively. We assume that
we always have equality in the structures and for convenience treat the equality as
one of the binary predicates of the structures. Thus we always have n > 0.

In what follows we extensively use a kind of bisimulation games called “pebble
games” to show similarity between structures. For complete details refer to [1].
Let A and B be structures for £ and let s € N, s > 0. The infinite pebble game
G%.(A,B) is played by two players on a board which consists of the two structures
2 and B. Each player has s pebbles, numbered from 1 to s. Players take turns.
The first player chooses a pebble from her set of pebbles and a structure (A or
B) and places the selected pebble on some element of the structure. The second
player answers by placing his pebble with the same number on some element of the
other structure. The game continues indefinitely. Each time, after Player II has
made his move, there is an even number of pebbles on the board. Half of them are
in 2 and the other half - in B. For example let ay,...,a; and bi,...,br be the
elements of A and B respectively, on which the players have pebbles, and let for
alli=1,...,k, a; and b; are under equal-numbered pebbles. Before each move of
Player I the players review the configuration on the board. and if they find that
the mapping f : a; — b;,i = 1,... k is not a partial isomorphism between 2 and
B, Player I wins. Player II wins only if Player I does not win at any move.

Definition 1. Let A and B be structures for the language £ and let s € N, s > 0.
We say that Player II has a winning strategy for the infinite pebble game G5 (2, ‘B)
iff Player II can win the game. no matter how Player I plays.

A similar definition can be given for winning strategy for Player I. Obviously,
for a given game exactly one player has a winning strategy.

Definition 2. We say that two structures % and B for the language L are s-
partially isomorphic (and write it A=, B) iff Player II has a winning strategy for
the infinite pebble game G2, (,B).

The main result about pebble games is given by the following:

Theorem 1. ([1]) For any two structures 4 and B for the language £ and for any
s€N,s>0. A= B iff A and B satisfy the same formulas of no more than s
variables of the infinitary logic L., .

Definition 3. Let R;,...,R,, be equivalence relations with common domain.
Ry, ..., R, are in local agreement iff for all x in the domain of the relations, the set
{lzlr,s--,|z|r.} of the equivalence classes of x according to Ry,. .., R, is linearly

ordered according to the set theoretic inclusion.
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Definition 4. Let L be a language of the considered type. We denote by Kr
the class of structures for L in which the binary predicates are interpreted with
equivalence relations in local agreement. Sometimes, when the language L can be
determined from the context we write K instead of K.

. Definition 5. Let 2 € K and let C C |A|. We say that C isa mazimal equivalence
class in U iff

(31 < i < n)(|z|r, = C& (Vo € C)(V1 < j < n)(jz|r, C lz|r.))

Note that C is a maximal equivalence class iff ' is a equivalence class and it
is not a proper subset of any other equivalence class.

For brevity we sometimes use the term ’class’ instead of the long form 'maximal
equivalence class’.

Let A = (||, P1,..., P, Ri,... Rn), 2 € K and C is a maximal equivalence
class in A. Let P/ = Py¢, for 1 <1 <7 and R, = Rjc forl1 <i < n
Then € = (C, P,...,P.,R},...,R},) is a substructure of A. We say that € is the
substructure of %A generated by C.

Since the maximal equivalence classes do not intersect and also cover the whole
set 2], we get that the structure % can be represented as a direct sum of the
substructures generated by its maximal equivalence classes. As there is one-to-
one mapping from maximal equivalence classes and the substructures generated by
them we shall use these two terms interchangeably. Whether we speak about an
cquivalence class or a substructure will be clear from the context.

Definition 6. Let s € N,s> 0, and let k and | be cardinals (finite or infinite).
We say that k and | are s-equal iff:

k=1V(k>s&l>s)

Note that for any s € N,s >0, any two cardinals greater or equal to s are
s-equal.

Proposition 1. Let s € N,s > 0. Two structures A € K and B € K are s-
partially isomorphic if and only if for each mazimal equivalence class in one of the
structures. the number of the classes s-partially isomorphic to it in A is s-equal to
the number of the classes s-partially isomorphic to it in ‘B. ‘

Proof: We use Pebble games to show the equivalence.

First, let the condition be true. We show that 2=, by showing there is a
winning strategy for Player II in the infinite pebble game with s pebbles.

Suppose we have k pebbles, ai,...,ax in % and k pebbles, b, .. ., by in B,
k < s and the mapping ai,...,akx — b1,...,bg is a partial isomorphism between

% and B. We will show that whatever the first player does, the second player can
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preserve the partial isomorphism. Obviously, this implies that the two structures
are s-partially isomorphic.

When k < s, the first player has two choices — she can either move one of her
pebbles already placed in one of the structures, or she can place a new pebble in
one of the structures. Without loss of generality we shall consider the case when a
new pebble is placed in one of the structures.

Thus, let axy1 be the new pebble placed in 4. The pebble goes to one of the
classes in 21. Denote that class by A. Clearly, if A contains any other pebbles,
then the class B where Player II should place his answer is determined. Otherwise,
Player 1I should pick a class B of B which is s-partially isomorphic to A and does
not contain any pebbles in it. This can always be done because the number of
classes in % which are s-partially isomorphic to 4 is s-equal to the number of class
in 8 which are s-partially isomorphic to A. A similar argument can be used when
Player I places the pebble in 8. Thus Player II has a winning strategy for the game
and therefore A=, ,B.

Now suppose A%}, ,B and supposc there is a class C' in one of the structures,
such that the number of classes of % which are s-partially isomorphic to C is
not s-equal to the number of classes in % which are s-partially isomorphic to C.
There are several cases, but without loss of generality we shall consider only one
of them — when there are finite number of classes s-partially isomorphic to C in
both structures. So, let A;,..., Ay and By,..., B; are all the classes in 2 and B
respectively, which are s-partially isomorphic to C (the class C, of course, is among
them). As k is not s-equal to [ it follows that either k < [& k < sorl <k&l <s.

1. k<l&k <s.

In that case the following is a winning strategy for the first player:

Start placing one pebble in each class from Bj,...,B;. Since k < &k < s
there will be a move in which Player Il will place his pebble in some class
A after Player 1 haseplaced her pebble in some class B and the class 4 will
either has already a pebble in it (in which case Player 1l immediately loses)
or A will not be s-partially isomorphic to C' (and B). At this point Player I
can restrict the game to the classes A and B only. As these two classes are
not s-partially isomorphic Player I has a winning strategy for the rest of the
game.

2. I<k&l<s

This case is resolved by symmetry (this time Player I starts to place pebbles
in classes of U)

O

Definition 7. Let  be a formula of the form 3z, ... 3z, Yy, where v is a formula.
Let x be a variable and R be a binary predicate symbol. We call the formula

k
of = 3z, .. 3mwy (/\ z;Rx & (yRe = d}))

i=1
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o shallow relativization of ¢ (wr.t. x and R).

Theorem 2. For each structure %A € K and for each s € N,s >0, there is o FO-
formula V. such that for every structure Bck:

B E vy < A=,B

Moreover. for a given s € N, s > 0. there are only finite number of different Sformu-
lae Wy (modulo logical equivalence). In other words. for a given s € N, s >0, the
relation =5, has finitely many equivalence classes.

Proof: Let M be the set of all substructures of 21 which are generated by the
maximal equivalence classes of 2. The relation 22, partitions M to equivalence
classes. Let J be the factorization of M by =7, and I;,j € J be the equivalence
classes of M. For j € J and i € I;, denote by A the structure . Then 2 can be
represented in the following way:

a= |J %

jedicl;

We have: » ,
108 leg — j\ — j2
J1 7 part™j2
Let m; = min{I;,s}, for j € Jandm=J.
The proof is by induction on the number n of the binary predicate symbols in
the language of the structure 2L

1.n=1
In this case each of the structures 21; consists of a single element. Consider
the following formula:

PN (x) = MPi(2) & ... &NPr(2)

where A% is the empty word, when AL = 3z Pe(x), and A¥ is the negation sign
otherwise. Obviously, if two one-element structures satisfy the same formula
of the above mentioned type then the structures are s-partially isomorphic.
Note that 1®i(z) depends only on j, but not on i. For that reason we may
omit the upper index of % and just write Y2 ().

Now take the formula:

1,8 . 1 1
Py = 3y ... 32y,
2 2
Jxt .. 3z,

SO

: ‘M.
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vw( A Ak
i1 #12Vi1#52

&ri(al,..., 20 )&

&rm (e, .2 )&

&\ ¥ )
jeg

where the formulae 7 are defined as follows:
Tj(il‘l, . ,:l'k)

k
=Va(Az#ae = %) &y ()& ... &Y™ (zx)), when k < s
i=1

and

Ti(T1,...,2%) = drm~’(:c1)& &wg-’(xk), when & = s

The meaning of the formula is evident - it just guarantees the desired condition
from Proposition 1.

2.n>1

Let j € J is fixed. Since in each of the structures Ql’ at least one of the binary
relations coincide with the universal relation, we (‘dn drop one relation and
use the induction hypothesis. Without loss of generality suppose that R,, is
interpreted by the universal relation in each structure Ql; Let L' = L\{R,}.
We can use the induction hypothesis and see that for the language £’ there
is a formula 93, such that:

J

%IC/ ':: ’(’Z)&; == %!clg;artm‘; fOI' ’l € I]

From here we see that 13, does not depend on i and hence we again can use

the short notation ¢$] Ij’rom the induction hypothesis we also get that all
these formulae are finitely many (modulo logical equivalence), and hence .J is
finite.

Note that ’/"21 is a formula in both £ and £’. Now let the formulae 1,/42‘
are shallow relat1v1zatlonb of Py, WI.t. R, (The variable w.r.t. which we
relativize will be clear from the (‘ontext)

The formula we are seeking is:

s 1 1
Py = dzy ... 3z,
2 2
3z7...Jxp,,
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m m
N Ci
J1 j2
iy #i2Vii £
k=1...n
1 1
&ri(zy,...,x,, )&

&1z, .. 2 V&

Yy,

&\ ¥ W)

jed
where the formulae 7 are defined as:

Ti(T1s - Tk)

k
= Vz(/\ z#x; = *w;p’g:(z)&dr_&j(xl)& .. &y (zx)), whenk <s

J
=1

and as:
i (&1, Tk) = 1/)*—;”(1",1)& &@;(zk), when k = s
Since the number of elements of J and the numbers m; are bounded we get

that there are only finite number of formulae 1§, for all structures of K.

Let A, B € K and B; is a maximal equivalence class in B relatively the binary
predicate symbol R. Let ¥§ be a shallow relativisation of 1y w.r.t. Rand z.

Observe that:
B, vy < B Eyyla/], for a € |Bi

From the observation it is easy to verify that the formula we gave guarantees
the condition from Proposition 1.

O
Definition 8. Let h(s,n,r) denote the number of equivalence classes of the relation
= ort fOr a language with n binary and r unary predicate symbols.

Corollary 1. For each structure % in K there exists a finite structure Ugiq, such
that:
A=?

part

thn

and the structure Asin can be selected to be of cardinality bounded from above by a
computable function.
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Proof: The proof easy follows from Proposition 1 by induction on the number
of binary predicate symbols in the language and the fact that 2, has only finite

n :
number of equivalence classes. The cardinality of %y, is bounded by s™. [] h(s, k,7).

k=1
d

Proposition 2. Let % u B be structures from K and let QlE;;lhr(f'"‘TH)‘B. Then
for any P C || exists Q C |B|. such that: (%, P)=,,,,(B,Q)

Proof: The proof is by induction on the number n of the binary predicate -
symbols in the language.

As in the proof of Theorem 2, let the structure 2 be represented as a direct
sum of its maximal equivalence classes: '

a= |J «

jeJ? iel;

Where J? is the factorization of the set of maximal equivalence classes of U over
the relation gz;lhr(ts‘"’r“). For j € J%, I; is the appropriate equivalence class of
%“;;I}L(ts'"‘”l) over the set of the maximal equivalence classes of 2 and 2’ is more
verbose notation for .

Similarly, B can be represented as:

3= |J B

jeJ® icl®

Note that due to the fact that the structures % and B are s.h(s,n,r + 1)-partially
isomorphic we have J? = JB.

For convenience we assume that the two representations are compatible in the
following sense:

. . . . . . i1 ~oS h(sn,r+1 3
(Vi € J*)(Via € JB)(j1 = jo <= (Vir € [F)(Viz € [D)(@ARashmrtiay)
From Proposition 1 we get o L '
I]ﬂ :s.h(s,1t,r+l) IJ% (1)

for all j € JB.

Let now P C |[2|. We introduce a new predicate symbol P, ;, which will be
interpreted in 2 by the predicate P. Thus we obtain a new structure € = (%, P)
for the enriched language £ U {Pr41}.

The structure € can be represented as a direct sum of maximal equivalence

classes as well:
¢c= Y @

jEC iels
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Now let ]C = {qclce IC} for j € J¢. For the above representation,evidently,
fm cach j € J2, there are j1....,j, € J€, with r < h(s,n,r + 1) such that:

_ ¢ ¢
—JEu...UJS

Now fix a j € J%. Because of equation (1) and since r < h(s,n,r +1) it is
casy to see that [ J‘.B can be represented as:

IP=1,U...Ul

and I
(V1< < )T, = 1)
Let 1 £14 = r be fixed, ‘B[ be arbitrary structure from I;, and Q’ € I‘E We shall
define a predicate @ in ‘B€ . with the desired properties. The dcfuntlon of Q can
be carried in the same way for any structure of [;,.

We distinguish two cases:

1.n=1

Without loss of generality we can assume that the only binary relation in the
language is the equality. In this case Q; and %fl_ are one-point structures
and @ can be defined on ‘Bfi. in the same way as P is defined in ¢§

Lo

n>1:

Let A = o From the fact that 2} and B, are maximal equivalence
classes for 2 and B respectively, and from 2% N;ahr(; ™ TH)%e , it follows that
there exists a binary predicate symbol R from the language E such that it
is interpreted in 2 and B’ with the universal relation. Let £ = L \{R}

and consider the restrictions of ng and %fi to the language £’. We have:

t s h(smr+l) s
Ql_] Il:' ~part %]: L

Since h(s,n,r+1) 2 h(s,n— 1,7+ 1), from the induction hypothesis we get:

¢ ¢
(o<, (@ P),, ur(24,2),)
As R is interpreted in both structures with the universal relation we get:
t S ¢
(%5, P) 2p0re (B5,,Q)
Thus we show that the predicate ) can be defined on any maximal equivalence

class. Now, taking the union of these predicates we define the interpretation of @
on the structure 8. 0
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Definition 9. Let ¢ be a monadic second-order formula. We say that ¢ is first-
order definable over K iff there is a first-order formula 1 such that for every struc-
ture A € K:

AR = AEY
Theorem 3. Every MSO sentence is first-order definable over K.

Proof: Let ¢ = KiPi... Ky Pne1 be a MSO formula, where K,..., K,
are quantifiers, Py,..., P, are monadic second-order variables, and ; is a FO
formula. We shall prove that there exists a FO formula 1, such that for each
structure A € K:

AEp = ARy

It is sufficient to show how to remove from the formula ¢ a single quantifier
over a second-order variable.

1. Let ¢ = 3Py, where ¢ is a first-order formula and let % € K. Let s be the
number of the first-order variables that appear in ¢;. Consider the formula:

Y= \/ w;.h(s,n,r%—l)

AEN
(FPC[ANUR. PY=v)

Because of the finite number of the formulae 1/ (modulo logical equivalence),
for all m € N,m > 0, the disjunction is a finite and hence v is a first-order
formula.

Note that the above disjunction can be empty. In that case the normal
conventions apply: that is, we consider the empty disjunctions to be false
(replacing the disjunction with —-Vz(z = x), for example)

Apparently, for each B € K if B |= IPy1, then B |= 1.

In the opposite direction, take B € K and B }= . We shall demonstrate
that B = JPyp;. Since B | ¢ there exists a structure A € K such that

s.h(s.nk+1 s.h(s.m,k+1
B = o5 and hence QIE;M(: mk+1)98. Moreover, for % we have:

(3P C |2)) (A, P) E 1)
From Proposition 2 we obtain that there exists Q C |°B| such that:
(le P) g‘:)a,rt (%’ Q)
Thus we get (B, Q) = ¢1, from where we conclude the desired B = .
2. Let ¢ = VP, where ¢ is a first-order formula. Consider the formula:
-h(s,mn, )
w - ) ;h(s 1,k+1
(YPCIAD((A-PYgy)

By an argument similar to the above we obtain B ¢ <= B E ¢.

34 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009. 25-35.




Corollary 2 The monadic second-order logic of K is decidable.

Proof: Immediately from Corollary 1 and Theorem 3. O

Finally, we would like to mention some further directions for research on the
subject. One interesting area is adding functional symbols to the language. We
alrcady know that adding one functional symbol under some simple restrictions
docs produce a theory which is not decidable, but have not investigated other
interesting cases. Also, one can try to expand this result to arbitrary formulae,
not just sentences. We do not know yet if this can be done. Another interesting
perspective is research on some possible connections with Data Analysis Logic.
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MODAL LOGIC FOR 3D INCIDENCE GEOMETRY

OGNYAN GERASSIMOV

Three sorted geometrical space of incidence is represented as equivalent uni-sorted
objects structure of incidences, and a modal logic using three equivalence relations and
a difference relation is used to axiomatize that class. Completeness theorem is proven.

Keywords: Modal Logic of Irreflexivity, Incidence Geometry, Equivalence Relations,
Axiomatization, Completeness Theorcm.

I. INTRODUCTION

The incidence 3D geometry consists of 3 different sorts of objects: points, lines
and plains and 3 relations called incidences. We introduce an equivalent one-sort
geometrical structure, called a structure of incidence, which is suitable for modal
considerations. The approach is the same as in the papers of Balbiani et al. [1],
(2] but extended to 3D geometry.

In the beginning we present the 3D geometrical space of incidence and the
one-sort geometrical structure of incidence. The category of incidence spaces cor-
responds closely to the geometry and its properties and its semantics is taken from
it. One-sort geometrical structure of incidence is a structure which contains only
one sort objects and 3 equivalence relations. Each object can play as a point, a line
or a plane at the same time, and the incidence relations are expressed as composi-
tion of the equivalence relations. The equivalence of the category of the incidence
spaces and the category of the structures of incidence is proven by defining functors
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from the incidence spaces to the structures of incidence and from the structures of
incidence to the incidence spaces.

The one-sort objects based structures of incidence with 3 relations of equiv-
alence and the difference relation are suitable for frames of a modal logic. The
language of the modal logic contains 3 unary modalities for the equivalence rela-
tions and the difference operator representing inequality. The semantics uses the
structures of incidence for frames of this logic.

The deductive system uses well-known rules as Modus Ponens, Generalization
for each modal symbol, and the irreflexivity rule proposed by Gabbay [3]. The
completeness proof does not use the irreflezivity rule directly but replaces it with
an infinitary rule deductively equivalent to it. For that equivalent deductive system
we prove the completeness. The completeness is proved using maximal consistent
theories and the canonical frame and model. The completeness of the original
system is a consequence of the deductive equivalence between these two rules.

The geometrical modal logic is derived from the minimal one with adding
several axioms for each property of the incidence frames. Each property of the

incidence frames is axiomatized and it is a canonical property. So the proposed finite

axiomatization is the axiomatization of the logic which frames are the structures
of incidence.

2. INCIDENCE GEOMETRY AND INCIDENCE FRAMES

First we show briefly the category of 3D geometrical incidence space. It is
consisted of points, lines and planes, and the relations: a point belongs to a line,
a line lays into a plane, and a point lays into a plane. So these relations are
called incidence relations. Another relation which is also important is the difference
between 2 points, 2 lines and 3 planes.

The incidence frames are explained afterward and the relations of incidences
are replaced with 3 equivalence relations and the difference. The definition of the
incidence frames and the equivalence between incidence frames and the category of
incidence geometry is the topic of this first chapter.

2.1. THE CATEGORY OF INCIDENCE SPACES AND THE INCIDENCE GEOMETRY

Definition 2.1. Incidence space we call any multi-sort system of the type
S = (Po, Li, Pl ¢y 2,21,3), where:

e Po is a non-empty set which elements are called points. We note them with
upper case Latin letters.

o Li is a non-empty set which elements are called lines. We note them with
lower case Latin letters.
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Pl is a non-empty set which elements are called planes. We note them with
Greek letters.

€12 © Po x Li, sy is a two-sort relation between points and lines. It says
that a point is into a line.

€1,3 € Po x Pl,ey3 is a two-sort relation between points and planes. It says
that a point lays onto a plane.

PoNLi=40,PonPl=0,LiNnPl = 0. There aren’t any objects that are points
and lines. points and planes or planes or lines.

Po. Li. Pl 2 and £, 3 must have the properties (geometry axioms) below:

. (3X € Po,3Y € Po)(X #Y). There are at least 2 different points.

(VX € Po,VY € Po)(3z € Li)(Xe122AY¢€1 22). For each 2 points there is a
line which goes through them. The points are incident with the line.

(VX € Po,YY € PO)(VZ € Li,Vt € LZ)(X # Y/\XE]_22/\Y€1y2z/\X61,2t/\Y61,2t
= 2 =t). For 2 different points there is mazimum one line which is incident
with them.

(Vz € Li)(3X € Po,3Y € Po)(X # YAXe122AY e 22). For each line there
are at least 2 different points that are incident with the line.

(V2 € Li)(3X € Po)(~X € z). For each line there is a point that is not
incident with the line.

(VX € Po,VY € Po,VZ € Po)(3ua € Pl)(Xe,3anY e, 3aNZey 3a). For each
3 points there is a plane that is incident with them.

(VX € Po,VY € Po,VZ € Po)(Na € PLVS € Pl)((Vl € Li)((-X €
l)\/(—!Y S l)V(ﬁZ e l))/\X€1‘3a/\Y€1¢3a/\Zé’1,3(1/\X€1,3ﬁ/\Y€1,3ﬂ/\Zé‘173ﬂ =
o = [3). For each 3 points that is not incident with the same line, there is
mazrimum one plane that is incident with all 3 points.

(Va € Pl)(3X € Po)(Xey 3a). For each plane there is a point that is incident
with the plane.

(Va € PI)(3X € Po)(~Xe130). For each plane there is a point that is not
ncident with the plane.

(VI € Li)(Va € PI)(VX € Po,VY € Po)(X +# YAXe1 2lAY 1 2lA X ey 30N
Yeisa = (VZ € Po)(Zey ol = Zey30)). If 2 different points are incident
with a line and with a plane at the same time, then each point which is incident
with the line is incident with the plane too. So if 2 different points from a
line are incident with the plane then the whole line lays onto the plane.
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11. (Vo € Pl)(V3 € PI)(3X € Po)(Xe 3anXe1383 = (Y € Po)(X # YA
Yey3anY e 30)) If 2 planes have a point which is incident with both. then
the planes have another point different from the first one which is also incident
with the 2 planes.

These relations £, 5 and 1.3 we call the incidence relations.
The relation €33 C Li x Pl which says that a line lays onto a plane, is ex-
pressible with the incidence relations ¢y 9 and e, 3.

Definition 2.2. The line lays onto a plane if any point that is incident with
the line is incident with the plane. We can express that relation =2 5 C Li x Pl with
the equivalence:

legza & (VX € Po)(Xe12l = Xey 3a). where | is a line and o is a plane.

This way the relation if a line is incident with a plane ( lays onto a plane ) is
expressible with the other 2 incidence relations.
The incidence spaces we call them just spaces. And we turn them into cate-

gories with defining the notion of homomorphism between spaces.
Let § = (Po, Li, Pl.e1 2,e13) and §" = (Po', Li', Pl',¢| ,,¢] 3) be 2 incidence
spaces.

Definition 2.3. Homomorphism between incidence spaces. We says that the
2 incidence spaces has a homomorphism f from S into S’ if the f is a function with
domain PoU LiU Pl and range Po' UL’ UPl'. f: PoULiUPl — Po' ULy U PL'.
which follows the conditions:

1. (VX € Po)(Vy € Li)(Va € P)(f(X) € Po'Af(y) € Li'Af(a) € PV)
2. (VX € Po)(Vy € Li)(Xé12y = f(X)e} of (y))
3. (VX € Po)(Va € Pl)(Xe1 ga = f(X)e) 4f(a)

f s an isomorphism if it follows the additional conditions:
. f:Po— Pd. f:Li— Li'. f: Pl — Pl all these are bijective.
- (VX € Po)(Vy € Li)(f(X)e] 2 f(y) = Xe1.29)
- (VX € Po)(Va € PI)(f(X)e) 5f(a) = Xe130)

v A

=

2.2. STRUCTURE OF INCIDENCE

The aim is to introduce a new kind of structures which contains only one sort
objects, and it is suitable for frames of modal languages. The new structures are
equivalent to the incidence spaces and the properties of the incidence spaces are
translated as properties of the structures.

So we introduce a construction with which from an incidence space we can cre-
ate a new kind of one-sort structure. That structures are the structure of incidence.
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Definition 2.4. Let S = (Po,Li, Pl.e12.€1.3) be an incidence space and
we call the structure W(S) = (W(S),=1,=2,=3) structure of incidence over an

incidence space S. if:

1. The set W(S) is defined as:

W(S) = {(X,y,a)|[(X € Po)A(y € Li)Na € POA(Xe12y)N\(yea 3a) }

2. The relations =, =2, =3 are defined as:
(X1, y1, 1) =1 (X2, y2,02) & X1 = Xo

(‘Xlwylya]) =2 (X2.y2, CYQ) =4 Y1 = Y2
(X1.y1,01) =3 (X2, 92, 2) & o = a2

where (X1,y1,01) € W(S) and (X2, y2, 02) € W(S5).

The relations =1, =+, =3 are equivalence relations.

Elements of W (S) are triples of a point, a line and a plane, such that the point
s incident with the line and the line is incident with the plane. Each triple of W(S)
plays as a point, a line and a plane at the same time. See the figure:

o
A a

As subsequence of that, the point is incident with the plane too - if (X,y.a) €
W(S) then Xz 30. We call W(S) only W for shortly.

Definition 2.5. The relations €12,€1,3,€2.3 nto W(S) defined with the
equations are called structure incidence relations:
(X1,91,01) €12 (X2, y2, 02) & X1€1,292
(X1,11,a1) €13 (X2, y2,02) & Xie1302
(X1,91,01) €2.3 (X2,y2.02) € y12,302
(

where (X1,y1,01) € W(S) and (X2,y2,a2) € W(S).

These relations € 9, €13, €2,3 which corresponds to the incidence relations are
expressible as compositions of the equivalence S5 relations =1, =9, =3
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Lemma 2.1. The equations are valid:

€1.2==1 0 =2

€1,3==1 0 =3

62'3252 0 =3
Proof. Using the definitions 2.1, 2.4, 2.5 it is easy to prove that:

TE€127 & (I2 e WHT = 2AZ = 7)
z€zy e (Fre Wiz = 2A2=3y)
x €3y (Fze W)(r =y 2A2=3y)

The proofs of the implications above in the direction "< are very simple. We
show the proof for (ZZ e W) (T =1 ZAZ=,7) =T €127

Let T= (X,z,0),7 = (Y,y, B), Z = (Z,2,7).

If for some Z € W is true that T =; Z and Z =5 7 then from the definition of }
=, and =; it follows that X = Z and z = y. And from Ze; 32 we conclude that
Xey,3y which is (X,x,a) €2 (Y,y,8) and that’s the definition of ¥ €15 7. The
other 2 implications are proved in the same way.

Proofs of the implications of the direction ”=" are also simple. We show the
proof forT €137 = (FZZ € WHT =, ZAZ =3 %) :

Let T = (X,z,0), ¥ = (Y,y,3). We must find a suitable Z = (Z, z,v). From
T €1,3 ¥ it follows that Xe; 33 and from & € W(S) follows that Xe; 3a. So both
planes o and § have a common point X. From the definition 2.1 axiom (12)
it follows that there is another point Z different from X, which belongs to both
planes. 37 € Po,X # ZAZe\3aAZe, 38. For the 2 different points X and Z
from the definition 2.1 axiom (3) there is a line z that is incident with the 2
points, 32 € Li, X¢; y2AZeq 32 We choose Z = (X, z, 3) and we have proved so far
that X # ZAXe; 30AZe138AXz122AZ¢ 2z, then from the definition 2.1 axiom
(11) we can conclude that it is true (VT € Po)(Te1,22 = Tey 383), which is the
definition of ze3 36. So we discovered a triple Z = (X, z, 8) such that Xeq,22N2e0,303
so z € W(S), and (X,z,a) =, (X,z0), and (X,2,8) =3 (Y,y,3), finally the
Z=(X,2,0) suffice z =; zAz =3 y.

The remaining 2 implications are simple. O

The reverted relations € fﬁ, G[é, €. ;1,, of €12, €13, €23 are also expressed with
a composition of the equivalence relations.

—1__ —
61’2‘—:::2 o =1
—-1_ —_
61,3::3 o =1

-1__ —_—
62’3::3 0 =
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Lemma 2.2. Let S = (Po, Li, Pl,e1,2,€13) be an incidence space and wW(S)
is the structure of incidence over S. Then the following conditions are true:

1. If X is a point then exist a line T and a plane o such that the triple (X,z,a) €
W (S).

2. If x is a line then exist a point X and a plane o such that the triple (X,z,a) €
W(S). .

3. If a is a plane then exist a point X and a line x such that the triple (X,z,0) €
W (S).

Proof. For the first one:

Let X € Po is a point, then from the definition 2.1 axiom (1), there is 2
different points Y; € Po, and Yz € Po and Y7 # Y;. So because Y} # Y, then if
X =Y then X # Y,. Let’s note with ¥ the point of Y; and Y, which is different
from X.

Apply the definition 2.1 axiom (3) and let y be the line incident with X and
Y. Xe12ynYer 2y.

Apply the definition 2.1 axiom (7) for the 3 points X,Y,Y and let v be the
plane that is incident with X and Y.

From the definition 2.1 axiom (11) and from the definition 2.2 for

X # YAXe10yAYe12yAXe1 37AX € 37 we conclude that ye2 37.

Similar reasoning proves 2 and 3. . O

The meaning of this lemma is that each point, line or plane can be completed
with redundant points, lines and planes to produce a triple that belong to the
structures of incidences. This way the working with multi-sort points, lines and
planes can be replaced with one-sort objects which are points, lines and planes at
the same time. All geometrical properties can be translated as properties of these
one sort objects.

Lemma 2.3. Let S = (Po, Li, Pl,e1,2,€1.3) be an incidence space and w(S)
(W(S),=1,=9,=3) is the structure of incidence over S. Then for the structure of
incidence W(S) the following conditions are true.

o The relations =1, =3, =3 are equivalence relations and they follow the condi-
tions below:

x (Vo e W(S)(Vy € W(S))((z =1 YNz =2 YNz =3 y) = = = y)

s (Vo e W(S)(Vy € W)z € W(S)((z €12 WAy €23 2) =
(3t e W(9)((z =1 )A(y =2 t)A(z =3 t)))

xx % (Vo e W(S))(Vy € W(S))((Vz € W(S))(z €E1pzAz €13Y) = T €23Y)

The next conditions correspond to the geometrical azioms of the incidence
space:
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... ... -

1. (FzIy e WS-z = y)
2. (Ya¥y € W(S))(3z € W(S))((z €12 2)A (Y €12 2))

3. (Vavyvevt € W(SH((—x =1 y)Mz €12 2)Ay €12 A (x Erp A
(y €12ty = (2 =21))

4. (Va3ydz € W(S))((~y =1 2)A(y €12 2)A(z €12 1))
- (VzIy € W(S))(~y €12 7)
(VaVyVz € W(S5))(3t € W(S))(x €15 tAy E13tA2 €1 531)

I

=S

(VaVyvz € W(S))(Vuvv € W{(S)){(x €135 )Ny €13 wIAN(z €13 WA(x €13
VINY €13 V)A(z €13 V)ANVL € W(S))((—x €12 I)V(~y €12 V(-2 €12
1)) = (u=3v))
8 (Vrdy e W(S))(y €13 x)
9. (Vrdy € W{SH~y €13 x)
10. (Vxvyvvt € W(S){(~x =1 y)A(z €12 2)A(y €12 2)AN(x €13 )A(y €13
t) = (Z €93 t))
11. (VxVyvz € W(S))(3t € W(S)((z €13 2)N(z €13 y) = (=t =1 2)A(t €13
)Nt €13 y))
Proof. It is a simple check with applying the definitions and use the lemma 2.2.
a
Thus the lemma 2.3 gives us the confidence to introduce the next abstract

definition od the notion of structure of incidence.

Definition 2.6. We say that the structure W = (W,=1,=2,=3) is an inci-
dence structure if the set is a non empty set W # 0 and the relations =), =», =3
are relations of equivalence, and they follow all the conditions from the lemma. 2.3,
where €1 y==1 0 =3, €1 3= 0 =3, €3 3==9 0 =3.

Now we turn the class of the structures of incidences into a category with
introducing the notion of the homomorphism.

Definition 2.7. Let W = (W,=y,=2,=3) and W/ = (W', =,=4,=4) be
two structures of incidence, and f : W — W’ is a function. We says that f is a
homomorphism if it follows the next condition:

1. (Vz e W)(Vy e W)z = y= f(z) =} f(y)) for each i =1,2,3

We says that f is a isomorphism if it follows the next conditions:

2. f is a bijection.
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3. (Vx e W)(Vy € W)(f(z) =/ fly) = z = y) for each i = 1,2,3

The category of the structures of incidences we note with ®;. And the category
of incidence spaces we note with X;.

2.3. EQUIVALENCE BETWEEN THE CATEGORIES OF THE INCIDENCE SPACES AND
THE STRUCTURES OF INCIDENCES

Similarly to the functional correspondence from definition 2.4 which for each
incidence space finds a structure of incidence, we make another functional corre-
spondence which for each structure of incidence finds an incidence space.

Let W = (W, =1, =2, =3) be a structure of incidence then we can split the set
11" into equivalence classes with each equivalence relations.

Definition 2.8. For each z € W we define the classes:
)y = {y e Wz =1y}, lal = {y e Wiz =2y}, |zls = {y € Wiz =3 9}
These classes are equivalence classes.

Definition 2.9. Let W = (W, =, =2, =3) be a structure of incidence then we
define S(W) to be the structure S(W) = (Po(W), Li(W), PI(W),e1.2(W), 21 3(W))

where:

1’%

W/ == {lzi|z € W}
) = W/ =p= {|zlz[z € W}
/) =W/ =3= {|als|lz € W}
12(W) = {(lz{1, lyl2)|zer,29}
sra(W) = {(lz1, lyl3)|zeray}

Lemma 2.4. The following conditions are true:

)
Li(k
Pl

|-<

|$1

1. The definition of the relations £1 o(W) and £1.3(W) is correct.
Po(W) N Li(W) = @, Po(W) N PI(W) =0, Li(W) N Pl(W) =

Proof. For 1 we have to proof that the relations 1 2(W) and €1 3(}¥) are inde-
pendent from the concrete representatives of the equivalence classes.

From the definition 2.6 it follows that €; p==; 0 =2,€;3=; o =3 and the
relations =;, =,, =3 are relations of equivalence.

So let zeyayAT =1 T'AYy =2 y'. From €)2=; o = it follows that there is
z € W such that £ =, 2Az =, y. Because the =, and =, are equivalence relations
it follows that ' =; 2Az =, ¢, thus we conclude that z'¢; y’. The same way we
can see that for any z, 2,4,y it is true zej 3yAT =1 'Ay =3y = 2’13y
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We can prove 2 with accepting the opposite and proof the contradiction. Let
us assume that there are |z{;, |2]2, |y]2, [y|s equivalence classes such that [z|1]y|2 or
lz]1 = |yls, or |z} = lyls, and from that it follows — there is z € W such that
|zl |x]2 or |z|1 = |z|3. or |z|2 = |zl5.

Let us assume that there is x € W such that |z[;|z|2. From the definition 2.6
of the incidence structure the axiom (4) we know that (Vx € W)(3y € W)(3z €
Wi((~y =1 2)Ay €12 Az €12 x). Applying that "axiom™ for the z we find
yeW,zeWandy €12z and z €12 x and (-y = z). From the definition of € »
and €, 3, it follows that there are u € W and v € W such that y =; uAu =2 z and
z =1 VAU =3 2. So u € |z]s,v € |z]2. Form (—y =1 2)Az =1 vAy =; u we conclude
that (~u =; v). But if {z}; = |z}o and u € |z|2,v € |z|2 then u € |z|;,v € |z|; and
u =y v contradiction with (—u =; v). Finally we proved that for any x € W it is
true that |z|; # |z|s.

From the definition 2.6 axioms (8) and (11) it follows that:

(Vzdz € W)(z €13 2))A((VaVaVz e W) (Bt e W)z €13 zAz €132 = (—t =1
Z)At €13 At €, 3 7)) and from that we can conclude that for any ”plane” there are
2 different ”points” that belong to the "plane” (Vxr € W)(3z € W)(3t € W)((—t =
Z)Az €13 TAt €13 ¢). From that statement we can proof-that |z|; # |z|3 in the
same way as for |z|; # |z2.

The proof of the4 statement |x|2 # |z|3 uses the proof of the statement (Vx €
W)3y € W)(3z € W)((~y =3 2)Ax €33 yAx €33 z) which speaks that for any
"line” there are 2 different ”"planes” that contain the ”line”, next using the definition
of €23 it follows that there are u € W and v € W such that = =, uAu =3 y and
T =9 VAV =3 2, because (-y =3 z) then (—u =3 v), but because u =, =, v then
u € |z|2 and v € |z]2 and if we assume that |z|» = |z|3 then u € |z|3 and v € |23
and it follows the contradiction u =3 v with —~u =3 v, so |z|3 # |z]..

The proof of the fact (Vo € W)(3y € W)(3z € W){((~y =3 2)Ax €23 yAZ €23
z). ,

Let x € W is the "line”. Using the definition 2.6 axiom (4) there are ”points”
Ty € W and z3 € W such that (-~z; =1 z2)Az1 €12 TAZ2 €12 z. From axiom
(6) there is u € W such that z; €, 3 uAz2 €13 u. For the "plane” u using axiom
(9) we find a "point” z3 € W such that —z3 €; 3 u. Using again the axiom (6) for
the points 1,2, z3 there is a "plane” v € W which contains that points z; €; 3
UAT2 €1,3 VAT3 €13 v. If we assume that u =3 v then from z3 € 3 v it follows that
thereist € W and x3 =; tAt =3 vand v =3 u, sothereist € W and z3 = tAt =3 u
which is z3 €; 3 v contradiction with —z3 €; 3 u. So it is true that —u =3 v. And
because both ”planes” contains the "points” zy,z2 and (-z1 =) z2), and the "line”
contains x;,xy too, using axiom (10) we conclude that x €53 uAz €33 v. Thus we
proved that (Vz € W)(Ju € W)(Jv € W)((—u =3 v)Az €23 uAx €23 v).

Note! The statement (Vz € W)(3y € W)(3z € W)((—y =2 2)Ay €23 TAz €23
z) which says that for any "plane” there is 2 different ”lines” that lays onto that
”plane” has more complex proof.
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Finally we proved that for any x € W it is true that: |z|; # |z|2 and |z|; # |z|3,
and |z]3 # |x|2. Which proof that the sets W/ =4, W/ =,, W/ =3 have no common
elements. 0O

Lemma 2.5. If W is a structure of incidence then S(W) defined with the
definition 2.9 is an ncidence space.

pProof. To prove that, we need to check each of the statements from definition of
incidence space 2.1 for Po(W), Li(W), PL(W), &1 2(W),e1,3(W).

