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ON THE STRUCTURE OF (¢ mod ¢)-ARCS
IN FINITE PROJECTIVE GEOMETRIES

ASSIA P. ROUSSEVA

In this paper, we introduce constructions and structure results for (¢ mod ¢)-arcs. We
prove that all (2 mod g)-arcs in PG(r, ¢) with r > 3 are lifted. We find all (3 mod 5)
plane arcs of small cardinality not exceeding 33 and prove that every (3 mod 5)-arc
in PG(3,5) of size at most 158 is lifted. This result is applied further to rule out the
existence of (104, 22)-arcs in PG(3,5) which solves an open problem on the optimal
size of fourdimensional linear codes over Fs.

Keywords: finite projective geometries, arcs, blocking sets, divisible arcs, quasi-
divisible arcs, the Griesmer bound, extendable arcs, minihypers

2000 Math. Subject Classification: Main 51A20, 51A21, 51A22, Secondary 94B65

1. INTRODUCTION

Consider the geometry ¥ = PG(r,q), r > 2. Denote by P be the set of points
and by H the set of hyperplanes of 3. Every mapping K : P — N from the pointset
of the geometry to the non-negative integers is called a multiset in ¥. This mapping
is extended additively to every subset Q of P by K(Q) = > pco K(P). The integer
n := K(P) is called the cardinality of IC. For every set of points Q C P we define
its characteristic (multi)set xgo by

|1 itPeQ,
xo(P) = { 0 otherwise.
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Multisets can be viewed as arcs or as blocking sets. A multiset K in X is
called an (n,w)-multiarc (or simply (n,w)-arc) if (1) K(P) =n, (2) K(H) < w
for every hyperplane H, and (3) there exists a hyperplane Hy with K(Hp) = w.
Similarly, a multiset K in PG(r, q) is called an (n,w)-blocking set with respect to
the hyperplanes (or (n,w)-minihyper) if (1) K£(P) = n, (2) K(H) > w for every
hyperplane H, and (3) there exists a hyperplane Hy with K(Hy) = w.

An (n,w)-arc K in 3 is called t-extendable, if there exists an (n + ¢, w)-arc X'
in 3 with X'(P) > K(P) for every point P € P. An arc is called simply extendable
if it is 1-extendable. Similarly, an (n,w)-blocking set IC in ¥ is called t-reducible, if
there exists an (n — ¢, w)-blocking set K’ in ¥ with K'(P) < IC(P) for every point
P € P. A blocking set is called irreducible if it is not reducible.

Given a multiset K in X, we denote by a; the number of hyperplanes H with
K(H) = i. The sequence (a;);>o is called the spectrum of . An (n,w)-arc K with
spectrum (a;) is said to be divisible with divisor A > 1 if a¢; = 0 for all ¢ # n
(mod A). Given an integer ¢t with 1 < ¢ < ¢ — 1, we call the (n,w)-arc K with
w =n+t (mod q) t-quasidivisible with divisor A > 1 (or t-quasidivisible modulo
A)ifa;=0foralliZn,n+1,...,n+t (mod A).

Let ¢ be a fixed non-negative integer. An arc K in ¥ is called a (f mod g)-arc
if

(1) for every point P € P, K(P) < t;

(2) for every subspace S of dimension at least 1, K(S) =t (mod q).

These arcs arise naturally as certain duals of {-quasidivisible arcs. Let K be a
t-quasidivisible (n,w)-arc with divisor ¢ in X, t < ¢q. Denote by K the arc

= [ H — {0,1,...,t}
IC-{H — IE(H)En—}—t—IC(H) (mod ¢) (1.1)

where H is the set of all hyperplanes in ¥. This means that hyperplanes of mul-
tiplicity congruent to n + a (mod ¢) become (¢ — a)-points in the dual geometry.
In particular, maximal hyperplanes are O-points with respect to K. Then K is a
(t mod g)-arc [7,8]. In the general case the cardinality of K cannot be obtained
from the parameters of K. Extendability properties of K can be derived from the
structure of K. In particular, K is extendable if it contains a hyperplane in its sup-
port. For a more detailed introduction to arcs and blocking sets and their relation
to linear codes, we refer to[5,8].

The aim of this paper is to present various constructions and structure results
for (t mod g¢)-arcs. Section 2 contains general constructions for (¢ mod g)-arcs.
The most important is the so-called lifting construction, which is partly due to the
fact that in dimension higher than 3 the only known (¢ mod g)-arcs are sums of
lifted arcs. In section 3, we prove that every (2 mod g¢)-arc is lifted. This result
implies Maruta’s extendability result for linear codes with weights —2, —1,0 mod ¢
for ¢ odd. In section 4, we characterize the (3 mod 5)-arcs of small cardinality and
prove that every (3 mod 5)-arc in PG(3,5) of size not exceeding 153 is lifted. In
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section 4, we apply the results from section 3 to rule out the existence of (104, 22)-
arcs in PG(3,5), or equivalently, of [104, 4, 82]5-codes.

2. GENERAL CONSTRUCTIONS

In this section, we describe several constructions for (¢ mod ¢)-arcs. We start
with a straightforward observation.

Theorem 1. Let Fy (resp. Fz) be a (t1 mod q)-arc (resp. (t2 mod q)-arc)
in PG(r,q). Ift =t1 4+ t2 < gq, then F1 + F2 is a (t mod q) arc. In particular, the
sum of t (not necessarily different) hyperplanes is a (t mod q)-arc.

The next construction is less obvious.

Theorem 2. Let Fy be a (t mod q)-arc in a hyperplane H 2 PG(r — 1,q) of
Y. = PG(r,q). For a fized point P € ¥\ H, define an arc F in X as follows:
-F(P)=t;
— for each point Q # P: F(Q) = Fo(R) where R = (P,Q) N H.
Then the arc F is a (t mod q)-arc in PG(r,q) of size q|Fo| + t.

Proof. As already noted it is enough to prove that the multiplicity of every
line is ¢ modulo ¢. This is obvious for the lines through the point P. Now consider
a line L in ¥ which is not incident with P. Let 7 be the plane defined by P and L:
7= (L, P). Set L’ = 7wNH. Obviously, L contains points of the same multiplicities
as L'. The multiplicity of L' is F(L') = Fo(L) = ¢ (mod ¢) which proves the result.
The construction is illustrated in the picture below. 0

F(Q) = Fo(R)

H= PG(T - 17q)

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22. 7



We call the (¢ mod g)-arcs obtained by Theorem 2 lifted arcs and the point P
— lifting point. We can have a more general notion of lifted arcs replacing the point
P by a subspace U. Let Fy be a (t mod g)-arc in the subspace V of ¥ = PG(r, q)
and let U be a subspace with dimU +dimV =r—1, UNV = @. The arc F in ¥
defined by

— F(P) =t for every point P € U,

— for each point @ # P: F(Q) = Fo(R) where R=(U,Q)NV
is called an arc lifted from the subspace U. Obviously F is also a (¢ mod g¢)-arc.
Let us note that if an arc is lifted from a subspace then it can be considered as
lifted from any point of that subspace. We have also a partial converse of this
observation.

Lemma 1. Let the arc F be lifted from the points P and Q, P # Q. Then F
is also lifted from the line PQ. In particular, the lifting points of a (t mod q)-arc
F form a subspace S and F is lifted from any point of S.

Proof. All points on the line PQ are t-points. Let R be an arbitrary point in
Y. Then all points on PR (resp. QR) different from P (resp. @) have the same
multiplicity, a say. Then all points in the plane (P, @, R) outside PQ have also
multiplicity a, which proves the lemma. O

The sum of ¢ hyperplanes can be viewed as the sum of lifted arcs. Remarkably,
we do not know an example of a (¢ mod ¢)-arc in PG(r, q), with » > 3, that is not
the sum of lifted arcs. It turns out that if in the geometry PG(r, ¢) there exist only
lifted (¢ mod g)-arcs then every (¢ mod g)-arc in PG(r/,q), ' > r, is also lifted.

Theorem 3. Let K be a (t mod q)-arc in PG(r,q) such that the restriction
Klu to every hyperplane H of PG(r,q) is also lifted. Then K is a lifted arc.

Proof. Consider a (t mod g)-arc K in PG(r, ¢). Let S be an arbitrary subspace
of PG(r, ¢) of codimension 2. Denote by H;, i =0,...,q, the hyperplanes through
S. The arcs K|y, are all lifted (¢t mod g)-arcs. Let us denote by P;, i =0,...,q,
the corresponding lifting points.

Assume that for some indices, ¢ and j say, P, € S and P; € H; \ S. Clearly,
the line P; P; consists entirely of t-points. Let L be an arbitrary line in H; incident
with P; and set L NS = Q;. All points on the line P;Q);, different from P; have
the same multiplicity a, where 0 < a <. Thus all points in the plane (P;, P}, Q;)
outside P;P; are a points. Now it is clear that K| H; can be viewed as lifted from
the line P;P; and hence from any point of P;FP;.

Assume that P, € H; \ S for all i = 0,...,¢. If the points Py,..., P, are
collinear then IC is lifted from the line (P; |i =0,...,q).

Now assume that the points P; are not collinear. Then there exists a hyperplane
H in PG(r,q) that does not contain any of the points P;. Set T = HNS. If we
denote G; = H N H; then all the arcs K|g, are projectively equivalent to Kg.

Let us first assume that the lifting point @ of K|y is contained in G; \ T'. Set
Q; = SNQP;. Obviously, P;Q; is a line of ¢t-points. Consider an arbitrary line L
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in H; through P;. If the points on L different from P; are a-points then all points
on the line through @ and L N G; different from @ are also a-points. Hence all
points in the plane (L, Q;) outside P;Q; are a-points and K|g, is lifted from P;Q);.
Therefore it can be viewed as lifted from any point on P;@;, in particular Q);.

We have proved so far that without loss of generality we can assume that all
points P; are contained in S.

Consider the subspace T of S generated by the points P;, T = (P; | i =
0,...,q}. All points in T are of maximal multiplicity. Let @ € S\ T be a point
of multiplicity a. All points from (T, Q) \ T also have multiplicity a. Hence the
restriction K|g is lifted from the subspace T. Since S was fixed arbitrarily, the
restriction of I to any subspace of codimension 2 is a lifted arc.

We repeat this argument for the subspaces of smaller dimension. For subspaces
of dimension 2 this means that all planes contain a line of t-points with all the
remaining points of multiplicity a. It is easily checked that in such case we have
a hyperplane of t-points and all the remaining points outside this hyperplane are
a-points. But such an arc is obviously a lifted arc. O

In the plane case, non-trivial (¢ mod g)-arcs can be constructed as o-duals of
certain blocking sets. Let I be a multiset in ¥. Consider a function o such that
o(K(H)) is a non-negative integer for all hyperplanes H. The multiset

(2.1)

o H — NO
K { H — o(K(H))

in the dual space 3 is called the o-dual of K. If o is a linear function, the parameters
of K7, as well as its spectrum, are easily computed from the parameters and the
spectrum of IC (cf. [1,10]).

Theorem 4. [7,8] Let F be a (t mod q)-arc in PG(2,q) of size mg+t. Then
the arc F° with o(z) = (x —t)/q is a ((m — t)g + m,m — t)-blocking set in the
dual plane. Moreover the multiplicities of the lines with respect to this blocking set
belong to {m —t,m —t+1,...,m}.

3. (2 mod Q)-ARCS

Let us start by noting that an (1 mod ¢) arc is projective and hence either a
hyperplane or the complete space [3,4]. For ¢ = 2 and odd ¢ > 5, the (¢ mod g)-arcs
were characterized by Maruta [13]. These are the following:

(I) a lifted arc from a 2-line; such an arc has 2q 4+ 2 points and there exist two
possibilities
(I-1) a double line, or

(I-2) a sum of two different lines;

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22. 9



(IT) a lifted arc from a (g + 2)-line; such a line has ¢ double points, ¢ — 2i + 2
single points and ¢ — 1 0-points, where i = 1,..., %; we say that such an
arc is of type (II-i) if it is lifted from a line with ¢ double points;

(III) a lifted arc from a (2¢ + 2)-line, i.e. the sum of two copies of the same plane;

(IV) an exceptional (2 mod g)-arc for ¢ odd; it consists of the points of an oval,
a fixed tangent to this oval, and two copies of each internal point of the oval.

Now we are going to prove that in higher dimensions every (2 mod g)-arc is a
lifted arc. Consider a projection ¢ from a 2-point P onto some plane not incident
with that point. Let L be a line incident with P. We have the following possibilities
for the image of L:

type of L multiplicity of L | type of (L)
(2,0,...,0) 2 w
2,1,...,1) q+2 o
(2,2,...,2) 2 + 2 8
(2,2,...,2,1,...,1,0,...,0) q+2 v

[ q—21 %

Note that in type v; we have 1 = 1,..., Q;Ql Now the images of the plane (2
mod g)-arcs under ¢ are the following;:

Type | the image of the plane arc Remark
(I-1) | (8,0,...,0)
(1-2) | (o, ,0,...,0)
(I1-1) | (B,...,B,a,...,a,0,...,0) projection from the exceptional 2-point
—— —— ——
i q—2i+1 -1
(B iy Yiy -+ -5 %) projection from all other 2-points
i=1,..., %"
1) | (8,8,....8)
(IV) | (o, yg=1,...,va=1) from the 2-point on the oval
2 2
(%;1 R FES R FE PR ,’yq%s) from an internal point to the oval
a3 a-1

Assume a (2 mod ¢)-arc K in PG(3,¢q), ¢ odd, is given and consider a projec-
tion from a 2-point P. The table above implies that

(1) no line in the projection plane is incident with points of type w and points
of type i;

(ii) if on a line in the projection plane there exist points of type 7; and points
of type vj, 1 # j, then i = 4;23, j= %1.

Let us first assume that there exists a plane 7 such that K| is the exceptional
arc (IV). Denote by ¢ a projection from the 2-point on the oval. Then the image
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of the plane 7 is of type (a,’}/q%l, e ,7%1). Denote by L the line of type a and
fix a 1-point @ on this line. Assume there is a point of type S in the projection
plane. Then the projection plane contains a line of type (8, q,...,«) and all the
remaining lines through the type 8 point are of type (3, Vai,-- ,’y%). Hence the

lines in the projection plane through a point of type « are of the following types:
e (a,q,...,a, ) — there is one such line;
. (oz,'yq%z, e ,’yq%z,'yq%z) — there are ¢ such lines.

Denote the points on the 2(g+ 1)-line (the preimage of the point of type 3) by
Py, P1, ..., P,. Assume that there is a point of type P; such that all planes through
QP; (different from ) are not of type (IV). Then K is obviously lifted. If for all
P; there is a plane through QP; such that the restriction of X to this plane is of
type (IV) then projecting from each P; we must get the same types of the lines
in the projection plane (described above). Therefore no three of the ¢ 1-points
contained in the ovals, are collinear. Hence we can construct a ¢ + 2-cap taking
these g2 1-points and Py, P;, say. This is a contradiction since the maximal size of
a cap in PG(3,q) is ¢* + 1.

We have proved that if there is a point of type 3 in the projection plane, then
K is lifted. But there always must be a point of type 3 since the types Yaz1 and w
are not compatible. Thus we have proved that if there exists a plane 7 such that
K|~ is of type (IV) then K is a lifted arc.