From the previous lemma 2.4 it follows that the defined sets and relations at
the definition 2.9 are correct. Also no ”point” is a ”line”, no "line” is a " plane” and
no “plane” is a "point®. So the statement Po(W) N Li(W) = 0, Po(W)NPI(W) =
0. Li(W) N PI{W) = 0 is exactly (1) from the definition 2.1 of the incidence space.
The rest of the statements from definition 2.1 - the statements from (2) until (12),
are checked easily with using the corresponding ”axiom” from (1) until (11) from
the definition of the structure of incidence - the definition 2.6. O

Lemma 2.6. [z|2e23(W)lyls & = €23y

Proof.  According to the definitions 2.2 and 2.9 the following equivalences are
true: [Tlee2s(W)lyls & (VZ € Po(W))(Zer2(W )zl — Zers(W)lyls) < (V2 €
W) (Izhiere(W)lzlz = |zhers(W)lyls) & (Vz € W)z €122 > 2 €13 9)

From the incidence structure property (¥***) it follows that (Vz € W)(z €12
r—z€13Y) > T €23y

Let for any z € W be true that z €; 2 = and from x €33 y according to the
incidence structure property (¥*) it follows (3t € W)(z =1 tAz = tAy =3 t). From
lemma 2.1 from z =y tAy =3 t it follows z €3 y. So we proof z €33 y = (Vz €
Wiz €2z —2€13Y). O

Theorem 2.1. Representing structures of incidences as spaces of incidences.

Let W = (W, =1, =2, =3) be a structure of incidence.

Let S(W) = (Po(W), Li(W), Pl{W),e1.2(W),e1.3(W)) be an incidence space
over S(W).

Let W(S(W)) = (W', ={,=5,=3)" be a structure of incidence over S(W).

Then there is an isomorphism from the structure of incidence W to the struc-
ture of incidence W(S(W)). The structures of incidences W and W (S(W)) are
isomorphic.

Proof.  We define function f : W — W’ this way f(z)(|z|1,|z]2, |z]s) for every
r € W. First we must check that the definition is correct. For every z € W we
must check that (|z|1,|z|2, |z]3) € W'. So let z € W, and from =; 2 3 equivalence
relations then: = =; zAz =2 x and £ =9 Az =3 z. From the definition of 2.6
T €122 and z €33 x. From the definition 2.9 we conclude that |z[eq,2(W)[z| and
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from lemma 2.6 we conclude that |x|es 3(W)|z], so the triple (|z|1. |z|2, |z]3) € W’
according to the definition 2.9.

Check for that f is a homomorphism is also easy:

T =123 Yy < |ehes = Whes < (2l [2l2.2ls) =12s (vl vl [uls) <
f{z) =123 f(y). so f is a homomorphism.

If we finally proof that f is a bijection then we can conclude f is an isomor-. |
phism.

First we proof that f is a surjective. For any element of (|z], |yl2,|z]s) € W’
there is t € W such that f(t) = (|z|1, |y|2, |z]3)- Let (Jz}1,lyl2. |2|3) € W’. From
the definition 2.4 we know that |z|ie1 2(W)|yl2 and |y|2e2.3(W)|z|3. From the
definition 2.9 and from lemma 2.6 we conclude that x € 1,2yAy € 2,3z. Now !
we apply the statement (**) from the definition of the structure of incidence 2.6,
and we find ¢t € W such that £ =, tAy = tAz =3 t, and for that ¢ it is true that
(It [tl2, [tls) = (2|1, lyl2, |2]3). So f is a surjective.

Let’s now proof that f is an injective function. Solet x,y € W and f(z) = f(y).
From the definition of f we have that (|z1, |z|2, |zls) = ([yl1, [¥l2, |yl3) which means
that the equivalence classes of x and y for each relation are the same: |z|, = |y|1,
|zla = |y|e and |z|3 = l|y|s- And we conclude that the elements x and y are
equivalent by each relation: > =; yAr =5 yAx =3 y. Now we use the statement (*)
from the definition 2.6 and conclude that = and y are equal, x = y, which proofs
that f is an injective function. f

The defined here function f preserves the relations, and also is a bijection from
W to W’ So f is an isomorphism. 0O

2,

Theorem 2.2. Representing spaces of incidences as structures of incidences.

Let S = (Po, Li, Pl, 1 9,¢1.3) is an incidence space.

Let W(S) = (W, =1,=2,=3) be the structure of incidence over the space S.

Let S(W(S)) = (Po(W), Li(W), PI(W),e12(W),e1.3(W)) be the incidence
space over the structure of incidence W(S).

Then there is an isomorphism from the incidence space S to the incidence space
S(W(S)). The incidence spaces incidences S and S(W(S)) are isomorphic.

Proof. We know from the definition 2.9 that:

Po(W(S)) = W(9)/ =1= {|(X,y, )i [(X, 9, 0) € W(S)}

Li(W(8)) = W(S)/ =2= {{(X,y, )|2|(X,y,a) € W(S5)}
PIW(S)) = W(S)/ =3= {|(X,y,0)ls|(X.y,a) € W(S)}
e12(W(S)) = {(I(X". ¢, &)1, (X", y" . ")) (X' s @ )er2(X 7,y ")}
e13(W(9)) = {(J(X "y, )i, (X", 9", ")) (X' v, @ )er s(X7, 9", o) }

And from definition 2.4 we know the equivalences:

48 Ann. Softa Univ., Fac. Math and Inf., 99, 2009, 37-67.




(XY o )er2(X"y", ") & X'e1 99" and (X', 9/, o )er 3(X",y", ") & X'e1 30"
This way we see that the relations &1 o(W(S5)), 1 3(W(S)) follows the next condl—
tions:

(X' y o Y1 o W(SHIX",y", a")l2 & X'e12y”
(X o) e s (SHNX" y", o) & X'e1 30"

Now let’s define the function f : PoU Li U Pl —» Po(W(S)) U Li(W(S)) U
PUV(S)). For each point X € Po from lemma 2.2 statement (1) we know that
there is a line incident with the point and a plane incident with the line, so there
are y € Li,a € Pl such that (X,y.a) € W(S). Then we define f(X)|(X,y,a)|:-
For each line y € Li using lemma 2.2 statement (2) we know that there are incident
a point and a plane, so the triple (X,y,a) € W(S). Then we f(y) = |(X,y,a)|2.
For each plane o« € Pl using using lemma 2.2 statement (2) there are a point and
a line such that (X,y,a) € W(S). Then we define f(a)|(X,y, a)ls

f is a function. That means the result of f is independent of the exact choice of
the fictive points, lines, and planes which were chosen to make a triple from W(.5).
We shall prove it for points only for lines and planes it is the same. So let X € Po
and let ¥, y” € Li and o',o” € Pl such that the triples: (X,v',a’) € W(S) and -
(X,y".a") € W(S). It doesn’t matter which one we choose for f(X): |(X,y',a/)i
or (X.y", a"h, because (X,y',e) =1 (X,y",a”) then |(X, v, a1 |(X,y", 0" )|1.

We have to check that the incidence relations are preserved by the function f.

Solet X € Po,y € Li,a € Pl and f(X)|(X,y',a')|1, and f(y)|(X",y,a")|a,
and f(a) = (X", y", a)|3, where X", X" € Po, y',y" € Li, o/, a" € Pl. Next we
use the already proven statements about the relations g1 2(W(S)) and &1 5(W(S5)):

F(X)er 2(W(S) () = (X, 5/, o)) e 2(WS)IX, y, "3 — Xe1 2.

F(X)e13(WAS)f(a) = [(X,y', o)1 s(WSHIX", 4", a3 = Xeq za.

It is easy to check that f | Po is a bijection from Po to Po(W(S)).

f | Po is an injective function. Let X, X, € Po, and f(X]) = f(X3). Let
JOXI(X o/, o)y and £(Xa) = [(Xa,y", ), then [(X.8/,0) 1| Xy o
and from that we conclude that the trlples are equivalent with =1, (Xs,y",a") =
(X2,y". "), from the definition 2.4 we know that X; = Xs. So f | Po is an
injection. N _

f | Po is an surjective function. Let X € Po(W(S)), so X is an equivalence
class generated by the triple: X|(X,y,a)|;, then f(X) = |(X,y,a)X. So f | P
Is surjection.

The same way we proof that f | Li and f | Pl are surjective and injective
functions. And this way we proof that f is bijection, which with the preserving the
relations turns f into isomorphism. O

If we consider S(W) and W(S) as functionals that convert an incidence spaces
into structures of incidences, and structures of incidences into incidence spaces,
then the conclusion of these 2 theorems is that the 2 functionals behaves as the
Opposite ones — if S is an incidence space then S(W(S)) is isomorphic to S, and
if W is a structure of incidence then W(S(W)) is isomorphic to W. To proof
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the equivalence of the category of the incidence spaces and the category of the
structures of incidences, we need to turn that functionals into functors . To do that
we have to extend the functional S(W) over the class of homomorphisms between
structures of incidences and the functional W (S) over the class of homomorphisms
between incidence spaces.

Definition 2.10. Let S and S’ are incidence spaces and let W{(S) = (W, =
, =2, =3) and W(S') = (W', =1,=4,=4) are the corresponding structures of inci-
dences. For any homomorphism f from S to S'. we define the function W(f) :
W — W’ this way:

For any triple (X, z,a) € W we define W (f)((X z,a)) = (f(X), f(x), f(a)).

Definition 2.11. Let W(S) = (W, =, =2, =3) and W(S') = (W', =], ==
) are structures of incidences and let S(W) = (Po, Li, Pl,e19,613) and S(W') =
(Po',Li', Pl', g} 5,€1 3) are the corresponding incidence spaces. For any homomor-
phism f from W to W', we define the function S(f): PoULiUPl — Po'ULi'UPU
this way:

For any « € W we define S(f)(Jelh) = (@) and S(f)(lale) = |f(2)l2. and
S()(Izls) = 1£(@)]s.

Lemma 2.7. The definitions above 2.10 and 2.11 are correct.

Proof.  For the definition 2.10 it uses the properties of the homomorphism and
the definition of W(S), see definition 2.4. For the definition 2.11 we use the defi-
nition 2.9 that Po = W/ =, LiW/ =,, Pl = W/ =3 and PodW’/ =, Li'W'/ =,
PUW’'/ =} and the properties of homomorphisms. The properties of the homo-
morphism f is used to proof that the definition S(f)(|z|;) = |f(z)|; is independent
from the concrete example r € W. O

Theorem 2.3. W is a functor.

Proof. First we shall proof that the defined above W(f) is a homomorphism from
VV(S) to W(S"). Let (X',2',a') € W and (X", 2",a") € W/, and (X', 2", &) =
(X", 2", a"), then from the definition 2.4 we know that the points are the same
X’ X”, and f(X) = f(X"), again with the definition 2.4 we conclude that
(F(X), (), (@) =1 (F(X"), f(2"), f(@")). In the same way we proof that
the function f preserves the relations =, and =3.

The next question is about the composition of homomorphisms. Let f is a
homomorphisms from S to S’ and g is a homomorphism from S’ to $”. Then go f
is a homomorphism from S to S”. We must proof that W(go f) = W(g) o W(f).

W(go f)((X,z,a)) = (W(go f)(X),W(go f)(z), W(go f)(e))
= (W(g)(W()(X)), W(g)(W(f)(z)), W(g)(W(f)(a)))
= W(g)(W(£)(X), W(f) ), W(f)(a)))
= W(g)(W()(X,z,a))) = (W(g) o W(f)((X,z,)). O
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Theorem 2.4. S is a functor.

Proof.  We must check that S(f) is a homomorphism from S(W) to S(W').
Let |1 € Po(l¥), lyl2 € Li(W), and |z|1&; 2(W)|yls. From definition 2.9 we
know the equivalence |z|1e1 2(W)|yl2 & z €12 y. From f homomorphism and the
definition of €; 5 we conclude that f(z) €}, f(y). Again applying the definition
2.9 we proof that |f(z)]1e) o(W)|f (y)]a, which is S(f)(|z]1)e, o(W)S(/)([l2)- In
the same way from |x}ie;, 3( )|z|3 we proof that S(f)(Jz|1)e} 3(W YS(f)(|z]3)- So
S(f) is a homomorphism.
Let f is a homomorphism from W to W', and let g is a homomorphism from
"to W”. Then Then go fisa homomorphlbm from W to W”. Let’s check that
('J Of)S(g) 0 S(f). Let |z|1,2,3 € Po(W), Li(W), PI(W), then S(go f)(|x}1.2.3) =
} (g0 NN 23 = lg(f @) 2550)(1F (@) 23) = S@)(S(f) (|2} ,2,3))- O

With these theorems 2.1, 2.2, 2.3 and 2.4 we conclude that the category of
incidence spaces is equivalent to the category of the structures of incidence.

3. MODAL LOGIC FOR INCIDENCE GEOMETRY

3.1. MODAL LANGUAGE

The language is a modal language with 4 different modal operators. 3 of the
operators [=;1], [=2], [=3] are interpreted with equivalence relations =, =3, =3, and
the 4th one [#] with the relation difference #. The language is consisted also of the
set of propositional variables {p1, p2, p3, ...} and logical operators A, V, -, —, <.

3.2. SEMANTICS

The semantics is the Kripke semantics over the frames W = (W, =;, =,, =3, #)
where W # 0 and =1, =,, =3, # are binary relations over W. The relation # has
a special meaning difference between 2 elements of W. The elements of W are
called worlds .

If we assign binary values to the propositional variables, called valuation, we
may assign a truth values to all modal formulas. If v is a valuation of propositional
variables and W is a frame then M = (W, v} is called a model for that modal logic.

If we have a model M = (W, v) we can extend the truth value over all formulas
using next definition.

Definition 3.1. The truth value of a modal formula.
z &, A means the formula A is true in the world x according to the valuation

r¥E, A means the formula A is false in the world x according to the valuation
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1. ¥, p e v(x,p) = true. for any p € {p1,p2,...} propositional variable.
2. xk, "A ¥, A

3. ¥, (AAB) >k, Aandz F, B.

4. ok, [R|A & (Vy € W){aRy — yF, A). where R € {=,=2,=3,#}.

Definition 3.2. We say that A is true into the frame W. W E A if for each
valuation v and for each world x € W it is satisfied z F, A.
We say that A is true into a class ¥ of frames if A is true into each of frames

from that class.
If 3 is a class of frames then the set of all formulas A which are true at that
class T forms the logic over that class, and it is noted with L(X).

Frames which are interesting for us are frames with =, =2, =3 being equiva-
lence relations and the relation # the difference relation. So the class of such frames
we note with Xg. And the logic over that class L(X) is the minimal logic Lg. First
we make the axiomatization of that logic Ly. Next we proceed with axiomatization
of the logic over the class of structure of incidences 2.6. That is an extension
of the minimal one Lo with adding axioms for base geometrical properties of the
structure of incidences, see 2.6, and next we proof that each of those geometrical
properties is a canonical property. We note the class of frames which are structures
of incidences with X,;. And the geometrical logic is noted with L(X,.;).

3.3. DEFINABLE MODALITIES IN Xg

Some relations has modal operators that are definable with these modal ope-
rators : =1, =g, =3, #.

1. Incidence Relations, Like €1 5,€1,3,€2,3 and e;é,elg,e;‘;. The modal
operators associated with these relations are [€1 2], [€1.3], [€2.3]. [€T 3] [ET 5]

(€73]-

2. Universal Relation. Universal relation U means that every two world are in
relation, it connects any with any. So U = {< z,y > |x € WAy € W}. The
modality for it is W

The relations below uses the semantics attached with the structures of inci-
dences.

3. Two lines has an incident point.
4. Two planes has an incident point.

5. Two planes has an incident line.
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Lemma 3.1. The modalities with incidence relations €1,2,€13,€23 and
€13-€75, €53 are definable as:

[€12] = [=1][=2], [€13] = [=4][=3], [€2.4] = [=2][=y]
€r2] = [=][=1], [€7]] = [=4)f=), (€331 = [=s]=2]
Lemma 3.2. The modality with universal relation is expressible with:

WA = AA[#)A

Lemma 3.3. If W is a structure of incidence then the relations are expressed:
My ==30= 0 =9
M31 ==30=) 0=3,M35==30 =20 53,32 = N3

Lemma 3.4. The relations about two lines has a common point and two planes
has a common point, line are definable:

[Ne] = [=2)[=1][=]

(N3] = (=3][=1][=3], [Ns.0] = [=3][=2][=3]

3.4. AXIOMATIZATION FOR THE MINIMAL LOGIC L(3p)

Axioms
L. All Propositional Tautologies.
2. [R(A=B)= (|RjA > [R]B), where R ¢ {=1,=0, =5, #}.

3. S5 axioms for modalities [=1], [=2], [=3].
[=:]A = A noted with (T).
<=;> [=;]4 = A noted with (B;).
=i]A= [=:]|=:]A noted with (4;).

4 <#>[#]4 = A noted with (By). The relation # is a symmetric.
9 <HE>HES A= (AV <#> A).
6. WA= [=]A.

Deductive Rules

1. Modus Ponens (MP) A,A= B+ B.
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2. Normality (Ngr) A+ [R]B, where Re {=1,=2,=3,#}

3. Irreflexivity (I77) (pA[#]-p) = A, the variable p does not enter A+ A.

Definition 3.3. Formal proof with the deductive system we call any sequence
of formulas each of them could be a variant of one of the axiom schemas or produced
by some rule from the previous formulas.

I A There is a formal proof of A without using the rule (Irr).
k7. A There is a formal proof of A with using the rule (Irr).

Lemma 3.5. - HA = A, ¢HA= A - A = BRA

To proof the completeness we will use another rule for irreflexivity which will
offer simpler completeness proof, and next the deductive equivalence of the two
rules will proof completeness of the logic L(Zo).

3.5. DIFFERENT IRREFLEXIVITY RULES AND THEIR DEDUCTIVE EQUIVALENCE

The all mentioned deductive systems will contain the axioms 1 - 6 and the
rules M P and Nz, =, =, #, they will only differ with the irreflexivity rule.

The new infinite irreflexivity rule is:

(Irr*) (pA[#]-p) = A, for each variable p F* A

This rule makes the ordinary definition of formal proof not appropriate and
requires a new definition. The set of axioms 1 - 6 we note with Ag.

Definition 3.4. Infinite formal proof of the formula ¢ is the ordered pair
(T, p), where T is a tree with a finite path from the root to any leaf. and p is the
correspondence between each tree node and a formula from the modal language. For
T and p it is true that:

1. if v is a leaf from the tree then p(v) € Ao

2. if v is not a leaf then p(v) is a formula which is a conclusion of some of the
rules.

3. if v is the root of the tree then p(v) = ¢.

We can note such infinite proof of ¢ with > ¢. The "triangle” sign symbolizes
the infinite tree with finite path to the leaves. if the rule (Irr) is used then we use
> ¢, else if the rule (Irr*) is used we use * ¢. So the formula ¢ is proved with
(Irr), Frer @ if and only if there is > ¢. Also ¢ is proved with (Ir7*), Frres @ if
and only if >* ¢.

Lemma 3.6. b1, ¢ if and only if Frree 6.
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Proof. If b1 ¢ then there is a infinite proof > ¢. Next with induction over the
max tree path length we can create infinite proof >* ¢. The only interesting case is
when ¢ is a conclusion of irreflexivity rule. Let the proof looks like 1> ((pA[#]-p) =
o) F ¢, where the variable p does not enter ¢. Then everywhere inside the infinite
proof &> ((pA[#]-p) = ¢) we can replace the variable p with any other variable g,
<o the result will be the infinite proof & ({gA[#]—¢) = ¢), ¢ remains unchanged
hecause p does not enter ¢. So for each infinite proof by induction assumption we
have >* ((gA[#]~q) = ¢), for each variable q. Now applying of the infinite rule
Irr* we construct the infinite proof >* ¢.

In the other direction if we have the infinite proof >* ¢, again 1ndut:t10n over the
height of the tree, also the interesting case is with ¢ is being conclusion of the infinite
pule Irr*. The proof for ¢ looks like: 1 (g1 A[#]=q1) = @), ..., % (guA[#]—gn) =
o). ... F ¢. Because ¢ has a finite number of variables we can choose one variable
p which does not enter ¢ and for which there is a proof &>, ((pA[#]—p) = ¢), now
applying the inductional assumption and applying the finite Irr rule we receive the
proof >* ¢.

The obvious observation that if (I', p) is an infinite proof but if it uses only
finite rules then it is equivalent to the ordinary finite proof. O

The conclusion of this leinma 3.6 is that the formal systems with the infinite
rule Irr# is deductive equivalent with the formal system with the finite rule Irr.

Because all our relations are symmetric for all the modalities [=], [=2], [=3
|. [#], there are the axioms for symmetric relation: < R > [R]¢ = ¢.

Lemma 3.7. (Ryke [5]) If for one modal operator we have the symmetric
ariom < R > [R]¢ = ¢. then: b ¢ = [R]y) if and only if F< R> ¢ =1

Proof. It is used contraposition, the normality rule Ng, the axiom 2 [R](¢ =
v) = ([R]¢ = [R]¥). and the above axiom Br < R > [R]¢ = ¢, and propositional
tautologies.

Let F< R > ¢ = v, then using Ng, we have F [R](< R > ¢ = 1), using
axiom 2 and M P, we have F [R] < R > ¢ = [R]y¥. Now with contraposition we
have - —[R]y» = —[R] < R > ¢, which is the same as F< R > =¢) =< R > [R]—¢.
Now using the Bg axiom for =¢, < R > [R]-¢ = —¢ and tautology we have that
F< R > ) = —¢, contraposition, + ¢ = [R]1). O

This lemma gives us the opportunity to use an infinite many rules instead of
a single irreflexivity rule:

Definition 3.5. Long Irreflexive Rules. For each natural number n 2 0 :

(AdmgIrr*) is (Irr*).

(AdmpIrr*) A) = [Ri](A> = [R2]{A3... = {R J(pA[# ]ﬁp) A)..)). for
each variable p - Ay = [Ri}(A2 = [Ro](A3 = ... = [R,](A)...)), where n > 0,
{Rl‘RQ,...Rn} g {51,52,53,#}.
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Lemma 3.8. If into the proof of the formula ¢ the Tule Adm,Irr* is used for
some n. then that proof can be reworked into a proof of ¢ with the rule AdmyIrr*
eliminated and replaced with I'rr*.

Proof.  Induction over n can show the elimination and the replacement of the
rule Adm,, Irr* with the rule Ir7*, also we choose to eliminate the Adm,Irr* rule
closest to the leaves of the infinite proof.

If n = 0 then Adm, Irr* is Irr™.

Ifn = 1 then AdmIrr* is : A, = [Ry)((pA[#]-p) = A), for each p+ A; =
[R1)A. Because ki~ A1 = [Ri)((pA[#]-p) = A), for each p, and using the
lemma 3.7 Fre< Ri > A1 = ((pA#]p) = A), according to the tautology :
v (< Ry > AtA(pA[#] D)) = A), and Frope (pA[#]2D) = (< B > A = A)),
for each p, then applying the rule Irr™, we get Free< Ry > Ay = A, again using
the lemma 3.7 we proof that b+ Ay = [Ri]A.

Let’s for some n the assumption is true.

Let’s have the occurrence Admnq1Irr*, the closest to the tree-proof leaves.
and it is look like:

(A1 = [Ri](A2 = [Ro](A3 = ... = [Rut1]((pA[#]-p) = A)...))), for each
variable P - (Al = [R1](A2 = [Rz](A; = ... = [R,H,l](A))))

Let’s note with ¥(p) = [Ra2](A3z = ... = [Rut1)((pA[#£]-p) = A)...)), for each
p. Let’s note with x = [R2)(A3 = ... = [Rn41](A)...)). Now the rule is written as
. Ay = [Ri1)(A2 = ¢(p)), for each p+ A1 = [Ri](A2 = X)-

Because b A; = [Ri](A2 = t¥(p)) then using the lemma 3.7 we get
that Fr.-< Ry > A1 = (A2 = ¥(p)), propositional tautology, Firre (< Ry >
A1AAz) = 1(p), for each p. Now we can apply the rule Adm,Irr* and also the
inductive assumption, and the result is : Frppv (< Ry > A1AAg) = X, that formula
is proved with Irr* only. Using propositional tautology : b (< Ry > Ar =
(A2 = x)). Again from the lemma 3.7 we receive b7, A1 = [R1)(A2 = x). This
shows how to eliminate the Admy, i Irr* rule. O

Theorem 3.1. The rules Irr. Irr*, and the set Admy,Irr™ of rules are de-
ductive equivalent: {¢| Frrr 0} = {®| Frrre ¢} = {®| Fadmo 1 D}

Note: The rule is needed only to proof the lemma 3.14, neither deduction
lernma 3.11 nor Lindenbaum’s lemma 3.13 needs that rule and they can be proofed
with the finite irreglexivity rule, but the rules AdmyIrr” change the nature of the
w-theories.

3.6. COMPLETENESS THEOREM FOR THE MINIMAL LOGIC L(Zo).

We proof now the completeness of the minimal logic for axioms from 1 to 6 and
the rules M P, Nz, =,.=, » and the set of long infinite irreflexive rules AdmpIrr*
instead of the finite irreflexive rule Irr.

Let ® be the set of all modal formulas.

Let with L = {¢| Frrr ¢} = {&] Firre &} = {] Fadma1rre ¢} we note the set

" of all logical theorems.
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Definition 3.6. w-theory — Any set of modal formulas X C ® such that:
- L= {¢| Fagm, 10 &} C X All logical theorems belongs to X .

2. X closed under (M P).

3. X closed under (Adm,Irr*).

Note: The w-theories are not closed under the normality rules N=, =, =, .
Definition 3.7. The w-theory X is inconsistent if and only if X = ®.
Definition 3.8. The w-theory X is consistent if and only of X # ®.

Also X is inconsistent w-theory if and only if 1 € X, and X is consistent if
and only if L ¢ X.

Lemma 3.9. Intersection of two w-theories is a w-theory.
This lemma 3.9 gives us the opportunity to give the next definition:

Definition 3.9. For each set of formulas Y € P, the set of formulas Th(Y)
is the smallest w-theory that contains Y.

Lemma 3.10. Th(Y) = ({X|X is a w-theory, and Y X}

So for each set V it is true that:

1. L C Th(Y),

(o]

.Y CTh(Y),

3. Th(Y) is closed under (M P),

4. Th(Y') is closed under all rules (Adm,, I ).

Lemma 3.11. Deduction Lemma. Let ¢ formula and X w-theory, then:
(6=9)eX odeTh(XU{gp})

Proof.  Let’s choose Y = {4|(¢ = Py e X}

1. Let’s proof that X C Y. Let ¢ € X. Because (¥ = (¢ = ¥)) is a classical
axiom, and X closed under (M P) then (¢ = 9) € X, and according the definition
of Y,y €Y, s0 X CY. Also from L C X we conclude that L C Y, all logical
theorems belong to Y.

2. (¢6=>9)e L, it is a classical theorem, this way (¢ = ¢) € X, so from the
definition of Y, p € Y. .

3. Let y € Y and (¢ = ), 50 (¢ = %) € X and (¢ = (¥ =x)) € X, now
sing the classical axiom (¢ = (v = X)) = ((¢ = ¥) = (6 = X)), and X closed
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under (M P), then (¢ = x) € X, and it follows that x € Y, so Y is closed under
(MP). ~

4. Finally we proof that Y is closed under Irr* the infinite irreflexivity rule.
Let ((pA[#]-p) = ¥) € Y, for each variable p. Then (¢ = ((pA[#]-p) = ¥)) € X, 3
for each variable p. Using propositional tautologies we conclude that for each ;
variable p the formulas ((pA[#]-p) = (¢ = ¥)) € X. X is closed under (I77%), 50
(¢ = ¥) € X, ¢ €Y and we conclude that Y is closed under (Irr*). :

Y is an w-theory, (X U{¢}) C Y, and Th(X U {#}) is the minimal w-theory |
containing (X U {¢}). That's why Th(X U {¢}) €Y.

Now if ¥ € Th(X U{¢}), then ¢ € Y, and from the definition of Y, (¢ =) €
X. O

Lemma 3.12. If X is an w-theory, and ¢ ¢ X then Th(X U {~¢}) is a
consistent w-theory. :

Proof. Let’s assume that Th(X U {-¢}) is inconsistent, then L € Th(X U {-¢}), |
now using deduction lemma 3.11 we have that (~¢ = 1) € X, now apply classical
tautology we get that ¢ € X, which contradicts with ¢ ¢ X. 0

Long infinite rules are hard to write that’s why we can specify some short writ-
ing form. If the formula ¢ is graphically equal to: (o = [Rol(¥r = [Ri](. (¥ = |
[Rm](¥))...))), then we note with Wy(p,i) = (o = [Rol(¥n = [Ri](. (v =
[RL]((p/\[#]"p) = (’l/11'+1 = [R7+1](1[)1+2 = [Rm](t//‘))))))), where 7 > 0, and
U,4(p,0) = ((pA[#])-p) = ¢). If the formula ¢ is not of the above form then only
¥(p,0) makes sense. As a conclusion we can say that for each formula ¢, if we
can specify ¥4(p,i), then ¢ can be a conclusion of the rule Adm;Irr*. The rule
Adm;Irr* looks like: ¥4(p, i), for each p+ ¢.

Lemma 3.13. Lindenbaum’s lemma. Let X is an w-theory and ¢ ¢ X then
there is a mazimal consistent w-theory Y such that X CY and ¢ ¢yY.

Proof.  Let’s order all modal formulas into a sequence starting with —¢ as the
first formula: —¢ = dg, d1, B2, ..-Pn,.... Now we define a sequence of consistent
w-theories : Xp € X; € X2 C ... € X, © ... inductively. For Xy we choose
Th(X U {~¢}), according lemma 3.12 it is a consistent w-theory. Also X C Xp.
~ Let’s assume for some n the sequence Xo, ..., X, is created. Now we must define |
Xny1, and there are two cases:

(i). If Th(X, U {$ns1}) is a consistent w-theory, then we choose : Xy41 =
Th{X, U {¢ns1}). It is easy seen that X, € Xny1 and ¢ng1 € Xny1- ]

(it). ¥ Th(Xn,U{dn+1}) is a inconsistent w-theory, then L € Th(X,U{dn+1})
and according the deduction lemma 3.11, (¢n+1 = L) € Xy, and w-theories are
closed under propositional tautologies, 80 —®n11 € Xn. The right choice for Xy, 1
could be X, , but we must do something more to guarantee that the infinite se-
quence union would not accumulate all formulas for the infinite rules Irr* and
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AdmmIrr*,m > 1 that can produce ¢,;, and this way the infinite union be-
comes inconsistent. If the formula ¢, is graphically equal to: v, = [Rol(yq =
[Ri(-(¥m = [Rn](¥))...)), then this formula can be a result of any of the rules
Irr* Admolrr*, AdmIrr*, ..., Adm,,Irr*. If the formula dn+1 is not of that form
then it can be a result of the rule Irr* = AdmglIrr* only.

Now we define the sequence Y_1, Yy, Yy, ..., ¥;n, of w-theories, where Y_1=X,,
and the aim is for each of Y; to prevent ability to produce ¢n+1 from the rule
Adm;Irr. Inductively. Y_; = X, is a consistent and “@n+1 € Y_;. Let’s we have
defined already some Y;_;, now we can define Y;.

Let's assume that for each variable p, W, w(pt) € Yioy. Then ¢,y is
a conclusion of the rule Adm;Irr* and Y;_; is an w-theory, thus it is closed
under Adm;Irr*, then the formula ¢, € Y:, but —¢,11 € Y;, contradiction
with ¥;_1 is a consistent w-theory. So we conclude that there must be a vari-
able p; such that Wy  (p;,i) ¢ Y;_;. From the lemma 3.12 it follows that the
w-theory Th(Yi_1 U {=W,__ (p;,i)}) is a consistent. Thus we choose for Y; =
Th(Yi-1U{=¥, . (pi,i)}). This way the sequence Y_, , 0,7, ..., Y,, is defined. It
is not hard to see that X, C Y, C ¥, C ... C Y., and —¢, € Y,,, and for each
of the chosen variables pg, p1,...pm during the inductive definition, it is true that:
(—‘\Ij@wwi-l (P17)) € Ym,

We choose for X, 1, = Y,,. This way the inductive definition for consistent
w-theories is complete.

Let’s X, = Uf;o X,.

1. X, is a consistent. Let’s assume that X, is inconsistent, then L € X,
and according definition of X,,, then thereis m: L e Xm, and X, is inconsistent
which is a contradiction with the build of X,,,.

2. From L C X C Xy C X, we get that L C X, and X C X,.

3. Because the sequence is monotonic X, C X, C..CX, C..and each set,
is closed under M P then X, is closed under M P.

4. Because of the inductive construction, for each formula Y, it is true: ¥ € X,
or 2w € X,,. Also ~¢ € Xy C X, then ¢ ¢ X,.

5. Let’s assume that X, is not closed under some Adm, Irr* rule, then there is
a formula ¢ such that for each variable p, Vs(p,n) € X, and ¢ ¢ X,,. According to
the previous point, there is an index m: ®m = ¢, and —¢ € X,,,. According to the
inductive construction, the case (47) was chosen, and there is a variable prr, such that
the formula -~¥4(p™,n) € X, and X,,, C Xu, it follows that - ,(p™ n) € X,,.
This way we conclude that 1 € X., contradiction with 1. X, is closed under any
Adm,Irr* rule, and it is w-theory.

6. X, is a maximal according the subset relation "C”. O

Definition 3.10. [R]X = {¢|[R]¢ € X}, where R € {=,, =3, =3, #}.

Lemma 3.14. If X is an w-theory then [RIX is an w-theory.
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Proof. 1. Let ¢ € L, logical theorem, then by normality rule Ng it is a theorem
[Rl¢ € L, L C X, then [R]¢ € X, and ¢ € [R)X,so L C[R]X.

9. Let ¢ € [R]X and (¢ = v) € [R]X, then [R]$ € X and [R|(¢ = ¥) € X.
It is an axiom [R](¢ = ¢) = ([R]¢ =) € L C X. Because X is closed under M P,
[R]¥ € X, and finally ¥ € [R]X, [R]X is closed under MP.

3. Let (61 = [Ril(és > [Ral(65. = [Ra)((pA#D) = 9).0)) € [RIX,
for each variable p. Then [R}(¢1 = [Ri](¢2 = [R2](93... = [Ra)((pA[#]-p) =
#)...))) € X, it can be written into equivalent form (T = [Rl(¢1 = [Ri}(¢2 =
[Ra)(¢3-.. = [Ru)((PA[#]-P) = $)...)))) € X, for each variable p. The w-theory
X is closed under Admy i Irr*, then (T' = [Rl(¢n = [Ril(¢2 = [Ro)(3... =
[Ra)(#)-)))) € X, and back using the definition of [R]X, we get that (¢1 =
[Ri)(¢2 = [R2)(¢3.. = [Ra](9)-))) € [R]X. So the set [R]X is closed under 3
Adm,, Irr* rule, and it is closed under the whole set of rules Adm,frr*, n 2 0. O }

Now we can define canonical frame using w-theories. Canonical frame would
not be perfect for difference # relation and will be improved to generic canonical 3
frame in which the difference is a real difference.

Definition 3.11. Canonical Frame. Wy = (Wi, =1k =2k, =3k, k). where
Wi = {X|X is a mazimal consistent w theory o X =3V < [=]XCY. X =x
Yo = XCV. X=xY o [=XCY. X # Yo [AXCY.

Definition 3.12. Canonical Evaluation. Vi(X,p) = true <> p€ X, for each
variable p.

Definition 3.13. Canonical Model. My = (Wi, V).

Lemma 3.15. Truth Lemma
Let My = (W, Vi) canonical model, then for each formula ¢. and for each
mazimel w-theory X it is true that: Vie(X, @) =true < ¢ € X.

The relations =1k, =2k, =3k are equivalence relations because of §5 axioms for
each of them. Alas the relation #x is not exactly the difference relation, that’s
why we will rework this canonical model into a new one.

Definition 3.14. Let’s X and Y are mazimal consistent w-theories. Then
we say that Y is a finite reachable from X, X ~ Y, if there is a finite se-
quence of mazimal consistent w-theories X = 20,21, Zm-1, Zm = Y. and rela-
tions Rik, Rak, ..oy Rk Rik € {=1k ok, =3k, #k}
such that X = ZQlelegk...Zm_lRmem =Y.

Definition 3.15. Generic Canonical Frame. Let X is a mazimal consistent
w-theory. The generic canonical frame is Wy = (WL, = =hi =hp» Fk)- where
W, = {Y|X ~ Y}. the set of finite reachable from X. The relations =/, =y, =51
,#) are restrictions of =1k, =2k, =3k> #1 over the set- W[.
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The generic canonical model A} = (Wi, V{) is defined in the same way, and
also the truth lemma 3.15 is true for tlie generic canonical frames and generic
models.

Lemma 3.16. The relations = Shpy =4y are equivalence relations and the
relation #1, is a symmetric relation.

Analogically to the definition 3.10 we can define WX , where X is an w-theory.
BYX = {¢|Ms € X}, from the definition of My = (oA [#]9), we see that:" BX =
{olon[#le € X} = {gl¢ € X} N {d|[#]p € X} = X N [#]X, intersection of
w-theories is a w-theory, so MX is an w-theory. Now we can define the relation
V. Z — BY C Z, and we can see that it is the universal relation into W/, any 2
objects are with relation . o

Lemma 3.17. For any two mazimal w-theories X € Wi and Y € W[, then
BYCY. T T

Proof. First we proof that if [R]X CY then X C Y, and for that we use that it is
an axiom: B¢ = [=;]¢. When R is # then we use the tautology (BN[#]9) = [#]o.
Second from the lemma 3.5 we know that - B¢ = El$, and using that theorem we
can proof that if X C Y, and BY C Z, then BX C Z, so B_is a transitive. Thus
finally if X, Y € W/, then there is a finite sequence X = ZoR\, Z1 R, ...R] , Zm =
V", now applying what we have proof, leads to BX C Y. 0

The formulas pA[#]-p, where pis a variable, have special meaning, they ”lock”
the variable to be true at exactly one world and false in any other. So we can call
them constants.

Definition 3.16. If p is a variable then the formula noted with Op. Op =
(pAl#]-p) is called a constant.

Lemma 3.18. If X is a mazimal consistent w-theory then there is a variable
p. such that the constant Op € X.

Proof.  Let’a assume that for each variable P, Op € X, because X is a maximal
consistent w-theory, then -Op € X, the equivalent from is (Op = 1) € X, for
each p, X is closed under Irr* = Admolrr*, then L € X, contradiction with X
consistent. O

Lemma 3.19. For any variable p there is a mazximal consistent w-theory X,
such that Op € X, it contains the constant of p.

Proof.  =Op ¢ L. If it were ~Op € L, then the formula -0Op must be true in
any frame in any evaluation, it is simple to show a frame and an evaluation, and a
world r such that z ¥, -Op, thus -Op ¢ L.

L is a consistent w-theory, and —~Op ¢ L, according to lemma 3.13 there is a
Maximal consistent w-theory X such that I, C X, and —~Op¢ X, thus Ope X. [0
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Lemma 3.20. Canonically defined #4 s irreflexive. For any mazimal consis-
tent w-theory X. [#X € X.

Proof. Let’s assume that for some X maximal consistent w-theory, [#]X € X.
From lemma 3.18, there is p, and the constant Op € X, (pAl#]-p) € X, sope X
and [#]-p € X, —p € [#]X, and from [#]X € X, we conclude that —p € X and
from p € X, X is an inconsistent, which is the contradiction. O

Lemma 3.21. Letﬂ = (W], =5 Shir =40 1) b @ generic canonical frame,
then for cach X € W] and Y € W], and X # Y. then X# Y, [#XCY.

Proof. Because X,Y € W/ from lemma 3.17, then BX C Y. From X #Y the
there is a formula ¢: ¢ € X and ¢ ¢ Y. Let’s now assume that [#]X € Y. so there
isa formula ¢: ¥ € [#£]X andyp ¢ Y. For Y maximal consistent w-theory we have
—~(¢pvip) € Y or (¢Vy) ¢ Y. From BX C Y it follows that M(¢V¥)) ¢ X, next we
have ~((6V)A[#] (V) € X.

From the classical axiom (¢ = (¢V¥)) € X, and ¢ € X, we conclude that
(¢Vep) € X. From the classical axiom F (3 = (¢V1))), now applying the normality
rule Ny, b [#/(¢ = (¢Vy)), and from the monotonic axiom + [#](¥ = (6Vy)) =
(A = [#](¢V1)))), we get the theorem ([#)¢ = [#)(¢ve)) € L € X, and [#lv €
X, then [#}{(¢Vvy) € X, thus we get that (oVY)A[A (VYY) € X. Contradiction
with X consistent. 0

The conclusion of the last lemma is that the generic canonical frames belongs
to the class of frames ¥, and it gives us the completeness theorem.