Now assume that there is no plane such that K|, is of type (IV). Now the
restriction of K to any plane is a lifted arc and by Theorem 3 K is again lifted. We
have proved the following lemma.

Lemma 2. LetK be a (2 mod q)arc inPG(3,q), g odd. ThenK is a lifted arc.

Now we proceed by induction on the dimension. Again by Theorem 3, we get
that every (2 mod g)-arc in a geometry of dimension at least 3 is lifted.

Theorem 5. Let K be a (2 mod q)-arc in PG(r,q), q odd, r > 3. Then K is a
lifted arc. In particular, every (2 mod q)-arc in PG(r,q), r > 2, has a hyperplane
m its support.

Remark. Theorem 5 provides alternative proof of Maruta’s theorem on the
extendability of codes with weights —2,—1,0 (mod ¢) [13]. The existence of such
a code is equivalent to that of an arc IC which is 2-quasidivisible modulo ¢. It was
pointed out in [7,8] that for every t-quasidivisible arc K in ¥ it is possible to define
uniquely a (¢ mod ¢)- arc K in the dual geometry. If K contains a hyperplane in
its support then K is extendable. This is the fact established in Theorem 5.

4. (3 mod Q)-ARCS

For values of t larger than 2 complete classification seems out of reach. How-
ever, it is still possible to obtain partial results on the structure of such arcs. In
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this section we classify some small (3 mod 5)-arcs in PG(2,5). Due to Theorem 4,
the classification of such arcs is equivalent to the classification of certain blocking
sets with an additional restriction on the line multiplicities.

Arcs of cardinality 18. These arcs are (18, 3)-blocking sets and hence the sum
of three not necessarily different lines [9,11]. It is an easy check that there exist
four (3 mod 5)-arcs of cardinality 18. They are given in the pictures below.

0000090

Arcs of cardinality 23. These arcs correspond to (9, 1)-blocking sets with lines
of multiplicity 1, 2, 3, 4. Hence blocking sets containing a full line do not give (3
mod 5)-arcs. Thus the only possibility is the projective triangle. Dualizing we get a
(3 mod 5)-arc in which the 2-points form a complete quadrangle, the intersections
of the diagonals are 3-points and the intersections of the diagonals with the sides
of the quadrangle are 1-points. This arc is presented in the picture below. The
doubly circled points are 3-points; the big black points are 2-points and the small
gray points are 1-points.

12 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22.



Arcs of cardinality 28. These arcs are obtained from (15,2)-blocking sets with
lines of multiplicity 2, 3, 4, or 5. If such a blocking set does not have multiple
points it is obtained as the complement of a (16,4)-arc. Such an arc should not
have external lines since the maximal multiplicity of a line with respect to the
blocking set is 5. The classification of the (16,4)-arcs is well-known. There exists
exactly one such arc without external lines obtained by deleting the common points
of six lines in general position from the plane. Now we are going to prove that a
(15,2)-blocking set having points of multiplicity greater than 1 always has a line of
multiplicity 6 and hence does not give a (3 mod 5)-arc.

Let us note that such a blocking set cannot have a point of multiplicity 3. In
this case the remaining 12 points would form a (12,2)-blocking set which is the sum
of two lines and therefore has a line of multiplicity greater than 6.

Denote by A;, i = 0,1,2, the number of i-points of a (15,2)-blocking set.
Clearly Ay < 6 since the colinearity of three 2-points implies the existence of a
6-line. In the case of Ao = 4,5,6, it is easily checked that the remaining 1-points
cannot block twice each of the external lines. The remaining possibilities 1 < Ay < 3
are ruled out using additional arguments.

Thus the only (3 mod 5)-arc of cardinality 28 has six 3-points forming an oval
and ten 1-points that are the internal points to this oval.

Arcs of cardinality 33. If F is such an arc then F7 is a (21, 3)-blocking set
with line multiplicities 3,4,5,6. Again such a blocking set cannot have points of
multiplicity 3 or larger since this would impose lines of multiplicity larger than 6
in F.

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22. 13



Denote by A; the number of points of multiplicity 7. Since there cannot be
five collinear O-points we have Ay < 16 and therefore Ay < 6. We are going to
rule out the case Ao = 6. Assume there exist three collinear 2-points. There exist
two lines containing three 2-points. They must necessarily meet in a 2-point. Now
since a 0-point on a 6-line is incident with 3-lines only, a simple counting gives
that the sixth point of multiplicity 2 is incident with three 2-lines. Counting the
multiplicities through the exceptional 2-point, we get 21 >3-34+3-6—-5-2 =17.
Hence the 2-points form an oval. Now the ten external lines to the oval have to
be blocked at least three times each by the 1-points. Since each 1-point blocks at
most three external lines we need at least 3-10/3 such points, a contradiction since
AL =9.

The cases 3 < Ay < 5 are ruled out in a similar fashion.

For A = 0,1, 2 constructions are possible. In such case, F7 is one of the following:

(1) the complements of the seven non-isomorphic (10, 3)-arcs; Az = 0;

(2) the complement of the (11,3)-arc with four external lines and a double
point — a point not on an external line, Ay = 1;

(3) one double point which forms an oval with five of the 0-points; the tangent
in the 2-point is a 3-line, Ay = 1;

(4) PG(2,5) minus a triangle with vertices of multiplicity 2,2,1; Ay = 2.

(2) The first (3 mod 5)-arc of cardinality 33 with one 13-line

(3) the second (3 mod 5)-arc of cardinality 33 with one 13-line

14 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22.



o

(4) (33,{3,8,13})-arc with two 13-lines

Arcs of cardinality 38. The (3 mod 5)-arcs of cardinality 38 can be derived
from the (27,4)-blocking sets with line multiplicities 4,5,6,7 in PG(2,5). Such a
blocking set does not have 3-points. Otherwise, removing a 3-point would give a
(24,4)-blocking set which is a sum of line. This forces a line of multiplicity greater
than 7. If there exist three collinear 2-points then A = 3 and the corresponding
line is a 7-line.

There exist a lot of such blocking sets and, consequently, (3 mod 5)-arcs of
cardinality 38. In all cases, such arcs have a 13-line with a O-point or an 8-line of
type (2,2,2,2,0,0), (2,2,2,1,1,0) or (3,3,2,0,0,0).

For instance, in the case of Ao = 0 the blocking set consists of all points in
the plane minus four points in general position. The corresponding (3 mod 5)-
arc has a line of type (2,2,2,1,1,0). In the case Ay = 6 the 2-points form an
oval. Th external points to this oval have to be blocked at least four times by
the fifteen 1-points. An easy counting gives that we should take necessarily the
ten internal points plus five external points. But now the six tangents cannot be
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blocked twice by six points not on the oval. The remaining cases are treated using
similar arguments.

Now we can prove our main result for this section. The following observation
turns out to be very useful. Let F be a (3 mod 5)-arc in PG(3,5) and consider a
projection ¢ from a 0-point P onto some plane 7 not incident with P. Set

1
Q:g(]-"“"—?)). (4.1)
Now lines through P of multiplicity 3+5¢, ¢ = 0, 1, 2, become i-points. The following
lemma restricts the possible structure of G.

Lemma 3. Let XY and XZ be 2-lines in m with respect to G and let there
exist an 1-point U # XY, Z which is incident with a 2-line. Then U does not lie
on a tangent of G.

Proof. Let t be the tangent through U and let tN XY =V, tNXZ = W.
Obviously V # XY, W # X, Z. Since U, V, W are on 2-lines that are the image of
28-planes, they are the image of 2-lines without 2-points. Then the preimage of ¢
is a 23-plane with at most three 2-points, a contradiction since a 23-plane contains
four 2-points. O

Theorem 6. Every (3 mod 5)-arc F in PG(3,5) with |F| < 158 is a lifted
arc. In particular, |F| = 93,118, or 143.

Proof. Assume there exists a 13-line L with 0-point. By the classification of the
plane (3 mod 5)-arcs we have that all planes through such a line have multiplicity
at least 33. If there exists a 33-plane, 7 say, through L then it must be of type (2),
(3), or (4). In the first two cases 7 is incident with an 8-line of type (3,3,2,0,0,0),
while in the third case it is incident with a line of type (2,2,2,2,0,0). Planes of
multiplicity less than 33 do not contain such lines. Hence |F| > 8+ 6-25 = 158. If
all planes through L are of cardinality > 38, then again |F| > 134 6 - 25 = 163, a
contradiction.

If |F| = 158 then there exists a 33-plane of the type (2), (3), or (4). Assume
there exists a 33-plane of type (2). It contains a line of type (2,2,2,1,1,0). Consider
a projection from the 0-point on this line. The induced arc has thirteen 8-points
and eighteen 3-points. We cannot have a line incident with one, two or six 8-points.
Now by an easy counting we get that there are no lines with four or five 8-points,
a contradiction since the number of 8-points is 13 and the largest (n, 3)-arc has 11
points.

The case of planes with 33 points of type (3) and (4) are ruled out in a similar
way. Thus 0-points are incident with 3- or 8-lines only.

Further, a line containing a 0-point has multiplicity at most 48. It is easily
checked that 48-planes are impossible. In such a plane each 8-line is incident with
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exactly two O-points and the 0-points must form an oval. But an oval in PG(2,5)
has 6 points while a 48-plane has seven 0-points.

The restriction of F to a 43-plane in which every line through a 0O-point is
necessarily lifted from an 8-line. The planes through a line of type (3,1,1,1,1,1) in
a 43-plane are either lifted 43-planes or 18-planes that are again lifted. Hence in
such case F is necessarily a lifted arc of size 118 or 143 since the 3-point on the
line of type (3,1,1,1,1,1) is the lifting point of the 43- as well as of the 18-planes.

Finally, the fact that 38-planes have either a 13-line with a 0-point or an 8-
line of type (2,2,2,2,0,0), (2,2,2,1,1,0) or (3,3,2,0,0,0) implies that such planes
are impossible if |F| < 158. Thus we can assume with no loss of generality that
every plane incident with a 0-point has multiplicity 18, 23, 28, or 33. Moreover, a
33-plane should necessarily be of type (1).

Now consider the arc G defined in (4.1). Since it does not have 4-lines |G| < 11
and F < 148. These cases are ruled out easily by Lemma 3. g

5. AN EXAMPLE FROM CODING THEORY

One of the forms of the main problem of coding theory is to determine the
minimal length of an [n, k, d],-code for fixed ¢,k and d [10]. For codes over F5 of
dimension 4 there exist four values of d for which ns(4,d) is not decided [12]. The
results from the previous section enable us to solve one of the four open cases. We
can rule out the existence of codes with parameters [104, 4, 82]5 which implies that
ns(4,82) = 105.

The approach to this problem is geometric. The existence of a [104, 4, 82]5-code
is equivalent to the existence of a (104, 22)-arc in PG(3,5) (cf. [2,6,10]). Such a
hypothetical arc will turn out to be non-extendable.

Assume that K is a (104, 22)-arc in PG(3,5). Let us denote by d;, ¢ =0, 1,2,
the maximal multiplicity of an i-dimensional subspace in PG(3,5). In the following
lemma, we summarize the straightforward properties of (104, 22)-arcs.

Lemma 4. Let K be a (104, 22)-arc with spectrum (a;). Then
(a) 69 =1, 6y =5, § = 22;
(b) The mazimal multiplicity of a line in an m-plane is | (6 +m)/5];
(¢) There do not exist planes with 2,3,7,8,12,13,17,18 points.
(d) ap =0.
(e) a1 =0.
(f) as=a5 =0

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22. 17



(9) The spectrum of KC satisfies the following identity

20

> <222 Z) a; = 468. (5.1)

=0

By Lemma 4, a (104,22)-arc K is 3-quasidivisible. Moreover, 0-points with
respect to the dual arc K must come necessarily from maximal planes. This forces
certain restrictions on the structure of K described in the lemma below.

_ Lemma 5. Let K be a (104,22)-arc in PG(3,5). Then there exists no plane
P in the dual space such that IC|P is 3x; for some line L in the dual space.

Proof. Let X be a point in PG(3,5). Summing up the multiplicities of all
planes through X, we have:

> K(H) =6|K| + 25K(X).

H:H>X

On the other hand, a point H in the dual space with K (Iz ) = 0 comes necessarily
from a maximal plane. For the points on the line L with K (L) = 18 we have

> K(P) =I|K|+5K(L).
P:Pel
This implies that
6)K| + 25K(X) = 25- 22+ |K| + 5K(L),

which gives
649 > 6|K| + K(X) = 654 + 5K(L),

a contradiction. O

Lemma 6. Let K be a (104,22)-arc in PG(3,5). Then |K| > 163.

Proof. This follows by Lemma 5, Theorem 6 and the fact that a (104, 22)-arc
is not extendable. d

We can use Lemma 6 together with the necessary condition (5.1) to restrict
further the possible multiplicities of planes. Our key observation is that if a 5-tuple
of planes through a a line L in Hy gives a high contribution to the left-hand side
of (5.1) then K (L) is small.

Lemma 7. Let K be a (104,22)-arc in PG(3,5). Then ag = 0.
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Proof. Let Hy be a 6-plane. Then K|g, is a (6,2)-arc and has spectrum
az = 15,a1 = 6,a9 = 10. Consider an arbitrary line L in Hy. By Theorem 4, if L
is a 2-line with respect to K, then it is a 3-line with respect to K; similarly, if L is
a l-line it is a 3-line with respect to K (since 22-planes do not have 1-lines) and,
finally, if it is a O-line with respect to K, it is a 3-, 8- or 13-line with respect to K.

In the case of K(L) = 0 and K(L) = 3 the maximal contribution of the planes
through L is 66 obtained for

(K(Hy), ..., K(Hs)) = (6,22,22,22,22,10);
if IE(Z) = 8 the maximal contribution of the planes through L is 31 obtained for
(IC(HO)v s vIC(HE))) = (67 22,22,21,19, 14)7

and if IZ(]?) = 13 the maximal contribution of the planes through L is 13 obtained
for

(K(Hp),...,K(Hs)) = (6,22,19,19,19,19).
Let us denote by z the number of 0-lines L of Hy with K(Hgy) = 3 and by y the
number of such lines with K(Hy) = 8. Counting the contribution of the different
planes through the lines of L we get

16
<2>+15-1+6~3+66m+31y+13(10—x—y)2468,

whence 53x + 18y > 185. On the other hand, we have
K| = 121-2 4 22 + Ty + 12(10 — 2 — y) = 163 — 5z — 10y.

Since K is not extendable we have |l€| > 163, and hence z +2y <0,i.e. x =y =0,
a contradiction to 53x + 18y > 185. 0

Lemma 8. Let K be a (104,22)-arc in PG(3,5). Then ag = a190 = a11 = 0.

Proof. We use the classification of the (9,3), (10,3)- and (11,3)-arcs made in
[6]. We will demonstrate only the non-existence of 9-planes of type C4 (we use the
notation from [5]). The non-existence of 9-planes of the other three types, as well
as the non-existence of 10- and 11-planes, is done analogously.