Theorem 3.2. Completeness theorem for the minimal logic. Each formula ¢
that is true at the class of frames Lo is provable. Firr @.

Proof.  Contraposition. Let Vi ¢, ¢ is not a theorem, then ¢ ¢ L, using the
Lindenbaum’s lemma 3.13, there is a maximal consistent w-theory X, such that
¢ ¢ X. Let’s get the generic canonical frame and model, in which Wi = {Y|X ~
Y}, generated from X. That frame belongs to the class Xo. In that model using
the truth lemma 3.15, we get that Vi(X,¢) = false, because ¢ ¢ X. And the
deductive equivalence of the rules makes no difference between Irr and Adm,IT7™.

a

Tn the end, some properties about constants and maximal consistent w-theories |
that are useful and reveals the character of the maximal consistent w-theories are
expressed: :

Lemma 3.22. Let X and Y are mazimal consistent w-theories such that they
are finite reachable. WX C Y. If there is o variable p such that Op € X andp € Y
then X =Y.
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Proof. Let’s assume that X # Y, because X ~ Y, BX C Y, then from lemma
3.21, we conclude the key fact that [#]X C Y. From Op € X it follows: pA[#]-p €
X.sop€ X and [#]-p€ X, p € [#]X. From [#]X C Y, then -p €Y, and
p €Y, contradiction with Y consistent. O

If two maximal consistent w-theories possess the same constant Op, they are
the equal w-theories.

Lemma 3.23. [R]X C Y if and only if there is a variable p such that Op € Y
and < R>0Op e X. where R e {=1.=0,=3, 1, €ij}.

Proof.  Let [R]X C Y, then from lemma 3.18, there is a constant Op € Y,
then =Op ¢ Y, and from [R)X C Y, ~Op ¢ [R]X, then [R]-Op ¢ X, and finally
-[{R}]-Op € X, whichis < R > Ope X.

Let there is a constant Op € Y and < R > Ope X. From< R>0Ope X
it follows that [R]-Op ¢ X, and -Op ¢ [R]X. From lemma 3.14 then [R]X is an
«-theory. Because ~Qp ¢ [R]X, then [R]X we know that it is a consistent theory.
Now applying Lindenbaum’s lemma 3.13 we get that there is Z maximal consistent
«-theory such that [R]X C Z, and -Op € Z. Z is a maximal, then Op € Z, but
Op €Y. from lemma 3.22,Y = Z, and from [RIX C Z, then [R]IX C Y. O

Next three lemmas are related with expressible modalities as the incidences:
[€12]. [€13], [€2s], [€)], [€31), [€5), or simply about [€;]. Actually €;;==; o =,.
Lemma 3.24. If X is an w-theory then [€45]X s an w-theory.

Proof. Tt uses that [€,;][=,][=,], thus [€45]X = {9][=][=;]¢ € X}, s0 (€] X [=:
J[=j]1X, and now applying lemma 3.14. a

Lemma 3.25. The expressible relations are compliant with the canonical

model.
€; XCY e X €k Y (EZ)(X = INZ = Y)

Lemma 3.26. X €4 Y - Y €4 X or[€4]X CY & €'Y € X

3.7. AXIOMATIZATION FOR THE STRUCTURES OF INCIDENCES LOGIC L(Zgsr).

The axioms of the logic L(Zgs:) will contain all axioms of the minimal logic
L(Zy). and the rules are M P and {rr, the finite one, and also several other axioms
specific for the geometrically related properties of the structures of incidences. Each
axiomatic property of the structures of incidences have a corresponding modal
axiom, which modally expresses it, and also it makes that property a property of
the generated canonical frame — canonical property. The new axioms are:
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(<=1> OpA <=2> OpA <=3> Op) = Op, axiom for the property:

(Vx € W(S))(Vy € W(S))(x =1 yAT =2 YAT =3y = T =Y)

<€19> (Oph <€12> 0q) =<=1> (<=9> OpA <=3> Og), axiom for the
property:

(Vz € W(S))(Vy € W(S)(Vz € W(S))(x €12 YNy €23 2= (3t e WSz = 'v
tAy =9 tAz =3 t)) 1

001)/\[61_21] <€13> Op =< E93> Op, axiom for the property:
(Vr e W(S))(Vy € W(S)((Vz € W(S))(z €12 TNz €13 y) =T €E33Y)

The property (3z3y € W(S))(~z =i y) does not need an axiom.

*A =< €1 ><Ey > A, axiom for the property:
(Vavy € W(S))(3z € W(S))(x €1,2 2AY €1.2 2)
QOpA=1]-0pA <€12> (Ogn <€3, > Op) = [€12)(<€r7 > Op =<=2>
Oq), axiom for the property:

(VZEVyVZVt S VV(S))("T =1 YNT €12 2Ny €12 AT €10 tAY €12 t =z =2 t)

Op =<=y> [=1]=Op, axiom for the property:
(vzFyIz € W(S))(~y =1 2Ay €12 TAZ €12 x)

Op = #(]€12]-0p), axiom for the property:
(Vady € W(S)(~y €12 1)

¢OpN€O0q = <€y> (<€ > OpA <€ > Oq), axiom for the property:
(\/.rVsz c ‘/V(S))(Et € VV(S))(.T €13t Y €13 tAz €13 t)
Q0pA#0gA[E1a)([€5 1-0PVIET, | -0 <€13> (OTA <epl] > ~OpA <€73

-0q) = [613](<e{{> Oph <€) > Og =><=3> Or), axiom for the prop- §
erty: '

(Vav¥z € W(S)(Vuve € W(S)(z €13 uhy €3 uhz €13 UAT €13 ]
vAYy €13 VAZ €13 U/\(Vl € W(S))(“\Qﬁ €1,2 VY €12 IV—z €12 l) = u=37)
The property (Vz3y € W(S)H(y €13 ) does not need an axiom.

Op = #{€13]-Op, axiom for the property:
(Vzdy € W(S))(~y €13 7)

#OpA[=1]-OpA <€12> (OrA <e{21> Op)A <€13> (Ogn <e;,1> Op) = J
B(Or =<€3> Oq), axiom for the property:
(VaVyVavt € W(S))(~x =1 yAT €12 2AY €12 ZAx €13 tAYy €13t = 2 €23

t)
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A1 #0pA <€7'> (Ogh <€13> Op) =<€14 > (<€13> OpA|=1]-0g), axiom for
the property:
(VeVyVz € W(S)(3t € W(S))(z €13 zAz €13 y = (-t =1 2)At €13
TNt €13 Y)

Lemma 3.27. All that modal formulas are true at the class of structures of
incidences Xgsi

Proof. Simple check that each modal formula is true at frames with the corre-
sponding property, using contraposition. If the formula is not true then the frame
does not have the corresponding property. O

Lemma 3.28. All the modal formulas above modally expresses their corre-
spondent properties of the structures of incidences.

Proof.  Simple check for each modal formula using contraposition. If the frame
does not possess its correspondent property then there is an evaluation in which
the the formula is not true. ‘ O

Lemma 3.29. Adding each formula from above list as an aziom, makes the
generic canonical frame to posses the same property, which the axiom modally ex-
presses — generic canonical frame is a structure of incidence.

Proof. Check that adding each modal formula, makes its property a property of the
generic canonical frame, using properties of the constant formulas and maximal
consistent w-theories — lemmas 3.19 and 3.18. We can demonstrate it for 2
formulas, for A4 and Ag:

Ay: Let we have added the axiom A4, so Op =><=3> [=,]-0p € L, for any
variable p. Let X is a maximal consistent w-theory, according to lemma 3.18, then
there is a variable py, such that the constant Op; € X, and also Opy =<=y> [=,
]-Op1 € L € X. X closed under MP, then <=2> [=1]-Op; € X, equivalent
to ~[=2][=1]-0Op1 € X, X is a maximal, then [=;]-[=;]~Op; ¢ X, and then
according to 3.10, =[=1]-Op; ¢ [=2]X, from the lemma 3.14 it follows that [=,]X
is an w-theory, from Lindenbaum’s lemma 3.13, there is a maximal consistent w-
theory Z, such that [=2]X C Z and —[=]-Op\ ¢ Z, <=1> Opy ¢ Z. From X =y
Z. reachable from Z, then Z is into the domain of the generic canonical model, see
definition 3.15. Now if we assume that X =y; Z from lemma 3.23 <=;> Op, € Z,
contradiction, so ~(X =14 Z). From X =y Z, and =5, equivalence relation we
have Z =, X, and =, equivalence relation we get that Z =3, X =g X and
X =14 X =g X, from the lemma 3.25 Z €91 X, and X €50: X. As conclusion
we can say that for each maximal consistent w-theory X we found a maximal
;‘(msistent w-theories ¥ = X and Z such that —~(Y =1 Z) and Z €19; X and

€101 X.
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Also it is seen that the property (Vz3y3z € W(S))(~y =) zAy €12 Az €12 1)
is equivalent to the property (Vz3z € W(S))(~z = 2Az =3 2).

As: Let we have added the axiom Ag. Let X, Y and Z are maximal consistent
w-theories such that they belong to the generic canonical frame, thus BX C Y,
BX C Z. From lemma 3.18 there is a variables p, ¢ such that Op € Y and
Og € Z, now from lemma 3.23, it follows that OOp € X and #0q € X. A
axiom is ¢OpA@Oq =><en> (<€], > OpA <€“ > Ogq), and X is closed under
MP, then <€13> (<€74> OpA <e'> Oq) € X s0 [€13] (<e,31> OpA <€4 >
Oq) ¢ X, from lemma 3.25 we get that —~(<€j3'> OpA <€7l> Oq) ¢ [€15]X
and [€13]X w-theory. Lindenbaum’s lemma. 3.13 found that there is a maximal
conslbtent w-theory T’ such that [€13]X C T and ~(<€73'> OpA <€74> 0q) ¢ T,
or (<€ > OpA <€p; '> Oq) € T. From the lemma 3.23 we conclude for T that
[€R]T CY and (613 }T C Z, and finally from the lemma 3.26 we conclude for T’
that: Y €13 T and Y €3¢ Z. And from [€13]X C T then X €34 T, which shows
that we found T' maximal consistent w-theory from generic canonical frame that
suffices the property: (VaVyVz € W(S))(3t € W(S))(z €13 tAy €13 tAz €1 5¢). O

Theorem 3.3. The logic with the aziomatization above is complete for the
class of structures of incidences.

This completes the axiomatization of L(Zs;) logic of the class of structures of
incidences.

3.8. OPEN QUESTIONS

Besides the axiomatization with finite number of axiom schemas for the logic
of the structures of incidences, and ability to proof geometrically related properties
with it. There are several open question unsolved up to now.

@1 Is it decidable? It is not clean if there is an algorithm about checking if a
formula is a theorem or not.

Q2 Is it useful to proof some interesting? Some simple properties that are easy
proofed with first order logic are not seen how to be proof with this modal
logic. For example the property that: ”for each line there is another line that
Is crossed to the first one, the 2 lines has no common point”. That property is
modally definable with the formula: Op = #[=2][=1][=2]-Op or it’s seman-
tically equivalent form Op = #[=;](=1]|[=2]-p. Desarque’s Theorem is also
modally definable. Both modal formulas should be theorems, but the proof
is not seen.

(23 Is it has a simpler axiomatization? For example is it possible to eliminate the
rule Irr. Also it is not known if the rule Irr is useful in any proofs with the
current axiomatization.
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SOME RESULTS FOR IDENTIFICATION FOR SOURCES
AND ITS EXTENSION TO LIAR MODELS !

ZLATKO VARBANOV

1. INTRODUCTION

The classical transmission problem deals with the question how many possible
messages can we transmit over a noisy channel? Transmission means there is an
answer to the question ”What is the actual message?” In the identification problem
we deal with the question how many possible messages the receiver of a noisy
channel can identify? Identification means there is an answer to the question ”Is
the actual message u?”. Here u can be any member of the set of possible messages.

Let (U, P) be a source, where U = {1,2,...,N},P = {P,P,,...,Pn}, and let
C = {c1,¢2,...,cn} be a binary prefix code (PC) for this source with [|c,|| as length
of ¢,. Introduce the random variable U with Prob(U =u) =p, foru=1,2,...|N
and the random variable C with C = ¢y, = (c1,¢2,.. -, Cyjje,)|) f U = u.

We nse the PC for noiseless identification, that is user u wants to know whether
the source output equals u, that is, whether C equals ¢, or not. The user iteratively
checks whether C coincides with ¢, in the first, second, etc. letter and stops when
the first different letter occurs or when C = ¢,,.

What is the expected number L¢(P,u) of checkings?

In order to calculate this quantity we introduce for the binary tree T¢, whose
leaves are the codewords cy,cg,...,cn, the sets of leaves Cip(1 < i < N;1 < k),
where C;x = {c € C : ¢ coincides with ¢; exactly until the k’th letter of ¢;}. If C

tSupported by COMBSTRU Research Training Network HPRN-CT-2002-00278.
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takes a value in Cyui, 0 < k < [l ]| — 1, the answers are k times ” Yes” and 1 time
"No”. For C = ¢, the

Jleall—1
Le(Pou)= Y P(C € Cur)(k+ 1)+ |lcul|Pu.

k=0

For a code C
Le(P) =  max Le(Pu)

is the expected number of checkings in the worst case and

L(P) = min Lc(P)

is this number for the best code.

2. RESULTS FOR UNIFORM DISTRIBUTION

Let PV = {%,...,#}. We construct a prefix code C in the following way. In
each node (starting at the root) we split the number of remaining codewords in
proportion as close as possible to (3, 1).

It is known [1] that

lim Le(PV) =2 (2.1)
N—oo

Also, in [2] was stated the problem to estimate an universal constant A =
sup L(P) for general P = (Pi,...,Py). We compute this constant for uniform
distribution and this code C. -

Using decomposition formula for trees, we obtain the following recursion

Le(PN) = %E]LC(P% +1,Le(P?) =1 (2-2)

From (2) follows that the worst case for Le(PY) is when N = 2% + 1, for any
integer k. We compute the exact value for Le(P™) in this case and obtain

logz(N - 1) -2

Le(PN) =
sgpc( )=2+ N

Also, we consider the case where not only the source outputs but the users
occur at random. In addition to the source (U, P) and random variable U, we
are given (V,Q),V = U with random variable V independent of U and defined by
Prob(V =v) = Q, for v € V. The source encoder knows the value u of U but not
that of V, which chooses the user v with probability @,. Againlet C = {c1,...,cn}
be a binary prefix code and let L¢(P,u) be the expected number of checkings on
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code C for user u. Instead of Lo(P) = max,ecy Le(P,u) we can consider the average
number of expected checkings (also called average identification length):

Le(P.Q) =) _ QuLc(Pv); L(P.Q) = min Le(P,Q)

vEV

Special case is the case Q = P. Here

Le(P,P)=)_ P,Lc(Pu); L(P,P)= min Le(P, P)
u€ld

and for uniform distribution we have

Le(PN,PN) = % 3 Le(PY,w)
ueU

We calculate exact values of Le(PN) and Le(PN, PV) for some N and sum-
marize them in Table 1 (for N = 2%, Le(PN) = Le(PN,PN) =2 - £ [1)).

TABLE 1 - some exact values for uniform distribution, 2¥ < N < 28! k >3

N Le(PY) Le(PY, PY)
2k +1 2+ logg(NN—l)—Z 2+ logg(]]\(',—l)—Z

g 2N42
2k+2k—1 -1 2 9 _ 5(N+1) ;Il\;)é‘]z( 7 )

k k— 1 5
2k 4 k-1 2- L 2 - 5

_ (5N-2)—3log2(¥7%)
3NZ2

N1
b poblgy | gq lemlm) g

9 2N —log2(N+1)+1

ok+1 _ 1 2 _ 2

2|~

3. EXTENSION TO LIAR MODELS

Suppose that when user u iteratively checks whether C coincides with ¢, in
the first, second, etc. letter, for some reasons he obtains wrong information in any
position. Then there is a lie(error) in this position of the codeword. In this model
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with lies, the user knows only that the general number of lies is at most e and no
information for the positions of lies.

Let Le(P,u) = Le(P) for any u € U. In this case, we denote by L¢(P;e)
the expected number of checkings if there are at most ¢ lies. Then, to be sure
for the correct answer in any position the user needs of ¢ + 1 the same answers
("Yes” or ”No”). If the user has done 2¢ + 1 questions for any position he gets
exact information for the value in this position. Therefore, there exists trivial upper
bound

Le(Pie) < (2e +1)Le(P)

Clearly, this upper bound can be improved by decreasing the number of re-

maining lies. The following algorithm can be used for any u € U:

Step 0: BEGIN i := 1, Checkings := 0, actual message := v;

Step 1: If ¢ > ||c,|| then Step 3. Otherwise, check codeword position i until
€+ 1 the same answers. Let ¢ be the number of obtained answers " Yes” and f be
the number of obtained answers ”No”;

Step 2: Checkings := Checkings+(t+f). Ift > f, thene:=e—~f i:=i+1,
Step 1. Otherwise, the actual message v # u;

Step 3: END.
Let v be the current checked codeword and let 7 be the first position in which
cy and ¢, differ (if ¢, = ¢, then i = ||c,]|). We can see that the worst case with

respect by e is when all lies(errors) oceur in position ¢. In this case

Checkings=(e+1)(i - 1)+ 2e+1).1 =e(i + 1) + 1.

If there is a lie in any position m (1 < m < i — 1), for every position j
(m +1 < j < i) the user needs of e the same answers. Then

Checkings = (m—1)(e+1)+(e+2)+(i—m—1)e+(2e—1)=e(i+1)+m<
e(i+1)+1

Therefore, if k = ||c,|| and P,; = P(C € C,;), for the worst case we obtain the

following upper bound
k-1

Le(Pie) <3 Puile(i+2) +1+ 1) + (e(k + 1) + k)P,
i=0

k-1 k—1
=ed Pu(i+2)+e(k+1)Pu+ Y Puli+1) + kP,
=
=eY (Puli+1)+Pu) +e(k+1)P, + Le(P)
7=I?——l k—1
=e (Z Pu(i+1)+ kPu) +e (Z P+ Pu) + Le(P)
=0 =0

=eLe(P)+e+ Le(P)=(e+1)Lc(P) + e
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Let Mc(Pie) = (e + 1)Le(P) + ¢ Then from (1) follows that for uniform
distribution PV
lim Mc(PN:ie) =3e+2
N—x
Let consider other distribution P when all individual probabilities are powers
of %
1
P, = 5-[“—, uel = {1,2,...,N}

We know that there is a prefix code C with codeword lengths ||cu|l = ¢ and
for such code Le(P.u) = 2(1— Pu) [2]. Therefore

Jim Le(P )=2
and again for Mc(P;e) we obtain

N}im Mc(P;e) =3e+2

Also, for general distribution P = (Py, Py, ..., Pn) we know that L(P) < 3([1],
Theorem 3). Therefore, for L(P; e) (the expected number of checkings for the best
code C and at most e lies) we obtain that

L(P;e)<4e+3
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SOME THEOREMS ON THE CONVERGENCE
OF SERIES IN
BESSEL-MAITLAND FUNCTIONS !

Jordanka Paneva-Konovska

Some important properties of the power series in complex domain are given by the
classical Cauchy-Hadamard, Abel and Tauber theorems. In this paper we prove same
type theorems for series in the Bessel-Maitland functions.
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1. INTRODUCTION

o0
Some important properties of the power series ) a,2™ in a complex domain
n=0
are given by the classical Cauchy-Hadamard, Abel and Tauber theorems.
In general. by the classical Abel theorem, from the convergence of a power series

Z anz™ at a point 2y, follows the existence of the limit llm f (2) = f(z0),

when 2 belongs to a smtable angle domain with a vertex at a pomt zo. The
geometrical series [6, p.92): ﬁ? =1-2+22-2%+... at 29 = 1 gives an example
that, in general, the inverse proposition is not true, i.e. the existence of this limit

!This work is partially supported by National Science Research Fund - Bulgarian Ministry of
Education and Science, under Grant MM1305/2003

Ann. Sofia Univ., Fac. Math. and Inf., 98, 2006, 75-84. 75




2.9
does not imply the convergence of the series Y a,, 23 without additional conditions
n=0
on the growth of the coefficients.

The corresponding classical result is given by the following theorem.

Theorem (Tauber). If the coefficients of the power series satisfy the condi-

ton lim na, = 0 and if lixr% fz) =8 (z51 radially). then the series > a, is
=00 Z—

xS
convergent and Y a, = S.
n=0

It turns out that Abel’s theorem fails even for series of the type i Qp, 2™,
k=1
where (n;,n,, .. Mg, ... ) IS a suitable permutation of nonnegative integers |6,
p-92]. Therefore, it is interesting to know if for series in a given sequence of holo-
morphic functions, a statement like Abel’s theorem is available. A positive answer
to this question for series in Laguerre and Hermite polynomials is given in [5, §11.3],
[1], and for Bessel functions - in [4]. :

Let J#(z) be the so-called Bessel-Maitland function, see (2, p.336, 352, |3,
p.110]:

= (=2)*
T =3 T -1
v () ;k!r(uwuk)’ €C n>

Let us consider serjes of the form

Zan:"J,’j(z), z€C, u>0. (1)

n=(0)

We prove in this baper the corresponding Cauchy-Hadamard, Abel and Tauber
type theorems for series in Bessel-Maitland functions of form (1).

2. A CAUCHY-HADAMARD TYPE THEOREM

Denote for shortness:
JH(2) = 2"J"(z), n=0, 1,2, ...

The following asymptotic formula can be easily verified for the Bessel-Maitland
functions: N
' Ju(z) = 2"(1+64(2)) /T(n+1), zeC, n>0, (2)

05(2) = 0 as n — oo (n eN).
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Theorem 1 (Cauchy-Hadamard type). The domain of convergence of the
series (1) is the circle domain |z| < R with a radius of convergence R = 1/A. where

A =limsup( |an| / T(n +1))'/™. (3)

n—0C

The cases A = 0 and A = oc are incorporated in the common case. if 1/A means
xo. respectively 0.

Proof. Let us denote
Un(2) = an (). by = (lanl / T+ 1) ).
Using the asymptotic formula (2), we get
Un(z} = ap2™(1 + 64(2)) / T{n+1).

The proof goes in three cases.
1. A =0, then hm b, = hm :aupb = 0. Let us fix 2 # 0. Obviously, there

exists a number N; 5uch that for every n > Nyp: |14 604(2)] < 2 and 2b, < 1/|2|
which is equivalent to |u,(2)| = b7|z|"|1 +8%(z)| < 2!7™. The absolute convergence
of (1) follows immediately from thlb inequality.

2. 0 < A < oc. First, let 2 be inside the domain |2| < R (z € C), i
|z|/R < 1. Then limsup |z]b, < 1. Therefore, there exists a number ¢ < 1 bll(‘h

n—2C
that limsup |2]b,, < ¢, whence |z|"b" < ¢™. Using the asymptotic formula for the
n—oc
common member u,(z) of the series (1), we obtain |u,(z)| = b2|"]1 + 64(2)| <

q"|1+6%(=)|. Since limﬂﬁ(z) = 0, there exists No: for every n > Ny |[1+6%(2)] < 2

20

and hence |u,(z)] < 2¢™. Since the series > 2¢™ is convergent, the series (1) is
n=0

also convergent, even absolutely.

Now, let z lie outside this domain. Then |z|/R > 1 and limsup |z|b, > 1.

n—%
Therefore there exist infinite number of values ny of n: |z["*b* > 1. Because
lim 0%(z) = 0, there exists N3 so that for ny > Nz; |1 404 (2)] > 1/2, ie.
n—ox 3
|un, (2)] = 1/2 for infinite number of values of n. The necessary condition for
convergence is not satisfied. Therefore the series (1) is divergent.

3. A =o00. Let z € C\{0}. Then b,, > 1/|z| for infinite number of values
ng of n. But, from here |un, (2)| = |2z|™ b* |1 + 6% (z)] > 1/2 and the necessary
condition for the convergence of the series (1) is not satisfied and we conclude that
the series (1) is divergent for every z # 0. - O
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3. AN ABEL TYPE THEOREM

Let zp € C, 0 < R < 00, |29] = R and g, be an arbitrary angle domain with
size 2¢ < 7 and vertex at the point z = zp, which is symmetric in the straight line
defined by the points 0 and zg. The following theorem is valid:

Theorem 2 (Abel type). Let {a,}>% be a sequence of complez numbers, A
be defined by (3). 0 < A < oo. Let K = {|z| < R,R=1/A}. If f(z) is the sum of
the series (1) on%he domain K and this series is convergent at the point zy of the

o0 ~
boundary of K. then lim f(z) = }_ a,Jk(20). for |z] < R and z € g,,, i.e.

n=0
oC —~
; - i
Jim )= 3 enTt(eo) =g @)

Proof. Consider the difference

A(2) =Y andh(20) = f(2) = D an(J¥(z0) - JH(2)), (5)

n=0 n=0

representing it in the form

k o
A(z) =Y an(Jh(z0) = () + D an(JE(20) - JE(2)).
n=0 n=k+1
Let p > 0. By using the notations
Bu= Y anJ(z0), m>k, [r=0, .

n=k+1
M(2) =1 = Ji(2)/ T (=),
and the Abel transformation [1], we obtain consequently:

k+p k+p

Y anlFz0) = =) = Y (Ba—Ba-1)wn(2)
n=k+1 n=k+1 '
k+p—1
= ﬁl\:+p7k+7)(z) - Z ﬂn("/n+1(z) - Wn(z))v
n=k+1
te.
k+p _ _ _ _ k+p N
> an(iz0) = Ji2) = (1= T (/T 20) S and¥(z0)
n=k+1 n=k+1
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RN ) I 1)
_ st “n _ ~n+1 )
n:Zlﬂ—l(s:Zk;-la ‘ (ZO))(J#(ZO)) J5+1(Z0)))

From the asymptotic formula (2), it follows that there exists a natural number M
such that J#(z9) # 0 for n > M. Let k > M. Then, for every natural n > k:

J(2) /T8 (20) = JHL 1 (2)/ %, (20) = (2/20)" (6)

(LA ORI+ 604 (20)) — (2/20)(1 + 641 (2))(1 + 0 (20))
(14 6n(20))(1 + 67,11 (20))

For the right hand side of (6) we apply the Schvartz lemma. Then we get that
there exists a constant C:

|TE(2) [ (20) = TE,(2)/ TE L1 (20)] € Clz = 20]l2/ 20"

Analogously there exists a constant B:
11— Tt (2)/JE, (20| < Blz = 20| < 2Blz].

Let ¢ be an arbitrary positive number and choose N(e) so large that for k > N(e)
the inequality

[ Z asJ*(20)| < min(e cos p/(12B|20|), € cos /(6C|20|))
s=k+1

holds for every natural n > k. Therefore, for k > max(M, N(<)):

| Z sJ*{(z0)] < min(e cos ¢/(12B|20]), £ cos ¢/ (6C|z)),

s=k+1
and
Iy an(T8(20) — JE(2))] < (e cos/6)(1 + D 1zl Iz = z0ll2/20]™)
n=k+1 n=k+1

< (gcosp/6)(1 + |2 — 20[/([20] — |21)-

But near the vertex of the angle domain g,, in the part d, closed between the angle’s
arms and the arc of the circle with center at the point 0 and touching the arms of
the angle we have |z — 2p{/(|20} — |2]) < 2/ cos g, i.e. |z — 2p] cosp < 2(|20} — |2]).
That is why the inequality

| Z an (Tt (20) = T (2 ))l<(6005¢)/6+€/3<6/2 (7)
n=k+1
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holds for 2 € d, and k > max(M, N{¢)). Fix some k > max(M, N(¢)) and after k
that choose d(e) such that if |z — 20| < d(¢) then the inequality

X
I an(JE(z0) = JE(2))] < /2 (8)

n=0

holds inside d,. We get

1A@)] =1 an(J2(20) = J4(2))|

n=0

for the module of the difference (5). From (7).and (8) it follows that the equality :
(4) is satisfied. _ O 9

4. A TAUBER TYPE THEOREM

jo o}
Let us consider the series 3. a,, a, € C. Let
n=>0
20€C, |2|=R, 0<R<oo, JHF(2)#0 forn=0,1,2,...
For shortness, denote N
Ji(z)
JE (20)

J;:‘u(::; ZO) =

Q0
Let the series ) anJ;; ,(2;20) be convergent for (2| < R and
n=0

F(z) = ZdnJZ,,L(Z;Zo), l2] < R.
n=0

Theorem 3 (Tauber type). If {a,}:", be a sequence of complex numbers
with :
lim{na,} =0, (9)

and there exists

lim F(z) =S (|z| < R,z — 29 radially),

Z2—z0

o0
then the series S a, is convergent and

n:o
o
Z an, =S
n=0
80 Ann. Sofia Univ., Fac. Math and Inf., 98, 2006, 75-84.




Proof. For a point z of the segment [0, zp] we have

k
> an = Flz)= Zan Zanmwo
n=0

KL TMze) = JE(2)
LT 2 T
k j“(Zo) - j“(Z) ad
= n—— — ndn (2
2 o= PIRE
and therefore
k o
{Zan—-F( )1<Z|an1 J (“",)l J(2) + Z lan||Jy . (z:20)] - (10)
n=0 J( ) n=k+1

By using the asymptotic formula (2) for the Bessel-Maitland functions, we obtain:

2\" 14+ 64(2) z\" 5
whzio) =an |l = ——F—= =a.| — L+8, (23 20) )
a n.p( 0) a (ZO> 1+ 941(20) a (ZO> ( + o o+ ( 0))

Let € be an arbitrary positive number. We choose a number N 1 so large that
the inequalities |1 + 6 ,,(2: 20)] < 2, |kax| < £ hold as k > Ny. If £ > Ny and 2 is
on the segment [0, z¢], then for the second summand in (10) the following estimate

is valid:
et ~
S daud iz = 3 tanl| 2| 104 B0l (11)
n=k+1 n=k+1
2 k41 o n—k-1
<2|= " <2
S8 Y la = Z lan+k+1!
nw=k+1 n=0
22[(n+k+1 an+k+ll 250: 8/6 :,,_n
n+k+1 20 n=0"+k+1 z
2¢€ 1 € 1 |2:0‘

k61—{2/~0l SklZQl——Izi ’

Now let us consider the first summand in (10). We have:

k ~ ~
|G - T
ngo‘ g J#(z0)
IR SV P ACORRAC] IR Ji(20) = JH(2)
T;)l nl ‘v#(zo) + ":Xm;H !anl — J_“_—‘—”ﬂ(zo)
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According to Schwarz’s lemma, there exists a constant C such that

Tt (z0) = JH(2)

T o) < Clz — 2g).

Moreover, there exists a number Ny such that the following inequality

m

m > lanl
]’ 2 — J Zz n=
3 foud [HEOZTECY ¢ o, iz © (12
n=0 ]" ("0)
< Clz— 2ok oo = |2 ~ 20| k —
== 20 3RC T 3R
holds as k > Ns. It remains to estimate the sum
n=rm-+1 ']Il(" )

To this end, using asymptotic formula (2) for the Bessel-Maitland functions, we
find consequently:

i) = Ji(2) _ (50)"(L+ 0h(z0) — (L4 04(2)) _ | (_) L+ 04(2)

- 20/ 1+605(20)

T (z0) 2 (14 87(20))

(2N Lt )] (2 (2 0a(z) — 65(=0)
- (’ZO) [1+ 1+ 67 (20) ]~1 (Zo> (Zo) 1+ 6n(z0)

Therefore,
< ’1 -

We obtain the following inequalities

. n . 2 2 2 n-—1
bz @ )
Z9 20 20 20
for the first summand of (13). According to Schwarz’s lemma, there exists a con-
stant p such that

JE(20) — JE(2)
J¥(z0)

2|" |0h(2) ~ 04 (20)

(13)

20

<n

0h(2) = 01 (20)

<1 as lz — 2] < p.

Then, for such |z|, we obtain for the second summand of (14):

z " [64(2) — 64(z) z "
Sl B ek AR (2 S 2 B B — 2l
20 1+ 65(20) zp Iz = =l
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From (9) it follows that

k
5 nlau| 5 o
nler;C an =0, llrn’w = 0, kILn;o = 0.
Then a number N3 exists such that
k k
Z+17"lan.! c Z+1 lan|
n=m =1 < k > N .
 <sism M r S30xR) * 3
Therefore,
k ~ k
H(z z 2
S o [T 5 - 2 (14)
n=m+1 J” ( ) n=m+1
k k
- n=m =M
+ Z |an| lz—zoigk 7 P +k|z~zol———~k——-—
n=m+1
1+R € £
<’v|2—‘~ol—§—"m~k|z-zolgﬁ.
Finally, let us note that
m
J z J (z
Zan_F(Z)<Z!N[ (OZL )
n=0Q n=0 J¥ (z0)
42 J z
N SN ARG ") ” £ 3 fanl |50 -
n=m-+1 n=k+1

Let N = max(Nl,Ng,Ng),k > N and |z — Zo‘ < p. Then by using (11),(12),(14),
we can conclude that

Zan’—F()

<l|z- zolk +k|z [—E——+

If we substitute z by zo(1 — 1), then

Zan—F(z() ))

n=0

<3—
3 €.
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k
This proves that lim Y a, exists and equals klim F (zo(l - %)) ie.
c

k—oc n=p
> 1
Zan = lim F <z0(1 - -)> =8S.
n=0 k= k
Thus the theorem is proved. 0o

- Remark. Putting 4 = 1 in above considerations leads to the corresponding
results (see [4]) for series in the Bessel functions J,(z) = (z/2)"J;(2%/4), namely
for

i anJn(z), ze€C.
n=0
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ERROR ESTIMATES OF HIGH-ORDER DIFFERENCE
SCHEMES FOR ELLIPTIC EQUATIONS
WITH INTERSECTING INTERFACES
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In the work [1] high-order difference schemes (numerical experiments show second and
fourth order of convergence) were derived, but with 1-st and 3-d order local truncation
error, respectively, compact difference schemes for elliptic equations with intersecting
interfaces. Here, for these difference schemes, we provide error estimates in discrete
Sobolev norms.

Keywords: High-order finite difference schemes, Compact stencils, Elliptic problems,
Intersected interfaces, Error estimates, Discrete Sobolev norms

2000 MSC: Primary F35A, secondary 60H5

1. INTRODUCTION

Many important physical and industrial applications involve material inter-
face problems, described by differential equations with discontinuous coefficients
and concentrated sources. A good example of a problem of this type is the two-
dimensional elliptic equation with discontinuous coefficients and Dirac-delta right
side.

When the interface is smooth, the singularity is not severe , with smooth
solutions inside each region. Various methods have been developed for this case
and they work well, at least for moderately large contrast [4], [8],[13], [14], [17].
A method that is the simplest conceptually but nontrivial in implementation is
aligning the grid with discontinuity. In [4], it is proved that if the boundary is
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at least C? this FEM converges nearly the same optimal way, in both the L? and
energy norm, as the problems without interfaces.

An efficient method that uses regular grids is the Immersed Interface Method
(IIM), [10], [13], [14]. The essence of the IIM includes using uniform or adaptive
Cartesian grids and introducing non-zero correction forms in the starting difference
approximations near the interfaces. The role of the jump (interface) relations is
very important. In fact the idea for using the jump relations was first proposed for
an elliptic problem with line interface in [16]. The construction of our difference
schemes also relies on this idea.

The standard strategy for generating higher-order difference schemes is to ex-
pand the stencil (see for example [15], [16]). It was applied very successfully recently
to elliptic interface problems {3]. A such an approach has the obvious disadvan-
tages of creating large matrix bandwidths, complicating the numerical treatment
near the boundaries.

Our method of discretization is based on aligning the grid with discontinuities.
The construction uses the differential equation and the jump (interface) relations
as additional identities which can be differentiated to eliminate lower order local
truncation errors.

Our schemes are compact, i.e. they use minimal stencils: 5-points for the
second-order scheme and 9-points for the fourth-order one. In order the maximum
principle to be satisfied for the 4-th order difference scheme the mesh steps must
satisfied very restrictive inequalities. Here we apply the energy method to obtain
error estimates for the difference schemes.

The rest of this paper is organized as follows. In Subsection 1.1 the boundary
value problem is stated; the notation used is introduced in Subsection 1.2, a second-
order difference scheme on five points stencil, while a fourth-order ones derived in
[1] are presented. In Section 3 error estimates for the schemes are obtained.

It is noted that there also exist some analytical and numerical studies about
problems on intersecting interfaces [5], [7], [11]. Also, almost second order difference
scheme for singularly perturbed problem with a line interface parallel to the axis
Oy is constructed and studied for uniform convergence in [2]. Convergence of finite
difference schemes for elliptic problems with curvilinear interfaces Intersected the
domain boundary is studied in [6].

A part of the results of the present paper was reported at the International
Conference ” Pioneers of Bulgarian Mathematics”, Sofia, July 8-10, 2006, dedicated
to Nikola Obrechkoff and Lubomir Tschakaloff.

1.1. BOUNDARY VALUE PROBLEM
The more difficult interface problem is with singularities that arise due a non-

smooth or an intersecting interface. As a typical example we consider the elliptic
equation.
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Lui=-£ (p@.9)3) - & (a@y)32) + @ yu = Flzy), (11
(z,y) € 2= (0,X) x(0,Y),

where

F(z,y) = f(z,y) - 0(z = &, ) Ko (y) = d(z,y — ) Ky(z), (£,n) €

We assume that the functions p, q,7, f, K, K, are piecewise continuous (with
possible discontinuity on the segments T, = {(x,y):z=¢, 0<y <1}, r, =
{(x.y):0<x <1, y=n}forpqr fwhileiny=nfor K, and inz = £ for K, )
and

0 <co <pla,y).qlx,y) < Co, 0< 19 < 7(x,y) <Ch on . (1.2)

We shall solve (1.1) for continuous solution subjected with Dirichlet boundary con-
dition
ulaa = ¢(z, y). (1.3)

Then the equation (1.1) is equivalent to the: equation

4
Lu:= f(z,y), (z,y) e N[ = U Q,, ' =T, Ul see Fig.1 (1.4)
s=1
and the interface relations
Wp, = ulé+y)~ul-y) =0 y€(0,1), (1.5)
[, = uw@n+)~ulz,n-)=0, z€(0,1), (1.6)
ou
P = Kwve©m, (1.7
“ AT\ {n} .
Ou] .
97 = Ky(z), z € (0,1\{¢}, (1.8)
[ % Ir\qe)

(1) {81) s o

where, for example, {K;}, = 1 (K.(n—) + Kz(n+)).

Similar interface relations can be derived if a finite number of line interfaces
r=¢§&,1=1,..,JTand y=1;, j=1,..,J are assumed (see the numerical results
in Table 6 and Figure 5, 6 for / = J = 2 in [1}).

Let m be a nonnegative integer and o € (0,1). The standard notation C™(Q) is
known for the space of functions where derivatives up to order m are continuous on
Q with maximum norm ([9], [12]). The notation C™+*(Q) is used for the space of
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Holder continuous functions with corresponding norm [9],[12]. Finally, by C mte(())
we denote the space of functions, which belong to C™+*(Q'), where Q' C Q.
We also will use the functional space

4
Mt = () C*F(Qk), s € N. (1.10)
k=1

The regularity of the solutions (i.e. the belonging of the solution to appropriate
Holder space) depending on the input data smoothness and various compatibility
conditions satisfied by the input data. Interface problems with smooth interface
curves that do not intersect the domain boundary have been widely investigated |
in the literature, [4], [12], [14] and the references there. But for problems of type -3
(1.1)-(1.3)(or (1.4)-(1.9)) such results are not known. We will further assume for
(1.1)-(1.3) that the solutions have the necessary smoothness (see Propositions 2.1,

3.1).
1.2. GRIDS AND GRID FUNCTIONS

Let introduce the non-uniform mesh & = @p X &, w =0 NN, v = O\w,
where

op ={20 =0, 2 =2y +h;, i=1,....Ny—1, zn, = zn,_1+t h =
f, TN +1 =f+h, 13i=1?i_1+h,', i=N1+2,...,N, TN ZX},

O ={yo =0,y =y +k;, 7=1...,Mi -1, yp, = yar,—1 + h =
M Ya+r =n+0 y; =y +ky, j=M 42, M, yy=Y}.

A such mesh is designed on Fig.2.

Y YAP
Y Y
—
Q, Q,
T
Ql QZ
0 3 X ¥ 0 3 X X
Fig.1.The Domain Q Fig.2. Non-uniform mesh

The finite-difference operators are defined in standard manner by U(z, y):

Us = Uz = (U(xi,95) — Ulxi1,¥5))/hiy Uz = Uz = Uz iy,
Ug = Ug,j = (U(.T“:Ih) - U(ZL’;, yj—l))/kjv Uy = vaj = Ug,j+1»
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Us = Usi = (U(xiy1/2:¥5) — Ulzi-r/2:95))/ T
o= S+ hisa) o= /2 by = b /2
Uy =Uy; = (U(zi Yjr1/2) — U(Iisyj—Xﬂ))/Ej’

1 _ _
ki = 5(’61‘ +kit1), ko =k1/2, kar = kat/2,

1 ) 1
Uss = Uszi = 3~ (Usi = Usi)s Ui = Vi = 7 Uy = Upy)-
* J
U= Us = hiv1Uz; + h,‘Uz,i’ U =U. = kj1Uy; + k:jUy’J-1
T e hi 4 hita ¥ Y.j k; + kit

|-

1
Uss = Uszi = —(Usi = Uzi), Ugg = Uggg = E’_(Uy,j —Uy,j)-
7

i

Uoo = (Uo)O = (ljo)o .

TY L)y Y/ x
Here U;; is any discrete function. Note that when it is clear that u(z,y) is a
continuous function, we shall sometimes use the notation ui; = u(i,y;), while
when it is clear that U;; is a discrete function, we shall sometimes use the notation
U(zi,y;) = Uy
Let g(z,y) be a piecewise continuous function define in .

=t

_ hig(zi—,y) + hipg(@i+,y)
hi + hit1 ’

gz = gz, ()

‘gu g (z) = kig(@,y;—) + king(@,yit)
Y Y; kj + kj+1 i
Giy = 92y, = (gi1 )g1 = (gﬁj)i, .
If h; = hiy1, then gz = {g}s,. If k; = kjt1, then gy = {9}y,
Throughout the paper, C' sometimes subscribed, denotes a generic positive
constant that is independent of any mesh used.

9. THE DIFFERENCE SCHEMES

In this section we present the finite difference schemes for the problem (1.1)-
(1.9) derived in {1].
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2.1. SECOND ORDER DIFFERENCE SCHEMES

The following difference scheme is derived in [1]:

AU; = —(an)@ g~ (BUy)y,s. + cz,5,Us &
= $Pry T3 [ au] ) s ([q@]
Ty, 61‘ 7 kJ 8:9 Yvi/ &
o zi & Yy #m;
_ LK (y). noowr
= @i ](1/(17) T # &, Yi=m

99517 h {I\ (y)}"l % {I{y(‘(z)}f ’ Ty = &’ y] = 17'
The following assertion was proved in [1].

Proposition 2.1. Suppose that p, q € HG, 1, f € HEY®, K, € C*[0,7]U[n, 1],
Ky, € C*[0,¢]UlE, 1], a € (0,1), u e C(Q)ﬂ'H‘H“. Then the truncation error of
the scheme (2.1) is of order one.

2.2. FOURTH ORDER DIFFERENCE SCHEME

In this subsection we consider the problem (1.4)-(1.9) in the case of piecewise
constant coefficients '

s i

p(E,y) = pss 4(@,y) = g5, (2, y) = 7,, (7,9) € Qs s =1,2,3,4.
Then (1.4) reads as follows:

0%y 0*u
~Ps5 — Qs sU = LY), ,y) €y, s=1,2,3,4, 2.2

AR L5

Further, for simplicity we shall describe our construction in the case

H - -E e

In this case the following difference scheme is derived in [1].

Case 2.1. Point of type o

AU = —(pUs); ~ (qUy), +7U—~((k2(pU) ) +(h2(qu)gz)i,>

o CRCAR [hlzxqz]g)y.;)+1—2(<h2rUi)i+<k2rUg>g)

+ é ( o Us + g[h}m [k],, U%§> (2.4)
— g(w, # 02 5)3a) + (P 1+, 54 200, 16, 15 ).
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If [r],, = [k],, = 0 (2.4) réduces to the Samarskii’s famous scheme [15]:

2 2

: k h
ANU = —(pU*) - (qU’)I/ +7rU ~ E (pUj)fgy - ﬁ (qu)yjz

2

k? h k?
+ (TU )z + (TU Jy=[f+ Efiz + Efgy-

Case 2.2. Pointsz; =&, y; #1 of type *.

! 1 2 h2
AU = =(pUs)e — (@Ug)gz + 75U — 5 (K (0Uz)yy)  — 15 (@Ui) a0
12 g

(k]

h‘Z 1 . [ ] 8f
= fz+ Effu + “1—2‘(1"21017)177* 6 f {%] o

h (r 1 1 h (g
- (E{ 3 +,1)K<y,>—12h (kZKm(y))gﬁﬁ{z—,}L (KeW)ys

B, (% oy +r {2} K- [ gy]) .

If [k]y_7 =0, kj = kj41 =k, i.e. the mesh in y is uniform, we have

h2 1 p 3 ¢
+ L5 (Us)a + (R rUy)gs + ¢ <{T}$,U§—(pUi)x§) (2:5)

k2 h2
AUy = —(pUs)z = (qUglys + 13U = 15 (PUs)eyy — T3 (aU3) .
h? 2 h? k2 h [Of
T a Zjx el k3 Tadlzz A J gy bl e 2.
+ 3Ua)e+ 5 (Upys = fo+ o0 + 5 fie + 13 [BTLL (2.6)

(316,23,

Similarly if y; = 7, 2; # £ we obtain

h? 1/,
NUy = ~@Us)ey — (aUg)y + 73U = 2= (0Us)zg, = 35 (H* (a03),)
1 2 h2 y [h]z,
+ o (WrUag + 75 (Up)y + ¢ ({ru;}yj—(qug)y%> 2.7)

B 1 h? [k, of
= fitqg (W fz) 5 + it 5yt {8y]

(1”_2 {g.}y + %) Ky(z;) — ﬁ (R Ky(z)),, + % {S}u (Ky(7)) 35
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- [];}s < G {g}y K;(I")—h[ggy}y,.i)'

R

In the particular case [h], =0, h; = hi11 = h; = h we obtain

2

h
NU; = ~Uleg — WUy + 1yl = 2 Uy = U, 29
h? h2 h~ B.f
+ E(TUi’)mﬂ+1—2—(7U§)y f1/+ f””+ 2fyy+ﬁ[5_y]y;

(1’1_2 <£)y + %) Ky(z:) + 115 (hr (§>y - f;;) (By(2))z5 -

Case 2.3. Point of type o

h2 2
A'Uij = (pU ) (qU )1,n + Tzy U - 12 (pUT):zyy - E (qUﬂ)yiz

h? k2 h?
+ 5("‘Uf)zy + ﬁ("Uy‘)yz =faw+t{ (fm; + foyz)

cn(fEfa) Ry e
- (B2} ww) -
- ({8 ) ()

{

2
w2 [ o2 rl g
T n “&rayL,. - 5}%. Kz(y)J

Remark 2.1. If one omits the last term in (2.9) the resulting scheme is already
of order lower than four. see also Table 5 in [1].

<4
Y;

The following assertion was proved in [1].

Proposition 2.2. Suppose thatp, q € K5, r, f € HET, K, € C***[0,9]Um, 1],
K, € C?*[0,£]UIE 1), u € C(Q)ﬂH6+“, a € (0,1). Then the truncation error
of the scheme (2.4)-(2.9) is of third order.
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3. CONVERGENCE AND ERROR ESTIMATES

Let us introduce the scalar products and the corresponding norms:

N M
UV), = D) rbks(UV)eg,, U5 = (U, V),

i= Oj 0
N

(v, V)UJ x@2 Zzh i(UV) 1/,1, ‘UTHO'— UraU) wi Xy ?
i=1 j=0
N M

UV)gixw: = 22 Hiki(OV)e, . WUGIE = U Ugdg, xurt -
i=0 j=1
N A

U V)t wwy = 2 2 hiks(UV)iss Usgllg = Uz, Uzt »
i=1 j=
N-1 M i

(va)u,xw, = hk](U )x ¥ l!UrLl‘o—(szvUzr)w]xwzw
i=1 j=0
N AM-1

UV)arxwn = O3 hiki(UV)a, 500 NUslE = (Ugis Usi)a, x
i=0 j=1

IVUIG = U038 + U112,
Uiz = JJUE+IvUl3,
IUNZ = Us:ll3 + 1Usll3 + 20Us51i3,

where @1 = Wp, @o =Wk, W= X &9, ¥y =00NI.
Using Green’s formula it is easily to check the identity [18]

U115 = 12U = 1Uzs + Uyl
When deriving a priori error estimates of the difference schemes the following

negative mesh norm will be often used

o @)
s = s e

Lemma 3.1. For every mesh function v(z,y) with zero boundary values Friedrichs
inequality holds

IVollg > 16]0ll5. (3.1)

Ann. Softa Univ., Fac. Math. and Inf., 98, 2006, 85-109. 93




The following equalities will also be used:

~ (60U U) = @002, (3:2)
_ 2
3.1. SECOND ORDER DIFFERENCE SCHEME
Theorem 3.1. The problem
AU = — (pUi)i?; - (qu)ﬁ +rgU =, U, =0 (34)

has a unique solution that satisfies the estimate

Ul < Cligll—1.

Proof. We take the scalar product of (3.4) and U and sum on up the mesh w.
Using (3.2), (3.3) we obtain

(AU UY, = (05, UB) 1, + (05, U2), o + (e, UP)

7wy xw.l
Z (p‘l)’ Ui?) :rxwz + (Q”f‘~ Uzjz) + 2 C “VU”(%a

T W Xwy

where ¢; = min{p, q}.

Therefore )
VU2 < - (AU, U),, . (3.5)
1
From (3.1) and (3.5) we get
17 17
< -2 = .
101 < oo AUU), = o= (0,0, (3.6)

which implies the existence and uniqueness of the solution of (3.4). Further, from
the inequality |(p,U), | < [l¢]|-1 |U]l, and (3.6), follows the estimate in the theorem
a.

Theorem 3.2. Suppose that the assumptions in Proposition 2.1 are fulfilled. Then
for the error z;; = Uy; — u(a;, Y;) of the difference scheme (2.1) the error estimate
holds

izl < € (IR?fo + 1£2}0) - 3.7)
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Proof. We have

1 dw
Aziy =V = ((pr)_f;, - ﬁ‘_[wllzi - <8_:vl) )

1 8%’2
+ {(quy ) [w vi — (————) )
( ! k; 2h ¥/ %

(Pi(y))g, + (i(x))g,

h?2 (1 &u 3 02 Jdu
(4 = pF 2 T} = & T [ p— 1
vi(y) ng, + O(h), where 77 (y) = ( P T 1522 (pOI»(IM/z.y)»
. k2 /1 8w 3 0% [ Ou
, _ 2 = 29 ([
L@ = v O, wherert(e) = 5 (3035 + 30 (450 ) ) v
A"l_) - 771 A + T/y7 + \1/1]7 (3 8)

where ¥}, = O(h? + E?) (3.8) whit z;; and . Using Green'’s formula, we obtain

(0,2), = = (15225) y# ey — O 20 g + (812D (3.9)
Hence
(0.2),] < C(IR%ollzlo + IKfollzgllo + (IR%llo + 1K ]l0)lI=l0)
< C (IRl + 1Ko} Nzl (3.10) .

where [[R2]12 = SN, A5, K2E = Z;"Ok;r’, and C is a constant independent of
h, k. Therefore
2l < C (I1h%lo + IK*fl0) - O (3.11)

3.2. FOURTH ORDER DIFFERENCE SCHEME
Lemma 3.2. Let the mesh wp satzefy h—th—l, % <a,i=1,.,.N~-1; 5=
LM~ 1, where 1 < a < 1.45 and V is a mesh functzon deﬁned on the mesh @
wzth zero boundary conditions V|, = 0. Then

[CIEIPA N IR,
l ([h] (qV)g;, Vg)un xXwi s (qj, V;)“’l xw]

(v, + WOV, + SOV ) | S 26V,

w
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Proof. Let us denote
(he; = [Rliy [Kly; = [K]; [hlo =0, [A]n =0, [k]o = 0, [k]as = 0. Then

Z[h]ﬂ/} (@P(”LL ) (Vi = Vie 1)+h—p(a: +) (Vigy — V))

Z N

h;
— [R]; lhfl)P(Ti—)Vi—l‘/E

’ h; )
Ti—) — —plr;+) ) V2
PR hmp(:r +)) f )

The inequalities

il
M1
=
N
/':
=
I
>
7

=10
TN
S
s
i

+

o]

1 1
rovi o< - Z /
l‘/z—lwl = 2 2
1 1
A < = el
[ViVigl| < 2 2\/
imply
R 1 (R |[Alici hica [R)s hagy
. < L — BB
’([h] #V) ’V)wx - mdx{h hiy1 + hi | hicy b hi by
L Ry |[[h)i s [Alir1 hiyo 2
* 4V Ry | R hipr o hipr iy (s, V )“".
Since
[h); (hi+1 hi ) 0, 7‘(%—)?&7‘(%‘"),
S =) - ——r(zt) ) = )
2 Ty 7o) it (zi) h,h[zl;lr(xi), [r]e, = 0.
[l 1 {hl| _ 2(a 1)
< aq-— — < <
hihiy =« 2+a’ hia = “hi T a+1’
we have

-1
T 1) (P25, V?), < (P25, V?),

(1 ev);,.v) | < (a i}
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Analogously one can prove that

’([k] (‘IV);j-,V)J < (gz9, V?),, -

Next, we have

1\1’\[1

(1) (k] (V) ) Z 3 (s (hisrkjorr(zi=, y;—)Va.y,

=1 j=1
+ hikjpir(@it, ¥ =)WVai g, + hikr (@it UiH)Ve g, + hin k(@i 450 Ve, )

N—-1AM-1 ])
S hj];"r,; m VLZ
Z ; (h ihit1 k; k]+1 sl

[hP ki1 kjt1
: V)i~ Y +.5.Viic1 Vis
+h h Fort [k]] 1 k; [Ix]] k; re. g, Vij—1Vij

k)2 B i
+k; I, ([h]z— : - — [hl; +]>Tx g, Vi-1;Vij

Tk R 3
s ([ Jia [k, lh;l lkijl W,-,[k]ﬁ‘%%) o Viety 1 Us
(e R R st
711 ([ Ji [k}7hfl+[ kg] [h]iﬂ[k]j—lz:j kgl) T4, Vz:+u—1Vij>

2 k12 T NIAR L.
BN T T S I YA
hihiyy kjkjp hivikjzr | Paky hivikj

2 —
< ((a-2+ é) +4a3§2+32) (r25:V?),

Therefore

} (rasn V),

l([h,] (rV)e, + K (rV)e + [h][ ] (rV)ge )w

§(2<a_2+ ) %(a—2+é)2+-§—a323;32> (reg, V?),

<2(rs, V%), O
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Theorem 3.3. The solution of the problem

NU = = (pUs);y — (Uy)yy + a0 — i((kz(pr),ig)ng(hz(qu)zﬁ)j)

- % ([k]y, (pr)ia + [h]at,, (QU?’])?); + l ((hzT'U ) (k?2TU ) )(312)
1

5 (e 00, + 1, (g, + S8, [k],,,(rwg;):wc Ul =0,

o R s
SR 5

where ' stands for the right hand-sides in (2.4)-(2.9). respectively. erists and is
unique. It satisfies the a priori estimates:

wh < il C (313)
2 < Cle'llos (3.14)

where the constant C doesn’t depend on the mesh.

Proof. Let us organize the scalar product

W), = - (@Uﬂﬁ U) = ((@Us);.U)_+ (rsU.0),
5 ((00), ) -5 (i), 0),
+11—2 ((h?rUs),; U)w + 11—2 ((kery)ﬁ)w (3.15)
5 (16U 5.0) -5 (Wt V)
+—é (inl,,U,,0)_+ 5 (1K, 7U5,.0)
+$ (i8], ), 7U55.U)
In view of formulas (3.2), (3.3)

((k2 (pUi)ég)g ,U)w = (K*p,U%) ¢ s>

(@), V) = (R0.UZ) 0,0
~(02U2) 5 U) = RraUD), s
~((R2rUz) e U) = (W15, U) s,
~(Wove),; ), = (WU,
- (Mg, v), = (W@ u3),
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we can cultivate (3.18) in the form:

(NU,U), ,
= (py,U—)w o, T (a5:03) .wz + + (rzgU, U,
- (k:zp+h2q,UIy)w ot (h2 3 U2) ot s ~ Ili (K%rs,Ug) 1 ot
; é (Wow),;.0),, + % ([h} (@V);2.Us),, s
+ % ([h,]_m (rU)g, + [k, (V) + -3; (hl,, K]y, (rU)gs, U )w

Further, we will use the inequalities

(K?p, zy)u, frwr S 4 (5. UZ) ot s
(0 UZ) ot s < 408 U7), st
(hzerz)w, <oy = 4 (rs9:U?),,
(K*re.U7) vy < A0 U7,

We will check only the first one.The others can proved analogously.

N M
0 < (BpUL) ey 0r = 2O hikiplaimy;-) (U Us., = Us., )
i=1 5=1
N M
< 2ZZhik’jp(T’i--,yj_) (Ugu +U72’i.j—1) 4(py’U )w Xwy ©
i=1 j=1

Using these inequalities and Lemma(3.2), we obtain

1
WU, 2 5 (00U, + (@ U2), ) = SIVUIR
Therefore 5
VUl < = (AU, - (3.16)
It follows from (3.1) and (3.16) that
17 17
2< (AU U), = — )
Ul < 8o ( ) 8o (e, U)y» (3.17)

which implies existence and uniqueness of the solution of (3.12).Next, from the
inequality |(¢,U),] < lleli-1 IU|l, and (3.17) follows the desired estimate (3.13).
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Let us organize the scalar product

— (AU, AU, = ((pUi)ig+(qu)gi.AU)w—(r5gU, AU),

+11§ ((1& (PUz); )y + (h2 (qu)Z’ﬁ)i ,AU)w

s (0202, + (20, AU) (3.18)

[

5 (WU 5+ 1] (aUy) 5 6U)

2
(1, 70, + 16, 703, + 20, 4, g, 00

w

From the inequalities:
(PUs) 5 » Uz collUza2,
(qUy )y,,. i

( )
( )
(60U yy)w U1,
(@)gs . Uss)
)

v

v

CUHU??'Q”(QD

v

v

collUzz I3,

v

collU]13,

(9 U2) s
(rs.U5)
roll U1,

(00225 + (qu)ﬁ AU

—
~3
3
<
3
«
<
@ 3
I

Wi Xw; ?

v

= (rz5U, AU),,

((kr‘.’ (PUi)@g)g + (h2 (qUﬁ)”ﬁ)i , AU)

~ ((n?1Us) ; + (K3rUy) 5, OU

v

_400“(]”;

[

v

~8nollU[IF,

w

)
(K @Us) 5 + ] (@Up) 5, 8U) 2 =eollUI3,

v

w

v

2
— ([h]l‘, TUgg + [k]y] T'U;i + '3— [h]z, v TUoo, AU) “‘27"0”U“%,

w

we cobtain

- (U, A0), > 2V (3.19)

Therefore 5 5
U3 < == (¢, AU),, < =@ llollU]2- (3-20)
Co Co

Now (3.14) follow from (3.20). O
Now we turn our attention to the convergence of the scheme.
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Theorem 3.4. Suppose that the assumptions in Proposition 2.2 are fulfilled. Then
for the error z;; = Us; —u(x;,y;) of the difference scheme (3.12) the error estimates
hold:

if the mesh is uniform

llzlly < Ch?,

else (3.21)
Izl < Ch®.

Proof. We will derive the approximation error, considering several cases.
Case 3.1. Mesh points of type ©.
In this case

v = f —ru+ (puz); (quy)y + = (h2(f —ru)z), + = (kz(f - ru)7)y

12 12
BT (1‘2( )a‘cﬂ)g BT (/1, (quf/')il-"i)i + % (R, (K], (f = ru)es
h k
+ %ﬂ (£ = ru+ (qug)y), + %’i (f —ru+ (puz););

Using the differential equation (1.1), and formulas (20), (21), (31), (32) in [1], we
obtain

(pu_); — 82’11 [h2] (hz)iip + [h‘4] p
e a ar2 ' 6h; 83:3 12 “8z%  120h;" Ox°
) [kz] > (kz)y, Pu [k Ou
(qug)y = 81/ a ay® 12 ay 120k; qa 5
) h? ,—d 62 y

h; Oz
k?); 9g [k4] (93
k2 Y = [__J___ .
(K*93), Kooy T )ylay 6k, Oy
‘ K P Wk Ol
K (pus) _ K ilR71; 2, p——
[kf],»p Fu_ (h)s, K
6k; = 0z20y? 12k;  0z%0y
WKy, Pu
6h L 0z30y2
2y ) o Pl Fu WL O e O
(h, (quu)gj>j = R qailfayz + 6h1]_€J qaxay:} +(h )z,:qam28y2
[P 0w [RPi(k*)y,  8Pu
6h; q(?:c?ay? 12h; q(’):l:@y“

Yy omh,

O(k“)

+ O(k;),

+ O(h; + ’_ﬁj)4,

+
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(qu)g;

Then

102

(h?)s, [k%]; _O°u

+ O(h; + k;)*,

6’?3]' .28 3
3u N [hz] d*u (hz)z Pu
pé)any 6F; daﬁ@y 12 0$46y
kik; u -
J—Z’u]ip'o?x?dys +O(hi + k;)%,
Pu [k?]jq 0*u + (kQ)gjq u
q@z(?yQ 6k; *0xdy? 12 " 9zoyt
hihi+1 85u T \3
3 Y5052 + O(h; + k;)°,
8_(] hi}li+1 63u 3
dg  kjkj1 0%u 7.3
3y +=5 E + O(k;),
8%u -
950y +O(h; + k;)%.
a 2 7 6 paxii 2 874 120h; " 9z
Ty P W O ) P
9542 ay 12 ay 120%; 1 0y
W09 | o [p4]; 8%u
% v >z, !
k] 89 , .2 [k“} 9 o
15 29 2
[k?]; &°u [hz]i[kzb 4“ PN
% Pacoy T omky Paway T K uP gy
]C4 R 65 h2 3 k2 R 65
[SE]in?x?;yii + ( )215[ ]]p8x4gy
3
[W?i(k%)g,  Bu 74
oh. p6x38y2 + O(h; + k;)°,
[h2],;q Fu_ [P2i[k?) + () q 9'u
Ozdy? 6h;k; ~Ox0y3 1 9x20y?
[h4] 9°u [h2]i(k2)y;,-q Pu
6h 8:1’30y 12h; dzoy?
. k2 5 _
Vel O oth+ ),

6}_»‘]‘ q8z28y3
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(qug)g;

925

Then

where

fw) = (ros -
W)= Oxoy?

_ 03u + [hz],' 84’11, + (hz)j;T (‘)"’u
= Po2ay T 6h Partey T 12 Porioy
kjk]‘+1 (95
+ 3 61283+0(h +k)
. u k%,  O'u (k%)g, Ou
= Y2002 " 6k, Yozo T 12 Yomog
hih.,'+] 85u 7 \3
_gr R, )3,
+ 3 q8138y2 O + k)
_ ag hi’li+1 33u 3
= ot 6 am T OM)
09 | kjkjy Pu
= 5, e g T OR,
8%u

— ! 1 k)2
= 8x0y+0(h’+k]) .

8u

BRI _9f
72h; [h k (r(‘)xagﬁ

dzdy?

).,

R )
T2k; 01‘6;1/  zoy? -
1 4 Ou 1 a”u : .
L — * 4 P
1807, [h P9 J 4, 180K, {k qay")]ym R
(k%),, (P?);, . 1 4
—72—% (hgﬂr)@,j = (kzl‘y);;j,i ~ 180 (h'n )ii,j

‘Il**

17 1

1 4,1 *
oo (k ny)g,,i - ¥

180
3f
( T 1/27

Pf I N eys)
0z dy? 6$28y 8128y Yim1/2);

65
n?(y)=( Poz r,)( Ti—1/2,Y), N3 (x) = ( )(:c Yi-1/2),
hihi+1 2 Pu k; kj+1 2 8 u o T \4
9 T2hy [h azJ MY 72k, +p Poys Oh: + k)
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Case 3.2. Points x; = &, y; # n of type *. Now

h? 1,
U = fi—rsu+(pus), + (quu)w + 12 (f —ru)y, + 12 (l‘ (f- r“)?i)gi

h? (K]
2 o _ Y S YR
+ iz (A (pux)w) 12 (quy)gm + 5 (fx —rsu+ (puﬁ)m)y

h [r 1 1 h (g ]

o [k]_, , , . o f
+ [Ox} ~ T (3 (K=(); +h{1—)}m,¢ Kalys) = {&U%L,.J‘)

Using the differential equation (1.1), and formulas (20), (21), (31), (32) in [1], we
obtain

(puz); = 1Kx(yj)+(p({)—22> +ﬁ[p&}+ﬁ(zﬁﬁ>
T h dx2 ), 6 or] 12\"0x')
+ %‘;[ng—u] +O(h?),
@y = o, 5+ B, T B, 5
; f’;;?,:m—zww

(k2g.17)g5 = -

dg 5 {82'11} (&Y]; {83g} 4
%9 K2y, ot L ELIZIL o)),
y} 7.+( 51 32 T I,-+ ()

() |
(o), = Selrs) < pZ] e fatig),
{

7]

(k1 0% } h*[k?]; { 0°u
T ek Paatay f, T 1ok, Paetay S,

h(kz)ilj Pu [kQ]] ' (k2)yj "
v M ot |+ ) + K )

[]‘4] " (k4)y1 1v 7. 14
L )+ T K () + O+ )

k?] (k.2)1 )
h2 Y — 2 [ "y Yi g IV, .
(quy)yxz h {p}n (Kz(y ) Gk (yJ) + 12 Kz (yj))
+ h2 { __0_41_1_ + h_3 i__
q8m28y2 . 6 q6138y2 -,
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]2 k2 . aSu _
ls{z--b {qaxzay“ } +Oh+ k)
7 “ Z;

(» 1 Ko u h[ 8% +h2 . Pu
R R R A Lo SRl L rr ] B TR U

k;k; &> Y
+ il {pa u.} + O(h + k;)3,

3 Ox2dy3

- dq kjkj+1 83u ' 73

Then
1 . PBu Pf
U, = — |h2k2 _
J 720 [h K (T(‘):z:ay2 8$8y2)]zig,
1 912 83 a?f
T [” k (Ta 0%~ By’
Pu 1 J’u
_ B —U* 4 P
180h { pdr] 180K, [ 8y] EAR
(), ), I 1
— 2 x L (1.2,,Y Y § 1 - — Z4yh.
73 )+ = (), 180 (W) 5= 10 (F")s,
- UL+
where

i Pu A & &3
1) = (5507~ ) (v (0) = (gt = o) (o)

8Idy 8181/ 20y
8u J%u
i = (v55 )(ml o), ) = (a ) @seara)
. _ kikin 0’ Pu - - 4

One can analogously obtain the error in the case y; =7, z; # &.

)y, (h%),. 1 1
P z T Y PN § X o IS X I 7]
i 72 T P el o P R G P A U )g,
+ O,

where
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. Su 3u P*f
10 = (75 — )(z, a0 0 = (i = ondy ) (o),

v Ou
ni(y) = (Ii—l/Zvy)a m; (x) = q5§5— (-’E»?/j—l/Q)v

h +1 2 0 u TS 4
* = hp \I/ = O(h; + h)*.
U T2k [ P ] (R + h)

Case 3.3. Points of type o. Now we have

i (- ),,y+—(f ),y

¥y = f;u/ Trgu + (pus) ey T (quy) +

2 of
Ep 2 (3,
LS

h h
+ (pur)ryy (quy yir

) (fs ({5}, «i)wm) -

h h
- 5 (Kal)ly, — 5 (Kyf@),, +

12

({5, +8) ),
({8, 0)
) B

3

o

]

Using the equation (1.1) and the equalities

(pus),y = e W+ (p2) L h[p2u] L R (0
Pusz zy h z\Y Y pa$2 i, 6 p(‘?at3 oy 12 pa:j,‘4 £
u 4
(quz) - lK( )z + 92_? +E 8—311 +h_2 @
QUglgz = R ulTz qay2 s 6 q3y3 vz 12 qay4 5
2 ) 8511, 4
* 1o [‘WJ O,

- -1 ) 17 h? " W K1V 4
hEe = (K], +h{E)}, + 5 (K], + S{EY), +om),
MKy = (KL, + (KDY, + h~[f 21, + g (KLY, 00,

. au 63u aSU
2000y =z — oA
h (pum)zyy [[pﬁzay}zl th [p8m8y2L ¥ th [paxzay]yvf'
A Y ' .
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+ h_2 Hu N 0%u
6 ||Pozray " Poros |,
Hy;

h3 Pu +h_3[ Pu J
MR 81’81/ 12 [Portay wi O P ou3oy? 29

l\?

820 ] + O(hY),

+ h a_gu_ +h _jS
q8$8y2 o q(?x?ay i

LR o' +h_2 q34u +q34u
' 8126y2 ey, O or’dy " Oxdyt |,

P (qug)gen =

r—v—lma-

Y

N h3 u N h_* u
12 dz@y“ sy 12 q&x“@y y,d
B3 O%u h3 Ou
i =z |lg—— ),
+ 6 [qam-‘faw]zlf 6 [qaxzay-*]mJ’O( )
we obtain
3 3 3 3 03 43
S U B T
: 2 { Ox0y?  Bxdy? |, 2 | ox0y* Ox0y*l, :
h [ u K [ Bdu
L _ g — Ut 4 P
: 180 I:pa‘rs}r i 180 [qayS:Iny‘, N " N
h h h? h
— —_— Ty - —_— Yy, . — —— Ty . L — Yy, .
= W)ag, + 75 (W50 — 150 (12,5, ~ 159 1 )as2s
_ ql* W;k]*,
where

Ty Ou »Pf Fu »Pf
pi (y) = (TW - W) (@i-1/2:9), HJ( ) = ( (9:1:283/ 8x26y> (@, yj-1/2)

a° o°
i) = (155 ) o). 1) = (0555 ) @m0
3 atal 3 5
vy = Rad [ ﬂ] + h” [ _a___] , Uy = O(hh).

144 |1z0y ta1 |P3c%0y ), ,
Therefore
1 2.2 1 2,2
(¥,2), = —75(_h k lﬁ,zi)w?m = (h?k2pY, zy) cut
1 * 1 * * K
+ 250 (B 22) s, 75 1% 20) g — (202D + (877 2),,
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Hence

[, 2),1 < ClIp*lollk?llo (1zllo + lizgllo) + CliR*lloll2zllo + ClI&*llollzglo
+ T allz e+ 1 ollzllo
<

C (IR llo + 11E* [lo + 19~ 11 =1) 121,

ol

where C is a constant, independent of the mesh. Therefore if the mesh is uniform

Izl < Ch,
else (3.22)
lzlli < ChE: 1
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FrOANIUIHUK HA COPUNCKUA YHUBEPCUTET ,CB. KIUMEHT OXPUICKU~
PAKYJITET IO MATEMATUKA U HHPOPMATUKA
Tom 99
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FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

COMPARISON PRINCIPLE
FOR LINEAR NON-COOPERATIVE ELLIPTIC SYSTEMS

G. BOYADZHIEV

This paper presents some sufficient conditions for the validity of the comparison prin-
ciple for the weak solutions of non - cooperative weakly coupled systems of elliptic
second-order PDE.

Keywords: Elliptic systems, eigenvalue problem, comparison principle.

2000 MSC: 35J65, 35K60, 35B05, 35R05

.

In this paper are considered weakly coupled elliptic systems of the form
Lyu =0 in a bounded domain Q € R™ (1)

where Lys = L+ M, L is a matrix operator with null off-diagonal elements
L= diag. (Ll, LQ, Ln),

Leug = -37 ;. D; (aij(z)Diuk) +3 o b (@) Diug+crup in Q, for k = 1,2,...N,

and M = {m” (fl‘)}fvjzl
Operators Ly, are supposed to be uniformly elliptic ones, i.e. there are constants
A, A > 0 such that

AP < To7 o al (@685 < Ale (2)

for every k and any £ = (&;,...6,) € R™.
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As for the smoothness of the coefficients a)’(z),b%(r),ck and my;, we suppose
a,if(m), bi(x) € WI>(Q), ¢ and m;; are continuous in 2.

Hereafter by f~(z) = min(f(x),0) and f*(z) = max(f(z),0) are denoted
the non-negative and, respectively, the non-positive part of the function f. The
same convention is valid for matrixes as well. For instance, we denote by M ™ the

non-negative part of M, i.e. A/t = {m;-; (1')}:\,]:1

This paper concerns the validity of the comparison principle for weakly-coupled
elliptic systems. Let us briefly recall the definition of the comparison principle in #§
a weak sense.

The comparison principle holds in a weak sense for the operator Las
if (Lau,v) <0 and ujpg < 0 imply (u,v) <0 in Q for everyve WH2(Q).  (3)

As it is well-known, there is no comparison principle for an arbitrary elliptic b
system (see Theorem 5 below). On the other hand, there are broad classes of
elliptic systems, such that the comparison principle holds frue. One of these classes
is constructed using condition (4) (see Theorem 1 below):

There is an eigenvalue A of Ly and its adjoint operator Ly and the cor-
responding eigenfunctions &, w € (Wz‘"(Q) ﬂCo(ﬁ)> are positive ones. {4)

loc

Note. By adjoint operator we mean L*p; = L*+M*, L* = diag (L}, L3, ..., L}),
and L} are L*-adjoint operators to Ly. ;

More precisely, the class is C* = {Ly; satisfies (4) and A > 0}, i.e. C* con-
tains linear elliptic systems possessing a positive principal eigenvalue with positive
corresponding eigenfunction. In C* the necessary and sufficient condition for the
validity of the comparison principle for systems (Theorem 1 below) is the same as
the one for a single equation (See [1]).

Theorem 1. Assume that (2). (3) and (4) are salisfied. The comparison
principle holds for system (1) if and only if A > 0.

Proof. 1. Assume that the comparison principle does not hold for L. Let
u, @ € WH(Q) be an arbitrary weak sub- and super-solution of Lj;. Then u =
u—u € WH>(Q) is a weak sub-solution of Lys as well, i.e. (Ly(u),v) <0in Q
for any v € W1 v > 0 and « = 0 on 9. Suppose u™ # 0. Then

0> (Lyut,w) = (ut, Ljw) = A (ut,w) >0

for A, w defined in (4).
Therefore ut = 0, i.e for an arbitrary couple sub- and super-solution of Las
we obtain u < 7.

112 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 111-119.



2. Suppose A < 0 and 0 is the corresponding positive eigenfunction of La;.
Then La(w) = Awt < 0 but @ > 0. Therefore there is no comparison principle for
(1). 0

Unfortunately, the application of this general theorem faces some odds, all
about the fact that condition (4) is uneasy to check. First of all, the existence of
the principal eigenvalue does not hold for every system (1) (See [9]). The second
obstacle is related to the computation of A even when it exists.

Another broad class, such that the comparison principle holds true, is the class
of so-called cooperative elliptic systems, i.e. the systems with m;;(z) > 0 for ¢ # j
(See [8]). Most results on the positivity of the classical solutions of linear elliptic
systems with non-negative boundary data are obtained for the cooperative systems
(See [5,5,12,13,14,16,17,19]). Comparison principle for the diffraction problem for
weakly coupled elliptic and parabolic systems is proved in [2].

The spectrum properties of the cooperative Ly are studied as well. A powerful
tool in the cooperative case is the theory of the positive operators (See [15]) since the
inverse of the cooperative operator Ly;- is positive in weak sense. Unfortunately,
this approach cannot be applied to the general case M # M~ since Ly is not a
positive operator at all. Nevertheless in [18] is given a prove for the validity of the
comparison principle for non-cooperative systems obtained by small perturbations
of cooperative ones.

In {11] are studied existence and local stability of positive solutions of systems
with Ly = —diA, linear cooperative and non-linear competitive part, and Neumann
boundary conditions. Theorem 2.4 in [*] is similar to Theorem 2 in the present
article for the case Ly = —d; A and shares the same idea in the proof of adding a
big constant.

Let us recall that the comparison principle was proved in [10] for the viscosity
sub-and super-solutions of general fully non-linear elliptic systerns

G r,ut, ., Dy, D) =0, 1=1,..N

(see also the references there). The systems considered in [10] are degenerate elliptic
ones and satisfy the same structure-smoothness condition as the one for a single
equation. The first main assumption in [10] guarantees the quasi-monotonicity of
the system. Quasi-monotonicity in the non-linear case is an equivalent condition
to the cooperativeness in the linear one.

The second main assumption in [10] comes from the method of doubling of the
variables in the proof.

Note. For linear equations the positiveness and the comparison principle
are equivalent. As for the non-linear case, the positiveness of the solutions is an
weaker statement than the comparison result for arbitrary sub-and super-solutions;
positiveness can hold without comparison and uniqueness of the solutions at all.

This work extends the results obtained for cooperative systems to the non-
cooperative ones. The general idea is the separation the cooperative and com-
petitive part of system (1). Then using the appropriate spectral properties of the
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cooperative part are derived conditions on the general system. In particular we em-
ployee the fact that irreducible cooperative system possesses a principal eigenvalue
and the corresponding eigenfunction is a positive one, i.e. condition (4) holds. This
way we derive some sufficient conditions for validity of the comparison principle for
non-cooperative systems as well. -

As a preliminary statement we need the following extension of Theorem 1.1.1
[16]):

Theorem 2. Every cooperative system Ly, - has unique principal eigenvalue
with positive corresponding eigenfunction.

Proof. Let us consider the operator L, = L~ + ¢l where ¢ is a real constant
and [ is the identity matrix in R®. Then L. satisfies the conditions of Theorem
1.1.1 [16] if ¢ is large enough, namely

1. L. is a cooperative one;

2. L. is a fully coupled;

3. There is a super-solution ¢ of Lo = 0. v

Conditions 1 and 2 above are obviously fulfilled by L., since L~ is a cooper-
ative and a fully coupled one, and L, inherits this properties from L, -.

As for the condition 3, we construct the super solution ¢ using the principal
eigenfunctions of the operators Ly — cx. More precisely, ¢ = (@1, p2,,9n), Where
(Lk = ck) or = Akpr, and Ak, @ > 0 in Q. Existence of ¢y, is a well - known fact.

We claim that x4 is a super solution of L, if ¢ is large enough, ie. ¢ €

(W2 Q)N CEQ) ) and ¢ > 0, L.p > 0 and ¢ is not identical to null in 9.

l()c

Since we have chosen p; being the principal eigenfunctions of Ly — ¢, we have
er € (CHYNC[)) and px > 0. The last (remaining) condition to prove is
L.p > 0.

Let

n

Ak = (Lepl = = 3 D; (o (2)Dige )+ 3 Wl@)Digict Y mia @i (e +e)pn

ij=1 i=1 i=1

i

= (At +C)pr + kai(iv)%

i=1

We claim that Ay > 0 for every 1.
First of all, if we denote by n the the outer unitary normal vector, then

dy;

dA
d—kan—()\k-aLck-f-c +Z ;1:)

since ¢;|sn = 0. Therefore ﬁklm < 0 for ¢ > ¢ since d—“’t < 0 on 90 (See [14],
Theorem 7, p.65) and ); is independent on c.
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Hence there is a neighbourhood Q. = {z € Q : dist(x,0Q) < ¢} for some e > 0,
such that

Since Ar = 0 on 952, then A > 0 in Q.