Let Hy be a 9-plane and let K|y, be a (9, 3)-arc of type C4. For a arbitrarily
fixed line L in Hy we denote by Hy, ..., Hs the other 5 planes through L. We have
the following possibilities:

K(L) | K(L) | ni | (K(Ho),...,K(Hs))

3 3 (22,22,22,22,22.9)
2 8 4] (22,22,22,2,19,9)

1 8 | 15 | (21,21,21,21,16,9)
1 13 | 7 (21,21,20,19,19,9)
0 8 | 79 | (22,22,22,19,10,9)
0 13 | 34| (22,21,19,19,14,9)
0 18 | 15 | (19,19,19,19,19,9)
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Counting the contribution of the planes through the different lines in Hy to
the left-hand side of (5.1), we get

12
(3)+7~O+15~4+15x+7-(3—x)+79u+34v+15(6—u—v)2468,

whence 8x + 64u + 19v > 219.
On the other hand, computing the cardinality of K and taking into account
that K(H) = 3, we get

3+7-04+15-5+52+10(3 — ) + 5u+ 10v 4+ 15(6 — u — v) > 163,
whence = + 2u + v < 7. Now we have the chain of inequalities
224 > 32x + 64u + 32v > 8x + 64u + 19v > 219.

This implies that x = v = 0, which in turn gives 224 > 64u > 219, a contradiction
since wu is an integer. O

Now using once more the same idea we can prove the nonexistence of (104, 22)-
arcs.

Theorem 7. There is no (104, 22)-arc in PG(3,5).

Proof. We apply the above technique to the three non-isomorphic (22, 5)-arcs.
Their spectra are given below.

Type || ao | a1 | a2 | a3 | a4 | as
D1 1 0 1 015 | 14
D2 1 0 0 3112 | 15
D3 0 0 3 4 6 | 18

Let Hy be a fixed 22-plane. For a line L in Hy we have the following possibili-
ties:

K(L) | K(L) | ni | (K(Hy),...,K(Hs))
5 3 3 [ (22.22.22,22,22,19)
1 3| 28 | (22,22,22,22,22,14)
4 8 7| (22,22,22,22,22,14)
3 3 |36 | (22,22,22,22,16,15)
3 8 |32 (22,22,22,20,19,14)
3 13| 13 | (22,20,20,19,19,19)
2 3 | 45 | (22,22,22,16,16,16)
2 8 | 57| (22,22,22,20,14,14)
2 13 | 37 | (22,21,19,19,19,14)
0 8 |86 | (22,22,16,16,14,14)
0 13| 87 | (22,21,19,14,14,14)
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__(D1) Denote by x the number of lines L in Hy of multiplicity 4 for which
K(L) = 3. Counting the contribution of the planes through the different lines in
Hj to the left-hand side of (5.1), we get

14-3428z+7(15—2)+1-57+1-87 > 468,
whence 21x > 177, i.e. £ > 9. On the other hand,
K| <14-34 -3+ (15 —x)-8+13 =13,

whence |l€| < 188 — bzx. This implies 188 — bx > 163, i.e. < 5, a contradiction.

(D2) Denote by z the number of 4-lines L with K(L) = 3; by u — the number
of 3-lines L with K(L) = 3, and by v — the number of 3-lines L with K(L) = 8.
Again counting the contribution to the left-hand side of (5.1), we have

15-3+2-284+(12—2) - T4+u-36+v-32+ (3—u—v)1241-87 > 468,
whence 212 + 24u + 20v > 216. On the other hand,
|l€|:15-3+3x+8(12—x)+3u+8v+(3—u—v)~13+132163,
z 4+ 2u+v < 6. Now we get
126 > 21z + 42u + 21v > 21z 4 24u + 20v > 216,

a contradiction.
(D3) Let @, u and v be as above. Denote also by s the number of 2-lines L
with (L) = 3, and by t — the number of 2-lines L with K(L) = 8. Once again:

183+ 228+ (6—x)- 7T+ u364+0v32+ (4—u—v)12+5-45+t-57+ (3 —s—1)37 > 468,
whence 21z + 24u + 20v + 8s + 20t > 213. On the other hand
IK| = 183432 +8(6 —2) + 3u+8v+13(4—u—v)+3s+8t+ (13(3—s5—t) > 163,
hence x + 2u + v + 2s +t < 4. This implies

84 > 21x 4 42u + 21v + 42s 4 21t > 21x + 24u + 21v 4 42s + 21t > 213,

a contradiction. O

Corollary 1. There exists no [104,4, 82]5-code and, consequently, ns(4,82) =
105.

ACKNOWLEDGMENTS. This research has been supported by the Science
Research Fund of Sofia University under Contract No. 6/27.03.2015.

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22. 21



10.

11.

12.
13.

6. REFERENCES

. Brouwer, A., van Eupen, M.: The Correspondence between Projective Codes and

2-weight Codes. Des. Codes Cryptography, 11, 1997, 261-266.

. Dodunekov, S., Simonis, J.: Codes and projective multisets. Electron. J. Comb., 5,

199), R37.

Hill, R.: An extension theorem for linear codes. Des. Codes and Crypt., 17, 1999,
151-157.

Hill R., Lizak, P.: Extensions of linear codes. In: Proceedings of International Sym-
posium on Information Theory, Whistler, BC, Canada 1995.

Landjev, I.: The geometry of (n, 3)-arcs in the projective plane of order 5. In: Proc.
of the Sixth Workshop on ACCT, Sozopol, 1996, 170-175.

Landjev, I.: The geometric approach to linear codes. In: Finite Geometries, (A.
Blokhuis et al., Eds.), Kluwer Acad. Publ., 2001, 247-256.

Landjev, 1., Rousseva, A.: On the Extendability of Griesmer Arcs. Ann. Sofia Univ.
Fac. Math. and Inf., 101, 2013, 183-191.

Landjev, 1., Rousseva, A., Storme, L.: On the Extendability of Quasidivisible Gries-
mer Arcs. Designs, Codes and Cryptography, 2015, DOI:10.10007/s10623-015-0114-
2.

Landjev, I., Storme, L.: A study of (z(¢g+1), z)-minhypers. Des. Codes Cryptography,
54, 2010, 135-147.

Landjev, 1., Storme, L.: Linear codes and Galois geometries. In: Current Research
Topics in Galois Geometries (L. Storme and J. De Beule, Eds.), NOVA Publishers,
2012, 187-214.

Landjev, I., Vandendriessche, P.: A study of (xv¢, zvi—1)-minihypers in PG(t, q). J.
Comb. Theory Ser. A |, 119, 2012, 1123-1131.

Maruta, T.: http://www.mi.s.oskafu-u.ac.jp/~maruta/griesmer.htm

Maruta, T.: A new extension theorem for linear codes. Finite Fields and Appl., 10,
2004, 674—685.

Received on November 1, 2015

Assia P. Rousseva

Faculty of Mathematics and Informatics
“St. Kl. Ohridski” University of Sofia

5 J. Bourchier blvd., BG-1164 Sofia
BULGARIA

e-mail: assia@fmi.uni-sofia.bg

22

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 5-22.



IFOOVIIHUK HA COPUNWCKUA YHUBEPCUTET ,CB. RIMMEHT OXPUIACKU “

PARKYJITET 11O MATEMATUKA N UHPOPMATUKA
Tom 103

ANNUAL OF SOFIA UNIVERSITY | ST. KLIMENT OHRIDSKI*

FACULTY OF MATHEMATICS AND INFORMATICS
Volume 103

METRIC CONNECTIONS ON ALMOST COMPLEX
NORDEN METRIC MANIFOLDS

MARTA TEOFILOVA

Two families of metric connections on almost complex Norden metric manifolds are
introduced and studied. These connections are constructed by means of the two Lie 1-
forms naturally existing on the manifolds. Invariant tensors under the transformations
of the Levi-Civita connection into the introduced metric connections are obtained.
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1. INTRODUCTION

Linear connections with non-vanishing torsion tensor are widely studied. In
particular, two types of such connections are well known — semi-symmetric and
quarter-symmetric, introduced by Friedmann and Schouten in [1] and Golab in [5],
respectively. The torsion tensors of such connections are constructed by means of
a 1-form and a tensor of type (1,1).

On the other hand, an object of extensive research on pseudo Riemannian
manifolds are linear connections which preserve the metric tensor by covariant
differentiation called metric connections. It is well known that the Levi-Civita
connection of the pseudo Riemannian metric is the unique linear connection which
is simultaneously metric and symmetric (i.e. torsion-free). Metric connections with
non-zero torsion tensor are introduced by Hayden in [7].
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By combining these both ideas, numerous authors studied semi-symmetric met-
ric and quarter-symmetric metric connections, e.g. [8], [10], [12], [13], [17], [18].
Tripathi [16] generalized the concept of various metric and non-metric connections.

In the present work, we aim to study metric connections on almost complex
Norden metric (B-metric) manifolds. These manifolds are introduced by Norden in
[11] and studied for the first time in [6] under the name generalized B-manifolds.
Since on such manifolds, there exist two Lie 1-forms, they can be used to gener-
ate metric connections with torsion tensors of special types, e.g. semi-symmetric,
quarter-symmetric or others.

The paper is organized as follows. In Section 2 we give some preliminaries. In
Section 3 we construct a 4-parametric family of metric connection on almost com-
plex Norden metric manifolds with non-vanishing Lie 1-forms. These connections
are composed by two semi-symmetric and two quarter-symmetric metric connec-
tions. We obtain necessary and sufficient conditions for the introduced connections
to be invariant under the transformation of the Levi-Civita connections of the Nor-
den metrics on a class complex Norden metric manifolds. Also, we consider tensors
which under certain conditions are invariant under the transformation of the Levi-
Civita connection into the constructed metric connections. In Section 4 we intro-
duce a 2-parametric family of metric connections which are neither semi-symmetric
nor quarter-symmetric and study some of their curvature properties.

2. PRELIMINARIES

A triple (M, J, g) is called an almost complex Norden metric (B-metric) man-
ifold [6, 11] if M is a differentiable even-dimensional manifold (dim M = 2n), J is
an endomorphism of the tangent bundle 7'M, and g is a pseudo Riemannian metric
on M, compatible with J, such that the following relations are satisfied:

Jr = —x, g(Jx, Jy) = —g(z, y). (2.1)

Here and further on, by z, y, z, u we denote differentiable vector fields on M,
i.e. elements in the Lie algebra X(M), or vectors in the tangent space T,,M at an
arbitrary point p € M.

Equalities (2.1) imply g(Jz,y) = g(x, Jy). Hence the tensor g defined by

g(z,y) = g(z, Jy) (2.2)

is symmetric and is known as the associated (twin) metric of g. This tensor also
satisfies the Norden metric property, i.e. g(Jz,Jy) = —g(z,y). Both metrics, ¢
and g, are necessarily of neutral signature (n,n).

The fundamental tensor F' of type (0,3) is defined by

F(x,y,z) = (vmg)(yv’z) :g((vmj)yaz)v (23)
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where V is the Levi-Civita connection of g. This tensor has the following properties
F(x,y,2z) = F(z,2,y) = F(z, Jy, J2).

Let {e;} (1 = 1,2,...,2n) be an arbitrary basis of T, M. The components of the
inverse matrix of g with respect to this basis are denoted by ¢%. The Lie 1-forms
f and 0* associated with F' are defined by:

0(z) = g F(ei, ej, ), 0" (x) = 0(Jz). (2.4)

We denote by Q the Lie vector corresponding to 6, i.e. 0(x) = g(z,2). Then, the
vector * = JS corresponds to 6*.

A classification of the almost complex Norden metric manifolds with respect to
the properties of F is introduced by Ganchev and Borisov in [2]. This classification
consists of 8 classes: 3 basic classes W; (i = 1,2,3), their pairwise direct sums
W; @ W;, the widest class Wi & W, @ Ws and the class of the Kahler Norden metric
manifolds Wy which is contained in all of the other classes and is characterized by
F =0 (i.e. VJ =0). Two of the basic classes (W; and W) are integrable, i.e.
with a vanishing Nijenhuis tensor (complex Norden metric manifolds). One of the
integrable classes is said to be a main class because its characteristic condition is
an explicit expression of F' by means of the other structural tensors. This class is
denoted by W; and is defined by the condition

F(z,y,2) = 5=[g(z,9)0(2) + g(x, Jy)0(J z)
+9(z,2)0(y) + g(z, J2)0(Jy)].

A Wi-manifold with closed Lie 1-forms 6 and 6* is called a conformal Kahler Norden
metric manifold. The manifolds in this class are conformally equivalent to Kéhler
Norden metric manifolds by the usual conformal transformation of the metric g [3].

(2.5)

Since V is symmetric, the 1-forms 6 and 6* are closed if and only if (V,0)y =
(Vy0)z and (V,0")y = (V,0*)x. By (2.3) and (2.4) it it easy to compute that
(V20%)y = (Vo0)Jy+ F(z,y,Q). Then, because of (2.5), a necessary and sufficient
condition for the Lie 1-forms 6 and 6* to be closed on a Wj-manifold is given by

(Vab)y = (V,0)z,  (Va0)Jy = (V,0)Jx. (2.6)

The Lie 1-forms 6 and 6* vanish on the manifolds in the classes Wy, Wh, W5
[2]. Hence, the widest class with zero Lie 1-forms is Wa & Ws.

3. SEMI-SYMMETRIC AND QUARTER-SYMMETRIC METRIC
CONNECTIONS ON ALMOST COMPLEX NORDEN METRIC MANIFOLDS

Let us recall some basic definitions.

Definition 1. A linear connection V' on an almost complex Norden metric
manifold (M, J,g) is called: (i) almost complex if V'J = 0 (if the manifold is
complex, a connection with this property is called complez); (ii) metric if V'g = 0;
(iil) natural if V'J =V'g = 0.
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Because of (2.2), it is easy to prove that the defining condition in (iii) is equiv-
alent to V/.J = Vg = 0 and also to Vg = V'g = 0.

Definition 2. A non-symmetric linear connection V' with torsion tensor T
is called: (i) semi-symmetric if T(x,y) = w(y)x — w(x)y; (i) quarter-symmetric if
T(z,y) = 7(y)px — w(x)py, where 7 is a 1-form and ¢ is a tensor of type (1,1).
In particular, if ¢ = id, i.e. pz = x for all x € X(M), then a quarter-symmetric
connection reduces to a semi-symmetric connection.

Further in this section, we study metric connections with torsion tensors of
special types, namely semi-symmetric and quarter-symmetric ones.

Let us consider a linear connection V' with deformation tensor @ defined by

Since v.g = 07 we compute (leg)(y) Z) = _Q(-T, Y, Z)_Q(x7 Zy y)) where Q(xa Y, Z) =
9(Q(z,y), z) is the deformation (0,3)-type tensor. Then, a necessary and sufficient
condition for the connection V' to be metric is given by

Q(x,y,z) = 7Q(‘T7Zay)' (32)

Because V is symmetric, i.e. V,y — Vya = [z,y], the torsion tensor T' of V' is
given by T'(z,y) = Vi,y — Viz —[2,y] = Q(z,y) — Q(y, ). Then, its corresponding
(0,3)-type has the form T'(z,y,2) = g(T(x,y),2) = Q(z,y,2) — Q(y, x, 2).

It is known that V' is a metric connection if and only if the following relation
between its deformation tensor @ and its torsion tensor T' exists

Q(x,ywz) = % [T(m,y,z) + T(Zvyvx) - T(x,z,y)] : (33)

Let V' be a semi-symmetric metric connection generated by the 1-form
i.e. its torsion tensor is given by T'(z,y, z) = 7(y)g(z,z) — n(z)g(y, z). Then, by
applying the last equality to (3.3) we obtain the form of the deformation tensor @
of such a connection as follows [17]

Q(z,y,2) = 7(y)g(x, 2) — m(2)g(x, y). (3-4)

We remark that the last formula is valid on an arbitrary pseudo Riemannian man-
ifold with metric tensor g and 1-form 7.

Next, we consider the case of a quarter-symmetric metric connection generated
by the 1-form 7 and the almost complex structure J on an almost complex Norden
metric manifold. Because of (2.1) and Definition 2, the torsion tensor T' of such a
connection is given by T(z,y, z) = 7(y)g(x, Jz) — w(x)g(y, Jz). Then, by (3.3) we
obtain the form of the deformation tensor of a quarter-symmetric metric connection
as follows

Q(z,y,2) = m(y)g(x, J2) — m(2)g(x, Jy). (3.5)
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Let us remark that the last formula differs in the case of an almost Hermitian
manifold because on such manifolds the tensor ®(x,y) = g(Jx,y) is a 2-form.

Since on almost complex Norden metric manifolds which are not in the class
Wy @& W4, there exist two non-vanishing Lie 1-forms 6 and 6*, they can be used to
generate semi-symmetric and quarter-symmetric metric connections. Four metric
connections of these types can be constructed — two generated by 6 (one semi-
symmetric and one quarter-symmetric) and two of the same types generated by
0*. Then, if we compose an arbitrary linear combination of the expressions in the
right-hand sides of (3.4) and (3.5), and by doing so replace m with 6 and 6*, we
obtain a 4-parametric family of metric connections on such manifolds. Thus, we
proved the following statement.

Theorem 1. On an almost complex Norden metric manifold with non-vani-
shing Lie 1-forms 0 and 0*, there exists a 4-parametric family (A; € R, 1 =1,2,3,4)
of metric connections V' defined by (3.1) with deformation tensor Q given by

Qz,y) =M0(y)z — g(z,y) + Xo[0(Jy)z — g(z,y) ] (3.6)
+X3[0(y) Tz — g, Jy)Q] + \al0(Jy) Tz — g(, Ty) JQ. '

Let us have a more detailed look at the four metric connections which give rise
to the family V' and consider if they can be natural.

It A #£0, A =0 (i = 2,3,4), we obtain a 1-parametric family of semi-
symmetric metric connections V! generated by 6. These connections cannot be
complex for any values of Ap.

If Ao #2 0, \; =0 (i = 1,3,4), we obtain a l-parametric family of semi-
symmetric metric connections V? generated by 0*. Because of formula (2.5), the
connections V? are complex and hence natural on Wj-manifolds if and only if
A2 = 5.

IfAs #0, \;, =0 (i = 1,2,4), we obtain a l-parametric family of quarter-
symmetric metric connections V3 generated by 6. Because of (2.5), these connect-
ions are complex and hence natural on Wj-manifolds if and only if A\3 = —%.

If Ay #0, \; =0 (i = 1,2,3), we obtain a 1-parametric family of quarter-
symmetric metric connections V* generated by #*. The connections V* cannot be
complex for any values of \4.

Let us remark that the connections V2 and V3 for Ay = ﬁ and A3 = —ﬁ, re-
spectively, i.e. V2"y = V,y+5-[0(Jy)z—g(z,y)JQ and V3ry = Vy—5-[0(y) Jo—
g(z, Jy)Q], are part of a 2-parametric family of natural connections V" introduced
and studied on W;-manifolds in [15]. These connections are defined by

Viy = Voy + 522 [0(Jy)x — g(z,y)JQ + L {plg(x, Jy)Q — 0(y) J2]

3.7
+qlg9(z,y)Q = g(x, Jy)JQ = 0(y)x + 0(Jy)Jz]}, p,q €R. (37

The connections in question are obtained from (3.7) for p = ¢ = 0 and p = %,
q = 0, respectively. In the same work, we discussed that the B-connection V¢
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[3, 4], known as Lichnerowicz first canonical connection in the Hermitian geometry,
is also a member of the family (3.7) and is obtained for p = %, q = 0. Then, the
B-connection is the average connection of V2" and V3", i.e. V¢ = Z(V?" + V"),

3.1. INVARIANT METRIC CONNECTIONS UNDER THE TRANSFORMATION OF THE
LEVI-CIVITA CONNECTIONS GENERATED BY THE NORDEN METRICS

Let V and V be the Levi-Civita connections of the metric tensors g and g,
respectively. The transformation of these connections V — V is studied on Ws-
manifolds in [14]. In the same work, the following relations are obtained:

Voy = Voy + =gz, Jy)Q — g(a,y)JQ, =0, Q=-JQ, (3.8)

where 6 and  are the Lie 1-form and its corresponding vector defined analogously

0 (2.4). The general case of an almost complex Norden metric manifold is studied
in [9], where it is proved that all classes of these manifolds are invariant under the
considered transformation.

Then, on a Wj-manifold (M, J,§) corresponding to a Wi-manifold (M, J, g)
one can construct a 4-parametric family of metric connections V' (i.e. with the
property = 0) defined analogously to V' by replacing V, ¢g and 6 with V. 3§
and 0, respectively, in (3.1) and (3.6).

The following theorem is valid.

Theorem 2. The metric connections V' defined by (3.1) and (3.6) are invari-
ant under the transformation V — V on Wi-manifolds if and only if they coincide
with the natural connections V™ defined by (3.7).

Proof. Let V' be invariant under the transformation V — V, ie. vV =V.
Then, both metric tensors g and g are parallel with respect to V' and V. Because
of (2.2), this means that the connections V' and V’ are metric and complex and
hence natural. By (3.1), (3.6) and (2.3) we compute

(Vid)y =(Vad)y + Q(z, Jy) — JQ(x,y)
=(A1 4+ M)[g(@, 9)JQ — gz, Jy)Q + 0(Jy)z — 0(y) Jz]
1
+ (s = A2+ o )g(a,y)Q + g(x, Jy) JQ+ O(y) + 0(Jy) Ja].
The last equality implies that V'J = 0 if and only if Ay = A\g + 21 and \; = —)\4.

In this case, by substituting A3 = —2 and Ay = £ in (3.6) we establish that V’
coincide with V™.

_ To prove the reverse statement, by (3.7) and (3.8) we obtain V™ and verify - that
V" = V", ie. V" and hence V' are invariant under the transformation V — V. O
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3.2. INVARIANT TENSORS UNDER THE TRANSFORMATION OF THE LEVI-CIVITA
CONNECTION INTO THE METRIC CONNECTIONS

Let us consider the covariant derivatives of # and #* with respect to the metric
connections V'. Because of (3.1), we compute: (V,0)y = (V.0)y — Q(z,y,Q) and
(V9L0")y = (V0" )y — Q(z,y, JQ). Thus, we have:

(Vi0)y — (Vy0)z = (Val)y — (Vyb)z + Qy, 2, Q) — Q(x,9,Q),

(3.9)
(Vob)y — (Vi 07)z = (V20" )y — (Vy0")z + Q(y, z, JQ) — Q(z,y, JQ).
We introduce the following (0,2)-type tensors:
S(z,y) = (Vab)y — (Vy0)z, Si(z,y) = (Va0 )y — (V67 (3.10)

By replacing V with V’ in (3.10), we obtain analogous tensors to S and S, with
respect to the connections V’ which we denote by S’ and S.. Then, equalities
(3.9) yield that S = S" and S, = 5. if and only if Q(x,y,Q) = Q(y,x,Q) and
Qz,y, JQ) = Q(y, z, JQ), respectively. Having in mind (3.6), the last two condi-
tions hold if and only if A3 = Ay and Ay = — )1, respectively. Hence, we proved the
following result.

Theorem 3. The tensors S and S. given by (3.10) are invariant under the
transformation of the Levi-Civita connection V into the 4-parametric family of met-
ric connections V' defined by (3.1) and (3.6) on an almost complex Norden metric
manifold with non-vanishing Lie 1-forms 6 and 0* if and only if the parameters
satisfy the following conditions: A3 = Aa and Ay = — 1.

Under the assumptions of the last theorem we obtain

Corollary 1. The invariant tensors S and Sy vanish on a Wi-manifold if
and only if both Lie 1-forms 0 and 0* are closed, i.e. the manifold is conformal
Kahlerian.

Further, let us consider another tensor of type (0,2) constructed by the covari-
ant derivatives of § and 6* which is defined by

P(z,y) = (V40)Jy + (V,0")y. (3.11)

The analogous tensor P’ with respect to the metric connections V' is given by
Hence, P'(x,y) = P(z,y) — Q(z, Jy, Q) — Q(x,y, JQ), and therefore P’ = P if and
only if

Q(z, Jy,Q) = —Q(z,y, JQ). (3.12)

By applying (3.6) to the last equality we prove the following
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Theorem 4. The tensor P is invariant under the transformation of the Levi-
Clivita connection V into the 4-parametric family of metric connections V' defined
by (3.1) and (3.6) on an almost complex Norden metric manifold with non-vanishing
Lie 1-forms 6 and 6* if and only if the parameters satisfy the following conditions:
)\3 = 7)\2 and )\4 = )\1.

If the assumptions of the last theorem are satisfied, by (2.5) we get

Corollary 2. The invariant tensor P defined by (3.11) vanishes on a W;-
manifold if and only if

(Val)y = 15 {9(x, Jy)0(Q) — g(x,9)0(JQ) + 0()0(Jy) — 0(J2)0(y)}.  (3.13)

Equalities (2.6) and (3.13) yield that if P vanishes on a WW;-manifold, the Lie
1-form 6* is closed but 6 is not closed. Also, if P = 0 the following relations
are valid: divQ) = —e(ém and div (JQ) = 9(29), where divQ) = ¢”(V,,0)e; and
div(JQ) = g¥(V,,0%)e;.

4. OTHER TYPES OF METRIC CONNECTIONS CONSTRUCTED BY THE
LIE 1-FORMS

In this section, by means of the Lie 1-forms 6§ and 6* and their corresponding
Lie vectors 2 and JS), we construct a 2-parametric family of metric connection
which are neither semi-symmetric, nor quarter-symmetric.

On an almost complex Norden metric manifold with non-vanishing Lie 1-forms
6 and 6*, let us consider a family of metric connections V defined by (3.1) with
torsion tensors T given by

T(x,y) = [0(x)0(Jy) — 0(Jx)0(y)][sQ +tJQ], s,te€R. (4.1)

Then, by (3.3) and (4.1) we obtain the form of the deformation tensor @Q of the
metric connections V. Thus, we establish the truthfulness of the following theorem.

Theorem 5. On an almost complex Norden metric manifold with non-vani-
shing Lie 1-forms 6 and 0%, there exists a 2-parametric family (s,t € R) of metric
connections V defined by

~

Vey = Vay +Q(z,y), Qz,y) = [s0(z) +10(J2)|[0(Jy) - 0(y)JQ].  (4.2)

Let R be the curvature tensor of the Levi-Civita connection V, i.e. R(z,y)z =
VVyz =V, Vo2 — Vi 2. The corresponding tensor of type (0,4) is denoted
by the same letter and is defined by R(x,y,z,u) = g(R(z,y)z,u). Analogously,
let us denote by R the curvature tensor of V and define its corresponding (0,4)-
tensor with respect to g by R(z,y,z,u) = g(ﬁ(m,y)z,u). Then, the following
relation between R and R is known to be valid: R(z,y,z,u) = R(x,y,z,u) +
(V2Q)(y, z,u) — (VyQ) (2, 2,u) + Qz,Q(y, 2),u) — Qy, Q(z,2),u). If we apply

(4.2) to the last formula and take into account (2.6), we obtain the following
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_ Theorem 6. On a conformal Kihler Norden metric manifold, the tensors R
R of V and V, respectively, are related as follows

~

R(x,y,z,u) = R(x,y, z,u) + [s0(y) + t0(Jy)][0(u)(V0*)z — 0(2) (V0% )u
+0*(2)(Vi0)u — 0" (u)(V50)z] — [s0(x) + t0(Jx)][0(u)(V,0*)z — 0(2) (V0% )u
+0*(2)(Vy0)u — 0% (u)(V,0)z].

z]

Let us remark that E(az,y, z,u) is anti-symmetric by its first and last pair of
arguments, but since it does not satisfy Bianchi’s first identity it is not a curvature-
like tensor of type (0,4).

Having in mind the definitions of the scalar curvatures 7 and 7 of R and ﬁ,
respectively, i.e. 7 = g"*¢g’*R(e;,e;,ex,e5) and T = gisgjkﬁ(ei,ej,ek,es), from
Theorem 6 we obtain 7 = 7 + 2£[9(Q)? + 6(JQ)?] + 2divQ [s6(JQ) — t0(Q)] —
2div (J) [s6(82) + t0(T)].

Let us consider the transformation of the Levi-Civita connection V into the
metric connections V and the tensor P defined in the previous section by (3.11).
Having in mind (4.2), we establish that the deformation tensor @ of V satisfies
property (3.12) for all s,¢ € R. Thus, we proved

Theorem 7. The tensor P given by (8.11) is invariant under the transfor-
mation of the Levi-Civita connection V into the 2-parametric family of metric con-
nections V defined by (4.2) on an almost complex Norden metric manifold with
non-vanishing Lie 1-forms 6 and 6*.
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1. INTRODUCTION

In the book "Theory of K-Loops” by Hubert Kiechle we find the following
construction theorem for left-loops and loops (cf. [5] (2.7)):

Theorem 1. Let (G,-) be a group, 1 the neutral element, U a subgroup of G
and let L C G be a transversal of the pair (G,U), i.e.

(T1) VeeG@hzelLwthz-U=z-U.

(T2) 1elL.
Fort,s € Llett®s:=1t-s. Then (L,®) is a left loop (called derived left-loop),
i.e.

1) VieL:lal=Ilal=1

2) Vs,teL,d1x €L withs®x=t.

(L,®) is a loop (i.e. also the equation x @ s =t has an unique solution) if and

only if the set L satisfies the condition (T3) - stronger as (T1) - (then L is called
L-transversal).

(T3) Vx,yeG:|LNz-U-y|l=1.
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The next theorem tells us that any left-loop can be obtained by the method of
Theorem 1 (cf. [5] (2.6), (2.7)):

Theorem 2. Let (L,+) be a left-loop, for a € L let a™ : L — L ; = v
a+x, LT :={a" | a € L}, let G :=< LT > be the group generated by the left-
translations a* and let U := {£ € G | £&(0) = o}. Then L7 is a transversal of
(G,U) and the derived left-loop is isomorphic to (L,+).

Under the notion "reflection geometry” or “Sperner plane” one finds all abso-
lute planes. To any reflection geometry (G,D,%B) we associate firstly a so called
kinematic fibration § of the group D? and then a kinematic space (D%,8,-). To
certain subgroups F' € § we find in form of a plane < ¢ > of the kinematic space
(D28, ) a transversal of (F). With this method we can associate to each reflec-
tion geometry in a natural way loops (L, ®), which shall be studied in this paper.
Also in the paper [6] by S. Pasotti, S. Pianta and E. Zizioli we find constructions
of loops related to hyperbolic planes using transversals.