The set Q\ . is compact, therefore there is ¢’ > 0 such that Ax > 0 in the
compact set Q\ §2 for ¢ > ¢”, since p > 0 in 2\ Q..

Considering ¢ > maz(c/,c”) we obtain A; > 0 in Q, therefore ¢ is indeed a
super - solution of L.

The rest of the proof follows the proof of Theorem 1.1.1 [16]. O

Theorem 3. Let (1) be a weakly coupled system with irreducible cooperative
part of Ly, such that (2) and (3) are satisfied. Then the comparison principle
holds for system (1) if

(A + 3 m,’;.(x)) >0 forj=1.nandzx €Q, (5)
A+mfj(x) 20 forj=1.nandz €, (5)

where X is the principal eigenvalue of the operator Ly -.

Proof. Suppose all conditions of Theorem 3 are satisfied by Las but the com-
parison principle does not hold for Lys. Let u,u € W'*(Q) be an arbitrary weak
sub- and super-solution of Lys. Thenu=u—-u € W1>(Q) is a weak sub-solution
of Ly as well, i.e. (Las(u),v) <0in Q for any ve W' v >0 and u =0 on OS2

Assume ut # 0. Then for any v > 0, v € WH*(Q)

0> (Lyut,v) = (ut,Ly,-v) + (Mtut,v) (6)

is satisfied since Lps(ut) <0.
As Ly~ is a cooperative operator, such is (Ly-)" = L* + (M7)" as well.
According to Theorem 2 above, there is a unique positive eigenfunction

w € (W2’"(Q) ﬂCo(ﬁ))n such that w > 0 and L}, w = Aw for some A > 0.

loc
Then w is a suitable test-function for (6). Inequality (6) reads for v = w as

0> (ut,Ly-w) + (M*tut,w) = (u¥, dw) + (M*ut,w)
or componentwise
0> (uf, dw) + (Z?:Im:ju;’,wk) ) , (7)

fork=1,...n.
The sum of inequalities (7) is

02> S ((wh, Epwe) + (Shoamiyuf we) ) =
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=Y hey (uw Ay) + 3k ie1 ( m]-c}_jwk> =
=¥ (“;r k=1 (O}k/\ + mZ,) ufk) >0

since u™ > 0, wy > 0, (5) and (5").

The above contradiction proves that u* =.0 and therefore the comparison principle -

holds for operator Las. O
Since in {17] are considered only systems with irreducible cooperative part, the
ones with reducible L,,;- are excluded of the range of Theorem 3. Nevertheless the
same idea is applicable to such systems as well, as it is given it Theorem 4.
Theorem 4. Assume m;; =0 for i # j and (2), (3) are satisfied. Then the
comparison principle holds for system (1) if

()\]- + 3 mfj(z)) >0forj=1.nandzx €, (8)
A+ m}Lj(z) >0 forj=1..nandx €. (9) '

where A; is the principal eigenvalue of the operator L.

Proof. Let all conditions of Theorem 4 be satisfied by Lj; but the comparison
principle does not hold for Lys+. Let w7 € WY™(£) be an arbitrary weak sub-
and super-solution of Ly;+. Then u = u — @ € W(Q) is a weak sub-solution of
L+ as well, i.e. (Ly+(u),v) <0in § for any v € W, v >0 and u = 0 on 9.

Suppose that u™ # 0. Then for any v > 0, v € WQI"X‘(Q)

0> (I:MJruﬂv) = (u*,ﬂ*v) + (Mtut,v) (10)

is satisfied since Ly+ut <O0.

According to Theorem 2.1 in [1], there is a positive principal eigenfunction for
the operator L}, i.e. 3 wi(x) € C2( RY) such that Liwy(zr) = Aews(z) and
wr(x) > 0. Note that wy are even classical solutions.

Then the vector-function w(z) = (wy (), ..., wn(x)), composed of the principal
eigenfunctions wy(z), is suitable as a test-function in (10).

Componentwise, inequality (10) reads for v = w as

0> (uz,i,‘;wo + (Z;«;Imzju;,wk) (11)

for k=1,..n.
The sum of inequalities (11) is

0>3%, ((U;ﬁ:,izwk) + (Z?zlm;:j’u;_,’Wk)) =

=2 e (U Awwr) + 308 5 (u;’m:jwk) =
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= 2;21 (uf, ZZ:] <(5jk/\j + mf]) u*k> >0
since ut > 0, wi > 0, (8) and (9).

The above contradiction proves that u™ = 0 and therefore the comparison principle
holds for operator L},. O

Condition (9) is useful for construction of contra-example for the non-validity
of comparison principle in general.

Theorem 5. Let (1) be a weakly coupled system with reducible cooperative part
Ly~ such that (2) and (3) are satisfied. Suppose that (9) is not true, i.e there is
some j € {1..n} such that (\; +m};(z)) <0 for any z € Q, and m}; = 0 for L # 1.
[ =1,..n. Then the comparison principle does not hold for system (1).

Note. In Theorem 5 we need violation of the condition (9) in all .

Proof. Let us suppose for simplicity that j = 1. We consider vector-fuuction
w(x) = wi(x),0,...,0, where w(z) is the principal eigenfunction of L;.
Then for the first component (Lps), of Ly is valid

(Larw)y = Awq(x) + mfjwi(z) <0 in

where )A; is the principal eigenvalue of L;, and (Lyw)g = 0 for k = 1, ...n. There-
fore, Lysw < 0 but w(z) > 0 and comparison principle fails. [

Analogous to Theorem 5 statement is valid for for irreducible systems as well.

Theorem 6. Let (1) be a weakly coupled system with irreducible cooperative
part Ly- such that (2) and (8) are satisfied. Suppose that (5) is not true, i.e there
is some j € {1..n} such that (A +mJ;(z)) < 0 for any x € Q, and m}; = 0 for
[#1.1=1,..n. Then the comparison principle does not hold for system (1).

Note. In Theorem 5 we need violation of the condition (5) in all €.

The proof of Theorem 6 follows the proof of Theorem 5 with the obvious
corrections.

The sufficient conditions in Theorems 3 and 4 are derived from the spectral
properties of the cooperative part of (1) - the operator Ly, or, in other words,
comparing the principal eigenvalue of L+ with the quantities in M *. In fact the
positive matrix M causes a migration of the principal eigenvalue of L, to the
left.

Theorems 3 and 4 provide a huge class of non-cooperative systems such that
the comparison principle is valid for. The idea of migrating the spectrum of a
positive operator on the right works in this case, though the spectrum itself is not
studied in this article. The results for non-cooperative systems in this paper are
not sharp and the validity of the comparison principle is to be determined more
precisely in the future.
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A CLASSIFICATION OF THE UNIFORM COVERINGS !

MILKA NAIDENOVA, NEDELCHO MILEV, GEORGF KOSTADINOV

A classification of the uniform coverings over a given uniformly locally path-wise con-
nected and semi-one connected space is made, by the set of the classes conjugated by
themselves subgroups of the fundamental group of the base. We use some well-known
theorems in the topological case, proving that they are available in the category of the
uniform spaces. We supply the covering space with a suitable uniformity, very closely
connected with the uniformity of the base and use it for our investigations.

1. CONNECTION BETWEEN THE U-COVERINGS AND THE
) FUNDAMENTAL GROUP OF THEIR BASE.
AUTOMORFISMS OF THE U-COVERINGS

Definition 1. By an uniform covering we mean a covering p: (X,U) — (X, U) over
an uniform space (X, U), which is trivial over every element U, of an uniform cover
§ = {Us}aca of X, but the family {p/Ua,\},\eA’(,eA of the uniform isomorfisms is
equicontinuous [2].

As a particular case of the topological coverings, the uniform coverings sa-
tisfy some well-known theorems. For example, the homomorphism py: W(X , o) —
7(X, o) is a monomorphism. If we replace the point Zo by z{, and connect the
two points by a path @, the monomorphism py commutes with the isomorphism of
conjugatness hy,.

That is: pym(X, Zg) = hypem(X, 7). (w=p&)

!Supported in part by the Scientific-research department at the University of Plovdiv.
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Theorem. [4] Let p: (X,U) — (X,U) be a U-covering and zo € X. Then the set
{pym(X,%0) | To € p~'(x0)} is a class of conjugated by themselves subgroups of
m(X, z0). The isomorphism h,) maps the class of conjugated subgroups of m(X,xy)
onto the corresponding class in the group (X, xg) .

Furthermore, the group m(X, p(Zg)) acts as a group of the right transformations .3
on the set p~1(p(Zo)) as follows: For every o € 7(X,p(Zp)) let & be the unique 3
lifting of & with &(0) = Zo. Then by definition 9.0 = &(1). If X and X are linear 2
connected spaces, this action is transitive. Obviously, the isotropy subgroup of the
point &g is just pym(X, 7). It turns out (from the algebraic considerations) that 3
there exists one to one correspondence between the set of the right classes. E
(X, p(%0))/pym (X, Zo) (1.1) 3
and the fibre over point p(Zo) — p~!(p(Z0)) [1]- ’
Let us denote by G, (p) the group of the uniform automorphisms f of the U-
covering (X,U) - (X,U) (such, that pf = p). Then for every ¢ € G.(p) the 3
multiplication 7.« satisfies the equality f(i.a) = (f(%))a. That is, f/p~!(z) is an f
automorphism of the set p~!(z), treating as a right (X, z) space. We shall prove j§
that if (X,U) is a uniformly locally connected space (ULC), the converse also is
true.

Theorem 1. Fuvery automorphism f € G, (p) is quite defined by its restriction on
(). ' 3

We need some preparations before establishing that the group G, (p) is isomor-
N(pym(X, o))

—— of (1) (Theorem 2). The homomorphism
pym(X, Zo)

phic to a subgroup

©: Gu(p) — N(pym(X,%0))/pym(Z, Fo) (1.2)

is defined as follows: Let f € Gy (p) and @ be a curve in X connecting &o and f(Zo). - 3
Then ¢(f) = ¢([p.&]), where ¢ is the factor map

N(pym(X,%0)) — N(pym(X,%0))/pym(X, Zo)-
Of course, we need the lemmas:

Lemma 1. Let p: (X,U) — (X,U) be a U-covering, p(io) = o _and the map
f € Gu(p). If the path & connects &y and f(Zo), then [po} € N(pym(X,Zo)).

Proof. {see |3]). Since f is a homeomorphism, we can write the following equal-
ities: ’

[p@] ™' pym (X, o) [pB] = hipa) (pym (X, Z0)) = py(hyeym(X, %0)) =
= pym(X, f(%0)) = py(fym(X,20)) = pym(X, Z0). O
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Theorem 2. Let p: (X,U) — (X,U) be a uniform covering, its base is being a
connected and ULC-space. Then the map (2) is a group isomorphism.

Proof. Analogous theorem is known about the topologycal case ([3]). We shall
prove only that 1 is an epimorphism, which is new. Let the class of the loop w — [w]
belong to N(p,ﬁr(X Zo)):

[w]™ 'pym(X, Fo)[w] = pym(X, Zo). We lift w to & such, that &(0) = &, and put
#f = & (1). Writing the equalities

py(X, o) = pyhyoym(X, ) = hypyr(X, £5) = [w ™ pym(X, 2p)[w] = pym( (X,%0),

we get pym(X, 24)[w] = pym(X, %0). Now we make use of the theorem of the uni-
formly continuous lifting of the map p (|2]). Denoting the corresponding liftings by
f and g, we obtain the diagrams

(X.30)~ 2 —(X, ) (X, i)~ = = (&)
pl lﬁ Pl P (1.3)
(X"EO) = (X7 '7"0) (X7 1:0) = (Xa IO)

It follows (by the uniqueness of f and g) that f and g are multually reverse
uniform isomorphisms, i.e. f € G, {(p). O ,

Remark. If we combine the isomorphism % and the diagrams (3), we see that
every map f € Gy (p) is well defined by its restriction on p~'(z).

Of course, the space (X,U) must be connectod and uniformly locally linear
connected.

2. REGULAR UNIFORM COVERINGS
In this point we shall assume, that (X,U) is a connected, uniformly locally
connected space.

Definition 2. The uniform covering (X,U) — (X,U ) is called regular at the
point 2o € X, iff for every Zo € p~'(z0) the group pym(X, o) is a normal dividor
of (X, xy), i-e. it coincides with all its conjugated subgroup of (X, zo)

As it is known, this definition does not depend on the choise of the point zg.
For regular uniform coverings the isomorphism 1 looks as follows:

¥: Gu(p) — m(X, x0) /pym(X, Zo) .- (2.1)
Given two points Zo and #j of Z with p(Z¢) = p(&;), we can write the diag-

rams (3) and get that there exists an isomorphism f € G,(p) such that f € (Zo) =
Zg. This fact often is accepted as a definition of regularity.
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Now, let us connect Z9 and Z, = f(&p) by a path and recall the action of
the group 7(X,x0) on the layer p~!(zy). We obtain that the group m(X.xo) acts.
transitively on the layer p~!(z).

Let us recall the important particular case of the regular coverings Il the uni-
versal coverings.

Definition 3. The uniform covering p: (X,U) — (X,U) is called universal uniform
covering if w(X,Zy) = 0.

In this case pym(X,Z) = 0 and hence the group (X, ) acts on p~'(zq) '
without fixed points. We immediately obtain

Theorem 3. If the uniform covering p: (X,U) — (X,U) is an universal covering,
the groups G, (p) and w(X,xzy) are isomorphic. The order of the group w(X,xo) is
equal to the number of the leafs of p.

Now we go into details in the action of the group G,(p) over an regular U-
covering p. The regular U-covering p is defined by a uniform cover {Us}aca of
(X,U) that consists of the fundamental neighborhoods of the points, i.e. for each

a€A p N U, = U U, and all isomorphisms p/ Uun: U, o — U, are equicon-
AEA
tinuous.

Let the points &, € Uy and Fan € Unns satisfy p(Zax) = p(Zar)-
Then the automorphism f2 maps Z, into &,y also maps a connected neigh-
borhood Uny of Fqy into U,y uniformly isomorphic. We obtain the next theorem.

Theorem 4. For arbztrary a€ A and a couple of points Tox, Far with p(ZTar) =
D(Tar ) there exists f)‘ € Gu(p), f/\ : (X Far) — (X Zar). that maps a neigh-
borhood Uqy uniformly isomorphic. onto Uy . The family {f3 } 15 equicontinuous
on (out of) (A\, N € A), and even on a € A.

Before we proceed to the construction of a uniform regular covering, we give
the following

Definition 4. Let (Y, V) be a uniform space and G be a group of its equicontinuous
uniform isomorphisms. We say that the group G acts uniformly discretely over
(Y, V), iff there exists a uniform cover {V\}xea of Y such that: if gV N g’V #
0 — g=g' (V is an arbitrary element of {Va}aer).

Theorem 5. Let (Y, V) be a connected and uniformly locally linear connected space
and G is a group of its isomorphisms. which acts uniformly discretely over (Y,V).
Then the natural projection p of Y on the space of orbits Y/G is a reqular uniform
covering with a group of automorphisms G (p).

Proof. First we shall supply Y/G with a factor-uniformity V. If W belongs to
the uniformity V' then two orbits yG and 4G we shall call W-near if they have
representatives yg and yg, which are W-near. This definition satisfies the axioms

124 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 121-127.




of uniformity as the action of G on (Y, V) is uniformly equicontinuous. V' is the
strongest uniformity at which p is uniformly continuous.

Now, let {Vi}aea be a uniform covering of Y, such that for g1 # g2 € G we
have g1V N g2V # ¢ and the scts Vy are linear connected. We put Uy = p(Vy).
Obviously p/Vy: Vi — U, is an uniform isomorphism. If V, is another component
»~}(Uy), then there exists an automorphism h € G, such that V,, = V).h. Hence

7= Vﬂ.h is also automorphism. The family {p/Vi}ica is equicontinuous at the
n A
given condition.

The group of automorphisms A(Y, p) coincides with G and as it acts transitively
on p~}(yG), the constructed covering is regular. [

3. CLASSIFICATION OF THE UNIFORM COVERINGS

Let (X, U) be a uniform space and (k) be a class of selfconjugated subgroups of
the group 7(X, x). We shall prove that there exists an uniform covering p: X - X,
such that the group pgw()z' , &) belongs to the class (k). It is known that topologically
such unique covering X exists in some additional suppositions about the space X .
It is necessary to supply the space X by a suitable uniform structure such that
we get a uniform covering. We need to increase the suppositions on (X,U) for this
purpose.

In Theorem 6 we solve this task, when therc exists a universal covering (Y, q)
over (X,U). The construction on this covering (Y, ¢) is done in Theorem 7.

Theorem 6. Let the uniform space (X,U) be uniformly locally linear connected
and uniformly locally semione-connected. If (k) is an arbitrary class of conjugated
subgroups of w(X,z). there exists a uniform covering (X,U,p): pnﬂ()z,i) belongs
to the class (k). :

Let (Y,V) % (X,U) is the universal uniform covering over (X,U) (see the-
orem 7). As we know, the group 7(X,x) acts on ¢~ !(z) transitively and without
fixed points. We take y € ¢~ 1(x) and k C m(X,z). Then the following subgroup
H < G,(q) corresponds to K by the isomorphism (4):

p € He thereexist a € K: ¢(y) = ya.

As H is a subgroup of G4(q). it acts uniformly discretely on Y and we can
introduce a factor uniformity in the space of orbits Y/H. Let X = Y/H and
p: Y/H — X is the map defined by ¢. We got the commutative diagram:

Y —— Y/H
! s
X = X

which shows. that p is a uniform covering. The isotropy group of the point & =
p~Y(z) = r(y) is obviously K. Hence pyn(X,%) = K. O
Before we construct the universal uniform covering ¢, we need the following

Ann. Softa Univ., Fac. Math. and Inf., 99, 2009, 121-127. 125




Definition 5. The space (X, U) is called uniformly semilocally oneconnected (USL1)
if there exist arbitrary little open uniform covers § with the property: every loop
S — X, whose image consists of some element of §, is contractable.

Theorem 7. Let (X,U) be a USL1-space. Then it has a unique (precisely to a
uniform isomorphism) universal covering.

Proof. Although the proof reminds the traditional in the topological case, we
shall expose it, because it is specific in the ushering an uniform structure Uin X.
The space X is constructed as a space of the classes [a,] homotopic curves in X,
beginning at zo. The map p: X — X is pla] = a(1). To usher an uniform structure
in X first of all we choose a basic open uniform cover 8 of X, satisfying the USL1 II
condition. For every U € 4 and a class [o]: p(a) € U, we put (o, U) = {5: 8 = a.a/,
where o/(I) C U}.

We got a cover & of &, consisting of the sets (o, U) the base of u € 8,a(1) € U.
If & varies trough U, then the family & defines the base of a uniform structure U on
X. U is the coarsest uniform structure in X with which p is uniform continuous.
Some important, but easily proved properties of sets (o, U) are available.

I. The map p/{«a, U) is an isomorphism of (&, U} on U.

IL Let U € 0, z¢ € X, and x € U are fixed. Let {ay)aen is the set of all
classes of paths, beginning at z¢ and ending at z. If  varies through U we get that
p Y U) = U (laa], U) and the sets ([aa], U) do not intersect as U is one-connected

A€EA
set.

[1. The family of isomorphisms {p/{[a],U)}sea is equicontinuous.

Hence we got a uniform covering p: (X,U) — (X, U).

We shall not repeat the known fact that Z is a linear connected space, but we
shall prove that it is one-connected. For this purpose we shall recall how the curves
in X can be lifted in %.

Let a: I — X be a curve, beginning at zg € X. We denote by ¢ € X the
class of the constant curve, i.e. Zy = [c;,|. For an arbitrary t € I let o be the curve
a'(s) = a(st). Then, for & we have &(t) = [at]. Obviously &(0) = [a°] = [cz,] = Zo-
As py is a monomorphism, we have to prove that py (X, Zo) =0, ie., ifaisaloopin
(X, z0), whose lifting is a loop, then a € c,,. But this follows from the definition.
The equality &(1) = [a'] = Zo = [cs,] bolds iff the curves a and ¢, are homotopic.
The existence of the universal uniform covering over each uniform L1C-space (X, U)
is proved.

We shall not prove the uniqueness of (X U ), although it does not follow auto-
matically from those in the topological case. O
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GEOMETRY AND SOLUTIONS OF THE PLANAR
PROBLEM OF TWO CENTERS OF GRAVITATION

ASSEN LASHKOV, ANGEL ZHIVKOV

The planar problem of two centers of gravitation was studied by Euler, who found a
second “momertum-like” integral and thus the problem turned out to be completely
integrable. We present some effective solutions of the motion of the free particle under
the influence of the two centers. These solutions are expressed by elliptic theta func-
tions. We also classify all types of such motions from topological point of view. There
exist exactly 16 types of motions. Ten of them are unbounded and six are bounded.

Keywords: integrability, general solution, topological classification
2000 MSC: 37J35

1. INTRODUCTION

One of the famous integrable problems of classical mechanics is the problem of
two centers of gravitation, i.e. the problem of determining the motion of a particle
in a plane, attached by two fixed centers of force in the plane. Its integrability was
discovered by Euler in 1760 [4].

In his “Vorlesungen iiber Dynamik” [5], Jacobi separated the variables and
integrated the equations of motion in terms of elliptic coordinates. Solution in
four Jacobi’s theta functions is due to Koningsberger [6]. However, both above
mentioned solutions contain complete Abelian integrals and that’s why they are
not convenient for use.

In Theorem 2 below we present effective solutions of the problem of two cen-
ters of gravitation. These solutions are expressed in terms of four Jacobi's theta
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functions and depend on six arbitrary complex constants of motion, including the
masses of the centers.

The present article is devoted to the topological classification of the real mo-
tions. They depend on six real constants of motion. This problem was studied by
Charlier [1] and later by Deprit [2], see also [8, 9]. The case of equal masses of the
centers was studied in [3].

In order to define topological invariants of each real solution, it is necessary to
define the so—called bifurcation set B. This set B includes all singular solutions and
separates the phase space into connected parts, namely into topologically different
types of solutions.

According to our definition, a solution is singular if and only if some Jacobi’s
theta function' degenerates, i.e. became exponent, sinh or cosh. We shall con-
sider a solution u(t) to be topologically equal to the solution u(—t), t being the
time. Indeed, the change ¢t — —t just turns on the opposite the direction on each
trajectory.

We also should not make difference between any two solutions, symmetrical
according to the line, joining the centers.

The main result of the article is those from Theorem 1: there exist exactly
16 topologically different solutions. Let us remark that any clear definition of
topologically equal or different solutions could not be found in the relevant articles,
which makes impossible to compare in details our with others’ results.

Acknowledgements. This paper was partially supported by NSRF Grant
MI-1504/2005.

2. SEPARATION OF VARIABLES

Let 2¢ denote the distance between the two centers. Take the point in the
middle of the interval between them as origin and the line joining them as axis of
z, so their coordinates will be (¢, 0) and (—c, 0).

Denote also by (z,y) = (z(t), y(t)) the coordinates of the particle. According
Newton’s law, the motion of the particle is governed by the equations

- d*z Gmm, (z — ¢) Gmma (z + c)
Tz T 3 7 3
dt [(x—c)? +9?)" [(+c)? +y?]®
dy Gmmyy Gmmay
M T T T 3

[(z - )2 + y?] [(z +¢)? + 3?]

where mq, m3, m are the masses of the centers and the particle respectively, G is
the constant of gravity.

1Which takes part on that solution.
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By properly choosing the units of distance and mass, we can achieve ¢ = 1 and
G =1, so that Newton’s equations become

Pr -1 _ p2(z+1)
dt? [(.T— 1)2+y2]% [(x+1)2+y2]% '
Py _ iy ~ pay

- 3 3
de? [(@-1)2+92]%  [@+1)2+17]"

with z,y, u; and o dimensionless.

Any ellipse or hyperbola with the two centers as foci is a possible orbit when
any of the centers acts alone. It is therefore natural, in defining the position of the
particle, to replace the rectangular coordinates (z,y) by elliptic coordinates (p, ¢):

r=pq, y=xv@P*-1)(1-¢?

and the inverse

2p = Ve+1)2+12 + V(@ —1)2+42,
2¢ = VE+12+12 - V(e-1)2+42.
(z,y)
p—q p+aq
(—=1,0) - (1,0)

~ Fig.1. Elliptic coordinates (p, q)

The equations p = constant and ¢ = constant then represent respectively ellipses
and hyperbolas whose foci are at the centers (41, 0). These ellipses and hyperbolas
are a particular family of confocal orbits, namely if m; = 0 or my = 0.

In addition to the integral of the total energy

h = j:2+3'/2_ M1 . H2
2 VE-12+y% - J(@z+1)2+y2
_ p2—q2( P4 )_ p
2 pPP-1 1-¢? p—gqg ptg
= constant ,
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there also exists an extraordinary “momentum-like” integral [4]

(PP —g?)?p? 2 ,
Y o= -m—hp — (1 +p2)p

(pQ_ 2\2 -2 .
2_((1_2_(1_)T)q —hq® = (= +p2) g

= constant .
For details see [10]. The last equations can be rewritten as
L@ =)’ = @~ 1) [hp*+ (m +u2)p+7]
LpP =)@ = (@~ D) [he® +(—m +u2)g+7] .
In order to separate finally the variables p and ¢, we introduce an appropriate

scaling of time s = s(t) as follows:

¢
. dt
dt = (p2-—q2) ds or, equivalently, § = /p2 7
0

Now the equations of motion

2
1<dp) = B =) [hp? + (u +p2)p+7] s

2\ ds 2 (2.1)
%(%) = (q2—1)[hq2+(—m+uz)q+7]-

separate into motions of p- and g-variables.

3. TOPOLOGY OF THE SOLUTIONS
We shall discuss the topological types of the solutions of (2.1) in terms of the
Z€eros P1, P2, 1 and g2 of the polynomials
Lp) = hp*+(m+p2)p+r = h(p—p)(p-p2),
M(g) = h@®+(~m+p2)g+y = hig—a)(g-a).
where h and v are arbitrary real numbers, p; and po are real and positive.
Definition 3.1. Two solutions of (2.1),
pr=p(s; RNy py L ps)
¢ =q"(s; "y, 1l 03)

p** —_ p** ( s; h**’,y**7 ll’{*,/_tg*
and
q q

**(S; h**7’y**, u}r*’ug* )
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are topologically equivalent provided there exist some continuous functions

h(A) , A(A) s m1(A) s p2(A) s po(A) 5 @(A) . A€[0,1]

which connect respectively A* and A**, v* and ¥**, ..., p* |, and p** =, ¢"|s=0
and ¢**|,_o. Moreover, the four-tuples (h(X),(A), 1 (A), #2(})) should never be-

long to the bifurcation set
B { (hovipipe) € RxRxRyx Ry
R} =D @ - D —p) (@ -D(@-D(@m~a) =0 [

Equivalently, the roots of the quartics (p? — 1)L(p) and (¢*> — 1)M(g) remain
simple when A varies from 0 to 1.

By definition, B consists of all singular solutions of the problem. We consider
each possible position of the roots p1, p2, g1, g2, as well as the initial conditions p(0)
and ¢(0) to prove the main result of the paper.

Theorem 3.1. There exist exactly 16 topologically different types of solutions
in the problem of two centers of gravitation. Siz types of solutions are unbounded,
another ten types of solutions are bounded :

Orbits with positive energy (h > 0)

1. p<—l<py <l 1<p g1 < -1<ga<1 ge(-1,q|
2. p<—-l<m<l1 1<p -l<g<g@<l qg€lq,q]
3. pr<—-1l<py<1 1<p -l<gi <1< q € [g2,1]
4. m<—l<py<l1 1<p 1< ~-1<1<qo ge[-1,1]
5 —l<pi<pa<l 1<p -l<qp<@<l q€lq,q]
6. p<-l<Il<ps p2<p @<-1<1<gq ge[-11]
Orbits with negative energy (h < 0)
7. —l<p<1l<p, pellp] g1 < g < -1 ge[-1,1]
8. -l <p1 <1<p2 p€|(l,p2] G <-1<ga<1 q € [gq2,1]
9. —l<pi<l<ps pellp] ~l<q<@<l q€[-1q]
10. -l<p<l<py pe|lpo] 1< <g2<1 q€lg,1]
11. -1<pr<l<ps pell,p] -l<q<l<qgp g€[-1,q]
12 —1<p<1<py pe|lps] l<q1<gq ge[-1,1]
13. —“l<p1<1l<ps pe[l,p] q1.2 € C\R g€[~1,1]
14. 1<p1 <po P € [p1.p2] G <g<-1 ge[~1,1]
15. 1<p1 <p2 p € [p1,p2] 1<q <q g€ [~1,1]
16. 1 <p1 <p2 p € [p1,p2] q12 € C\R q€[~1,1]
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4. EXPLICIT SOLUTIONS

We remind the reader that the Jacobi theta functions are given by their Fourier
series

Oon(z.7) = 1427 cos2mz + 2e*™™ cosdnz + 2" cosbmz + -+,
00\ <>
Oo1(z,7) = 1— 2" cos2mz + 2™ cosdrz — 2™ cosbrz+ -,
01{2,
miT 9niT 257iT
610(z,7) = 2et coswz+2e * cos3mz+2e ¢ cosdrz+---
0\<, ’

for z € C and 7 € C, Im7 > 0. The fourth Jacobi’s theta will not take part in the
solutions. Introduce also the notations

9()()(2) = 000(0.7’) 900(2,7') y 660(2*) = GOO(O,T*) 00()(2:*.T*) s
O©01(2) = 601(0,7) o1 (2,7) , 051 (%) = 061(0,77) O (2",77)

. 910(2) = 910(0,1") 0]0(2,7') s IO(Z*) = 91()(0,7’*) 9]0(2’*,7'*) .

Theorem 4.2. The general solution of the planar problem of two centers of
gravitation reads

900(2) +tha.B19(2) 660(2*) +tha*.00(z"

©10(2) + tha.Bgo(z) ©7%,(z*) + tha*.Og(z*)

y = /P’ -1(1-¢?)
1001(2)05,(2%)
[sh.800(z) + ch @.010(2)] [sha*.630(z)* + cha*.Op(2)*]

The elliptic coordinates .

_ Opo(2) + tha.010(2)

”_ _ 85(2") + tha" Ou0(")
O10(2) + tha.©go(2)

- 9}‘(,(2*) + tha*.@oo(z*)

and q

satisfy equations (2.1).

The constants which enter in the above formulas depend on the constants of

i s NI s b5 P 8 5 s s el ST o
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motion fuy, us, h,v. zp and z as follows :

_h=y+ (R +9)? = (i + p2)? 2o ot VI + 92~ (g1 — p2)?

2
h—v =V + 77 = (a + p2)? h=v=/(h+7)2 = (1 — p12)?
K:/l ds . Kt — ! lds _
Jo /(1 = s2)(1 — k2s?) Jo /(1 =s2)(1 — k*2s2)
1 /~ ds . 1 /“' ds
T = — R T = — "
K Ji /(1 -s2)(1~k2s?) K i /(1 = s3)(1 - k*2s2)
2 = zp+ 2s , tanh 2 = _'ﬂ_}ll—%% ,
K=y =R+ = (i + 1) v
¥ =z + : 28 , tanh2a* = HL”HZ

. . h
K \[h = = BT = iz — 101 )2 Y

The proof of the theorem above reduces to a straightforward check of certain

relations between elliptic theta functions. These relations are in fact well-known,
see for example [7].

a

o o

=~

© o

Ann.

In general, the solution are complex for h, v, p1 2, 20, 25 € C.
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NON-INTEGRABILITY OF A HAMILTONIAN SYSTEM,
BASED ON A PROBLEM OF NONLINEAR VIBRATION
OF AN ELASTIC STRING

PETYA BRAYNOVA, O. CHRISTOV

In this paper we study the problem for non-integrability of a Hamiltonian system, based
on the nonlinear vibrations of an elastic string. We have the following hamiltonian:

N N N
1 1 c2
H(g.p)=5 Ym0 + 5 3 ket~ = 3 a’()+
~ k=1 k=1 k=1

m [ & P ’
2 2 2 2 -
+—8— (Z k“qx (I)) oy (Z Gk (t)) = const
k=1 k=1
The main result is that the responding Hamiltonian system is non-integrable, except

in the cases N > 2 and hy = 0 and N = 2 and hy = 0 or h2 = 4h1. In the proof we
use the Morales - Ramis theorem based on Differential Galois Theory.

Keywords: Nonlinear elastic string, Hamiltonian system, Morales-Ramis theory
2000 MSC: 70J50, TO0HO8

1. INTRODUCTION

Free lateral “finite” vibrations of uniform beam with the ends restrained can
be described by the equation

w Mw Bw w
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where w(f,z) is the lateral deflection of the string, E - the Young’s modulus,
ET - the flexural rigidity, p — the mass density, A is the thickness of a beam of unit 3
width, L — the string’s length, Py is the initial axial tension. Suppose the following -
initial and boundary conditions

w(0,z) = wo(x), %(O, z) = wi(x)

8w 6 w

w(t,0) = 5o (,0) = w(t, L) = 5(t, L) = 0.

In 1971 Nishida [1] examined the problem of the elastic string’s vibration, in °
the case there is no resistance (EI = 0) and the equation (1.1) changes into

8w Eh 0w
he— = [ P+ == 2d
P e <0+2L/( yd ) 22
If there is such a natural number N, that the initial and boundary conditions

look like
al 7r N s
we(x) = ,;zl a sm(kzx), wi () = 321 by sm(kzx),

where ag, bg,k = 1,..., N are real constants, then there exists a solution

k4

wit.) = Y w(t) sin(k%:r), (1.2)

k=1

which is unique in a certain class of functions. Having put (1.2) in (1.1), Nishida got
a Hamiltonian system of differential equations for u(t),k = 1,..., N and proved
that conditional-periodic motions are preserved around equilibrium using the KAM
theorem.

Another kind of problems on the vibrations of the nonlinear string were studied
by Dickey [2].

In 1994 lliev [3] studied a more general integro-differential equation

ki

cl—}-hl/ %)d W: 02+h2/w2d:1: w (1.3)
0 0

82 .
ot

and under the same assumptions as Nishida, he brought it to a Hamiltonian system
with N degrees of freedom, namely

N N N
1 2 G 2 2 2 2
__E: ¢ _E:k . t__E: t
p) 2k=1pk()+ 2k=1 qr=(t) 2k:1<Ik )+
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N 2 N 2
h . hs
+3 (Z qukZ(t)) -2 (Z qk2(t)> = const (1.4)
k=1 k=1 -
Then Thev focused himself on the integrability problem in analytic functions
in the case N = 2. Using the Ziglin’s theory, he has proved the following result:

Theorem 1. The Hamiltonian system with Hamiltonian (1.4) is not integrable for
N = 2. if we have
¢y — 4(‘1 h,g hae 4h]

<0 1+8——F— 1 t odd.
o + by — Bt 18 not o

In 2003 Yagasaki [4] studied the same model of unforced and undamped beam
as equation (1.1) with ET = 1. He proved non-integrability of the corresponding
Hamiltonian system after the same truncation as the solution (1.2) using Differential
Galois Theory for Hamiltonian systems. _

One should note that considering the model (1.3) without resistance (EI = 0)
there is no lost of generality. Having in mind the concrete form of the solution
(1.2), the contribution of the forth derivative with respect to z will change the
coefficients of the Hamiltonian (1.4).

Here we study the Hamiltonian system

o=y
7T 6ps J
o hy & . ho O (1.5)
P}':‘—%ﬁ:— Cl+'§zk2Qk2 ia; + 62+7Z% 4>
J k=1 k=1

j=1,....,N

with Hamiltonian (1.4) for N degrees of freedom and generalize the result of the
Theorem 1 as follows. Consider the complexified system (1.5) on the phase space
M := {(q(t),p(t)) € C?N} with standard symplectic structure, ¢t € C. We are
interested in the question at which values of the parameters c;, 2, hy, hs, the system
(1.5) is integrable (of course the case N = 1 is trivial).

Theorem 2. The Hamiltonian system with Hamiltonian (1.4) is non-integrable.

excluding the following two cases
a) N>2and hy =0,
b) N =2 and hy =0 or hy = 4h;.

Remark. 1) If N >1 and h; =0, we have
N

N 2
E20,.2 2 2 he 21 -
qk — 5 g — _8— Z qk ,

k=1

N
1 ¢
H(g,p) = 3 ) pk2+51

k=1

1M
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whence the starting Hamiltonian system is equivalent to so-called ‘anharmonic
oscillator’ with Hamiltonian

L N N 2
H(q.p) = EZpk2+Zaqu2+ <ZQk2) )
k=1 k=1 k=1

which is integrable in Liouville sense [5].
2) If N =2 and hy = 4h;, the variables in the system with Hamiltonian
(c1—e2) 5 (der—e2)

T, 3, 3
H(qi.q2,p1.p2) = §(p12 +p2?) + — ot Ty @ - ghﬂhl + 5h1Q24

can be separated, hence in this case it is integrable.

Comment. The proof of Theorem 2 is based on “Differential Galois Theory”,
which gives a necessary condition for integrability. Moreover, in a view of the last
remark, it follows this condition is also a sufficient one. So Theorem 2 gives a
complete answer, when the system is integrable and when it is not.

The paper is organized as follows. In section 2 we sumimarize the theoretical
results about Ziglin's and Morales-Ramis’s theories. The proof of the Theorem 2 is
given in section 3. In the last section some numerical experiment, confirming the
theoretical results, are presented.

2. THEORY

In this section we summarize briefly some results on integrability of Hamilto-
nian systems. For more detailed description on Differential Galois theory see [6],
[7].

Let (M?", w) be a complex symplectic manifold. H is an analytic function over
M?* and the respective Hamiltonian system is

T = XH(JY).

A Hamiltonian system is integrable in Liouville sense if there exist n indepen-
dent first integrals F} = H, F,,.., F, in involution, namely {F;, F;} = 0 for all
i and j, where {,} is the Poisson’s bracket [9]. Let z = z(t) is a solution (not
equilibrium) of the Hamiltonian system and I' := {z = 2(t)} is its integral curve.
The variational equations (VE) responding to z = z(t) are

. 0Xpy

- Or

Reducing (VE) by the first integral dH , we get so called normal variational
equations (NVE)

(2(t))n.

€= A(t)¢ with dimention 2(n — 1).
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One of the first, who gave a criterion for having non-integrability, based on
(VE) was Poincaré. Let M 2n e real and z = z(t) be a periodic solution of the
Hamiltonian system. Poincaré has studied the monodromy matrix, corresponding
to (VE) [10]and he has proved that if the Hamiltonian system has k first integrals,
then k characteristic exponents must be zero.

In 1982 Ziglin [11]proved the following result for integrability of a complex-
analytical Hamiltonian systems:

Theorem 3. Let o Hamiltonian system have n first integrals. independent around
I'. but not necessary on I'. Suppose that there is a nonresonant element g in the
monodromy group of (NVE). Then every other element g’ of the monodromy group
transforms the set of eigendirections of g into itself.

Let us remind of ¢ € Sp(2n,C) (the monodromy group is a subgroup of the
symplectic group) is a resonant if [7'...1m = 1, where r; are nonzero integers and
l; are the eigenvalues of g.

Note that in the Ziglin’s result, there is no assumption that the integrals are
in involution, in addition it refers to the case n = 2, because in higher dimensions
there are resonanses.

Another method for proving non-integrability is based on the Galois group of
(VE). In result of the efforts of Ramis, Morales-Ruiz, Simo, Chirchil and Rod, the
following result has appeared in the end of the last century [6]:

Theorem 4. Let a Hamiltonian system has n meromorphic first integrals in invo-
lution around T'. but not necessary on I'. Then the identity component G of the
Galois group G of (VE) with respect to I is abelian.

In applications is used the next algorithm:

1) to find out a solution z = z(t) of the hamiltonian system

2) to write the variational equations (VE) and (NVE), corresponding to z =
z(t)

3) to check for commutativity of the Galois group of (VE), (NVE)

If once is proved, that G is not abelian, than the respective system is non-
integrable in Liouville sense. But the fact that G? is abelian doesn’t imply integra-
bility.