2. REFLECTION GROUPS , REFLECTION GEOMETRIES AND SPERNER
PLANES

We recall some notions and facts taken from [1], [3] and [4]. Let (G,-) be a
group, J == {y € G | ¥2 =id # v} and ® C J such that <D >= G, ie. Disa
system of generators of G.

A subset b C ® is called pencil if there are A, B € ©, A # B with

b :ZE ={Xe€®D|A-B-X e J}. Let B be the set of all pencils. A pencil b is
called proper or also projective if for all t € B, b # (). Let B, be the set of all
proper pencils.

We claim (Three reflection Aziom):

(S) If bisapencil and A, B,C € b, then A- B-C € © and then if B, # 0,
we call the pair (G, D) reflection group.

Proposition 1. If (G, D) is a reflection group then
1. D* =92 i. e. ©? is a subgroup of G.
2. For b € B the set b2 := {X-Y | X,Y € b} is a commutative subgroup of D2.
3. For by, by € B we have: b2Nb32 = {1} <= by # bs.

4. For £ € G and b € B we have £ -b- (71 € B.

To a reflection group (G,®) we associate the following geometric structure
(G,D,B) called reflection geometry: The elements of © are called lines, of B
points and of B, projective points. The incidence between a line L € ® and a point
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b € B is given by L € b. A reflection geometry (G, D, B) is called Sperner plane if
every line G € ® is incident with in at least three distinct projective points.

If in a reflection geometry there exist more than one pencil then there exist
A B, Ce®DwithA-B-C#C-B-A.

~ =
Let A,B € ® with A # B and b := A, B. We call A and B orthogonal and
denote that by A L B if A- B € J and then b is called an orthogonal pencil.

A Sperner plane is called regular if for every A € ® | the set At = {X €
D | X 1L A} is a pencil and then A~ is called the pole of the line A.

Let P:=D?NJ. If pePthenp:={X €D | p-X € J} is an orthogonal
pencil. Hence the set of all orthogonal pencils can be identified with the set B of
all involutions contained in the group 2.

Proposition 2. Let (G,D,) be a Sperner plane and let o € G then
1. If (G,D,B) is regular then B, C B.
2. The map
a:G = G:€&m- a-t-at
maps lines onto lines, points onto points, preserves incidence and orthogonal-

ity hence & is a motion of the Sperner plane.

If a € © resp. a € B then « is called line-reflection resp. point-reflection. If
to a,b € P there is a m € P with m(a) = b then m is called midpoint of a and b. A
regular Sperner plane with B, =B is called midpoint plane if for any two distinct
points there exists exactly one midpoint.

Proposition 3. Let (G,D,%B) be a midpoint plane, let o € B be fixed and
for z € B let 2’ be the midpoint of 0 and x and let ¥ := 2/ 0 6. If for a,b € P

a®b:=at(b)

then (B, ®) is a loop, even a K-loop.

3. THE KINEMATIC SPACE OF A SPERNER PLANE

Now we associate to a reflection group (G, ®) a spatial structure. By 3. and 4.
of Proposition 1 the set § := {b? |b € B} forms a kinematic fibration of the group
D2 ie.

1) Us=22%

2) VUVeF, UnV={l}orU=V.

3) If¢eD?andUcFthené-U-£ e
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Therefore if we call the elements of D2 points and of & := {y-F | y € D% F € §}
lines then (D2, ®) is an incidence space and the triple (D2, ®, ) is called kinematic
space (cf. [2]).

A subset A C D2 is called subspace if for all a, 3 € A with a # 3 the line o, 8
joining the points « and [ is contained in A.

If « € 2\ {1} let [a] denote the unique fiber of § with « € [a].
By Proposition 8. of [4] we have

Proposition 4. «, 3,y € ®? are collinear if and only if
B-al-y=y-a7"- B

Let §, := {b% | b € B,} the subset of fibers coming from proper pencils. The
elements of the subset &, := {¢-U |£ € D2, U € §,} are called projective lines.

Foree®let <e>={(ecD?|c-£€cD}=c"1.D.
By Proposition 10 of [4] we have

Proposition 5. Let ¢ € D3 | F € §, a projective fiber, £ € D2, G :=¢ - F
hence G € &, then

1. <e>nNF#0.

2. <e> NG#D.

. IfFC<e>and G# Fthen|<e> NG| =1.
4. < e > is a plane.

5. If G is contained in the plane < & > then G meets any line A € & which is
contained in the plane < & >.

4. PARALLELISMS IN A KINEMATIC SPACE

Let (D2, ®,) be the kinematic space belonging to the kinematic fibration § :=
{62 |b € B} of the group D2. Then for G € &, G~! - G € § and therefore we can
define a left and a right parallelism. For A, B € & let

AliB<= A1 A=B"'.B, A|,B< A-A'=B-B.

If A€ & and 8 € D? then there is exactly one line B := (8 ||; A) with B ||; A and
B € B ,namely B:= (8|, A)=8-A"1 A
By the last remarks of [4] we have:

Theorem 3. Let € € D3 and let G € &, a projective line. Then:
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1. IfHe® and H ||; G or H ||, G then H € &,,.

2. There is exactly one projective line denoted by (¢ || G) resp. (¢ |- G)
contained in < & > such that (¢ ||; G) |li G resp. (¢ || G) ||I» G.

3 IfLeBwithL|; Gand L # (¢ G) or with L ||, G and L # (¢ ||, G)
then |[LN<e>|=1.

Theorem 4. Let (G,D,B) be a Sperner plane, let b € B, be a proper pencil,
let F:=b% let Acb andlet T := (< A>\F)U{1}. Then

1. F is a commutative subgroup of D2 and a projective line of the corresponding
kinematic space (D?,®,-),

2. < A > is a plane of (D?,8,) with F C< A >.

3. Ya,B3 € D2, a- F-fis a projective line and o - F - BN < A ># ().

4. For each o € D%\ F the line (o ||; F) = a - F meets the plane < A > in
exactly one point & and we have & = a < a € A. Fora € F let a := 1.

5. T is a transversal of (D2, F) hence (T, ®) with a ® B :=a -3 fora,B €T is
a left loop.

6. T is a L-transversal of (D% F) hence (T,®) is a loop and 1 is the neutral
element of (T, ®).

5. PROPERTIES OF THE LOOP OF A SPERNER PLANE

Let (T, ®) be the loop corresponding to a Sperner plane according to Theorem
4. Then if a, 8 € T and if - § € T we obtain a ® 5=« - 5. Now let « € T\ {1}
and [a] = 1,a. Then [o] is a subgroup of D2 and [a] C T. Hence on [a] coincide
the operations - and @ and we have:

Theorem 5. (T,®) is a fibered loop with the fibration § := F\ {F} and each
fiber X € §' is a commutative subgroup of the loop (T, ).
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We consider strong at-subsets of the Euclidean space R" and estimate from below
the growth of the maximal cardinality of such subsets (our method essentially differs
from that of [6]). We then apply some properties of strong at-sets to the illumination
problem.
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1. INTRODUCTION AND RESULTS

Let X be a subset of of the n-dimensional Euclidean space R", where n > 2.

We shall say that X is an at-set (in R™) if any three-element subset of X forms
either an acute-angled triangle or a right-angled triangle.

We shall say that X is a strong at-set (in R™) if any three-element subset of
X forms an acute-angled triangle.

It directly follows from the above definitions that each subset of an at-set
(respectively, of a strong at-set) is also an at-set (respectively, a strong at-set).

It is natural to envisage the question concerning the maximal value among the
cardinalities of at-subsets of R™.

Denote by ¢(n) the maximum of the cardinalities of all at-sets in R™. An-
swering two questions posed by P. Erdos and V. L. Klee, it was demonstrated in
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the paper by Danzer and Griinbaum [5] that the inequality ¢(n) < 2™ holds true.
Moreover, the equality card(X) = 2" for an at-set X C R™ is valid if and only if X
coincides with the set of all vertices of some right rectangular n-dimensional par-
allelepiped in R™. Thus, one can directly see that ¢(n) has an exponential growth
with respect to n. For more details, see the above-mentioned paper [5] or [2] or
Chapter 15 of the remarkable book [1].

Denote by k(n) the maximum of the cardinalities of all strong at-sets in R™.
It is easy to show that k(2) = 3 and it is also known that k(3) = 5. It immediately
follows from the result of Danzer and Grinbaum [5] that one of the upper bounds
for k(n) is 2" — 1, i.e., one has the trivial inequality

k(n) <27 —1.

In the general case the precise value of k(n) is still unknown. However, it was proved
that k(n) also has an exponential growth with respect to n; in this connection, see
[6] or Chapter 15 of the same book [1].

It should be noticed that in [1] and [6] an exponential growth of k(n) is proved
with the aid of a probabilistic argument which seems to be somewhat artificial in
this case. Indeed, a deterministic proof of the same fact can be presented by using
another approach. We would like to give below a sketch of a different proof of the
same fact. The suggested proof is simple, purely combinatorial, and so does not
rely on any facts from probability theory.

In what follows, the symbol V,, will stand for the set of all vertices of the
unit cube C,, = [0,1]™ of the space R", so we have card(V,) = 2". First of all,
we are going to present a precise formula for the total number r,, of right-angled
triangles whose vertices belong to V,,. Clearly, this number coincides with the total
number of all right-angled triangles whose vertices belong to the set of vertices of
any n-dimensional right rectangular parallelepiped P in R™.

Let ¢,, stand for the number of all right-angled triangles in C),, the right angle
of which is a fixed vertex v from V,, and the other two vertices also belong to
V. Consider some facet C,,_1 of C,, incident to v. Obviously, we have t,,_1 right
angles with the same vertex v, all of which lie in C,,_;. Further, each of the above-
mentioned angles is a projection of exactly two right angles which do not lie in
C,_1. Besides, there are precisely 2"~ — 1 right angles, all of which have a fixed
common side, namely, the edge of C), passing through v and orthogonal to C,,_.

Thus, we come to the following recurrence formula:
tn =3t,_1 +2" 1 — 1.
This formula allows us to readily deduce (e.g., by induction) that
th =(3"+1)/2-2".
Therefore, ranging v over the whole of V,,, we finally get

ra = 2°((3" +1)/2-2").
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As an immediate consequence of the above formula, we obtain that the total
number of all those acute-angled triangles whose vertices belong to V;, is equal to

2m 2™

CTe T R 2+ 1)/2 -2,

31(2n — 3)!

Now, let us try to apply the formula for 7, in evaluating from below the function
k(n) = k.

Let X1, Xo,..., X, be an injective enumeration of all (k + 1)-element subsets
of V,,, so
2™
P= G+ i2n— &+ )

and let, for each natural index ¢ € [1,p], the symbol a; denote the number of the
right-angled triangles in X;. Since no Xj; is a strong at-set, we obviously may write

At the same time, it is clear that

(2n — 3)!
(k—2)1(2" =3 — (k—2))!

aytaz+---+ap,= Th.
The above equality is easily deduced if we consider the set of all pairs (Z, X;),
where X; ranges over the family of all (k + 1)-element subsets of V,, and Z is a
three-element subset of X; which forms a right-angled triangle. Calculating in two
possible ways the cardinality of the set of all these pairs, we come to the required
equality.

Now, since we have the trivial inequality

(2" — 3)! - (2!
k-2 —3— (k—2) = (k—2)l(2" — (k—2))

we infer that
(2m)!

(k —2)l(2n — (k — 2))!

a1 t+az+...+ap < C T

Consequently,
271 271
D2 —(h+ D)) = (k=22 — (k—2))!

27((3" 4+ 1)/2 —2").

The last inequality directly implies
(2" = (k+1)° < (k+1)°-2"((3"+1)/2—2")

or, equivalently,
2 <
L+ (27((3™+1)/2 —2m))1/3 =

kE+1.
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Further, taking into account the two trivial relations
L+ (28((3" +1)/2—2")"? < 2. (2*((3" +1)/2 - 2"))"/?,

3" 4+1)/2-2"< 3",
we can conclude that

1 n
1

Since 2 > 6'/3, we see that k +
growth with respect to n.

(and, consequently, k = k(n)) has an exponential

Remark 1. The argument presented above and the argument given in [6] are
not effective in the sense that they do not allow one to indicate or geometrically
describe any strong at-subset X of V;, whose cardinality is of an exponential growth
with respect to n. In this connection, it would be interesting to have some concrete
examples of such subsets X of V,, and to give their geometric characterization.

Remark 2. The notions of at-sets and of strong at-sets can be introduced
for any Hilbert space H over the field R of all real numbers. In this more general
situation the question concerning maximal cardinality of such sets also makes sense
and deserves to be investigated. In particular, for an infinite-dimensional H the
question is interesting from the purely set-theoretical view-point.

Strong at-sets in R™ are also of interest in connection with the well-known
problem of illumination of the boundary of a compact convex body in R™. There
is a rich literature devoted to this important problem of combinatorial geometry.
See, for example, [2], [3], and [4].

Actually, the famous hypothesis of Hadwiger says that the minimum number
of rays in R™ which suffice to illuminate the boundary of every compact convex
body in R"™ is equal to 2™ and, moreover, any n-dimensional parallelepiped P in
R™ needs at least 2" rays. Notice that the set of all singular boundary points of P
is infinite (moreover, it is of cardinality continuum).

In this context, we would like to recall the following old result of Hadwiger.

Theorem 1. If the boundary of a convex body T C R™ is smooth, then n + 1
rays in R™ suffice to illuminate the boundary of T.

Actually, Theorem 1 states that if n + 1 rays l1,la,...,l,,l,11 are given in
R"™, which have common end-point 0 and do not lie in a closed half-space of R"™,
then ly,ls, ..., 1,41 are enough to illuminate the boundary of any convex smooth
body in R™ (the compactness of the body is not required here).

Recall also that Hadwiger’s above-mentioned result was strengthened by Boltyan-
skii (see, e.g., [2]). Namely, Boltyanskii established the following statement.

Theorem 2. If the boundary of a convezx body T C R™ has at most n singular
points, then n+ 1 rays in R™ suffice to illuminate the boundary of T.
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Boltyanskii’s theorem does not admit further generalizations to the case where
the boundary of a compact convex body T' C R™ may have more than n singular
points (see [4] and [7]). In addition to this, the n+1 rays of Theorem 2 substantially
depend on the convex body T'.

It is natural to ask whether there is a compact convex body in R™ with a
finite number of singular boundary points, which needs a large number of rays
for illuminating its boundary (i.e., the number of illuminating rays must be of an
exponential growth with respect to the dimension n of R™).

Let X be a strong at-subset of R™ with cardinality equal to k(n). Recall that
k(n) is of an exponential growth with respect to n. By starting with this X, one
can obtain the following statement.

Theorem 3. There exists a compact convex body B C R™ such that:
(1) X coincides with the set of all singular boundary points of B;
(2) at least k(n) rays are necessary to illuminate the boundary of B.

Let us present a sketch of the proof of Theorem 3.

Denote by M the convex hull of the set X. Clearly, M is an n-dimensional
convex polyhedron in R™ and the set of all vertices of M coincides with X. For
every point z € X, denote by M (z) the polyhedral angle of M with vertex z, and
let C(z) be a convex cone with the same vertex x, such that M(z) C C(z). We
may assume that the conical hypersurface of C'(x) is smooth (of course, except for
its vertex z). If each C(x) slightly differs from M(z), then the boundary of the
compact convex body

B'=n{C(z):z € X}

has isolated singular points x, where x € X, and continuum many other singular
points y, where y € Y. We may suppose that the distance between the sets X
and Y is strictly positive. Now, all singular boundary points of B’ belonging to YV
can be deleted by using a standard trick, without touching the points of X. So,
proceeding in this way, we will be able to replace B’ by the compact convex body
B satisfying both conditions (1) and (2) of Theorem 3.
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The paper is concerned with some aspects of the theory of volumes in Euclidean space.
In this context, it is shown that there exists a solution of Cauchy’s functional equation,
which is absolutely nonmeasurable with respect to the class of all translation invariant
measures on the real line R, extending the Lebesgue measure on R.
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The concept of volume for sufficiently simple geometric figures is one of the
most important in classical geometry of Euclidean spaces. Discussions of this con-
cept occupy a substantial place in all standard university lecture courses in Eu-
clidean geometry. There are many text-books, manuals and monographs devoted
to the subject (see, for example, [2], [3], [5], [6], [7], [8], [10], [11], [12]).

The deep notion of volume type functionals is closely tied with several interest-
ing and important geometric topics, such as equidecomposability theory (including
well-known paradoxes about partitions of certain geometric bodies), dissections of
figures into finitely many other figures of a prescribed type, the behavior of the
volume function under Minkowskis sum of point sets, etc.

One of the principal problems which arises here is to extend the function of
elementary volume for simple geometric figures to a volume defined for a maxi-
mally large class of figures. This problem is successfully solved within framework
of modern theory of invariant measures and its solution heavily depends on purely
algebraic properties of a basic group of transformations of the Euclidean space.
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These aspects are partially touched upon in H. Hadwiger’s widely known mono-
graph [3] in which the role of nontrivial solutions of Cauchy’s functional equation is
shown and stressed. As was proved by Frechet, all of those solutions are nonmea-
surable in the Lebesgue sense. However, a much deeper result about such solutions
can be established (see Theorem 2 below).

The present paper is devoted to some aspects highlighting profound connections
between elementary theory of volume with general methods of the theory of additive
functions having bad descriptive properties.

Throughout this article, we use the following standard notation:
N is the set of all natural numbers;

Q is the set of all rational numbers;

R is the set of all real numbers;

R™ is the n-dimensional Euclidean space (n > 1);

dom(u) is the domain of a given measure p on R™.;

ran(f) is the range of a given function f;

A is the classical Lebesgue measure on R”.

Let D,, be the group of all isometric transformations of R™ and let S,, be the
ring of sets generated by the collection of all coordinate parallelepipeds of R"™.

Let G be a subgroup of D,,. A functional V,, is called an elementary G-volume
on R™ if the following four conditions hold:

(1) V, is non-negative:
(VX)(X € S, = Vo (X) > 0);
(2)  V, is additive:
(VX)VY)(X €8, AY €S AXNY =0 = Vo (XUY) =V, (X) + Vo (Y));
(3) V, is G-invariant:
(V9)(VX)(g € GAX € Sp = Va(9(X)) = Va(X));

(4) Vn,(A,) =1, where A, = [0, 1]™ denotes the unit coordinate cube in R™.

The above-mentioned conditions are usually treated as Axioms of Invariant
Finitely Additive Measure (see, for instance, [3], [5]).

If condition (2) is replaced by the countable additivity condition, then we
obtain the definition of a G-measure (cf. [8]).

It is well known that the classical Jordan measure on R™ is a natural example
of G-volume in R™. Respectively, a certain extension of Jordan measure to a
sufficiently large class of subsets of R™ is the standard Lebesgue measure (see [3],
[4]). In some sense, the latter class of sets is maximal, because within the framework

46 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 45-51.



of constructive methods it is impossible to further enlarge this class. This result is
due to R. Solovay who was able to construct a model of set theory with a restricted
(countable) version of the Axiom of Choice, in which all subsets of the space R™
turn out to be measurable in the Lebesgue sense (see [13]).

Notice that, by using the Zorn lemma, any D,-volume on R™ (n > 3) can
be extended to a maximal (by the inclusion relation) D,-volume on R™, but the
geometrical structure of the domain of such a maximal D,,-volume is not known
and this problem seems to be of some interest.

It is well known that if an additive function

f:R-R

satisfied one of the following conditions, then there exists a real constant k£ such
that f(x) =k -z for all z € R:
f is continuous at a point of R;

—

a

=

f is monotone on an interval of positive length;
f is bounded from above (or below) on an interval of positive length;

o
~

f is locally integrable in the Lebesgue sense;
f is Lebesgue measurable;

@
~—

f is a Borel function;

N N N N N /S
o
~—

f has the Baire property.

It is clear that if a functional V; satisfied the condition (1) (that is, V,, > 0),
then

o
=

Vi = k=, (k€ R).

From the measure-theoretical point of view, there are many interesting and
important facts concerning G-volumes. The most famous among them is due to
Banach.

Theorem 1 (Banach). In the cases n = 1 and n = 2 there exists a non-
negative additive functional defined on the family of all bounded subsets of the Eu-
clidean space R"™, invariant under the group of all isometries of R™ and extending
the Lebesgue measure \,,.

The proof of Theorem 1 can be found e.g. in [1], [8].

It directly follows from this theorem that if X and Y are two Lebesgue mea-
surable subsets of R (n = 1,2) such that A, (X) # A, (Y), then X and Y are not
finitely equidecomposable subsets of R™.

Example 1. In the case n > 3, we have no analogous result because of the
famous Banach-Tarski paradox. As a remark, notice that if n > 3, then the group
D,, possesses paradoxical properties which are implied by the fact that this group
contains a free subgroup generated by two independent rotations. Actually, just
from the latter circumstance follows the Banach-Tarski paradox stating that any
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two bounded subsets of the Euclidean space R™, n > 3 with nonempty interiors are
equivalent by finite decompositions. Namely, if A and B are two bounded subsets
of R™ (n > 3), both of which have a nonempty interior, then there are partitions
of A and B into a finite number of disjoint subsets

A=A UAUAsU---U A,

B=B UByUB3U---UDBy,

such that for each ¢ € [1, k] the sets A; and B; are D,-congruent.

The proof of this paradox is essentially based on the Hausdorff theorem (see
[1]) which states that if one removes a certain countable subset of the sphere S? in
R3, then the remainder can be divided into three disjoint subsets A, B and C such
that A, B, C' and B U C are mutually congruent under the group of all rotations
of R? about its origin. In particular, it follows from the above theorem that on S?
there is no finitely additive non-negative normalized functional defined on all of its
subsets such that the values of this functional on congruent sets are equal to each
other.

From the Hausdorff theorem also follows that on the Euclidean space R™ (n >
3) there exists no D,,-volume defined on the family of all subsets of R".

Example 2. There is also a somewhat paradoxical result in the case of the
plane R2. Namely, let G denote the group of all those affine transformations of R?
which preserve the area, i.e., g belongs to G if and only if |det(g)] = 1 (this group
is much wider than Ds). According to the theorem of von Neumann, if A and B
are two bounded subsets of the plane R?, both of which have nonempty interiors,
then there are partitions of A and B into a finite number of disjoint subsets

A=A UAyUAsU---U Ay,

B=DB,UByUBsU---U By,
such that for each ¢ € [1, k] the sets A; and B; are G-congruent.

A detailed discussion of Example 2 see in [3].

Let us restrict our further considerations to the ring of all polyhedrons in the
space R™ (see, e. g., [3]).

Hilbert’s third problem is formulated as follows:

Given any two polyhedrons of equal volume, is it always possible to cut the first
into finitely many polyhedrons which can be reassembled to yield the second?

Two polyhedrons are equidecomposable if the first of them admits a cutting
into finitely many polyhedrons which can be reassembled to yield the second one.
Obviously, any two equidecomposable polyhedrons have the same volume. The
converse assertion is not true. For example, the unit cube in R? and a regular
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tetrahedron of volume 1 are not equidecomposable, which gives a negative solution
of Hilbert’s third problem.

In connection with this problem, for every polyhedron P, Dehn introduced
some kinds of functionals, now widely known as the Dehn invariants, which are

defined as follows:
Dy(P) = 1(e)f(a), (%)

where [(e) is the length of an edge e of P, « is the value of the dihedral angle
of P between the two faces meeting at e, and f is an additive function such that
f(m) =0.

In other words, a function f is any solution of the Cauchy functional equation

fle+y) = f@)+ fy),

such that f(7) = 0.
Notice also that, the sum in (x) is taken over all edges of the polyhedron P.

It is well known that any nonzero additive function f which participates in
Dehn invariants is nonmeasurable in the Lebesgue sense (see [3], [9]).

Let M be the class of all those measures on R which are translation invariant
and extend the Lebesgue measure A;.

We shall say that a function f : R — R is absolutely nonmeasurable with
respect to M if, for every measure p € M, this f is not p-measurable.

Theorem 2. There exists an additive function f : R — Q which is absolutely
nonmeasurable with respect to the class of all translation invariant measures on the
real line R, extending the Lebesgue measure \q.

Proof. For establishing this fact, consider R as a vector space over the field Q.
Take an arbitrary element e € Q\{0}. It is well known that, one-element set {e}
can be extended to a basis of R, that is there exists a Hamel basis {e; : i € I} for
R, containing e. The latter means that {e; : ¢ € I} is a maximal (with respect to
inclusion) linearly independent (over Q) family of elements of R and e € {e; : i €
I}. Now, find the index ig € I for which e;, = e and consider the vector subspace
V of R generated by the family {e; : ¢ € I\{ip}}. It is obvious that V' turns out to
be a vector space in R, complementary to the vector subspace Q. In other words,
we have the representation

R=V+Q, (VnQ={0})

of the space R in the form of a direct sum of its two vector subspaces. In particular,
for each x € R, the relation

card(VN(x+Q)) =1
is true, from which it follows that V' is a certain Vitali subset of R (see, e. g., [1],

[5])-
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For any = € R, we have the unique representation
r=v+qg (veEV,geQ).

Consider a function
fR—=Q
defined by the formula:
fx)=q (z€R).

Obviously,
fle+y)=f@)+fly) (r€R,yeR).

We thus conclude that f turns out to be an additive functional on R and
ran(f) = Q. Also, a straightforward verification shows that f is not measurable
with respect to every translation invariant measure on the real line R, extending
the Lebesgue measure. This follows from the fact, that

fHo)=v

and V' is nonmeasurable with respect to every translation invariant measure p on
the real line R, extending the Lebesgue measure A;. In other words, we always
have f~1 & dom(u) (compare with Theorem 1).

This finishes the proof of the Theorem 2. 0

Example 3. There exist many nontrivial solutions of Cauchy functional equa-
tion which are not absolutely nonmeasurable with respect to the class M. Moreover,
most of solutions of Cauchy functional equation are not absolutely nonmeasurable
with respect to M.
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The discrete multitime multiple recurrences are common in analysis of algorithms,
computational biology, information theory, queueing theory, filters theory, statistical
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in particular algebraical aspects and original theorems on existence and uniqueness of
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1. DISCRETE MULTITIME MULTIPLE RECURRENCE

Generically, we refer to discrete multitime multiple recurrences of the form
a(t+1g) = Fo(t,z(t)), VLEZ™, t>ty, Yae{1,2,...,m}, (1.1)

where F,: {t € Zm|t > tl} XM — M, a€{1,2,...,m}, m € N* ty,t; € Z™,
tg > t1; 1o = (0,...,0,1,0,...,0) € Z™, ie., 1, has 1 on the position a and 0
otherwise; M is a nonvoid set. The unknown function is an m-sequence x: {t €
Zm™ |t >to} — M.

Let us start by presenting two results on the existence and uniqueness of the
recurrence (1.1) solutions (see [4]).
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Proposition 1. If for any (to,zq) € {t SAL ’t > tl} x M, there exists at
least one solution x: {t ezm | t> tg} — M which verifies the recurrence (1.1) and
the condition x(tg) = x¢, then

Fo(t+1g, Fs(t,z)) = Fa(t + 1a, Fu(t, x)), (1.2)
YVt >ty, Ve e M, Va,B€{1,2,...,m}.

Theorem 1. We consider the functions Fy: {t e zm |t > to} XM — M,
a €{1,2,...,m}, such that, Vt > to, Vo € M, Vo, € {1,2,...,m}, the relations
(1.2) are fulfilled.

Then, for any xo € M, there exists a unique function
v {teZ™|t>to} — M,
which verifies
x(t+ 1o) = Fo(t,x(t)), Vt>tg, Vae{l,2,...,m},

and the condition x(to) = xo.

2. MULTITIME RECURRENCES ON A MONOID

A monoid is an algebraic structure with a single associative binary operation
and an identity element. Monoids are used in computer science, both in its foun-
dational aspects and in practical programming.

Our aim is to analyse a multitime recurrence on a monoid (N N e). We consider
n: N x M — M, an action of the monoid N on the set M, i.e.

n(ab, z) = n(a, (b, m)), n(e,z) =z, Va,be& N,Vx € M. (2.1)
We will use the more convenient notation
n(a,z) =ax, Ya €N, Ve M
(not to be confused with the operation of monoid N). The relations (2.1) become
(ab)x = a(bx), ex =z, VYa,be N,Vre M.

The action functions a,: {t ez ’t > tl} = N, a € {1,2,...,m} (with
t; € Z™) define the action recurrence

x(t+1a) = ag(t)z(t), Vae{l,2,...,m}, (2.2)

with the unknown function x: {t ez | t> to} =M, to € Z™, ty > 11.

Introducing the set
Z={teZ™|t>t}

and using Proposition 1 and Theorem 1, one can prove easily the following result
(see [5]):
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Theorem 2. a) If, for any (tg, z9) € Z x M, there exists at least one function
T: {t ez ‘ t > to} — M, which, for any t > tgo, verifies the recurrence (2.2) and
the condition x(ty) = xo, then

ao(t +1g)ag(t)r = ag(t + 1a)aq(t)z, (2.3)
Vie Z, Ve e M, Va,f€{l,2,...,m}.

b) If the relations (2.3) are satisfied, then, for any (to,xo0) € Z X M, there
exists a unique function x: {t €z | t> to} — M, which, for any t > tgy, verifies
the recurrence (2.2) and the condition x(ty) = xo.

For any point ¢t = (t,...,t™) € N™ it is useful to denote
t] ==t + ... +t™

Theorem 3. Suppose that the monoid N is commutative. Let us consider
the function (sequence) r: N — N and the elements g, € N, a € {1,2,...,m},
Pap S N7 Oéaﬂ S {1727"'7m}) thhpaﬁ = PBas VOL,[‘).
For each index o € {1,2,...,m}, we define the function
1 2 m
Ao N™ = N, ao(t) = qo - plyphs oo Dl - ([E]), VE= (1., t™) € N™,

We shall consider the recurrence (2.2) defined by these functions.