3. PROOF OF THEOREM 2

The proof of Theorem 2 is divided in several lemmas.
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Lemma 1. The system (1.5) has a particular solution

G = \‘/xsn (mt,n)

2
IZ'":‘TT j=1,....N.j#r (3.1)
4 =0
p;=0
where A1, A2 € C, |\1| < |Az] and Ay and Xz are roots of the equation
o — rih 2
ha 4r 1/\2+C2 27’ CI/\+2f=0.

andf-c:l/%k
2

Proof. There exists r, such that he — r*h; # 0. Putting in the Hamiltonian
system (1.5) (¢,p) = (0,..,0,¢:.0, ..,0,p,,0,..,0) we get

Gr = Pr )
Z ~ ‘ r*hy — h ~
Dr = —Gr (rzcl —eca+ ——12—2(%)2)

The corresponding to this system Hamiltonian H is obtained from (1.4) after
putting (q,p) = (0,..,0,¢-,0,..,0,p,.,0,..,0)

o he—r1thy -
P = —“4“‘—4? + (c2 — r?e1)@ + 2f,
Taking into account that p, = tfr we obtain the family of curves

. 3
DU )7 = 2T G + (o = )@ ) + 2f

from where after some transformations we reach

N2 2
G\ _ha=r'h 1_(@)2 L
\//_\1 4 \/Xl A2 \/X1
where A1, A2 € C and |A{| < [A2|. This is precisely the definition of Jacobi’s elliptic
sn [14], so we get the particular solution as the lemma states. O

The function sn(r,x) is double periodic meromorphic function with periods
4K (k) and i2K'(k). In the parallelogram of the periods sn(r,x) has two simple
poles iK'(k) and 2K (k) + iK'(k) [14].

NPT :

Therefore sn Mt, k| has periods T, = ——SK(i——,

2 (h2 - T'4h.1)/\2
4K’ 2K’ : 2K’
T = i4K' (k) and poles #; = 12K'(k) by = 4K (k) + 2K (n).
(h2 - 7'4h1))\2 v/ (hg - 1‘4}11)/\2 (h2 - T‘4h1 ))\2
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Geometrically, I'( f) are tori with two points removed.
Next, in order to reduce the domain of the solution (3.1) consider the involution

R:(qlq--~,qr """ Qnypln-wpr«u-apn)_'(Qh---7_(]”---»Qn»plv---x_pra---vpn)

The involution R leaves the Hamiltonian system invariant and changes the places
of the two missing points. Let us denote with F the set of the fixed points of the
involution R,

FR = {(qla---ﬂqr—110~,q7‘+17'--ﬂqnﬂp17~-'sp1'~170ﬂp1‘+17--'wpn)'

Then factoring M\ Fg in R we get the smooth symplectic manifold A = (M\FRr)/R.
The Hamiltonian H is transformed to the Hamiltonian H for the same Hamilto-
nian system (1.5) defined on M. It is clear that if the system (1.5) has enough
independent first integrals they will be transformed into independent first integrals
on M. Then factorizing I'(f) = I'(f) /R and having in mind that

sn(t + 2K (k)) = —sn(7),7 € C.

we obtain that the domain of the family of the curves is mapped as tori with one
point removed.

Lemma 2. The normal variational equations (NVE) of the system with hamilto-
nian (1.4) around the particular solution (3.1) are

&=m

. _, ho — ;2 2h
7]] e €] ((C2 "‘]2C1) + (2—‘7.7;_.._1_)

S j=1,...,N,j#nr (3.2)
)
The proof is straightforward and therefore is omitted.

In view of Lemma 2, (NVE) breaks into N — 1 separate systems, as each of
them consists of two first-order linear differential equations. So each of these N — 1
systems can be written as a second-ordered linear differential equation denoted with
(NVE;),j=1,...,N,j #r, namely

2,21 p) — . )
- <( Fer —en) 4 L)y o (hwt /;_» & =0
2
(3.3)

In our problem, because of the specific kind of (NVE), the Galois group G
looks like a direct product

G=G1®G2®~-~®G7'—l®0r+1 @@GN,

where the missing part G, corresponds to the tangent equations.
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Therefore, in order to prove non-integrability, it is sufficient one part G; -
corresponding to the equation (NV E;) to be nonabelian.

The equation (3.3) is Fuchsian one. It is known that in this case the monodromy
group M topologically generates the Galois group G [8], [6]. The monodromy group
M has the same specific structure as G.

M=MQ@M&.. @M_ &My &...2My, (3.4)

Again if one M (corresponding to the equation (NV E;)) is nonabelian, then
this will imply that G; is non-abelian and therefore due to Morales-Ramis theorem
{ Theorem 4) we have non-integrability.

Now we shall study the monodromy group M; for the equation (N VE;).

Let g1 and g; are the generators of the monodromy group A ;. The element,
91 s associated with a path along the parallel of the torus I', which corresponds to

adding the period —21 Similarly, go is associated with a path along the meridian
of I’ or adding the period T of the function sn3(7).
Lemma 3. The commutator [g,, g2] = 919297 192_ ! has the following eigenvalues

. 7*12h1 = hy
exp | i li\/1+8m

Proof. The commutator corresponds to one winding around the regular singular
12K (k)

(h;z — 7‘4h] )/\2

It is known that for a linear differential equation [12]

Pt) . Q(t)
(t—tl)gj + (t—1t1)2

point ¢ = of the equation (3.3).

&+ £ =0

where P(t) and Q(t) are holomorphic in a neighborhood of ¢ = t;, then the eigen-
values of the monodromy transformation, corresponding to one circle around the
regular singular point ¢t = ¢, are exp(2mip; o), where py o are the roots of the
indicial equation

plo—1) + P(t)p+ Q(tr) = 0 (3.5)

The analytical theory of the differential equations is described in details in
[13].Hence we have

4/ (/L2 — T“hl)/\g A 2 1
: "t/ | =— + O(1),
" ( 2 Az Sz =, - O
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80 ‘
' (j?r?hy — ha)

Q(tl) = —QW, P(t) =0

and the roots of the quadratic equation (3.5) are exactly
1 j2r2h] d h2
=—t1E+4/14+8—F——7F 1.
p1.2 2 ‘[-f- Thy — Ty 0

Taking into account Lemma 3 we conclude that if the eigenvalues of the j3-th
commutator are not units, than Af; is not abelian. Let us denote

j27“2h1 — hy

rihy —ha
Then the sufficient condition for non-integrability is the existence of j, such that
the number 4 is not equal to a square of some odd integer.

pj=1+38

Lemma 4. The monodromy group (3.4) is not abelian for N > 2 and hy #0 .

Proof. Suppose that there exists j # r such that p1 € Z, so p; = (2k — 1) for
some k € Z. Hence when ha # 0 we get

h] 1—5]'

- 3.6
J2r? — st (36)

hy
where k(k — 1) = 2s;,s; € Z. We notice that for the numbers s;,1 <j< N, j#r
we have s; > 1 or s; = 0. From (3.6), if some s; = 0, that can happen for only one
4, namely j: j2r?hy = ha.
The aim is to show, there exists a number [, such that p # (2p — 1)? for all
p € Z. For the purpose we examine cases according to 7.

Case 1. Let 1 <r < N.j<r and none of the numbers s; is zero.
Then there exists [ = 7 + 1 and we assume j = pr41 = (2p — 1)* for some
p € Z. Again we express

il L Sri) (3.7)

hy  (r+1)2r2 — g 447

where p(p — 1) = 25,41, 5r4+1 € Z. From both (3.6) and (3.7), after some computa-
tions we get

(s; = D)(@r + 1) + (Se41 — 1)(r = )(r +§) =0,

which is true if and only if s; = s,41 = 1, exactly when h; = 0 - the integrable
case called “anharmonic oscillator” [5]. The last is in contradiction with the current
lemma, so we have proved that the monodromy group M1 is not abelian.

Case 2. Let 1 <r < N.r < j and none of the numbers s; is zero.
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Then we take [ = r — 1 and we obtain the following equation
(85 = 1)(2r —1)(=1) + (8, — 1)(r — j)(r + ) = 0,

and similarly as in the previous case, we obtain that AM,_, is not abelian.

Case 3. Let N = 3.
The cases {r = 1,j = 2,0 =3} and {r = 1,1 = 2, j = 3} are equivalent, if one
transposes j and ! and again from (3.6) and (3.7) we have

1~52_1—33

4— S2 B 9-— 83 ’
going back, to that we have noted above, we obtain
3p+1)(p—2)=8(k+1)(k—-2),

and there is an equivalent case too, in transposing p and k. The last is true only
when p, k € {—1,2}, which implies the integrable case - h; = 0. From the another
pair of equivalent cases {l = 1,j = 2,r =3} and {j = 1, = 2,7 = 3}, analogously
we get

5(p+1){p—2)=8(k+1)(k - 2),
— the next contradiction with the current lemma. The cases {j = 1,7 = 2,1 = 3}
and {{ =1,r = 2,5 = 3} lead to

5(s1 +1) = —3(s3 + 1),

which is not possible.
Case 4. Let N >3.1<r <N and s; =0.

Then we can choose another number jg mbtead of j and to fall in case 1) o
case 2), because only one s; can be zero.

Case 5. Let N >3, r=10rvr=N.
If »r = 1, then there exist at least two equations, the j-th and the I-th for
N > 3, such that s; # 0 # s;. Without lost generality we can focus on the case
j=2,1=3, so we obtain
3(s3 — 1) = 8(s2 — 1),
and similarly as the previous cases it leads to a contradiction. For r = N, we take
the variational equations with numbers j = N ~ 1 and [ = N — 2, therefore we get

dsv-1 = 1)(N = 1) = (sny—2 — 1)(2N - 1),

which is available only when hy = 0.

Case 6. The last case left is hy # 0 and hy = 0.
Here
j2
f; =1+ 8;2—.
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Let first r > 1, then there exists an equation with number j =r — L. If p; = pr1q
is equal to a square of an odd

(r—1)>?

1+8
+ p;

= (2k —1)?

we get
2k +1)(k-2)=2(1-2r),

which is possible only when k = 0,1 and r = 1, which is in contradiction with the
case. So we conclude that the group M,_; is not abelian. Now let r = 1. Then
pj = 1+ 8j2, which, for example, for j = 2, is not equal to a square of an odd
number, so the monodromy group Ms is not abelian and that proves Lemma 4. O

The first four lemmas prove part a) of Theorem 2. Let us formulate the last
two lemmas, proving the second part of the theorem.

Lemma 5. The system with Hamiltonian (1.4) is non-integrable for N = 2. hy #
4h; and hy # 0.

Proof. The monodromy group for j = 2, corresponding to variations around
the particular solution (g;,p1) is not abelian when
4hy —h
1+8 "2 £(2k-1)?2, kel (3.8)
]11 - h2
First, we write the particular solution of the system (gz,p2), then the respective
(NVE) around it and the following condition for non-integrability
4hy — ho

_— - 1)? . 3.9
1+816h1-—hg#(2m 1)%, meZ (3.9)

Let us assume that for some values of the parameters h; o such that hy # 0
and hy # 4h; there exist integers k and m, that we have equalities in (3.8) and
(3.9).
4hy — hs 9 4hy — ho

— = (2k — 1), 14 8———r—

hy — hs ( ) + 16h1 — ho
After some transformations in the first equality, like in the proof of Lemma 4, we
express

1+38 = (2m - 1)

Here s # 1 since s = 1 implies h; = 0. Putting this hy in the second equality, we

obtain
4s

5s —1
which is true only in the case s = 0, that is exactly the separable case — he = 4h,.0

€z

The last case we haven’t examined yet is by = hg.
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Lemma 6. The system with Hamiltonian (1.4) is non-integrable for N = 2, hy =
hll and h] 74 0.

Proof. In this case, the hamiltonian is

1 ¢ —-c¢ . dep — ¢ 3 5 15
Hy = 5(1012 +p2?) + (1—22 2 (1“22—)422 + ZhIQIQQQZ + §h1QQ4

and we find a particular solution (ga,p2), of respective Hamiltonian system, namely

2 = /1SN 1) —
2 H1 ) 2
P2 =Ga (3.10)
q =
p1 =0

where p1, pp € C and |pq] < |pa|, g1 and po are the roots of the equation

15h
~—4—1,u2 + (c2 —4er1)p + 2Hg = 0.

The normal variational equations (NVE) for j = 1 around the solution (3.10)
is '
él =Th ) N
==& ((c1 —c2) + 3h(2)?) |

Hence we get the second-ordered differential equation
. 3,
St&fla—c)+ shil@) ) =0

and having in mind the Laurant’s expansion of (3.10), we write the indicial equation

2
2

—_— ——:0’
-

whose roots are not integers, therefore the monodromy group is not abelian, which
proves nonintegrabitity in the case hy = ho. O

This concludes the proof of Theorem 2.
4. NUMERICAL EXPERIMENTS

Practically the integrability of a Hamiltonian system can be examined with so
called “Poicaré sections”. Let there be a Hamiltonian system in R?"

2= Xpu(z)
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with Hamiltonian H and a periodic solution — z = z(t), let I' be the respective .
phase curve. We build a transversal intersection S to I' and the solution z = z(t)
crosses S in a point zg. In a sufficiently small neighborhood U of §, containing zo,
we look at those solutions of the Hamiltonian system, which have initial conditions
in U. We always take solutions, whose initial conditions lay on the same energy
level H = E. We draw the consecutive intersection points where these paths cross
S. This mapping P : S — S is called “Poincaré mapping”.

If the intersection points form regular curves, then we suppose integrability.
If a chaotic picture is obtained, then we conclude that the Hamiltonian system is
non-integrable.

In practice we examine two-dimensional intersection S and here are some
Poincaré sections for our system, drawn by Maple.

H = 9.999999000;

Fig. 1. c; = —1.2,c2=13,h1 =0, h2 = —-15,5 = (p1, 1)
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H = 9.939999000;

-
- -
Pl R, GRS

]

-
-
bl X PR

-1 L5 0 05 1

pl

Fig. 3. c1 = 22, Co = —-2.3,}1,1 =0, ho = 15,5 = (pl,ql)
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Fig. 4. c1 = -12,c2 =13, hy = 1, hy =-15,S = (p1,1)

H = 7.199999000;
15 A
T
1
s« 7
\
d 0 .
-05
RIS
-15 N
3 =2 B 0 1 2 3
pl

Fig. 9. c1 = —1.2, C2 = 1.3. hvl = 1.5, hg = —1.5,5 = (p1,q1)
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Fig. 6. c1 =—-12,c2 =13, b1 = 1.5, h2 = ~1.5,5 = (p2,¢2)
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NUMERICAL SOLUTION OF HEAT-CONDUCTION PROBLEMS
ON A SEMLINFINITE STRIP WITH NONLINEAR LOCALIZED
FLOW SOURCES !

MIGLENA KOLEVA

We consider semi-lincar heat problems on a semi-infinite interval. They model systems
of temperature regulation in isotropic media with non-uniform source terms which can
provide cooling or heating effects. Numerical method for overcoming the nonlinearities
in the equation and boundary conditions as well as the unbounded domain is discussed.

Keywords: Parabolic problems, difference schemes, convergence rate, semi-infinite
strip, artificial boundary conditions.
2000 MSC: main 35K05, secondary 65M60

1. INTRODUCTION

This paper is concerned with the following initial-boundary value problems for
the one-dimensional heat equation on a semi-infinite interval:

U — Ugr = —F1(uz(0,8)), O0<z<o00, 0<t<T, T <00,
(P1) u(0,t) =0, 0<t<T,
w(x,0) = h(z), 0<z< o0,

'The results of this paper were reported at International Conference ”"Pioneers of Bulgarian
Mathematics”, 8 - 10.07.2006, Sofia.
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U — Uz = P(2). Fo(uy(0,1),t), 0<zxr<oo, 0<t<T, T <o0,
(P2) w(0.) = g(t), 0<t<T,
u(z,0) = ha(z), 0 < < oo,

where u = u(x,t) denotes the temperature distribution (the unknown), r and ¢ are
the spatial and time coordinate respectively; 7" is a given positive constant. The
data functions hq(x), he(r), g(t) (representing initial and boundary conditions) and
®(x) are real, defined on R™. F| and F, are sink sources of heat energy, uniform in
z. Such problems can be thought as by the modelling of a system of temperature
regulation in isotropic media, with non-uniform source term Fj(u,(0.t)) for (P;)
and ®(x). F2(u(0,t),t) for (P-), which provides a cooling or heating effect depend-
ing upon the properties of Fy or F;, related to the source of the localized heat flux
uz(0,t), see {13, 14].

In [3, 15] results on existence, uniqueness and asymptotic behavior of the so-
lution have been proved for problem (P;). Some results on the behavior of the
solution and explicit formula for the solution in special cases are obtained in [13]. .

The existence, uniqueness and asymptotic behavior of the solution of problem
(P;) are explicated in [14]. Also, the validation of the maximum principle for (F)
and (P,) is shown in [13, 14, 15]. :

The goal of this paper is to solve numerically problems (P;) and (P) with
effective and accurate methods.

The remainder part of this work is organized as follows. In Section 2 properties
of the solutions to the considered problems are described. The original problems
are written in new, equivalent forms, more appropriate for numerical treatment.
In the next section we construct exact artificial boundary conditions of the new
formulated problems. Also, full discretizations are derived. In Section 4 we present
some numerical results, demonstrating the accuracy of the algorithms.

2. PRELIMINARY RESULTS

As observed in [13, 14], the heat flux
v(x,t) = uz(x,t), (2.1)

for problems (P,) and () satisfies the classical heat conduction problems with a
nonlinear convective condition at x = 0, which can be written in the forms:

v — Ve =0, 0<2 <00, 0<t<T, T < o0,
(V) v2(0,8) = Fi(v(0,1)), 0<t<T,

v(z,0) = hi(z), 0<x < oo,

v — Vg = (7). F3(v(0,8),t), 0<z <00, 0<t<T, T < oo,
(V2) v(0,t) = ¢'(t) — ®(0).F2(v(0,1),t), 0<¢t<T,

v(z,0) = hi(x), 0< x < oo,
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For problem (V}), it has been proved in {13} that the maximum principle holds.
A qualitative analysis of the problem (V5) is given in [14]. The authors show that
under some assumptions for F2(v(0,t).t), ¢'(t), ®(x) and hj(x), we have v(0,t) > 0
for t > 0 and u,(x.t) > 0 for > 0, t > 0. Also the monotonicity properties of the
solution of the problem (V3) are proved.

It’s worth to note that if A{(x) > 0 in R*, v(0,¢).Fy{v(0.t)) > 0, v(0,t) > 0,
t € [0,T] (for problem (V1)) or for problem (V5): ha(z) > 0, ®(z) <0, () >0
in RT, v(0,8).Fa(v(0,t),t) > 0, Vv(0,t) #0, V¢ >0 and g(¢t) > 0 or tllg)l(, g(t) =0,
Y t > 0, together with some other hypotheses, then the corresponding solutions of
(P1) or (P), u{z,t) — 0, as't — oc uniformly for x > 0, see [14, 15].

In the work done, we restrict our considerations to the case: hi(z) > 0,
supp hi(z) < oc, i = 1,2, ®(z) > 0 and supp 9’(x) < oo. The last constraint
we shall remove later. Many physical processes lead to models with compact sup-
ported initial datum. Such kind of problems are well studied in {4, 5]. From
supp hi(z) < oo, i = 1,2 follows that there exists L;, ¢ = 1,2 and 0 < L; < +o0:
hi(x) =0 for r > L;, i = 1,2. Then v(x,t) — 0 when x — +o0, i.e. v(+oc,t) =0,
vit>0.

3. NUMERICAL METHOD

We focuss our attention to problems (Vi) and (V,). Having obtained their
numerical solutions, it's very easy to find the solutions of (P;) and (F%), using
(2.1) and the well-known numerical integration formulas (by Trapezoidal rule, for
example).

The most widely used methods are the finite element and the finite difference
schemes. Since the grids are finite, then on the grid boundary the same type
boundary conditions as on the infinity in the differential problem, are often imposed,
see for example [1, 2]. This, however, leads to the loss of accuracy, especially in the
case, when the solution does not go to zero as * — oo or the compact support of the
solution become large in time. More accurate are artificial houndary conditions.
For linear parabolic problems with linear boundary conditions such results can be
found in [6, 16] and for semi-linear one and two-dimensional heat problems, see
[7, 10]. Also, the comparison with other methods is available.

Having in mind all those results, our approach will be to use an artificial bound-
ary method. Generally, it means to introduce artificial boundaries, construct exact
boundary conditions on the artificial boundaries and reduce the original problem to
an equivalent or approximate problem, defined on a bounded domain. In general,
the boundary conditions on the artificial boundaries are obtained by considering
the exterior problems outside the artificial boundaries.
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3.1. EXACT ARTIFICIAL BOUNDARY CONDITIONS

The idea is employed from [10, 16].

Let supp hj(z) = [0,L;], ¢ = 1,2 and supp ®'(x) € [0,Lz]. For computing
the numerical solutions of any of the problems (V1) and (V2), we introduce an
artificial boundary: I'; = {(z,t)jJx =1, { > L;, i =1,2; 0<t <T}. Then
the domain Q = {(z,t)[0 < z < 400, 0 < t < T} is divided into the bounded
part Q% and unbounded part Q° = {(z,)}l < x < 40, 0 <t < T}. On the
domain Q°¢, hi(x) =0, = 1,2 and ®(z) = 0. We first consider the restriction of
the solution of the considered problems on the domain Q° (counterpart domain).
In this domain, the solutions of both problems (V) and (V%) satisfy one and the
same initial-boundary value problem (V°¢).

U = Vg =0, (x,t) € Q°,
(Ve) v(z,0) =0, | <z < 4o0,
v{x,t) — 0, when z — +oo.
If v(l, ) is given, then (V°) is a properly posed problem. We can get the solution
(v(x,t)) for given (v(L, 1)), see [12].
t

vz, t) = 222 f oL At = N~ R TN ), 3.1)

Next, we shall obtain the artificial boundary condition, using (3.1). Setting p =

{x = 1)/(2v/t — A), then we have

o T (- D2\ _.
U(ir,t):ﬁ v lwt—v € pdpa

duiz,t) 1 o2 1 [0 (@-12Y 1
v{x, x=1)2 v T — - T _ 2
l. 7 _ — (1l t- 7 dp.
or  Jnat v(l,0)e™ ™ + ™ / 8t‘<’t 4p2 ) P2 P
Returning to the variable A, we get
t
) : a—1)2
ov(x,t) _ 1 dv(l,A) 1 5
oz Nz OX Vt—AX

Taking the limit z — +{, we obtain the following exact boundary condition, satisfied
by the solution v(z,t) on the artificial boundary = = [.

dult) 1 [Tou(l,A) 1

or 7ty O VE-2x

—==dA, 0<t< +00. (3.2)
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Using (3.2), we reduce original problems (V1) and (V2) to problems on the bounded
domain Q° = {(z,f)j0 < x <!, 0<t<T}.

0, (z,t) € Q0 for (VA),
Yt = Ve = { &' (z).Fo(v(0,1),1), (x,t) € QY. for (Va),
(0.4) = Fi{v(0,¢t)), 0<t<T, for (V1),
va(0,8) = { g'(t) — ©(0).F2(v(0,t),¢), 0<t<T, for (V3),
. 1 1
(Ri) v (l, 1) = —7—7? /'U)\(l,/\)ﬁd/\, 0<t<T,
1]

[ W), 0<z<l for (Vi),
v(z,0) = { hh(z), 0<xz<l, for (Vo).

The solutions of the problems (V1) and (V2) in Q¢ can be computed by formula
(3.1) for v(l.t) already known.
If supp ®'(z) = oo, then the problem (V¢), corresponding to (V2) becomes
(ve) v — Vpr = (7). F2(v(0,8),1), (x,t) € Q°,
(z,0)=0, | <z <+oc.

Now, for the solution v(z,t) of problem (V¢) for given v(l,t) we have (see [12)):

t

r—1)2
v At = A)~ e Ry

v(z,t) =
0
oC
/Fz v(O/\ / o [ REE R B, 3.3)
2/7 /

As before, applying the technique: 1° change of variable; 2° differentiating with
respect to z: 3° returning to the original variable; 4° taking a limit z — [, for the
first addend of (3.3) and only 2° and 4° for the second one, we obtain the following
artificial boundary condition at x = I:

av(l,t) __I_/tav(l,)\) L5
Oz N NS OX V-2
t
1 Fz(v

t5 7 (t_A)w /5(1) £)e™ T TR dedA (3.4)
0

Again, the assumption »(l,0) = 0 is an essential one.
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3.2, DERIVATION OF THE DIFFERENCE SCHEMES

Let V3, is a_piecewise linear finite element space, defined on an uniform mesh
with size h in D = [0,1]: @p = {z;, &; = (i — )h, i = 1,2,..,N: (N = 1)h =1}.
For a discrete function, defined on wy,, we introduce the following norms:

1
N 2
2
lellg oy = maxfo(z)] and oy, = (Z ho m)) .
=
The standard finite element discretization of the problems (Ri), i = 1,2 is to find

N
v eV, o= Z Vi(t)pi(x),
i=1
satisfying the weak forms of the problems (R;).
Now, after doing a mass lumping, we obtain for V; = V;(¢), ¢ = 1,..., N and
0 < t < T the following system of ordinary integro-differential equations

Vo= 2[V-V Fi(Wh), for (R1) (3.5)
"R A g'(t) — ®(0).Fo(Vh,t) — 2@’ (0).F(Vi,t), for (R2) |*
S T : 0, for (R1) . _

Vi= gzlVi 2”*”“”{ &(r,).Fo(A,t), for (R2) *1 T B N 16

t
Uy -2 [ [ )y Vv Ve (3.7)

2
h vl VEt=2X h
0

In the case supp ®'(x) = oo (concerning the problem (V3)), using (3.4), the equation
(3.7) becomes

t .
o211 V(N VN =Vn-1 hg,
W= 7w Pt 5 2/(0).F2 (W, )
)
t C
1 FZ(‘/I()‘)*)‘) ’ —%
—2\/}‘/ (t_)\)z/g /g(I) (&)e” T dEdM | . (3.8)
0 0

Next, in order to obtain the full discretization of (3.5)-(3.7)(or (3.8)) we define an
uniform mesh in time:

t, = nr, n=0,1,]\[, Mr=T.

The following lemma we also need

Lemma 3.1 ([16]). Suppose f(t) € C?[0,t,]. Then

f'(t)dt f(n)— (th-1) (10v2 — ")) 73
!/\/t - Z 1 /\/t_T - 6 0r<r}<>t\"|f &)=
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Lemma 3.1 ground on the approximations of the integrals in the formulas (3.7)

and (3.8). The integrals (obtained applying this lemma) are calculated exactly.

| This semi-analytical integration rule has better accuracy and stability properties

i than the Trapezoidal rule yet involves about the same computational effort. This

is the best possible integration rule, since no additional information on V() is
available in the interval [t,_1,t,], see [11].

Consequently we obtain the full discretization of the system (3.5)-(3.7), V" =

vh(:ti,t,,), i=2..N-l.n=1,.,M

2T -
2r Fvye ), for (R1)
h g'(tn) — <I>(O) By (VP t,) — 29/(0) Fz(V]",tn for (R2)

et B e
<2+% E) YR (g %)Vﬁl

n—1

Z (Vo= tict — V=) (VE - VEY). (3.9)

To obtain the full discretization of (3.8) we need, in addition to (3.9) (approxima-
tion of the first addend of (3.8)), the approximation of the second addend of (3.8)

“2
Lemma 3.2 ([16]). Let f(t) € C?[0,t,] and g(t) = (t, —t)"3/2e -0 with
a>0. Then

t, i

[ gtode =33 s+ g6 [ goar

teoa

o
2¢ V/_ 3 2
< | — " = —— 2,_“ di.
- <a3 022{, IO+ S 4a 0<t<t x |7 I) 7", where ¢ /’2 pe K
i

ty
Calculation of the integrals [ g(t)dt exactly, leads to the semi-analytical
el
integration approximation, which was commented earlier. Lemma 3.2 is essential
for deriving the following discretization:

1 F2(V1
9\/_ (t—

3/2 / £0'(€)e™ T dgd
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~ hi(p/(xi)i FZ(Vl(tk—l)ytk—12) + FQ(Vl(tk)atk) X [I(tk) _ [(tk—l)} . (3.10)
i=1 k=1

where  I(ty) = erf (m\/%) and erf (z) = —%/e"’zdp.
0

The calculations are tedious, but standard, and we shall outline the main steps:
1. Use Lemma 3.1 for integral with respect to time;
2. Rearrange the integrals and integrand functions;
M - — .
3. Change the variable A: p = —J———2 N

4. Involve the erf integrals;
s <)
5. Approximate the integral [ by Rectangular (Trapezoidal or some other

quadrature is also possible) rule. ?Xt this stage, using Lemma 3.1 would lead to
unduly complication of the approximation. Moreover, in contrast to F5, the inte-
grand function @' is a known function of the known argument, thus the usage of
Lemma 3.1 can bhe avoided.

Finally, the full discretization of (3.8) is

(5‘ + 2\}? h) VN~ %vn"il - %ZFQ(V]“,tn) [@’(0) +;¢’(mi) (1 —erf (9\[))}
h 271 -1 S Vror
(§+ ﬁ) n~1 \/—Z VIV_ )( tn —th-) — tn"tk)

%g@(x)[pg(vl" Y tne 1)(1—erf< \/_>>

n—1

i

[Fe(VE ta) + Ba(VF " b)) (T () — I(tk_l)]J :
k=1
For numerical implementations, the infinite series is truncated at a large number
of terms, say S, depending on the function ®’ (z).
The solutions in counterpart domain (z > [) can be computed, using integral
formulas

1« x—1 z-1 1y
v(zr,t,) = 5); [erf (ETH\/_——T:—:) —erf <2\/—tn_—____—t—k)] (Vo — VE

n 0, for problems (Vi) and (V) with supp ®(z) < oo,
A,  for problem (V,) with supp @'(z) =

where A is the second addend of (3.3), if it can be calculated exactly, otherwise we
use it’s approximation, obtained in the similar way as (3.10). We trace the main
points of the calculations:
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1. Present as a difference of two integrals (the difference between two integrals
is only in the exponential power). Both integrals we treat in mush the same manner;

2. Apply Lemma 3.2;

3. Rearrange the integrals and integrand functions;

4. Apply Green formula in order to generate the term (t — X)~%2.
Next, we follow the same steps as before, but the change of the variable A is
{—"\/t—i——i for the corresponding integrals. Thus we obtain:

S n
1 , Fy(Vi(te—1) te—1) + Fo(Vi(te)s te)
- . STt te),
(x —l:!:a:i)z
4(t" —ts)
I (teoro ti) = 2y/tn — Bpge™ 7 ) 9 eI ()

+(——‘—lif’~—~{ vf (VPE(teo1)) — erf (v/PE(tr) )}

2

T(teogty) = I (teey ty) = T (te-15tk), PE(ts) =

Remark 3.1. The discrete maximum principle and convergence of the nu-
merical schemes can be proved, as it’s already done for similar problems in our
previous works (8, 9].

4. NUMERICAL EXAMPLES

In this section we verify numerically the efficiency, convergency and accuracy of
the algorithm, based on the construction of artificial boundary condition (ABCM).
The results are compared with ones, obtained by standard method: solving numer-
ically the original problem on a large enough finite interval D € [0, L] and imposing
zero Dirichlet boundary condition on the remote boundary.

Example 1 The test problem is (P), ®(z) = —e ™, Fp(ug(0,t),t) =
—u,(0,1) — 272—7';, g(t) = erfe(}) and ha(z) = 0. Then, the exact solution is
u(z,t) = e“’erfc( ). This example is favourable for standard method, because the
solution goes to zero (x — 00, t — 00) rapidly. On the other hand, since v(z,0) =0
in the equivalent problem (V3), we may take any line £ = [ > 0 as the artificial
boundary. Let { = 1, § = 20 and the ratio 7z = 1 is fixed. In Table 1 we present
the errors under different discrete norms, convergence rates and CPU times (in
seconds) of the algorithms - ABCM and standard method at ¢ = 0.5. The errors
are defined as follows:

=u—-U|, and EQ = flu~ U”LZ(‘;’h) :

x(‘:}h)
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The convergence rate is computed, using the formula

CR=

h

log, n
E 2

E2(or )

2(or oc)

TABLE 1. Errors in different norms, convergence rates (CR) and CPU times (sec)

ABCM,[=1,L= Standard Method, u(L.t) =0
h
CR Eh El L=5 L=10
CPU ER [ ER EN I EY
0.1 7.23721e-1 | 6.923436e-1 || 7.96384c-4 | 7.43435e-4 | 7.53801c-4 | 7.02529¢-4
CPU 3.8441 0.5940 0.9372
0.05 1.97566e-4 | 1.87719¢-4 || 2.41093¢-4 | 2.2040de-4 | 2.11617e-4 | 1.95553¢c-4
CR 1.8731 1.8829 1.7238 1.7541 1.8329 1.8450
CPU 48.3750 3.4380 5.7970
0.025 5.31497e-5 | 4.96847¢-5 || 8.21020e-5 | 7.45691e-5 | 6.70087¢-5 | 6.14957¢-5
CR 1.8942 1.9177 1.5541 1.5635 1.6571 1.6690
CPU 6.5/49e+2 25.6561 41.7352
0.0125 || 1.37550e-5 | 1.26190e-5 || 3.95401e-5 | 3.57905¢-5 | 2.45255¢-5 | 2.18145¢-5
CR 1.9501 1.9772 1.0540 1.0590 1.4520 1.4951
CPU 4.5971e+3 1.9002e+2 3.4294e+2
0.00625 || 3.47663¢-6 | 3.178466-6 || 3.55344c-5 | 3.21402¢-5 | 9.80292c-6 | 8.58736c-6
CR 1.9842 1.9892 0.1541 0.1552 1.3230 1.3452
CPU 7.6963¢+4 1.3051e+3 2.9707e+3

Even for a fast vanished solution, L is not large enough and we "lose™ con-
vergence of the standard method. The reason is that the main source of error:
Dirichlet boundary condition, u(L, t) = 0, remain one and the same, independently
of the mesh step size. If L is bigger, the computational efforts become unjustifi-
able large. The convergence rate is O(r + h?), if we compute the solution with
ABCM. For problem (V,), supp ®'(z) = oo (just as in this case), the algorithm of
ABCM implicate two type convolution integrals: concerning V;"*~ ! and VJG_I. Due
to this terms, which makes the problem nonlocal in time and the interaction of the
integrals and different terms, the solution process involves, at any given time step,
the history of VI”“l, VJ(,‘_I and ¢. For problems (V1) and (V3), supp ¥'(z) < oo,
the convolution integrals concern only V,G_l. Also the summation by S is missing.
Thus the CPU time of the computations is approximately two times less, than this,
shown in Table 1,2.

Note that the choice of time step: 7 = h? (Table 1) leads to long time com-
putations and CPU time of ABCM is large. If for example 7 = h, the CPU time
of ABCM and standard method is~p Zl<p< T (k=1forh=01, k=
2 for h = 0.05,...) and ~ 3 L times less, respectlvely, bu’c the accuracy of ABCM
ia still better (in comparison with standard method). For example: CPU time for
computations with ABCM, 7 = h, ¢t = 0.5, L = 5 and h = 0.025 is 0.719 and the
corresponding one with standard method is 0.625 (also for L = 5).
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TABLE 2. Max errors and CPU times

e

L [ I=o05 [ 7=1 [ I=15 | 1=2 ]
EL. [ 6.71998¢-4 | 6.753160-4 | 6.77910e-4 | 6.82012e-4 || S = 10
CPU 0.359 0.469 0.594 0.609
EL. | 6.70188¢-4 | 6.738150-4 | 6.75822e-4 | 6.79556e-4 || S = 20
CPU 0.610 0.719 0.875 0.891
E | 6.69881e-4 | 6.73579¢-4 | 6.75601e-4 | 6.79273e-4 || S = 40
CPU 1.031 1.093 1.266 1.390
E" 6.69876e-4 | 6.73573e-4 | 6.75592¢e-4 | 6.79266e-4 || S = 80
CPU 2.047 2.109 2.172 2.281
Efc 6.69876e-4 | 6.73573e-4 | 6.75592e-4 | 6.79266e-4 || S = 1000
CPU 19.766 19.844 20.125 20.657
10° §§§§ ::::Z:::QQQ?&Z?‘? ???333233??2?2323‘5‘9@@999999 b
10? | VVvo,, 000000000 *'***‘***_
vvvvvv 000000000
Vo o
10 VVVVVV 000000000
10"’ vvvvv OOQOOOO
10“F vvv N
¥
Fig. 1. Exact solution at different time

In Table 2 we give the max errors and CPU times of the numerical solution at
¢t = 0.5, computed with ABCM for different values of [ and S, 7 = h, h = 0.025
and L = 5.

Example 2. Let ®(2) =1, F>(u,(0,t),t) = uz(0,t) + #6_%, g(t) = erfc f
and hz(z) = 0. Then the exact solution of problem (P) is u(z,t) = erfc ’:’\;? The
shape of the solution’s profile stretches in z (as ¢ — o0), see Figure 1. Using the
standard method, we take a risk: to compute the solution in large enough (for some
t) interval and then it turns out that this interval is not enough large for bigger t.
In this situation the ABCM is still effective. On Figure 2, 3, 4 are plotted exact
solution and numerical one, obtained by standard method and ABCM for different
time levels, 7 = h = 0.025, = 0.5 and L = 5.
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Fig. 2. Numerical and exact solution at ¢t =1
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B s < tandard Method
2 . ) Exact Sotution
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Fig. 3. Numerical and exact solution at t =5

- Exact Solution

- Standard Method
ABC at x=0.5

166

Fig. 4. Numerical and exact solution at ¢ = 10
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Below we summarize advantages and disadvantages of our numerical algorithms
in comparison with known ones: using approximate finite boundary or infinite
quasi-uniform grids (uniform or quasi-uniform), etc.

On the positive side are the following features of the schemes:

> The high accuracy of the numerical solution.

& The scheme on the bounded sub-domain has second order local truncation
error in space and first in time. It is not difficult to construct the scheme from high
order accuracy as well in time, using three level time scheme, see [1, 16];

> The solution in counterpart domains can be computed at any point directly,
using formula.

> The computations can be performed on a very small region.

> The artificial boundary, say I, can be chosen in a very simple way:
supp hi(z) < l. Since our boundary condition is exact, the smaller the [, the
smaller the computational domain and consequently the less the computational
amount. '

On the negative side are the following three main disadvantages:

& The construction of artificial boundary condition is possible for a restricted
class of problems and it’s derivation is often not easy;

> Geometrically not universal.

> Algorithmically simple, but numerically expensive, because of involving
the convolution integral with 'memory property’, but related only with one point:
x = {. We could not succeeded to cope with this problem because of the singularity
of the integrals kernels. Straightforward evaluation of those convolution requires
storing the information along the artificial boundary for all times since t = 0 and
re-processing this information a each time step. Nevertheless, the performance of
the presented schemes (in terms of CPU time or number of operations) is less than
that of a standard finite element scheme with no artificial boundary condition, but
with sufficiently long domain and zero Dirichlet boundary condition on the remote
boundary, such that the the accuracy of both schemes is about the same (the mesh
density is one and the same), see [10]. The CPU time of the erf (z) integral is the
same as the one of the function sinx or cosz.
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This paper is supported by Bulgarian National Fund of Science under Project

VU-MI-106,/2005.
REFERENCES

1. Alshina, E., N. Kalatkin, S. Panchenko. Numerical solution of boundary value prob-
lem in unlimited area’, Math. Modelling , 14, 11, 2002, 10-22, {(in Russian).

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 155-168. 167




5.

10.

11.

12.

13.

14.

15.

16.

Berger, M., R. Kohn. A rescaling algorithm for the numerical calculation of blowing
up solutions, Comm. Pure Appl. Math., 41, 1988, 841-863.

Briozzo, A., D. Tarzia. Existence and uniqueness for one-phase Stefan problems
of non-classical heat equations with temperature boundary condition at fixed face,
Electronic J. of Diff. Eqns , 21, 2006, 1-16.

Friedman, A. Partial Differential Equations for Parabolic Type, Prentice Hall, En-
glewood Cliffs, N. J., 1964.

Galaktionov, V., H. Levine. On critical Fujita exponents for heat equations with
nonlinear flux conditions of the boundary, Israel J. of Math., 94, 1996, 125-146.
Han, D., Z. Huang. A class of artificial boundary conditions for heat equation in
unbounded domains, Comp. Math. Appl., 43, 2002, 889-900.

Koleva, M. Numerical Solution of the Heat Equation in Unbounded Domains Using
Quasi-Uniform Grids, LNCS 3743, eds L. Lirkov, S. Margenov and J. Wasniewski,
2006, 509-517.

. Koleva, M., L. Vulkov. On the blow-up of finite difference solutions to the heat-

diffusion equation with semilinear dynamical boundary conditions, Appl. Math. and
Comput., 161, 2005, 69-91.

Koleva, M., L. Vulkov. Blow-up of continuous and semidiscrete solutions to ellip-
tic equations with semilinear dynamical boundary conditions of parabolic type, J.
Comp. Appl. Math., available online: 18.04.2006.

Koleva, M., L. Vulkov. Numerical solution of the heat equation with nonlinear
boundary conditions in unbounded domains, Num. Meth. PDE, available online:
26.10.2006.

Patlashenko, L., D. Givoli, P. Barbone. Time-stepping schemes for systems of Volter-
ra itegro-differential equations, Comput. Meth. Appl. Mech. Engrg., 190, 2001.
5691-5718.

Polyanin, A., Reference book. Linear equations in mathematical physics, FIZMATLIT,
Moskow, 2001 (in Russian).

Tarzia, D., L. Villa. Remarks on some nonlinear initial boundary value problems in
heat conduction, Revista de la Unién Matematica Argentina, 35, 1990, 266-275.
Tarzia, D., L. Villa. Some nonlinear heat conduction problems for a semi-infinite
strip with a non-uniform heat source, Revista de la Unién Matematica Argentina,
41, 1, 1998, 99-114.

Villa, L. Problemas de control para una ecuacion unidimensional no homogena del
calor, Reuvista de la Unién Matemadtica Argentina, 32, 1986, 163-169.

Wu, X., Z. Sun. Convergence of different scheme for heat equation in unbounded
domains using artificial boundary conditions”, Appl. Numer. Math. , 50, 2004, 261-
277.

Recetved on September 12, 2006

Center of Applied Mathematics and Informatics
University of Rousse » Angel Kanchev”

8 str. Studentska, BG-7017 Rousse
BULGARIA

e-mail: mkoleva@ru.acad.bg

168 Ann. Sofia Univ., Fac. Math and Inf., 99, 2009, 155-168.

e e



FOLVIIHUE HA CO®PUACKUA YHUBEPCUTET . CB. KIMMEHT OXPUICKU*

PARYIITET O MATEMATUKA ¥ UHPOPMATHUKA
Tom 99

ANNUAIRE DE L'UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI¢

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

EQUALITY CASES FOR TWO POLYNOMIAL INEQUALITIES

D. DRYANOV, R. FOURNIER

A complete characterization of the equality cases for two recent polynomial inequalities
is given. The proofs are based on simple interpolation and quadrature techniques. We
discuss also the meaning and the sharpness of these inequalitics.

Keywords: Bernstein and Markov Type Inequalities.
2000 MSC: 41A17.

Let P, be the linear space of polynomials p(2) :== Y5, ax2” of degree at most
n with complex coefficients. The following two polynomial inequalities have been
a subject of extensive research.

Bernstein polynomial inequality. Let P, be equipped with the norm lipllp =
maxeop [p(z)] with D :={z: |z| < 1}, p € P, . Then

17" lp < nfplp (1)

with equality only for the monomials p,(z) := Kz", where K € C.

Markov polynomial inequality. Let P, be equipped with the norm || Pli=1) =
maxge(—1.1) |p(2)|, p € Pn. Then

1P =10 < 2% lpll—1y (2)

with equality only for multiples of the nt* Chebyshev polynomial T}, € P,, defined
by T,,(x) := cos(narccos(z)), r € [-1,1].

We refer the reader to the survey paper [1], and to the books (2], [9], [10] for
up-to-date references concerning (1) and (2) and their extensions. One of the most
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striking results [7] on polynomial inequalities is the following discrete improvement
of (2).

Duffin and Schaeffer polynomial inequality. Let P, be equipped with the norm
”P”[—l,l] = max_1<;<1 [p(z)], p € P, and let T; = cos(jm/n), 0 < j < n, be the
extremal points of T,, in [—1,1]. Then

’ 2 .
19 -1 < n omax |p(z;)| (3)

with equality only for multiples of the nt* Chebyshev polynomial 7, € P,.

In this article we give a complete characterization of the equality cases for two
polynomial inequalities (see Theorem A and Theorem B), recently published in [5].
The proofs are based on simple interpolation and quadrature techniques. We also
discuss the meaning and the sharpness of these inequalities.

We consider the following two inequalities:
Theorem A.Letp € P,, and § € R. Then

p(e”) = ()
eif _ g—i8

P (eijw/n) + p(e—ijw/n)
2

(4)

max
0<j<n

where the inequality is strict for each § ¢ {0,7} (mod 2m) and any polynomial
p # 0.
Theorem B. Let p € P, and # € R. Then

P (ei(9+j1r/n)) +p (ei(G—j'rr/n))

5 ) (5)

[P’ (¢°)] < n max

where J, == {0} U{j:1 < j <mn, jodd}.

Theorem A is a Duffin and Schaeffer type result in the spirit of (3). It gives
an upper bound for the uniform norm of the divided difference

p (ei9) -p (e—i())
eil _ g—if

of a polynomial p € P,,.

Remark. Theorem B gives a pointwise estimate for the first derivative of a given
polynomial p € P, of degree at most n by using (n + 1) functional values of p.
Note that (n + 1) is the minimal number of functional values for which such an
estimate holds. Assume, on the contrary, that for a fixed point zg € OD there
exist n distinct complex numbers z1,...,2, in D := {z : |z| < 1} such that
[P'(20)| < 3%y Belp(zk)] (Bx > 0) for any polynomial p of degree at most n.
Applying Gauss-Lucas Theorem, the polynomial p(z) := (z — 2)(z—22)- (z2—z,)
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satisfies p/(20) # 0 and we are led to a contradiction. Furthermore, Theorem B
contains an improvement of Bernstein’s inequality (1). It follows from (5) that

P (ei(9+j7r/n)) +p (ci(0—j7r/n,))

) <n il

/¢ 10
[P/(e”)] < nmax

for any p € P, and 8 € R.

! Remark. The following polynomial inequality

(6)

” p, “]D <n O<§n<a§("_1 Ip (ei]'w/n)

has been published in [8]. The above inequality may be thought as an analogue of
(3) on the unit disk D. It is seen from (6) that for p € P, and any v € R,

| z /Z <n ' (Z i(7+j7"/")>' <1
| e s, max [p (e (el < 1)

However, for a given z := rel? with |z| < 1, it is not clear at all how to choose
v = ~(z) in order to minimize the right hand-side in the above inequality. On the
other hand, it follows from (5) that for any r € (0, 1]

.p (Tei(9+j1r/n)) +p (’r‘ei(e_j'"/”))
2

/
<
] l2p'(2)] < n max

i(6+jn/n
< n o g [prd )
and, because the number of the functional values used in (5) is (n+1), hence smaller
than 2n, the estimate (5) can be considerably better than the estimate (6). We
show in this paper that (5) has many extremal polynomials including all extremals
of (6). Hence (5) is more sensitive than (6). Let us point out that the strength of
(6) lies in the fact that it gives an upper-bound for the uniform norm 1P lp of a
polynomial. However, it is not true that for all p € P,

p (eij7r/n) +p (e—ijﬂ'/n)
B .

/
< b,
Ip'llp < [max

This can be seen by taking the polynomials pn(z) := 2" + iz, 0 <k <n
Obviously ||p/, 1llp = n + k while

Prk (eij7r/n) + Pnk (e—ijw/n)
T2

=V2n.

7 max
0<j<n

The proof of Theorem A is based on the following

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 169-181. 171




Representation Formula 1. Let § € R be fixed. Then there exist (n + 1) numbers
apl8), a1(0), ..., a,(#) such that

P Zp () G () ()
ol _ 10 = Z(~1)]a]~(9) ( ) 5 (

=0

holds for all p € P, and 3> =0 1@;(0)] < n. More precisely, we have the following

explicit expressions for the numbers ag(#), a1(8), ..., an(8):
1 1 - cosnd (=1)"1 1 — (=1)" cos nd
0lf) = — ——— . q,.(0) =
@o(f) 2n 1 — cosé an{(f) 2n 1 + cosé
and )
-1} - cos
0(8) = (-1) cos nfd 1<j<n—1

n (cosj?T7r — cosf) ’

On the other hand, the proof of Theorem B is based on the next representation
formula which amounts to the particular case § = 0 in the representation formula
1.

Representation Formula 2. For all p € P,, and # € R,

p(ei(9+j7r/n,)) + p(ei(e —j7r/n))

ei9pl(ei0) — ,B() p(eiﬂ) _ | Z [37 5
Jj€Ju.j>1
where By = n/2, 3; = (nsin®(jr/2n))", je o, 1 <j<n, B, = 1—%& and

Zje./,,.jz[ B; =n/2.

Although the representation formula 2 follows easily from the representation
formula 1, it is an interesting result by its own. It implies for example that

p(ei(9+j7r/n)) + p(ei(g_jﬁ/n))
2

i n i0,<zl_
le P'(e”) = 5p(e?) < 5 mex

N

(p € Pn, 6 € R). This is clearly a Duffin-Schaeffer type extension of the following
classical result: )

n n
|0/(2) = 3p(2)| < Slpllo (p€ Pay 2 €D),

The representation formula 2 can be used also to obtain a refinement of Bernstein
trigonometric inequality in the form

£H0 + (2k — 1)7/(2n)) — £(8 — (2k - 1)7/(2n))
2

|t'(6)] <n max
1<k<n

for @ € R and any trigonometric polynomial ¢ of degree < n with complex coef-
ficients. It is easily seen that 2n is the minimal number of functional values for
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which such pointwise estimate for the first derivative of a trigonometric polynomial
t of degree < n is possible (see [6, Theorem 4.1]). For any such ¢, we define an al-
gebraic polynomial p; € Pa, by pi(e'?) := ¢™t(6), 6 € R. Then simple calculations
show that t'(t‘)) = ie‘i”"[e”’p;(ew) — np:(e'?]. Applying representation formula 2 to
Pt € Poyp yields

1(8) = Z An.kt (64 (2k - 1)7/(2n)) ; t(0— (2k — 1)7r/(2n))’ BER.
k=1

where A\, x = (=1)*[2nsin? (2k — Dr/(4n))]7Y, 1 < k < nowith Y71 [ Ank| =
n. This is a variant of M. Riesz interpolation formula that implies the above
refinement of Bernstein trigonometric inequality. '

We present a complete characterization of the equality cases in (4) and (5).
The following quadrature formula is useful in studying polynomial inequalities: Let
7T, denote the linear space of all complex trigonometric polynomials of degree at
most n, n € N. The quadrature formula (we mention [6, Theorem 2.1} as a ready
reference)

m—1 .
1 (7 1 24w
— t(0)do = — t| — / R 7
|, 1000 = 5 (E+4) wem (7)

holds for all £ € 7,,_1. The quadrature (7) is the unique, up to a real translation
~ of the nodes, quadrature formula based on m nodes which is exact in 7,1, i.e.,
a quadrature formula with trigonometric degree of precision m — 1. There is no
quadrature formula with m nodes and having a trigonometric degree of precision
greater than m — 1.

The equality cases in Theorem B. Let a polynomial py, € P, he extremal
for (5) at a fixed number § = 8y € R. Then, for an arbitrarily chosen §; € R, the
polynomial py, (z) := pa, (e'®=0)2) (2 =€) is extremal for (5) at § = 0.
Let Eg, , denote the class of all polynomials from P, extremal for (5) at fo.
Then _
Eﬁn,n = {p(e—iﬂuz) tpE EO,TL} .

Hence, in order to determine all extremal polynomials in Theorem B, it is sufficient
to describe the class Ey., of all polynomials that are extremal for (5) at § = 0.

Now, suppose that p € Py, p(z) := 3_r_, axz* is extremal for (5) at 6 = 0, i.e.,
p € Egn. Let hy(z) be the Lagrange interpolating polynomial of degree at most n
which is uniquely determined by the interpolation conditions

hn(1) = 2nag, hn(cos(ln/n)) =na;, (1 <1< n-1), hy(-1) = 2na,.

Then, ,, (#) := h,, (cos#) is the unique even trigonometric polynomial of degree at
most n which satisfies the interpolation conditions

m(0) = 2nao, ra(ln/n) =na; (1 <1 < n-1), r,(7) =2nay,.
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Let
ijm/n —ijm/n
A = max | 2L (79T
i€ 2
The representation formula 2 implies that equality in (5) holds for # = 0 and the
polynomial p € P, if and only if for some v € R

Ly AT ()
2

The linear system (8) whose unknowns are the coefficients of the extremal poly-
nomial p is in general greatly undetermined because of the small cardinality of
JIn.

By using the interpolating trigonometric polynomial r,, the linear system (8)
can be represented in the following equivalent form

= Me'7, Jj € In. (8)

7 (0) + L S0 v (Im/n) cos (jlm /n) + g (7) cos (jnm/n)
= —Me" (jodd, j < n)
=7a(0) + Zl L T (lm/n) + Era(m) = Mée?

M >0 and v € R.

\

Let n be even. Define E§,, := Fo,. Then J, = {0} U{j=1,3,...,n—1}. By
using the quadrature (7) with m = 2n, the system (9) is equivalent to the following
integral system:

i rn(0 cos jOd8 = —Me™, i=13 ...,n-1
37

s [T ra(0)do = Men.

Hence, the interpolating trigonometric polynomial r, must have the form

) (n—2)/2 n/2
ra(6) = Me™ [1-2 > cos((2l+1)8) | + Y box cos(2k6) (10)
=0 k=1

where by, € C.

Let us denote by Q¢ the class of all even trigonometric polynomials 7,,(8) of
the form (10}, where the parameters M > 0, «y real, by, complex, k =0,1,...,1n/2,
are arbitrary. We describe the class Ef,, of all polynomials, extremal for (5) at
6 = 0, n even, through Q¢. The following holds:

Eg.n = {p € Py : p(z) = —T'n Zrn l7r/n 2!

1
+—rp(m)z", r, € QF, n even,.
2n "
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In view of this. for n even. the class E§,, of all polynomials that are extremal for
(5) at 8 = 0 is completely determined by the trigonometric polynomial class 25, via
a simple interpolation procedure:

Let aq, ..., a, be the coefficients of an extremal polynomial p(z) = a,z" +
An_12" "V + -4 ap from E§,,. Then. the (n+ 1) numbers in the second row of the
table

0 a/n|2r/n|...| (n=2)r/n | n-Lrn/n| nr/n
(2n)ag | nar | nas | ... Nan_2 nan_1 (2n) a,,

are interpolation functional values at the interpolation nodes given in the first row
for the even trigonometric polynomial v, € QF. The trigonometric polynomial
rn € 2% is uniquely determined by the above (n + 1) interpolation conditions.

Conversely, let 7, € QF with arbitrary M > 0, v real, and complex by, k =
1,...,n/2. Then

_ ma(0) _ ra(m/n) _ 1a((n—1)7/n) _ rp(m)
0= , A1 — y rery Q-1 = , Up =
2n n n 2n

are the coefficients of an extremal polynomial p(z) := apz"+an-12" "'+ +ag from
the class Ej ,,. In other words. Ey.p, is in one-to-one correspondence to )], through
(n + 1) interpolation conditions at the equally spaced points kmw/n, k=0,1,...,n.

Ezxample 1. Let n = 2. Then, the class Q5 consists of only one even trigonometric
polynomial r2(8) = Me"(1 —2cos )+ by cos(26) and r5(0) = by — Me'7, ro(n/2) =
Me™ —by, ro(m) = 3Me* +b,. Following our description of the extremal polynomial
set E§ ., we conclude that the class Ef , consists of the three-parametric (M, by, )
set of polynomials

. 2 . .
PM b A(2) 1= (B3MeET + ba) % + (Me" —by) % + (—Me/4+ by/4),

where M > 0, v real, b complex, are arbitrary.

Let n = 4. Then, the class Q5 consists of the even trigonometric polynomials
74(8) = Me* (1 — 2 cos — 2 cos(36)) + bz cos(28) + by cos(40) and r4(0) = by + by —
3Me™, ry(w/4) = Me!" — by, ra(7/2) = Me™ — by + by, 14(31/4) = Me® — by,
r4(7) = 5M e + by + by. Following our description of the extremal polynomial set
E§ ,, we conclude that the class E§ 4 consists of the four-parametric (37, b2, by, )
set of polynomials

w

4
Prlbann(2) = (BMe™ +by+ by) % + (Me = by)

I N

2

' ~ by — 3MeD
+ (Me'Y — by + ba) 4 (Me" — by) b2 + b4 — 3Me™

8

e B

+

where M > 0, v real, by, by complex, are arbitrary.

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 169-181. 175




Ezample 2. By Theorem B

p/ (eikﬂ’/n)

We take for simplicity ¥ = 0. Let p* be extremal for the above inequality when
k = 0. By the representation formula 2, the polynomial p* € Pn must satisfy
p(e™/") = p*(e” U™/ = ~MeY (j € J,, j > 1), p*(1) = Me'™ for some M >0
and vy € R. Taking into account that the cardinality of {e*™/", j € J,} is (n+1),
we conclude that the unique polynomial of degree at most n which satisfies the
above (n + 1) interpolation conditions is p*(z) = Me'7z", ie., the only equality
cases in the above inequality are constant multiples of z™. It is easily seen that the
same holds for arbitrary k € Z. From here, the only extremals of the inequality

p/ (eik‘rr/n)

are constant multiples of 2. Now. taking into account that (5) has many extremal
polynomials including the constant multiples of 2™ which are the only extremals (see
[5] for details) of (6). we conclude that (5) is @ much more sensitive estimate than
(6). Following our description for the extremal polynomials in (5), the polynomial
p* € E§,, corresponds to the even trigonometric polynomial

< nmax ’p (ei((kij)ﬂ'/n))} (k € 7).
Jj€J.

<n max ‘p(eij“/"). (ke Z)

0<5<2n—1

. sin nd
% (6) = MeM(~1)" 1 2 - sin6/2 € O
r2(6) = MeP (-1 S sin0/2 €
which satisfies the interpolation conditions r},(Ir/n) :=0,1=0,..., n—=1, 7, (%) :=

(2n)Me™™ and this agrees with our description of E§ ,.

Remark. From the fact that the monomials ¥, 0 < k < n — 1 are evidently not
extremal for (5), in other words they do not belong to Ef ,,, one may conclude that
for fixed &, 0 < k < n — 1, there is no trigonometric pdlynomial rn € Qf which
satisfies the following interpolation conditions: r,(Im/n) = s, 0 <1 < n.
Remark. It deserves to be mentioned that there are (many for n > 4) extremal
polynomials for (5) of degree strictly less than n. It is easily seen that p € E§ , N
P,_1 if and only if the trigonometric polynomial r, € )¢ corresponding to p
satisfies ng bor = —~Me" (n+1) (neven). In Example 1 for n = 2, the above
equality is b, = —3AMe'” and an extremal polynomial in E§ , of degree less than 2 is
p(z) = 2M ez — MelY. Analogously, for n = 4 we have by + by = —5Me'Y and the
extremal polynomials in E§ ,of degree less than 4 are given by the three-parametric
(M, b, ) set ' :

— 3]\1(3” b2 3 PR b 9 3MeY by iy
p(z)-—< 5 +Z>z—<]\fe +E 27+ 5 +Z 2 — Me

where Al > 0, v real, and by complex, are arbitrary.
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Let n be odd. Define Ey,, := Ej, and let 7,(8) := t,_1(8) + A cosnf € The
where t,_; € 7,_;. is of degree at most n — 1. Then, applying the quadrature
(7), we see that the system (9) is equivalent to the following system:

= |7 Ta(@)cos kOdO = ~Me  (k=1,3,....n-2)

L 0)dh = M e

”I

=3 A
QL f tn-1(@)cos nBdl + A = —Me? = A = —Me

and therefore

(n—3)/2
ro(0) = Me' (1 -2 Z cos ((21 4+ 1)8) — cos nﬁ) (11)
1=0

(n—1)/2
+ Z ij COS (2_] 0)

j=1

with b2; € C. M > 0, and v € R. Let us denote by Q2 the class of all even
trigonometric polynomials of the form (11). Then

1
1 1
Eg.n = {p € Pn : P(Z) = é;'f'n(()) + ; Z rn(lﬂ/n) Zl
=1

+ —l—r,,,(ﬂ')z”. ™ € Q0. n odd}.
2n

In view of this and as in the case n even, the extremal set E§ ,, is in one-to-one
interpolation correspondence with the class of trigonometric polynomials Q0.
Erample 3. Let n = 3. Then E§ 4 is the three-parametric (M, by,v) set of polyno-
mials
2Me +by/2 5 Me" —by/2 ,  MeV - by/2
DA.by. 7( ) 2/ 3 + 2/ Zz + 2/ 2
3 3 3
Me — by /2
3 b

for arbitrary M >0, v € R and a complex number bs.

Remark. It is easily seen that p € E, » NP1 if and only if the unique r,, € 22,
which corresponds to p, satisfies Z(" /2 byj = —Me!"(n + 1). In the particular
case of Example 3 we have by = —4AMe!. Hence, an extremal polynomial in Ey 3
of degree less than 3 is p(z) = Me" (224 2z —1). In the case n odd, the even
trigonometric polynomial 77 from Example 2 belongs to Q¢ and this agrees with
the fact that Me2" € EY .
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The equality case in Theorem A. First of all, let us mention that we have
extremal polynomials in (4) only for # € {0,7} (mod 27). In view of the explicit
form of (5) and (4), the class of all extremal polynomials in (4) is a sub-set of the
class of all extremal polynomials in (5) for # = 0 (mod 27 ) and § = 7 (mod 27).
Let Ey, denote the class of all polynomials extremal for (4) in the case 6 = 0.

Then, By, = {p(—,,) 1 pE€E E’o,n} , and all extremal polynomials in Theorem A
are given by E‘O,n U E,r,,l. Hence, in order to determine the class of all extremal
polynomials in Theorem A, it is enough to describe the subclass Ej ,, of all extremal
polynomials in (5) for § = 0 satisfying the following additional inequalities on the
set {0,1,...,n}\ J,:

P (eij'/r/n,) -+ p (e—ijw/n)
2

SM (j€Jdn1<j<n). (12)

Surprisingly. there are also many extremal polynomials for the inequality (4) which

amounts to
p (eijw/n) + p (e—ij‘rr/n)
2 Y

‘(1] < n m
1P < n max

in spite of the fact that these extremals must satisfy not only (8) but also (12).
Let n be even. Let E0 n = Ey, andlet r, € Q¢. Then, applying the quadrature
(7) we see that (12} is equivalent to

lbor| <2M, k=1,...,(n=2)/2 (n>2) and |b,| <M (n>2).

Let Qf = {r, € 0, |bop| <2M, 1<k < (n—2)/2, |b,] < M}. Then we have

Egms {pEPn :p(z) = =—=rp(0) + = ZT" (Im/n) 2!

1 -
+2——rn(7r)z”, ™ €, n even}.
n

Let n be odd. Let E’O v = Ep, and let 7, € Q2. Then (13) is equivalent
to [by;| <2M, j=1,...,(n —1)/2. In view of this we define
Q0 = {r, € Q% bkl <2M, 1<k < (n—1)/2)

to conclude that

=1 n

n—1
E(()).n = {pe ’Pn . p( )_ Tn(o) + Z rn(lﬂ'/’n,)zl

+Mz", T € Q°, n odd}.
2n
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Remark. We point out that all extremal polynomials p # 0 in Theorem A are of
ezact degree n. Let n be even and let us assume to the contrary. f p € P,y N E, ,
is extremal, then the corresponding r,, € Q“ must satisfy 7,,(7) = 0 which amounts
to Z"/ bor = ~Me (n+1) together with |by| < 2M, k=1,...,(n—2)/2, b,| <
M. Obviously, this is impossible for M > 0 and n > 2. Analogously, the same
conclusion holds for n > 3 odd (the case n = 1 is a trivial one).

An extension of Theorem A. Let p € P, and define a sequence of {px} € Py,
by po :=p and ppyi(z) = vp;c(z), k > 0. The following generalization of Theorem
A was obtained in [3]:

Theorem C. Let pe P,,. k > 0. and 8 € R. Then

(i) — p (e—if i ijm/n —ijr/n
px (e ) Dk A(e ) p(e ) + ple ) (13)
619 _ 6—19 2

where the inequality is strict for each ¢ {0,7} (mod 27) and for any polynomial
p#0.

Clearly, Theorem C amounts to Theorem A for k = 0. We now discuss cases
of equality in (13) for k > 1. It is readily seen that for k = 1, (13) is equivalent to
the Duffin and Schaeffer result and in particular [7] equality holds in (13) for k =1
if and only if § = 0,7 (mod 27) and p(z) = K2", K € C.

It has been proved in [3] that for k > 0, there exist real numbers 3.x(6), 0 <
[ < n, such that for all p € P,

1j7r/n) +p (e——ijw/n)

pie(€?) = pu (e Zm
2

el — e—if

with 310 |BLk(8)] < n*** for 8 ¢ {0, 7} (mod 27). Moreover, the following rep-
resentatlon formula (see [3] for details) holds:

, n i(j+)n/n -G+ /n
pk+1(1) - Z {Zﬂlk l: ( ) 21’(8 )

7=0

Lpevi) tr G "/n)} } _ (14)

Let us assume that for some p € Py, prs1’(1) = n***M, where
p(cijw/r:)+p E*ijvr/n)
5 .

M = maxOSan

Then, by (14)

]

M = i(—l)jaj(m{fjﬂ’*(m [p(e“””"/")+p(e-i<j+’>’f/")
T &

P 2 2
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+p (ei(j—l)vr/n) +p (e—i(j—l)n/n)
2

p (eFhn/n) 4 p (e=iUHT/n)
2

and equality must hold everywhere above. In particular, the modulus of

<Y a;(0)] {% Y 181k(0)]
j=0 =0

p (ei(j—l)w/n) +p (e—-i(j—l)ﬂ'/n)
2

+ %Z |B1,x(0)]
1=0

< Mn%tk

n ’ p (elim/n +p /——ilvr/n
Zﬂl,k(o)l (6 ) 2] (P )
=0

must be equal to M n!** i.e., |p,(1)] = M n'** . This shows by induction on k > 1
that equality can hold in (13) for = 0 only when p(z) = K2® with K € C. The
case § = 7 can be treated in a similar way. Hence, for k = 0, the inequality (13).
being equivalent to (4). has many extremal polynomials. However. for k > 1. the
only extremal polynomials in (13) are constant multiples of z™.
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Tome 99

EXTENSIONS OF CERTAIN PARTIAL AUTOMORPHISMS
OF £7(Vy)

RUMEN DIMITROV

The automorphisms of the lattice £{Va ) have been completely characterized. However,
the question about the number of automorphisms of the lattice £*(Vo) has been open
for almost thirty years. We use some of our recent results about the structure of
L* (V) to answer questions related to automorphisms of £*(Va). We prove that any
finite number of partial automorphisms of filters of closures of quasimaximal sets can
be extended to an automorphism of £*(V) . As a corollary we obtain that closures
of quasimaximal sets of the same type are elements of the same orbit in £*(Vix).

1. INTRODUCTION

The vectors in the space V.. are codes of finitely nonzero infinite sequences of
elements of the underlying computable field F. The computably enumerable (c.e.)
subspaces of V., are the closures of c.e. subsets of V.. The c.e. subspaces of
Vs with the operations of intersection and closure of union form a lattice that is
denoted L£(Vy). The lattice £(V) modulo finite dimension is denoted £*(V.).
Both £(V..) and £*{V,.) are nondistributive modular lattices. In this respect the
study of the structure and automorphisms of £*(V) is an interesting, modular
counterpart of the study of the lattice £* of c.e. sets modulo =*. Friedberg proved
the existence maximal sets as part of Post’s program. Maximal sets are c.e. sets
with "thin” complements. The complements of maximal sets are called cohesive
sets. A set R is cohesive if for every c.e. set W either WNR or WNR is finite. From
a lattice theoretic point of view however, the =* equivalence classes of maximal sets
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are co-atoms in £*. According to Sacks [7] it was the Friedberg’s construction of
maximal sets that “ignited interest” in the lattice £*. The structure of the filters
and the automorphisms of £* have then been extensively studied (see [8]).

An interesting class of filters in £* are the principal filters of quasimaximal
sets!. These are exactly the finite Boolean algebras. In [1], [2], and [3] we studied
the structure of the principal filters of closures of quasimaximal subsets of a fixed
computable basis Iy of V... Throughout the paper A =* B will mean that (4 —
B)uU (B — A) is finite. If A = B, then we will also say that A and B are almost
equal. By cl(A) we will denote the linear span of the vectors in the set A. The
relation V =* W between vector spaces will mean that there are finite sets 4 and
B such that cl(V U A) = /(W U B). The relation C* between sets (spaces) is
defined similarly. For any c.e. set A the set of elements enumerated into A by the
end of stage s will be denoted as A*. If the partial computable function ¢ halts
on input x by stage s we will denote this fact by ¢*(z) |. Otherwise we will write
¢*(x) 1. To simplify the notation in equalities used for defining partial computable
functions we will assume that the function on the left side is defined when all of
the elements on the right hand side are defined and the expression is acceptable.
For the same reason we will use the same notation (F') for a field F as a structure
and its underlying set F.

Before stating the main result of [3] we give some definitions.

Definition 1.1. Two sets A and B have the same 1-degree up to =* (denoted
A =} B) if there are Ay =* A and By =* B such that A; =, B,.

Definition 1.2. Let R be a cohesive set. The R—cohesive power of the com-
putable field F' is a structure F in the language of fields such that:

1. F={p:yisapc function, R C* dom(p) Arng(p) C F}/ =g . Here
01 =rp w2 Y RC* {z:pi(x) = p2(x)} The equivalence class of ¢ w.r.t.
=pr will be denoted by [p|r or simply [p] when the set R is fized.

2. [p1] + 2] = [1 + @2}, and [p1] - [p2] = [¢1 - 2]

3. OF and 17 are the equivalence classes of the recursive functions with constant
values 0F and 1T respectively.

It is not difficult to see that F is a field. See [4] about cohesive powers of
general first order structures.

4

Theorem 1.1. [3]. Let I1,..., I, be mazimal subsets of Iy and let Q = () ;.
j=1

}Intersections of finitely many maximal sets are called quasimaximal.
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1. If I1,.... I, have the same 1-degree up to =*, then
LY L(p, F)2

2. If I; are partitioned into m equivelence classes w.r.t. =%} and n; is the number
of elements in the i — th class, then

m

Cel@). 1) = [[ £ )2

2=

The isomorphism established in the proof of (1) is based on the idea that the
spaces in L*(cl(@), 1) are spaces spanned by the union of the the c.e. set I and a

yd —_ ~
finite number c.e. set which we formally denote > a;I; where [o;] € F for j < p.
j=1
P
The set that is formally denoted 3 a;I; is in fact a c.e. set of linear combinations
i=1
v = o1(y)yy + a2y + ...+ ap(y1)yp where (41,92, . ... 4p) is an orbit. The
orbit, a notion defined in a different context below, is an element of I; x Iy x...x I,

P
at the time the vector v is enumerated into the set Y a;1;.
j=1

2. AUTOMORPHISMS OF £*(V..)

Theorem 2.1. Let Jy,....J,, be quasimazimal subsets of I. Suppose that for

s
k<m Jp = () It; where Ity (for j = 1,...,n4) are mazimal subsets of Iy of the
Jj=1
same 1-degree up to =*. Suppose also that the equivalence classes w.r.t. =7 of I
and Iy, are different for each ki, ka < m such that k) # k. For k < m let Wi he
an ny. dimensional vector space over the field Fy = [[ F' such that the lattice Ly of
Ty
subspaces of Wy, is isomorphic to L*(cl(Jx), 1). Finally let fy, be an automorphisms
of L*(cl{Jx), 1) that is induced by a linear transformation of Wi.
We claim that there is an automorphism f of L*(Vo) such that flc« (. =
fr for all k <m.

2The field F is the T;-cohesive power of the field F and £{m, ﬁ’) is the lattice of subspaces
of an m-dimensional space over the field F. Note that in [3} the notion of cohesive power of a
structure has not yet been developed.

315, is the cohesive power of F w.r.t. a cohesive set that is the complement of a maximal set
from the i — th equivalence class w.r.t. =7 .
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Proof. Before we construct a computable linear transformation ® such that
dom(®) =* Vi =" rng(®) that induces the automorphism f with the desired
properties we will introduce some notions.

Suppose we have a fixed simultaneous enumeration of the c.e. sets I, & and let
Pr;j be computable permutations such that Ii;; =* py;(I41) for all k = 1,...,m and
Jj = 1,...,nk. The existence of such computable permutations with the property
that Vr[p} (z) = 2] was proved in [3]. There we also introduced the notion of an
orbit with respect to our fixed enumeration.

Definition 2.1. Let k < m be fivred. An n-tuple (y1,y2,...,Yn,) Such that
Y; = Pri(y1) is called an Jy — orbit at stage s if

Vi <Y < k(G #1) — (s & Iy A € 1))

We now outline the idea behind this definition. At stage s the Jr — orbit
(Y1.Y25- -+, Yn, ) is an element of Ty X Tip X ... X Tin, - In the process of describing
the structure of a space V € L*(cl(Ji), 1) in [3] we enumerate .J, — orbits as they
appear into a c.e. set Og. The set Oy is such that Ix; C* pr;j(Oy) for every
J=1,...,nk. The underlying set {y1,y2,...,yn, } of almost every Ji orbit that is
enumerated at some stage into Oy will eventually be either a subset of J or the
orbit (y1,y2,...,Yn,) itself will remail an element of Ty X Trg X ... x m If the
latter happens, then we call such orbit a Ji, orbit. Additionally, the underlying sets
of almost every two different J;, — orbits are disjoint.

We now introduce some notation to describe the isomorphism between the
lattice Ly of subspaces of an nj dimensional space/Wk. over F, and L(cl(Je), 1)
Following the proof of Theorem 1.1 in [3] we can select a basis {w¥, ..., w¥ } of W
in such a way that the vector w® € Wy "corresponds” to the partial computable
function pg;|p, that is the restriction of the permutation pg; to the c.e. set By =
pr1(Ok). The set By has the properties that Iy, C* By and Iy, C* ppi(Bx). For

each vector 3 = (61,82, ..,0n,) € Wi define a c.e. set of linear combinations
Iy ={>_ B:y)pri(w1) : (1 € Bx) AV < ni(Bilyn) 1)}
=1

It is important to note that

ATV el(I) = () v (S Bilw)peilun) : on € Tor}).

=1

For each W € Ly such that W = cl{f,... ,Brn} define a ce. Vi € L(cl(Jg), 1)
such that

n

Vir = d(Jx) v (| Iz).

i=1
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In [3] we proved that the function that maps W € Ly to Viy € L7(cl(Ji), 1) is an
isomorphism between Ly and L*(cl(Ji), 1).

Suppose that the automorphism fi of £*(cl(Ji), 1) is induced by a computable

linear transformation ®; of Wy such that ®x(w¥) = of where of = (a%;,....af,,)

and afi € Fy (for i < ny) are the coordinates of the image of w;-‘ with respect to
k

ny

We assume that the automorphism fi of £*(cl(Jx),1) corresponds, via the
isomorphism W — Wiy, to the automorphism of Ly that is induced by ®;. We then
have

the basis {w¥,...,w

FeViw) = el(Ji) v el(| @xIz7)

i=1
where

ne ny

0 Bi)adi(y)prin) -

j=1i=1

(1 € B AV <nmi(Bilw) LAV < nilafi(n) 1)}

. (13)

We will define a computable linear transformation ® with co-finite dimensional

domain and co-finite dimensional range in Vi. In the construction below ®(y) will
be defined for almost every y € Ip. Then ® will be extended to a liner map. For
the construction we will need the following

Definition 2.2. (y1,¥2,...,Yn,) IS a generalized Jy orbit at stage s if:
(i) (Y1, Y25+ Yny) #S @ J. — orbit at stage s,
(ii) Vi < mi¥j < mlj # k — yi € 3]

Construction:

Stage 0: ®° = 0.

Stage s+1:

(A) If there is y € I* = [ J§ such that $**+1(y) has not yet been defined,

j=1
then let ®*t1(y) = y.

(B) See if for some k < m there is a tuple (y1,¥2,. - -, Yn,) such that:
(b1) (1.2, - --»Yn,) is a generalized Jr. orbit at stage s,
(b2) afj?s(yl) | for every 1, j < ng,
(b3) Vi < ne[@**(3:) 1]

In this case for every j < ny let

q)s+1(yj) = afl(yl)y‘ +...+ afnk Y1)Yn.-
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(C) go to the next stage.
End of Construction.

In the lemmas that follow we will prove that the linear extension of the map
® induces an automorphism of £*(V.,) with the desired properties. O

Lemma 2.1. ®(y) is defined for almost every y € Iy.

Proof. We assumed that I; (for k < m and j = 1,...,n;) are different
maximal sets. Using the fact that these sets are maximal we can prove that for
almost every y € Iq either y € I or there are unique k, < m and j, < ny, such

that y € Iy -
Case 1: If y € I = () J; and ®(y) has not defined by the stage s when

D

j=1

m
y € I° =[] J, then ®(y) = y at stage s + 1.
j=1 -

Case 2: Suppose y ¢ I and let ky < m and j, < ng, be such that y € Iy ;, . Let
(Y1, y2,- -+, Yn,,) be such that y; = p,:qu” (y) and y; = pg, (1) for j < ny, (notice
that in this setting y = y;, ). By the definition of the permutations py,; we notice
that for almost every such y ¢ I we will have

(1) {y1, 92, Yy, } NI =0, and

(2) Vi # kyl{yi vz, g, } C Jj)-

This means that (y1,y2.. .., yn,, ) will be identified as a a generalized Ji, orbit
at some stage s when (b2) in the construction above will also be satisfied for k = k.
Using the fact that the underlying sets of different Ji orbits are disjoint we conclude
that (h3) above will also be satisfied for k = k,, at stage s and therefore ®(y) will
be defined. [

Lemma 2.2. The linear span of rng(®) is cofinite dimensional in Vx.

Proof. Notice that either ®(y) = y or ®(y) is defined by means of part (B)
of the construction. In the latter case, it may happen that all the elements of
the underlying set {y1,y2,...,yn,} of the generalized orbit (y1,yo,...,Yn,) of ¥
will be later enumerated into 7. In all cases ® is a linear transformation such
that ®(cl{y1,y2,...,Yn, }) = cl{y1,¥2,---,Yn, }. Using also the previous lemma we
conclude that

Voo =" cl{®(y) :y € Io A D(y) | }.

Lemma 2.3. If f is the automorphism of L*(V..) that is induced by the linear
extension ®F of ®, then f|1, = fi.

Proof. By the previous two lemmas ® is computable map such that cl(dom(®)) =*
Ve =" cl{rng(®))* and therefore ®F is a computable linear map that induces an

4C. Ash conjectured that all automorphisms of £* (Vi) are induced by computable semilinear
maps that satisfy this property. For more information see [5].
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automorphism of £*(V,.). Fix & < m. We know that if W € L, is such that
W = c{B1....,3a}, then fi(Vir) =" ol(Ji) V cl( U ®i(I5)). Also, for almost

every y, € By such that y; € I (an therefore y, e ]k by the definition of orbit)
we will have {y1,¥2,-- - ¥n, } = {Pe1(¥1), Pe2(1); - - - Py (¥1)} € Ji. This means
that .
FeViw) =" cl(Ji) v (| @x(F5)7) (#)
i=1

where

for 3 = (B1,02,---,500,) we let

ny N

O(lz)” = YD Byl (y)pki(yi) v €I}

7=11i=1

Notice that every Ji orbit (yi.y2,...,yn,) will be identified as a generalized Ji
orbit at some stage s; of the construction of the map & and without loss of gener-
ality assume that ak *'(yy) |. At such stage we define ®(y;) =3k ky )y =

PO ”ji(yl)l)h(yl) for every j < ng.
That means that f(Viy) =" c(®(Jx)) V(U @(Iﬁ—,)) where
i=1

ng Nk

o) = {Zzﬁj(yi)a'ji(m)pm(m):

j=1i=1
(yn € Ci) AV <me(Bi(yr) L AV < m(afi(yr) 1))}, and

Cy = {y1:3s[(b1),(b2),and (b3)

from the construction are satisfied at s]}.