In the previous conditions, for any xo € M, there exists a unique m-sequence
x: N™ — M, which, for any t € N™ verifies the recurrence (2.2), as well as the
condition x(0) = xo. This m-sequence is defined by

t|—1

Hq Hpm T T e T r6) e, Vee NTA{0) (2.4)

1<a<B<m =0

if m =1, then the factor ptﬂtﬁ does not appear).
ap
1<a<p<m

Proof. For any «, 3, we have
1 2 m 1 2 m
o (t+15) = Pap-da-ParPaz - - Pam Tt +1),  ap(t) = qs-PhiPga-- - P -T(|t]),
1 2 m 1 2 m
ao(t +15)ap(t) = Pag - Gads - ParPaz - - - - PamPg1Phz - - - P - r([E)7(E] + 1)
It follows that
1 2 m 1 2 m
ap(t +1a)aa(t) = Ppa - 4da " Ps1Ps2 " - PamPailaz * - - Pam - T([t)r ([t +1).
Since pag = Pga, We can write

ao(t +1g)ag(t) = ag(t + 1a)an(t), VteN", Va,B € {1,2,...,m}.
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We deduce that the relations (2.3) are satisfied. According to Theorem 2 (with
to = t; = 0), there exists a unique function z: N™ — M, which, for any ¢t € N™

verifies the recurrence (2.2), and the condition z(0) = xg
It is sufficient to show that the function defined by the formula (2.4), for

t € N™\ {0}, and z(0) = x¢, verifies the recurrence relation (2.2)

We shall verify the case m > 2; the case m =1 is treated similarly
m}. We show that for any ¢ € N™ we have

z(t+1,) = ay(t)x(t).
Let t € N\ {0}. We need the set P,, 2 of the subsets with two elements from
m}, i.e., Pma= {{a,ﬂ} c{1,2,...,m} ‘ o # ﬁ}

Since pffﬁt = pgz , we observe that in the product H pf:gﬁ the factors
1<a<fB<m

We fix vy € {1,2,...,

the set {1,2,...,

Pag occur, taken over all distinct elements {a, 8} of the set Py, 2

If m > 3, we can write
Pm,QZ{{’Y,CE}’CEG{].,Q,...,
o{{a.8) € (12 m) [a#9. B #9,

m}, o # 7}U

hence we have
m
B $Y e 1ogB
H Pap = H Pya - H Pap - (2.5)
1<a<pB<m a=1 1<a<B<m
N - oty a#y, B#y

For m = 2, one obtains the relation (2.5), but without the factor H pfﬂtﬂ.
1<a<B<m
aFy, B#Y

For m = 2, we denote H P Btﬁ := e. With this convention, it follows that

1<a<f<m
aFy, B#Y
the relation (2.5) is satisfied for any m > 2. The relation (2.4) becomes

m m
tw(t'y—l) t (Y —1)
: H (paoc) 2

H qoc p’YV 2
a=1

a?ﬁ'v aFty
[t|-1

m
e t¢h . .
’ Pya H Pap - H T(]) * 205
1<a<B<m 7=0
aFy, B#EY

a=1

aFy
(t7+1)ﬂ t“(t“ 1)
(t+1y) =gy - ¢} - an (Py+) ] )
a=1
a#'v aFty
It]

b IT ohd - TTro)
j=0

(p'ya Yo

3

:'13

1<a<B<m
aFy, B#£y

20
Al
R
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t7 4+ 1)t (T -1
@+ % it follows that

Since
Y > Y e e tY (Y1) o f“<f“—1)
$(t + ]"Y) = (Q~ 'p’y’y ° H p'ya : T(|t|) : q’y : H 4o (p’y’y) 2 H pa(x

by oy pois

m 5 [t]—1
et «@ .

0P T phd - 11 rG) - 2o = ay (B)a(t)
a=1 1<a<pB<m 7=0
aFy aFy, BAYy
For t = 1., the relation (2.4) reads as

z(1ly) =gy - 7(0) - 2o = a,(0)x(0),
O

hence the equality x(t + 1,) = a,(t)z(t) is true also for t =0

Remark 1. If we use additive notation, i.e., the operation on N is denoted
by “+7 and n(a,z) = a+x (a € N, x € M), then the recurrence relation (2.2)

., m}.

reads as
z(t + 1) = an(t) + z(t), VYae{l,2,
.+ tmpam + T(|t|)

In Theorem 3, we have an(t) = qo + t'pa1 + t2paz +

Formula (2.4) can be written
lt]—1

- et —1
()= 3 (0ot G ) ¢ s Yot o
a=1 1<a<B<m

Corollary 1. Let (M, ") be a semigroup. We consider the function (sequence)
r: N — N* and the elements qo € N*, a € {1,2,...,m}, pag € N*, o, €
{1,2,...,m}, with pag = Dga, Yo, .
For each index o € {1,2,...,m}, we define the function
1 2 m
Ao N™ = N* an(t) = qo - pLiPlo oo Dl - T(E]), VE= (', ..., t™) € N™.

Then, for xo € M, there exists a unique m-sequence x: N™ — M, which, for

any t € N™ verifies
z(t+ 1) = 2(0)%D, Vae{1,2,...,m}, (2.6)

and the condition x(0) = xg. For any t € N™\ {0}, we have
[t|-1

m m
t(’(t(’ 1) ayfB .
( H dq H paa ’ H prxb’t ’ H T(]))
oty =z, T tsasf=m =0 (2.7)
(if m =1, the factor H paﬁ does not appear).

1<a<pB<m
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Proof. We apply Theorem 3 to the commutative monoid (N, ~,e) = (N*, 1)
and the action

n:N*"x M — M, n(a,xz)=2% VaeN' VrelM.

O

Remark 2. a) If in Corollary 1 the semigroup (M, -) is a monoid, then we can
consider: go € N, pog € N (with pag = pga) and 7: N = N (i.e., ¢, pag, 7(j) can
be eventually zero). The conclusion in Corollary 1 reads similarly and the solution
of the recurrence (2.6) is defined by the formula (2.7).

The proof follows by applying Theorem 3 to the commutative monoid (N R e) =
(N, 1) and the action

:NxM— M, na,z)=2% VaeNVreM.

b) If in Corollary 1 the semigroup (M, -) is a monoid, and the element zy of M
is chosen invertible, then we can consider g, € Z, pag € Z (With pag = pge) and
r: N — Z (ie., qa, Pas, 7(j) are integers). The conclusion in Corollary 1 writes
similarly, and the solution of the recurrence (2.6) is defined also by the formula
(2.7).

The proof can be obtained by applying Theorem 3 to the commutative monoid
(N, ° e) =(Z,-, 1) and the action

n: ZxUM)—=UM), nla,z)=z% VacZVxeUM),

where U(M) is the set of invertible elements in M; the set U (M), with operation
induced by that of M, is a group.

Many other original results, regarding the multitime recurrences, can be found
in [3]-[8]. Some related sources are [1], [2], [9]-[12].

3. EXAMPLE OF MATRIX 3-SEQUENCE

Let us determine the matrix 3-sequence X: N* — My(R), which, for any
t = (t',¢2,3) € N3, verifies the recurrence relations

X(E 4 1,2,6%) = X (11,12, 3)2 371 (et
X(1,42 4 1,43) = X (1, 42,3)53" 27+ 4%4D)
X(H,62,83 4+ 1) = X(#1,¢2, )17 20 (e ),

and the condition X(0,0,0) = A := ( le _72 )
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We are in the assumptions of Corollary 1, with (M, -) = (MQ(R), ) and
@ =3 q¢=5 g=11,
pr1 =2, pr=ps3=1, p2=pn =3, pi3=ps =7, D2 =Dp32=2,
NS N, r(j)=j+1, VjeN.
According to Corollary 1, for any (¢!,¢2,¢%) € N3\ {(0,0,0)}, we have

X(# 42,43 = 43" 511" LT gt e g (2 ey

X(tl 2 tB) _ A2t1(t;—l)+t2t3 .3t1(t2+1) . 5t2 ) 7t1t3 . 11t3 . (t1 i /2 n t?’)!,

relation which is also true for (¢!,¢2,¢3) = (0,0,0).

By induction one shows that

w_ [ 2-3"—5" 35"
A _<2(5"3") 25" — 3"

noonf 2 1 S =1 -1
wew (3 LYo ( 7). wen

It follows that, for any (t!,¢2,¢3) € N3, the general term is

), Vn € N,

thl-1) 2.3 10,2 2 1,3 3
2t atl(t241) mt? el o0t3 1,2 43y, 2 ]
X(tl,tQ,tS) 32 2 3 5" -7 115 (¢ = 4t°)! ( >

11
i 52%+t2t3_3t1(t2+1).5t2_7t1t3_11t3_(t1+t2+t3)! ' ( -1 -1
2 2 ’
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1. DESCARTES FOLIUM

Let K be a field with char. K # 3. Our theory (see also [2], [3], [8]) refers to
the Descartes Folium which is a non-smooth curve

DF :2* +y* —3azy =0 C A%, a € K\ {0}
and to its projective closure defined by homogenization, i.e.,
DF : 2® +y® — 3axyz =0 C P

and called the projective Descartes Folium, too. DF, resp DF, has only a non-
smooth point, namely O = (0,0) € DF C DF'.
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Suppose now K = R. We have a bijective map p:

DF (o= {%,y=345) (x.y) € DF\{(0,0)} (0,0)

!Jp | | |

RA{-1} t t= t=0

8

On the other hand, the function ¢t — 7 = ¢t + 1, with the inverse ¢t = 7 — 1—7,
establishes a bijection

R\ {1} <= R\ {0}.

It appears the bijective map pa:

a\T— a\T— 2
DF (o= %0y =550 (@) € DFA{(0,0} (0,0)

![po | | |

R\ {0} T =141 1

It follows that the natural group law - on R\ {0} transfers to a group composition
law o on DF defined as follows:

def
(pa)(7) o (pa)(r') = (pa)(r7').
Consequently, we have an isomorphism of groups:
(DF,0) ~ (R\ {0}, )

(pa)(r) 1.

Remarks. (i) For each t € R\ {—1,0}, we can observe that p(t) € DF \ {0}
is the intersection point in A2 = R2, of DF with the affine straight line y — tz = 0,
different of O = (0,0). In this way, p admits a geometric definition.

(ii) p (and pa) can be related to the normalization morphism of an algebraic
curve ([4]). Namely, p can be uniquely extended as algebraic map to a (non-
bijective) algebraic map p:

DF (z = 3at,y =3at?,z=1+1t%) (x,y,2) € DF\ {O}
7
Pi = Ag U{oo} te Ag t=14,

where we indicated the definition of p and of a partial inverse of p.

If we pass from the base field R to its algebraic closure R = C O R, then DF,
DF, p, a are all defined over C, by the same equations and formulae. According
to [4], one verifies that the pair (P{, p) is a normalization of the algebraic C-variety
DF. Recall that a normalization pair is uniquely determined up to an isomorphism
of algebraic C-varieties.
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We have a similar situation with the pair (P§, par), which is also a normalization
of DF over C. Based on this natural relation of p and pa, with the normalizations of
DF over C, we will say shortly in the following that p and pa are also "normalization
maps”.

So the algebraic maps p and pa are natural and then the group composition law
oon DF is still natural. But the group (DF), o) is not a Lie group over R because DF
is not a topological manifold w.r.t. the induced real topology of A2 = R? D DF
(If U ¢ DF is a small connected open subset w.r.t. this topology, containing
O = (0,0), then U \ {O} has at least 4 connected components).

2. BRANCHES OF DESCARTES FOLIUM

Suppose K = R. Let us consider the branches of the non-smooth point O =
(0,0) of DF as follows: (i) the ”South branch” S = p(—1,1); (ii) the ”West branch”
W =p(1,00) U{O} Up(—o0, —1).

We have SNW = {O} and SUW = DF \ {V}, where V =p(1) = (2,2) is
the "vertex” of DF. The branches S and W are symmetric w.r.t. the first bisector
z —y = 0 of AZ. This means that applying the symmetry o w.r.t. the bisector
z —y =0, given by

A2 = A2

(z,y) — (y,2),
we have o(DF) = DF and the branches S and W interchange by o (i.e., 0(S) =W
and o(W) = 5).

By the parametrization p, the point O = p(0) is reached on the branch S and
it is not reached on the branch W.

Let us consider the parametrization p’ = op of DF. Then, by using the
interchange of S and W by o, it follows that W = p’(—1,1) and S = p/(1,00) U
{0} Up'(—o0,—1). By the parametrization p’ = op, the point {O} is reached only
on the branch W (not on the branch 5).

It is easy to see that the pair ((A} \ {—1}) U {oc},p’ = op) is also related to
a normalization of DF over C, as p and pa. We will say shortly, in the following,
that p’ is also a ”normalization map”.

3. SOME TOPOLOGIES ON AFFINE DESCARTES FOLIUM

Concerning the topological properties of the map p, we have the following

Proposition 1. Suppose K =R and DF C A% endowed with the topology T
induced by the real topology of AZ. Then

(i) the bijective map p : R\ {—1} — DF is continuous but not a homeomor-
phism,;
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(ii) plr\f0,—13 : R\ {0, -1} — DF \ {0} is a homeomorphism.
Similar properties hold for the map p' = op: R\ {—1} — DF.

Proof. (i) Suppose, by contrary, that p : R\{—1} —~ DF is a homeomorphism.
Then pa : R\ {0} = DF is also a homeomorphism. Since (R \ {0},+) is a
topological group and pa is a group isomorphism onto (DF), o), it follows easy that
(DF, o) is a topological group, which is not possible.

An alternative proof based on the different connectivity properties of R\ {0}
and DF' can be done.

(ii) The inverse map

p71

R\ {0,-1} <~ DF\ {0}
=4 <« (zy)

is also continuous. g

In the previous Proposition we have worked with the topology 7 on DF which
is induced on DF C A% by the real topology of AZ. Now let us change the topology
7 on DF with the topology 7s (resp. Tw) defined as follows:

Definition 1. 7g (resp. 7w ) is the image on DF of the real topology of
R\ {1} by the bijective map p : R\{—1} > DF (resp. byp' = op: R\ {-1}
DF).

Hence the new topology 7s (resp. 7w ) on DF' is obtained by carrying the
real topology of an open subset of DF by the normalization map p (resp. p’).
It follows that the topology 7g (resp. 7w ) is separated, paracompact and locally
compact, and with countable basis, as well as the fact that S = p(—1,1) (resp.
W = p/(—1,1)) is open in DF w.r.t. 7g (resp. 7w ). Moreover, the topological
space (DF,7g) (resp. (DF, Ty )) has two connected components.

3.1. SOME PROPERTIES OF TOPOLOGY 7g (RESP. Tw)

Theorem 1. (i) 7g (resp. Tw ) is a finer topology than T (i.e., Ts,Tw > T).

(ii) The induced topology Ts|pr\(oy (Twlpr\(oy) on DF \ {0} C A} is that
induced on DF \ {O} by the real topology of AZ. Equivalently,

Tslpmoy = Tor\or (resp.Tw|pr\{o} = Tor\{0}) -
(iii) If {Uy}nen is a fundamental system of open neighborhoods of O in A3,
with respect to the real topology, then {U, N S}pen (resp. {U, N Whpen) is a

fundamental system of open neighborhoods of O € DF, in DF', with respect to the
topology Ts (resp. Tw ).
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(i)

TU{UNS|U C A% open subset}
(resp.7U{UNW |U C A} open subset})

is a basis for the topology Ts (resp. Tw ). Moreover, for each V € 15 (resp. Tw ),
V=UNDF)UUNS) (resp. V= (U NDF)U(UNW)),

with U', U C A% open subsets.