Finally using that (1) cl(®(Jx)) =* cl(Jx), (2) T C* ’Ck C* By, as well as identity
(#) above, we can now conclude that f(Viy) =" fi(Vw). O

Nk
Definition 2.3. Two quasimazimal subsets Qy = ﬂ N Ik; and Q2 =
k=1j=1

mo mg

N N Jxj of Io have the same type if Iy; and Ji; are mazimal subsets of Iy and
k=1j=1
the following hold:

1. m=n and Yk < n(my = nx)
2. ij EI Ikle ’Lﬁ]\? = k‘l and Jk]’ E’]k Jk.jl Zﬁk = k'1
3. Iij =] Jiy
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Corollary 2.1. Suppose that the quasimazimal Q and Q- have the same type.
Then there is an automorphism f of L*(V) such that f(cl(Q1)) =* cl(Q2) and
fel(Q2)) =" cl(Qv).

no ng no ny
Proof. Let Qv = () () Ixj and Q2 = [ [ Ji; where I;; and Ji; are as in
k=1j=1 k=1 j=1
. the definition above. Let Jy, ..., J, are quasimaximal subsets of I, such that for & <
g

nJp= ) I;N ﬁ Jij. Let the automorphisms fi of £*(¢l(Jy), T) in the statement
g=1 " j=1

of Theorem 2.1 be such that fi.(cl(Ix;)) = cl(Ji;) and fi(cl(Ji;)) = cd(Ix;). Notice

that it is easy to construct a linear transformation ®, of W; that induces such

corresponding automorphism f; of £L*{cl(Jx),1). Let f be the automorphism from
n

the conclusion of Theorem 2.1. Notice that cl(Q,) = /n\ A cl(Ix;) and cl(Q2) =
=1

k=1 j=
}L\ K cl(Jy;). Then
k=1 j=1
FEA@)) = N NSl = A A Fel(ng))
k=1j=1 k=1 j=1
= A N dli) =cl(Q2)
k=1 j=1

We similarly observe that f(cl(Q2)) =" cl(Q1). O
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PARYJTET IO MATEMATUKA U NTHPOPMATHUKA
Tom 99
ANNUAIRE DE L’UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI“

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Tome 99

COHESIVE POWERS OF COMPUTABLE STRUCTURES

RUMEN DIMITROV

We develop the notion of cohesive power B of a computable structure A over a cohe-
sive set R. In the main theorem of this paper we prove certain connections between
satisfaction of different formulas and sentences in the original model A and its cohesive
power B. We also prove various facts about cohesive powers, isomorphisms between
them and consider an example in which the structure A is a computable field.

1. INTRODUCTION

In the study of the structure of the lattice £*(V,) we came upon a field with
elements that are partial computable functions. We noticed that the construction
of the field had certain similarities with the classical model theoretic ultrapower
construction. We are now studying similar structures in a more general setting.
We introduce the notion of cohesive power of a computable structure and prove
an analogue of the fundamental theorem for ultraproducts [1]) for cohesive powers.
The connection of cohesive powers of computable fields and the structure of £* (V)
is described in the concluding remarks.

A set R is cohesive if for every computably enumerable (c.e.) set W either
W N R or WNR is finite. There are continuum many cohesive subsets of w. There
are cohesive sets with computably enumerable complements. The c.e. complements
of such cohesive sets are called maximal. For a fixed computable structure .4 and a
cohesive set R we define the R—cohesive power B of A. The satisfaction of sentences
in B is connected to the existence of decision procedures for different segments of
the complete diagram of A. If A is a decidable structure, then A and B will be
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elementarily equivalent. If 4 is computable then A and B satisfy the same IT, and
Yo sentences.

We will use ¢g, 1, . .. to refer to arbitrary partial computable (p.c.) functions.
Also, we assume a fixed enumeration ¢y, ¢1, ... of the (unary) partial computable
functions. We will write ¢, s(z) = y if e,z,y < s and y is the result of the e — th
computation on input n in less than s steps. In this case we will also write ¢, s(x) |.
By ¢.(z) | we mean that Is[de ;(z) = y]. The enumeration of the e-th c.e. set
W, = dom(¢.) is given as W, ; = dom(¢..s). We let use normal equality symbol =
(instead of ~) between partial computable functions. In definitions of p.c. functions
we will assume that the function on the left side is defined when all of the elements
on the right hand side are defined and the expression is acceptable for the particular
values of the functions. For example, ¢ = % means that

o(z) = Z}:Er)) if ¥1(z) |, ¥2(z) |, and yo(z) #0
‘ unde fined otherwise '

2. MAIN RESULT

Let A be a computable structure over a fixed computable language L and let
R C w be a cohesive set. If ¥ is a formula in L, then we will use {z : A =
U(p1(z),...,on(x))} as a shorthand for

{z:3s3tr ... 3t (N (islx) = t) AA Uty tn)}
=1
Definition 2.1. The cohesive power of A over R is a structure B (denoted
ITA ) in L such that:
R

1. B={p:yp is ap.c function, R C* dom(p), rng(p) C A}/ =g

Here o1 =p w2 if RC* {x: p1(x) |= pa(z) |}. The equivalence class of ¢
w.r.t. =g will be denoted by {¢|r or simply [¢] when the set R is fized.

2. If f € L is an n-ary functional symbol, then [fB([p1],. .., [on))] is the equiv-
alence class of a p.c. function such that

fB([(Pl]’ (RS {(,On])(.’l‘) = fA((pl(x)v s )‘pn(I))'

3. If P € L is an m-ary predicate symbol, then PB is a relation such that

PB([‘PI]»---’ [om]) ff RC™ {x: PA(SOI (@), om(T))}

4. If c € L is a constant symbol. then the interpretation of c in B is the equiva-
lence class of the total computable function with constant value c*.
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The domains of the partial computable functions in the definition above contain
the set R and form a filter in the lattice £. The role that the cohesiveness of R
plays in the theorem below is similar to the role the maximality of the ultrafilter

plays in the ultraproduct construction.

Theorem 2.1. (Fundamental theorem of cohesive powers)

L IfT(y1,...,yn) is a term in L and [p1], ..., [pn] € B, then [T8([p1], - ... [wn])]
is the equivalence class of a p.c. function such that T8([p1],...,[pn])(x) =

TA(991 (I)v ] ‘Pn(:ﬂ))

2. If ®(y1,-.-,yn) is a formula in L that is a boolean combination of £, and 11;
formulas and [p1], ..., [¢n] € B, then

Bl (o], [on]) iff RC™ {z: Al ®(p1(2), ..., ¢a(z))}

3. If ® is a Il3 sentence in L, then B = ® implies A = ®.

4. If @ is a Iy (or X3) sentence in L, then B =& iff A &.

Proof. (1) The proof is straightforward but we note that we essentially use the
fact that the operations in A are computable. '

(2) We proceed by induction:
(2.1) Let ®(y1,....yn) = P(ti(y1,---+Yn)s-- - Tm(¥Y1,--,¥n)) be an atomic

formula and suppose [¥;] = 75([p1], ..., [¢n]). Then
B }= (I)([Wl], R [‘Pn])
iff
%l: P([yn],.... [¥m])
RC* {.’I.‘ A '= P('Q//'l(l')a . vwm(l'))}
iff

RC {z: Al 0(61(2),....om(x)}

(2.2) Suppose ®(y1,...,yn) = P1(y1,---,Un) A P2(y1,-.-,¥,) and the claim is
true for ®;(y1,...,yn) ¢ =1,2. Then

B = ®([p1], .-, [en])

iff

B @1([p1],-- -, [pn]) and B = ®o([pr], - . ., [u])

iff

RC* {z: AE ®i(pi(z),...,0n(x))} and
RC*{z: A ®(pi(x),...,0n(x))}
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iff
R {z: A @(o1(x), .. onlT))}

(2.3) Suppose ®(y1, ... yn) = ¥ (Y. y1,-. .. yn) and Uy, y1,.. ., ¥n) is a quan-
tifier free formula for which the claim is true.

(2.3a) Suppose B k= 3y¥(y, [¢1]s. .., [pn]) and suppose that the p.c. function
¢ is such that B = ¥([p], [¢1],- -, [en]). By the inductive hypothesis R C* {x :
A= U(p(z), p1(2), .-, en(z))} and so

R {x: A Fy¥(y, p1(2), .- ., pn(T))}.
(2.3b) Suppose R C* {r : A = Jy¥(y,p1(z),...,pn(z))}. Since the struc-

ture A is computable and ¥(y, yi,-..,yn) Is quantifier free we can define a partial
computable

p(x) = py € AJ[A E ¥(y, p1(2), ..., on(T))]-
Then
{:l? : _A|=Ey\Il(y,gol(x),...,wn(:r))} =
{z + AEY(p(@), p1(2),...,pn(x))}

and R C* {z : A E ¥U{p(@),91(x),...,on(z))}. By the inductive hypothesis
B k= ¥(lgl [p1]s- .., [pa]) and so B = 3y¥(y, [p1], ..., [@nl)-

(2.4) Suppose ®(y1,..-,Yn) ="¥(Y1,...,Yn) and U(yy,...,y,) is a £; formula
for which the hypothesis is true.

(2.4a) Suppose B = ®([¢1],. .., [¢n]) and let
D={z: A ¥(o1(z),...,pn(z))}

Since B ¥ U([p1),-..,[¢n]), then R €* D. Because ¥(y1,...,¥y,) is a I; formula
and @; for ¢ < n are p.c., then D is a c.e. set. Since R is cohesive we have

RN D =*0. Also, since R C* ﬂ dom(p;), then for almost all x € R we have

AE U (p1(z),. .., 0n(x)). Therefore R C* Az AETU(p1(x),...,pn(x))}.
(2.4b) Suppose R {z: AE"V(pi(xz),...,on(z))}. Then

Rn{z: AE¥(pi(x),...,pu(x))} =" 0
and by the inductive hypothesis B¥ ¥([¢1],...,[¢n]). Therefore
B }:1\11([991]1 HERR) {‘pﬂ])’
(3) Let & = Vy32Vt¥(y, z,t) where ¥(y, 2,t) is a quantifier free formula. Let

¢ € A be arbitrary and let ¢.(x) = ¢ for every z € w. Let [¢] € B be such that
B = Vt¥({pc], [¢].t). By (2) above we have R C* {z : A = Vt¥(p.(z), p(x),1)}.
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Then R C* {z: A |= 32¥t¥(c, z,t)}. The set is R is nonempty and z is not a free
variable of 32Vt W(c, z,t). Therefore A |= 32Vt¥(c, z,t) and so A = ®.

(4) Let ® = Vy32T(y, z) where ¥(y, 2) is a quantifier free formula.

(4a) The fact, that A = ® whenever B = ®, follows from (3).

(4b) Suppose that A = @ and let [¢] € B be arbitrary. We have that R C*
dom(p) = {z: A= 3=V (p(x),2)}. By (2), Bl=32¥([¢],2) and so B = ®. [

Note that if the structure A is decidable, then we can similarly prove the
following:

Theorem 2.2. If A is a decidable structure, then
1. If ®(y1,...,yn) is a formula in L. and [¢1],...,[pn] € B . then

BE ®([p1].. - [pa)) iff RS {z: A= S (@), ., n(2))}-

2. If ® is a sentence. then

Bl=® iff AE o.

Proof. (1) The proof is almost identical to the proof of part (2) of the main
theorem. We note only that for any formula ¥(y1,...,y,) the set {(a1,...,an) :
AkE¥(a....,a,)} is computable. Then the set {z : A | ¥(p1(z),...,on(x))} is
c.e. and steps 2.3 and 2.4 of the proof above can be carried for any formula V.

(2) Follows directly from (1). O

Definition 2.2. For c € A let [p.] € B be the equivalence class of the total
function ¢, such that p.(x) = ¢ for every x € w. The map d : A — B such that
d(c) = [pe] is called the canonical embedding of A into B.

Proposition 2.1. The following hold:
1. If the structure A is finite, then B= A.

2. If the structure A is decidable. then the canonical map d is an elementary
embedding of A into B.

3 If®(n,...,yn) is ally or a g formula in L and cy,...,c, € A, then

AlE®(cr,...,cn) iff BE ®(d(cr),-..,d(cn)).

Ann. Sofia Univ., Fac. Math. and Inf., 99, 2009, 193-201. 197



Proof. (1) Let [¢] € B be arbitrary. For any ¢ € A let X, = {z : p(2) = ¢}

and notice that X, is a c.e. set. Since dom(y) = U X, and A is finite, then for
cEA
some ¢, € A the set X., N R is infinite. Since R is cohesive we have R C* X,

and therefore [p] = [¢.,]. Therefore all equivalence classes in B correspond to the
constants in A and the canonical embedding of A into B is a 1-1 map. So B= A
follows directly from the definition of 5.

(2) Let ®(y1,-..,yn) be a £ (or IIp) formula and let ¢1,...,c, € A. If Ais
decidable, then

B = ®([pe,]s- - e, ]) i

RC*{z: A= ®{cy,...,cn)} iff

A ‘D(cl,...,c;L).

(3) Let ¢1,...,¢, € A and let Lg = LU {cq,...,c,} be the language L ex-
- panded by adding a constant symbol for each c;. Let Ac be the structure A with

the constant symbols ¢1,...,c, interpreted as ci,...,c, correspondingly. Let Bc

be the R—cohesive power of A¢. Then ®(cy,...,c,) will be a ¥, (or II3) sentence
in Lc and by the Fundamental theorem part (4)

Ac E ®(cq,....c,) iff Be E ®(ey,....cn)

which is equivalent to
A= ®(ey,. .. co) iff B ®(d(c1),....d(cn)) 0

Definition 2.3. Two sets A, B have the same 1-degree up to =" (denoted
A =} B) if there are Ay =* A and By =* B such that Ay = By.

Proposition 2.2. If M; =% M, are mazimal sets, By = [] A. and B> = [] A.
then B1g 32.

Proof. Let M! =* M; for i = 1,2 be such that M! =, Mj. Let B, = [] A and
M
notice that B2 B; for i = 1,2. Using Myhill Isomorphism Theorem (see [6, p.24])
we let o be a computable permutation of w such that o(Af]) = Al;. Define a map
® : B, — Bj as follows:

O ([¢]) = [¢] where p(z) = ¢(o(x)). We now prove that ® is an isomorphism
of B and B:

(1) Notice that v =377 Wy iff m C* {z : ¥i(x) = Yo(x)} iff K[—{ C* {z:
w1 (0(x)) = alo(z))} iff D(ey) =37 ®(1)2). So ® is correctly defined and injective.
Finally, if [¢] € Bf and ¢¥(z) = p(0c~(z)), then ®([v]) = [p].

(2) Let f € L be an n-ary functional symbol.
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Then cp([fB-'z([wl]_ ...+ [¥n])]) is the equivalence class of a p.c. function such
that ®([fB2([vn],..., [¢n])]) () = fAR1(0(2)),- .., Yulo(z))).

That means that ®([fZ2([¥n].,..., [Wa])]) = [FZ(@[1]), ..., ®([va]))].

(3) If P € L is an m-ary predicate symbol, then

PE([n],.., [9ha]) iff

ML C* {z: PA@(2), ... om(x))} iff

M| C* {z: PA@W(a(x)).. .., dm(o(x)))} iff

PEL(@([i1])..... ®([¥a])) O

Proposition 2.3. Fvery computable automorphism of A can be extended to
an automorphism of B.

Proof. Let o be a computable automorphism of .A. Define a map & on B as
follows: ‘ ‘

a([el) = [l

where ¥(n) = o(¢(n)). The proof that & is an automorphism of B is straightforward.
Notice also that if ¢ € A and ¢(n) = ¢ for almost every n € R, then o([¢])(n) is
the constant o(c) for almost every n € R. 3

_ Example. Let F be a computable field and let I be a maximal set. Then
F =[] F is a field such that:
1

1. F2 Fif F is finite,
2. If [¢] € F is algebraic over F', then ¢ is a constant function on I.

3. Every computable automorphism ¢ of F' can be extended naturally to an
automorphism & of F.

Proof. We will prove only (2), (1) and (3) follow directly from the propositions
above. Suppose [¢] € F is root of a polynomial g(z) € F [z]. Extend the language
of F' by adding new constants for each coefficient of the polynomial g. Let F} be the
cohesive power of F over I in the extended language. By the fundamental theorem
of cohesive powers we have

FiE (g(lg]) =0) if TC* {21 F k= (g((a)) = 0F)}.

This means that ¢(x) € F is a root of the polynomial g(xz) for almost every z € 1.
Since g(x) can have finitely many roots, then C' = {c: Jz[{p(z) = ¢) A (g(c) = 0)]}
is finite. For each ¢ € C let X, = {z : p(x) = ¢}. Notice that X, is c.e.. Using the
fact that I is cohesive we notice that

Vey,ep € Cley # e — (| Xe, NI} < ooor |X(‘.2 NT| < oo)].
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Since C' is finite this implies that for some ¢ € C' we will have T C* X,.. This means
that [] is the equivalence class of a function that has value con 1. O

3. CONCLUDING REMARKS

As we mentioned an example of cohesive powers appears naturally in the study
of the structure of the lattice of subspaces of the fulliy effective vector space Vi
over a computable field F. The lattice of computably enumerable subspaces of
Vs modulo finite dimension is denoted £*(V4 ). The study of V. was initiated
by Metakides and Nerode in [5]. The lattice £*(Vic) is an interesting modular
analog of £*, the extensively studied (see [6]) lattice of c.e. sets modulo finite sets.
Different cohesive powers of the field F' appear (see [3]) in the characterization of
principal filters of closures of quasimaximal sets.

n
Let Q = () I; where I; (i < n) are maximal subsets of Iy~a fixed computable

i==1
basis of V. Suppose that I, (i < n) are partitioned into k equivalence classes with
respect to the relation =} of having the same 1-degree up to =*. Suppose that
the i — th equivalence class has n; elements. In [3] we proved that the principal
filter in £*(V,¢) of the linear span of @) is isomorphic to the product of the lattices
(L{n, F;))E_,. Here L(n;, F;) is the lattice of subspaces of an n;-dimensional vector
space over a field F‘, The field F, ; is the cohesive power of F w.r.t. a cohesive set R;
that is the complement of a maximal set from the i-th equivalence class described

above.
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ON MUSIELAK-ORLICZ SEQUENCE SPACES
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We investigate Mushielak-Orlicz sequence spaces £¢ with a dual £, which is stabilized
asymptotic £~ with respect to the unit vector basis. We give a complete characteriza-
tion of the bounded relatively weakly compact subsets K C £5. We prove that ¢g is
saturated with asymptotically isometric copies of £; and thus ¢4 fails the fixed point
property for closed, bounded convex sets and non—expansive (or contractive) maps on
them.

Keywords: Mushielak-Orlicz sequence spaces, asymptotically isometric copy of 3,
asymptotic £x space, fixed point property, weakly compact.
2000 MSC: 46B20, 46B45, 46E30, 46A45, 47H10.

1. INTRODUCTION

The notion of asymptotic ¢, spaces first appeared in [14], where the collection
of spaces that are now known as stabilized asymptotic ¢, spaces were introduced.
Later in [13] more general collection of spaces, known as asymptotic £, spaces, were
introduced. Characterization of the stabilized asymptotic £5, MO sequence space
was given in [5]. It is found in [17] that if the dual of a MO sequence space {¢
is stabilized asymptotic s space with respect to the unit vector basis then f¢ is
saturated with complemented copies of #; and has the Schur property.

1Research is partially supported by National Fund for Scientific Research of the Bulgarian
Ministry of Education and Science, Contract MM-1401/04.
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A characterization of the relatively weakly compact sets in an Orlicz spaces
L 11[0, 1], such that the function N complementary to M satisfies lim;_ A—,\((’\,—')) =
for some 1 < A < oo is given in [2]. Using the technique of [2] and [17] we generalize
this result for MO sequence spaces. More precisely we characterize the relatively
weakly compact sets of a MO sequence space {3, and its dual £} is stabilized
asymptotic £, space with respect to the unit vector basis.

In the second part of this note we prove that MO spaces £4 with stabilized
asymptotic £, dual are saturated with asymptotically isometric copies of 1. The
notion of asymptotically isometric copy of ¢; in a Banach space appeared in [7]
and is used to investigate the fpp for non—expansive mappings of the non-reflexive
subspaces of L]0, 1]. Using the ideas of {1], [7] and [17] we show that any subspace
of £ contains an asymptotically isometric copy of ¢1, provided that £ is stabilized
asymptotic £, space with respect to the unit vector basis and as a consequence of
[7] this class of MO sequence spaces fails the fpp for closed, bounded, convex sets
in £ and non-expansive maps on them. Let us mention that such a conclusion
could have been drawn directly by using the recent characterization of the MO
sequence spaces € having fpp given in [16]: An MO sequence space has fpp for
closed bounded convex sets and non-expansive maps on them iff it is reflexive. The
examples at the end show that sometimes to check reflexivity is more difficult than
to check that £} is stabilized asymptotic £, with respect to the unit vector basis,
due to the engagement of several constants in the definition of the §,—condition for
a MO function ®.

2. PRELIMINARIES

We use the standard Banach space terminology from [11], Let us recall that
an Orlicz function M is even, continuous, non-decreasing convex function such
that M(0) = 0 and lim;_,. M(t) = co. We say that M is non-degenerate Orlicz
function if M(t) > 0 for every t > 0. A sequence ® = {®;}22, of Orlicz functions
is called a Musielak-Orlicz function or MO function in short.

The MO sequence space €3, generated by a MO function ® is the set of all real
sequences {z;}52; such that Y .o, ®;(Ar;) < oo for some A > 0. The Luxemburg’s
norm in {4 is defined by

o
lz]|e = inf {7' >0: Y ®i(xi/r) < 1} :
i=1
We denote by he the closed linear subspace of fg, generated by all z =
{zi}2, € €y, such that Y- ®;(Az;) < oo for every A > 0.
If the MO function ® consists of one and the same function M one obtains the
Orlicz sequence spaces £3; and h,y.
Let 1 < p;, i € N be a sequence of reals. The MO sequence space {3, where
® = {t"}}2, is called Nakano sequence space and is denoted by £,,;. In [4] it was
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proved that two Nakano sequence spaces £(,,,}, £(,,} are isomorphic iff there exists
0 < C < 1 such that

x
ZC’]/“"‘""I < 0o.
i=1

An extensive study of Orlicz and MO spaces can be found in [11] and [15].

Definition 2.1. We say that the MO function ® satisfies the d2 condition at zero
if there ezist constants K,3 > 0 and a non-negative sequence {c,};o € €1 such
that for everyn € N

D,(2t) < K&,(t) + cn

provided t € [0, @, (3)].

The spaces {p and hg coincide iff ® satisfies the d, condition at zero.

Recall that given MO functions ® and ¥ the spaces {¢ and fy coincide with
equivalence of norms iff ® is equivalent to ¥, i.e. there exist constants K, >0 and
a non-negative sequence {c, },—; € {1, such that for every n € N the inequalities

&, (Kt) < Un(t) +cn and U, (Kt) < Ou(t) + cn

hold for every t € [0, min(®;,'(8), ¥, *(3))], [9] and [12].

Throughout this paper M will always denote Orlicz function while ® - an
MO function. As the properties we are dealing with are preserved by isomorphisms
without loss of generality we may assume that ® consists entirely of non-degenerate
Orlicz functions, such that for every i € N the Orlicz function ®; is differentiable,
®.(0) = 0 and ®;(1) =1 [17]

Definition 2.2. For an Orlicz function M, such that lim;_q M(t)/t = 0 the func-
tion

N(z) = sup{t|z| — M(t) : t > 0},

is called function complementary to M.

Definition 2.3. The MO function ¥ = {¥;}32,. defined by
V,(z) = sup{tle] — ®;(t): t > 0},j=1,2,....,n, ...

is called complementary to ®.

Let us note that the condition lim;—_ M (t)/t = 0 secures that the complementary
function N is always non-degenerate. Observe that if N is function complementary
to M, then M is complementary to N and if the MO function ¥ is complementary
to the MO function ®, then & is function complementary to ¥. Throughout this
paper the function complementary to the MO function @ is denoted by ¥.
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It is well known that h}; = €y and hy = €y. Well known equivalent norm in
{g is the Orlicz norm [|z[|§ = sup {Z;‘zl ziy; 2w Yilys) < 1}, which satisfies
the inequalities (see e.g.[10])

-l <119 <20 fle

We will use the Holder’s inequality: E;’il lzjy;] < [1zl|$]lyllw, which holds for
every T = {r;}3%, € o and y = {y;}3X, € fw, where ® and ¥ are complementary
MO functions.

By {e;}%, and {ej}32, we denote the unit vector basis in he and hy re-
spectively. For a Banach space X with a basis {v;}72; and element x € X, = =
>oo, ziv; we define suppz = {i € N : z; # 0}. We write n < z if n < min{suppz}
and z < y if mdx{bllppd'} < min{buppy}. We say that z is a block vector with
respect to the basis {v;}32, if z = 3.7 p Tii for some finite p and ¢ and we say

1=

" that z is a normalized block vector if it is a block vector and ||z} = 1.

Definition 2.4. A Banach space X is said to be stabilized asymptotic €. with
respect to a basis {v;}3%,. if there exists a constant C > 1, such that for every
n € N there erists N € N, so that whenever N < x; < ... < x,, are successive
nov"mallzed block vectors. then {x;}?_, are C—equivalent to the unit vector basis of
0.

< C max |ail.

1<i<n

E a;xT;

The following characterization of the stabilized asymptotic £, MO sequence
spaces is due to Dew:

— <
c Jmax Jail

Proposition 2.1.(Proposition 4.5.1 [5]) Let ® = {®;}32, be a MO function. Then
the following are equivalent:

(i) he 1is stabilized asymptotic £ (with respect to its natural basis {e;}7%, );

(i) there exists A > 1 such that for all n € N, there exists N € N] such that
whenever N < p < q and Zg:p ®;(a;) <1. then

q

Z i(aj/X) <

Jj=p

S

An easy sufficient condition for he to be stabilized asymptotic £~ with respect
to the unit vector basis is the following

Proposition 2.2. (Proposition 4.5.8 [5] ) Let pa(j) = inf{®;(\t)/®;(t) : t > 0}.
If lim @x(j) = oo for some A > 1 then he is stabilized asymptotic €~ with respect
j—o

to the unit vector basis.
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Let X be a Banach space. By Y — X we denote that Y is isomorphic to a
subspace of X .

Definition 2.5. We say that a collection K C he has equi-absolutely continuous
norms if

for every ¢ > 0 there is N € N such that sup{|| Y i, zrer| 1 r = {z}}5, € K} <
€ for everyn > N.

Definition 2.6. We say that a Banach space (X, |- ||) is asymptotically isometric
to £y if it has a normalized basis {v,}32, such that for some sequence {A\,}2,

increasing to 1 we have
X oG
S Aaltal <D tavn (1)
n=1

n=1
forallz =377  t,v, € X.
Whenever (X, || - ||) contains a normalized sequence {x(™ 1}, satisfying (1)

then the closed linear span of {x(™}>%, is asymptotically isometric to £,
14 1

n=

We say that X is saturated with subspaces with the property (*) if in every
infinite dimensional subspace Z of X there is an infinite dimensional subspace Y
of Z isomorphic to a space with the property (*).

3. WEAKLY COMPACT SETS OF MO SEQUENCE SPACES

Lemma 3.1. Let ® be a MO function. which has 62 condition at zero and K C he.
Suppose that K fails to have equi-absolutely continuous norms. Then there are
g0 > 0 and sequences {x™}, € K. {pny@n}y: Prrtn € N. pp < gn < Pt
lim, o pr = lim,, .o g, = 00 such that

Gn
Z ZI?ER)Gi > & ] (1)

=p,
for every n € N.

Proof. Since K does not have equi—absolutely continuous norms there are € > 0,
{@n}nen, a, € N and {2(™} C K such that

o<

Z zi(")ei > €.
1=y
Let ny = 1. We choose n, > ny such that
a,,z—l
Z 2Me |l > e/2
;€ /2.
t=ag
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Putpr =an,, ¢1 = an, — 1, ) =20 We choose n3 > np such that

g —1

Z 2"eill > ¢ /2.

i:(x,,2

Put P2 = Qpgy 2 = Qpyy — 1’ :1-(2) — Z 7”)
If we have selected (1), 2(2) .. ’”) by ) = 2(n) p, = = O, G = 0., — 1
for 1 < s < k, then we choose ny.; > ny such that

nppo— 1

Z el > e/,

=y,

Now we put pry1 = Qs Qo1 = @y, — 1 R+ — S(nugr)
Obviously the sequence {x(*)} | verifies (1) with gy = z/2. O

Lemma 3.2.([2/) Let X be a Banach space. Suppose that {z,} C X is weakly
null and {x}} C X* is weakly* null. Then for each ¢ > 0 there is a subsequence
{ne}i, of positive integers so that for each k € N holds:

<eé€.

Ty, ; (Tny)

ik
Theorem 1. Let ® be a MO function. which has 82 condition at zero and with
a complementary function ¥ wch that hy is stabilized asymptotic ¢, with respect
to the unit vector basis {e 521 Then any weakly null sequence in {y has equi-
absolutely continuous norms.

Proof. Suppose the contrary. There is a weakly null sequence {z(™}> , C ¢¢ that
fails to have equi-absolutely continuous norms. By Lemma 3.1 there exist g9 > 0
and strongly increasing sequences {p, }5%,, {gn}2%1, Pnv@n € N, pp < gn < Prsi

such that
qn

E :rgn)e,,-, > &gp.
=P,

Choose y™ € hg such that supp y™ = {i}7 N Pyl

qn (n) (n
Ii“p Yi ' Ty )

(")) < 1 and
" <

> —150. For a fixed x € ¢4 by Holder’s Inequahty:

r) Z ny™| < Z Trex ”y< >”

k=p,, k=p,

As z is fixed and lim,, o pp = limy,_.n g, = 00 it follows that

Gn

lim E rreril =0.
n-—00
k=p, @
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Thus {y(™}>, is weak® null sequence. By Lemma 3.2 there is a subsequence of
naturals {n;}2°, so that

G
S| S e <o
J#k |i=pa;

We claim that

ym ar )
3 . 77 — 2
hmZ\Il < ) JL“;Z‘I’J( S ) 0, (2)

J=Pn,

where A > 1 is the constant from Proposition 2.1. Indeed, by assumption hy

is a stabilized asymptotic ¢, space and there exists A > 1 such that for every
Gny

m € N there is N € N so that whenever Z \pj(y](_nk)) < 1 then the inequality
J=Pn,

iy ("A)
Z U, ( > < 1/m holds for every ¢, > pn, = N.

i=prn
Iny, y(nk)
Thus "Allglx Z P ( 3 ) =0.

J=Puy
Therefore there is subsequence {ng,, }2°_, such that

dny,, (nk )
33 q/( ) L

m=1i= =P,

Let y = 3.°_, y(™). Obviously y € hy and since {z(™}3¢, is weakly null we
must have

g,
. ("“- ) (nk
lim ("k,,, — m) (),
Jim (e = i 3 5 0
j= 11,—-[)7”\
But
i ) 9k, i (i)
(ns, (m,,,) (i) (P51 ~ () ()
S ST ED RS B DD D
j=1i= =Py, i=po,, j#Em i=pnk’,
S 3 1 1
—£0 — =€0 = —¢&p,
Z 450735 0= 7¢0
a contradiction. O

Let us recall that C is weakly scquentially compact if every sequence of points
in C has a subsequence weakly convergent to a point of C.
For the proof of the next result we need:
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Theorem 2. (Eberlein-Smulian. see e.g. [8]) Let X be a separable Banach space
and C be o weakly closed subset of X. Then C is weakly compact if and only if C
1s weakly sequentially compact.

By Theorem 1 it follows immediately:

Corollary 3.1. Let & be a MO function which has 3, condition at zero and with
a (‘ompl(’menmm/ Sfunction U such that hy s stabilized asymptotic €. with respect
to the basis {e 721- Then a bounded set K C fg is relatively weakly compact iff
K has equi- absolutely continuous norm.

Proof. Necessity. Suppose that K C he is relatively weakly compact. If K fails to
have equi-absolutely continuous norms then by Lemma 3.1 there are ¢g > 0 and
sequences {2} | C K, {pn'qn}2%1, Purtn €N, pn < gn < Py such that

qn
T
E .T?( )ei > &g

i=pa

for every n € N,
By Eberlein-Smulian theorem there are z € ¢4 and a subsequence {z("*)}> |
such that (™) —s z weakly in 3. Thus by Theorem 1 {z(m) — 2} | has

equi-absolutely continuous norms. Hence limy_, ”ZZ - (zz(_nk) - Ii)cil =0 and
"‘C
dn
obviously limy_ “Z k , Ti€i l = (). But
Tn,, Dy, T,
gg < Z I_Enk)ei < Z T;e;ll + Z (.TL‘E"’C) ——:Ei)€7j — 0,
".:Pn“, i:T’n,\, 7'=pﬂ.k. ke

which is a contradiction.

Sufficiency. Let K be a bounded set with equi-absolutely continuous norms.
Let {z(™}2 | be an arbitrary sequence of elements in K. Obviously there exists L

such that lar(" | < L for every n, k € N. Thus there exists a subsequence {z(")}X

such that Hm;_, I(" D — 2 for every k € N.
Let e > 0. Thore ex1sts N € N such that for every s > N and every i € N the

1nequahty holds ”Zk . ek“ < ¢/3. Fix s > N. There is M € N such that for

every n;,n; > M and every k = 1,2, ..., s the inequality ]:r,,(c"’) - L"’)l < 5 holds.
Thus we can write the inequalities:

”-’Lm ) — gln )” = ”Zk 1”3(n )f’k - Zk 1m}cn ) “

s ; s ; (ny)
< HZZ:I xﬁcn )ek - 211:1 xin )ek” + “Zk s+1 Ii €k — Zk s+1 Tk "

< St b =l [y 2] [ mn

£o4 €4 £
<gpstzty=c¢
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Consequently {z"}5%, is a Cauchy sequence and thus it is norm convergent
to x € £4 and thus it is weakly convergent. O

Remark. Let us mention that for the proof of the sufficiency in Corollary 3.1
we do not need that £y is stabilized asymptotic £ with respect to the unit vector

basis {e;}72,.

4. FIXED POINT PROPERTY FOR MO SEQUENCE SPACES

The next Lemma is similar to that in [17], where it is shown that for every
normalized block basis {z(™}2%, of the unit vector basis {e;}3<; in {¢ contains a

subsequence such that [z(™)]%, is isomorphic to £;.

Lemma 4.1. Let ® be a MO function. which has d; condition at zero and hy.
generated by the MO function ¥. complementary to ®. is stabilized asymptotic £
with respect to the unit vector basis {€3}7%;. Then every normalized block basis

{z"M}x_| of the unit vector basis {e;}72, in lo contains a subsequence {z{m)}2e,
such that [x(")]%, is asymptotically isometric to £;.

Proof. Let {z(™}> | be a normalized block basis of the unit vector basis {e;}32,

Ly . . .
in £y, where 2™ = 37" ,,‘,1'. 1 :rj Ye;, {ma}22, strictly increasing sequence of nat-

urals. Let {\,}2%, be an mcreasmg sequence, such that lim,,_,~, A, = 1. For every

n € N there exists y™ = 377 | yJ( e} € hy such that

oc
Vi) <1 Do ua 2 A
1 j=1

'M8

il

J

WLOG we may assume that supp y'™) = supp zm,
For the sequence {y(™}22, and the constant A > 1 from Proposition 2.1 holds:

y(") Myt y(n)
hmZ\Il (&):hm Z v <J)\)=O.

Jj=1 j=mn+1

The proof is essentially the same as for (2).
Now passing to a subsequence we get a sequence

Mn g +1

(™ bren, ™) = Z y("‘“) €

j=my, +1

such that

oo Mg+l (nh)
>y qx( )51.

k=1j=m,, +1
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Denote y = 3 .o, y™) = 2, (Z;n";:':Jrly(“”e;). Obviously y € £y and
lylle < A As

Min, 41

i3S e =0

k=s j= m,,k+l w
there exists sq € N such that

o Mg i

PN IRIAL <3

k=so j=m,, , +1 W

Consequently
c

Mn 41 My +1

)
Z Z ("—k)e* <92 i Z y("%) o<1

k=sqy j= 7nnA+1 v k=50 j= mnk+1 ¥

Denote § = 3.2 Z;“Pk yj("*) *. Then ||7]|9 < 1. Now using Hélder’s inequality

for any sequence {t,}2 |, such that Zkzsﬂ thosy+12™) € g we get

Z 27 sn-*-lT( ¥

M, 41

(
oSS ™)

k=sq P Hqu, k=35, j= m,,k+l
x Moy 4+t e
2 Z th—so+1] Z zlﬁ"k)a:;"*') > Z [tk—so+1]Ak-
k=sq j=ma, +1 k=sq

O

Theorem 3. Let ® be a MO function. which satisfies the 3o condition at zero and
hy. generated by the MO function ¥. complementary to ®. is stabilized asymp-
totic € with respect to the unit vector basis {¢} Y521 Then {s is saturated with
asymptotically isometric copies of £.

Proof. According to a well known result of Bessaga and Pelczinski [3] every infinite
dimensional closed subspace Y of £¢ has a subspace Z isomorphic to a subspace of
£y, generated by a normalized block basis of the unit vector basis of f4. Now to
finish the proof it is enough to observe that by Lemma 4.1 the space Z contains an
asymptotically isometric copy of ¢;. O

By using a result from [7] that states that a Banach spaces containing an

asymptotically isometric copy of £; fail the fixed point property for closed, bounded,
convex sets and non—expansive (contractive) maps on them, we easily get
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Corollary 4.1. Let ® be a MO function. which has d2 condition at zero and hy.
generated by the MO function W. complementary to ®. is stebilized asymptotic £
with respect to the unit vector basis {€;}52,. Then Uy fails the fized point property
(fop) for closed. bounded. conver sets in €y and non-expansive (or contractive)
maps on them.

We give at the end some examples of MO sequence space, saturated with
asymptotically isometric copies of €.

Example 1.([17]) Sometimes we know only the complementary function W.

_
For example let the MO function ¥ = {¥;}22; be defined by ¥; = e*e b
where lim; ., a; = oo and 0 < ¢;. Then ¢y is stabilized asymptotic £ with
respect to the unit vector basis {e}}52; because

(D
lim inf{M:OSrcg 1}
j—x \I’J(T)

20— 297 =1
= lim infle 277 :0<x <13 = lime" 27 =o0.
J—oo j—

Thus we conclude that €4 is saturated with asymptotically isometric copies of £1 and
fails fpp for closed, bounded, convex sets in £¢ and non-expansive (or contractive)
maps on them.

Example 2.([5]) Consider the Nakano sequence space £, ;, where p, =
logy(n + 1)

n+1\"
log, ( > >
logy(n+1)

Gn = logo(n + 1). It is easy to see that im,_, pp = limg,_n TN =1
n

It is well known that Efp”} = {q,}» Where 1/p, +1/q, =1, ie.

and thus according to [4] and [12] £y, ; is saturated with spaces isomorphic to
¢1. Moreover according to [5] £{,, ) is stabilized asymptotic £, with respect to the
unit vector basis {€3}°, and thus ¢y, y is saturated with asymptotically isometric
copies of {1 and fails fpp for closed, bounded, convex sets in ¢ and non-expansive
(or contractive) maps on them. -
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