(v) Let
Loif (wy)#0
0 if (z,y)=0

/. ’ _ % if (:c,y) 7é @)

<resp.7r :DF — R, 7' (z,y) { 0 if (sy)=0 )
Then Tg (resp. Tw) is the weakest topology on DF such that w (resp. w') is
continuous (R endowed with the real topology).

(vi) {O} C W (resp. {O} C S) is a connected component of the subspace W
(resp. S) w.r.t. the topology Ts (resp. Tw ). Moreover

m:DF = R, 7(x,y) :{

W =p(1,00) U{O} Up(—00, —1)

(resp. S = p'(1,00) U{O} Up/(~00, 1))

is the representation of W (resp. S) as the union of its connected components w.r.t.
Ts (resp. Tw ). On the other hand S (resp. W) is connected w.r.t. 75 (resp. Tw ).

Proof. Properties (i), (ii) and (v) are direct consequences of the definition of
7g (resp. Tw) and of the fact that the maps

p,p R\ {-1} = DF
( having 7,7’ : DF — R\ {—1} as inverse maps) are continuous and
p.p" :R\{0,~1} — DF\ {0}

are homeomorphisms, where DF (resp. DF \ {O}) above is endowed with the
topology 7 (resp. T|pr\{0})-

For property (iii), let us point out firstly that U NS (resp. U N W) is an open
subset of DF w.r.t. 75 (resp. 7w ), in particular an open neighborhood of the point
O € DF w.r.t. 7g (resp. Tw), if U C A2 is an open subset w.r.t. 7 (resp. Tw),
resp. an open neighborhood of the point O in AZ. In fact, S (resp. W) is open
in DF w.r.t. 7g (resp. 7w) and U NDF € 7 C 75 (resp. UNDF € 7y) and so
UNnS={UNDF)NS € 1s (resp. 7w ).

To end the proof of (iii) it suffices to resume to the topology 7s and to show that
for an open neighborhood V of O in DF w.r.t 7g, there exists an open neighborhood
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Uof Oin Af{ such that V' O UNS. Indeed, we can reduce the situation to the case
V = p((—4,0)), with 0 < § < 1, because always for such V' we have V D p((—4,9)),
with 0 < 0 < 1, and p((—d,9)) is an open neighborhood of O in DF w.r.t. 7g.

For t € p((—4,6)), with 0 < § < 1, we have |[t| < § < 1 and from the relation

T = fft%, where t = 7(z,y), with (z,y) € S, it follows 3at = (1 + t3)x and

Blal [t < 1+ #[]a] < (1 +[tf)la] < (1+6%)2| < 2Jal.
Hence [t| < ﬁ |z]. If we consider €, with 0 < € < ¢, and

3
U= {(x.0) € A2 =B o] < 2,

then U C A2 is open w.r.t. the standard real topology and we have |t| < e, for
each (z,y) e UNS, ie, |r(z,y)| < e for (z,y) € UNS. Therefore 7(U NS) C
(—€,€) C (—6,6). Since 7 = p~ 1, we have then

UNS =pr(UNS) Cp(—ee) Cp(—6,0)=V.
For property (iv), recall firstly that
T={UNDF | U C A% open subset}.
Also, we resume to the topology 7g. Then the family
TU{UNS | U C A2 open subset}

is closed w.r.t. the finite intersections.

Let V C DF be an open subset w.r.t. 7¢. If O € V, then V 2 U NS with
U C A} open and O € U, according to (iii) and its proof. If P € V, P # O, then

VOVN(DF\{0})er
according to (ii) and P € VN (DF\ {O}). Tt follows that
V=WVn(DF\{0}Hh)uUnS),

where VN (DF\{0}) € 7 (hence VN (DF\ {O}) = U'NDF with U’ C A% open)
and U C A2 open such that O € U. The proof of (iv) is achieved.

For property (vi), we use the fact that SN W = {O} and then for an open
neighborhood U C A2 of O w.r.t. the real topology of A%, U NS (resp. UNW)
is an open neighborhood of O € DF w.r.t. 7g (resp. Tw) and (UNS)NW = {0}
(resp. (UNW)NS ={0}). Hence {O} is open in W (resp. in S) w.r.t. 7g (resp.
7w ) and so it is a connected component of W (resp. S), because {O} is also closed
in W (resp. S) w.r.t the separated topology 7s (resp. 7w ). The connectivity of
p(1,00), p(—00,~1), § = p(-=1,1) (resp. p'(1,00), p'(—00,~1), W = p'(-1,1))
w.r.t. 75 (resp. 7w ) is clear because p (resp. p’) is a homeomorphism. O

66 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 61-69.



Comment (ii) in conjunction to (iii), as well as (iv), determine completely
the topology 7s (resp. i) by means of the real topology of the ambient space A2,
DF and its branch S (resp. W).

3.2. DIFFERENTIAL STRUCTURES ON AFFINE DESCARTES FOLIUM

On the topological space (DF,7g) (resp. (DF,Tw)) we can introduce a struc-
ture Ag (resp Aw) of smooth differential manifold by means of the simple atlas
{(DF,m)}, (resp.{(DF,n’)} having only one chart, where

m:DF — R\ {1} CR (resp. ' : DF — R\ {-1} C R)

is the bijective map defined above, i.e.,

y s
m: DF — R, W(x,y){ IO 'Zti; Ei:zgig
. )

Recall that the inverse of the map 7 (resp. #’) is the map p (resp. p’ = op) and all
are continuous, hence homeomorphisms. In this way,

DF i) R\ {-1} (resp.DF i R\{—l})
p P’

become diffeomorphisms of differentiable manifolds.

In particular, pa : R\ {0} — DF is then also a diffeomorphism, where DF is
endowed with the topology 7¢ and the atlas {(DF,x)}. Since

pa: (R\{0},-) — (DF,o)
is a group isomorphism, it follows directly

Theorem 2. (i) (DF,o0) is a Lie group over R (in particular a topological
group), where DF' is endowed with the topology Ts and the differential manifold
structure given by the atlas {(DF,m)}.

(ii)

pa: (R\{0},-) — (DF,o0)
is then an isomorphism of Lie groups over R (in particular an isomorphism of
topological groups).

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 61-69. 67



4. COMMENTS

The original ideas regarding the group laws on elliptic curves and algebraic

(Lie) groups are found in [1], [4]-[7], [10],[11].

In this paper, and also in our papers (see also [2], [3], [8]), the Descartes

Folium is just one example of (irreducible) projective plane algebraic cubic curve
with singularity (node), which support group laws. Some of these structures require
to introduce and to exploit new topologies and some differential structures. One of
our aims is to extend the study to the family of cubic curves

Cop: 2 +y® — 3axy = b,

which bifurcates in smooth curves and non-smooth ones (as Descartes Folium).
This could help us to understand whether the Cryptography on Descartes Folium
is simpler than that on Elliptic curves.
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EQUIVALENT RELIABILITY POLYNOMIALS

C. UDRISTE, Z. A. H. HASSAN, I. TEVY

Looking for geometric modeling of reliability polynomials, we discuss three important
ideas:

(i) find equivalent reliability polynomials via diffeomorphisms;

(ii) cover a reliability hypersurface by probability straight lines;

(iii) cover a reliability hypersurface by exponential decay curves.
In this paper we shall prove that two reliability polynomials, attached to some electric
systems used inside aircrafts, are equivalent via an algebraic diffeomorphism. Also,
we introduce the X-loxodromic curves on an equi-reliable hypersurface, which are con-
strained paths (evolutions) that are equi-reliable.

Keywords: Aircraft designs, reliability polynomials, algebraic diffeomorphism.

2000 Math. Subject Classification: 60K10, 62N05, 90B25.

1. BRIDGE STRUCTURE AND RELIABILITY POLYNOMIAL

In some engineering systems [1, 2, 4, 6], units may be connected in a bridge
configuration as shown in Figure 1 which represents a three-phase electrical genera-
tor, part of the airplane power system, powered by a three-phase electric motor [3].

Theorem 1. If Ry, Ro, R3, R4, R5, Rg, R7, R7, Rg are the reliabilities of the
arcs (paths) in the bridge system in Figurel, then the reliability polynomial P of
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Figure 1: A bridge network

the system is

P =Ri1RsR7 4+ R2RsRs + RaR3RsR7 + RiR3RsRs + RiR4R5Rs
+ RoR4sRcR7 — RiR2R3Rs R — RiR2R3ReRs + R1R3 R4 Re R
+ RoR3R4RsRs — R1R4Rs R7Rs — RoR4RsR7Rgs — R1RoR3R4Rs Rg
— RiR2R3R1ReR7 — RiR2RaRs ReR7 — R1Ra Ry Rs Re Rs
— Ri1R3R4Rs ReR7 — RiR3R4R5RsRs — RoR3 Ry Rs Re R
— RaR3R4R5RsRs — R1RyRs RsR7Rs — R1R3RyRs R7 Ry 1)
— RoR3R4RsR7Rs — RiR3Rs R¢ R7Rs — RoR3Rs Re R7 Rs
+2R1R2R3sR4Rs Rs R7 + 2R1 RoR3 Ry Rs Re Rs
+ R1R2R3R4Rs R7Rs + R1RoR3 Ry R¢ R7Rs + 2R1 Ry R3 Rs R R7 Rg
4+ 2R1R2R4Rs Re R7Rs + 2R1 R3 R4 Rs Rs R7 Rs
4+ 2R2R3R4Rs Re R7Rs — 4R1 RoRs Ry Rs Re R7 Rs.

This polynomial is very long, and this lead to difficulties in its computation
and geometrical interpretation. For these reasons, we shall introduce an equivalent
reliability polynomial which is simpler. Perhaps, in engineering judgment, the best
way to do this is to use Delta-Star Technique.

2. DELTA-STAR TECHNIQUE FOR
SIMPLIFIED EQUIVALENT RELIABILITY POLYNOMIAL

The system in Figure 1 can be transformed into its equivalent series and parallel
form by using Delta-star technique [5], see Figure 2. The reliability polynomial of
the system in Figure 2 is

Q@ =RsRsRpRpRr + ReRsRcRERr — RsReRaRpRcRpRERF. (2)

Computationally, this method has some advantages: once a bridge network
is transformed to its equivalent parallel and series form, the network reduction
approach can be applied to obtain network reliability [7, 8]. Nonetheless, the

72 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 71-77.



Rs W
p | —
| I
Rp
R B
A R]:
A
F
Re
E
1
c L E
Rs

Figure 2: A simplified network

Delta-star method can easily handle networks containing more than one bridge
configurations. Furthermore, it can be applied to bridge networks composed of
devices having two mutually exclusive failure modes [8, 9].

To obtain the reliability polynomial @), we observe that the Delta configurations
A,B;B,C; A, C, respectively D, F; D, E; E, F are replaced by star configurations
A, B, C respectively D, E, F. The connection between them (see Figures 1 and 2)
is given by the equations

RaRp=1—(1—-Rap)(1 — RacRpc), (3)
RgRc=1—(1—Rpc)(1 — RacRan), (4)
RsRc=1—(1—Rac)(1 — RapRpc) (5)

for the first triangle, and similar equations for the second one.
Solving equations (3) — (5), we obtain the following star equivalent reliabilities

R 1= (= Rap)(1 = RacRpc)l[l - (1= Rac)(1 = RapRpc)]
A 1 —(1-Rpc)(1 - RacRas) 7

Rp = [1 - (1 - Rap)(1 - RacRpo)l[1 = (1 - Rpc)(1 — RacRag)]
B 1—(1—Rac)(l — RapRpc) ’

1—(1—RAB)(1—RA0R30) '

The transformation Delta-star equations applied to R4, Rg, Rc and Rp, Rg, Rp,
gives a simple configuration, so by using the above results, the equivalent to the
network complex system in Figure 1 is shown in Figure 2.

o — ¢ [1— (1= Rpc)(1 ~ RacRap)|lL — (1~ Rac)(1 ~ RapRpc)

In mathematical terms, we use a diffeomorphism to replace the initial reliability
polynomial by a simpler ones. This diffeomorphism maps the unit hypercube into
itself.
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Lemma 1. The mapping
(RBC7 RAC; RA37 REF; RDF7 RDE) = (RA7 R37 RCa RD7 RE7 RF)7

defined by formulas (3) - (5) and the analogous formulae relating (Rgr, Rpr, RpE)
and (Rp, Rg, RF), transforms the unit hypercube into itself.

Proof. For simplicity, let us denote Rap = ¢, Rpc = a and Rac = b, where
a,b,c €10,1] and a # 0 or bc # 0. We introduce the function

(1— (1 - )1~ ba))(1 — (1 - b)(1 - ca)
1—(1—a)(1—be) '

f(a,b,c) =

In view of the assumptions for a, b and ¢, both the numerator and denominator in
the right-hand side are non-negative, therefore f > 0. We shall show that f < 1.
After simplification, we obtain

(¢ + ab — abc)(b + ac — abc)

b,c) = .
f(a,b,c) a + be — abe
We consider separately two cases.
Case 1: bc = 0. In this case
2 2
flaybc) = (c+ ab)(b+ ac) _ac” +ab” Pl <,

a a

since either b or ¢ is zero, and the other summand does not exceed 1.

Case 2: bc > 0. In this case the denominator of f is a+ (1 —a)bc > 0, and the
inequality f(a,b,c) < 1is equivalent to (c+ab—abc)(b+ac—abc)—(a+bc—abc) < 0,
or, after simplification, to

alabe(1 —b)(1—¢) + (1 —b) +b*(1 —c¢) + be—1] <0.

Since a > 0, we need to show that the expression in the brackets in non-positive.
The latter is seen as follows:

abe(1 —b)(1—¢)+ (1 —b) +b*(1 —¢) +be—1
<be(1—=b)(1—c)+ (1 —b)+b*(1—c)+bc—1
=(1-b(1—-c)(bc=b—c—1)<0.

The lemma is proved. g

Theorem 2. The reliability polynomials P and Q are equivalent via the al-
gebraic diffeomorphism defined by formulas (3) - (5) and their analogues relating
(Rp, Rg, Rr) and (Rgr, Rpr, RpE)-
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Generally, a convenient algebraic diffeomorphism is the one which possesses
the following three properties: (i) it transforms the unit hypercube into a subset
of the unit hypercube; (ii) the number of terms in @ is smaller than the number of
terms in P; (iii) the degree of @ is smaller than or equal to the degree of P.

2.1. EQUI-RELIABLE LOXODROMIC CURVES

For some geometrical concepts, we consider the reliability polynomial (2).

First, we rewrite this reliability polynomial (2) by replacing the indices A, B,
C, D, E, F by numbers: Ry = Rs, Re = Rp, R3 = R¢, R4 = Rp, R7 = Rg,
Rg = Rp. In this way we obtain the polynomial

Q = RiR2R4R5Rs + R1R3RsR7Rs — R1RyR3 Ry Rs Rg R7 Rs. (6)
In R®, let us consider the constant level algebraic hypersurfaces
¢c= R RyR4RsRg + R1 R3Rg Ry Rg — R Ra R3 Ry Rs R R7 Ry,
which will be called equi-reliable hypersurfaces [4]. The normal vector field is

N— 0Q 0Q 0Q 0Q 0Q 0Q 0Q 0IQ
~ \OR:’' ORy’ OR3’ OR, ORs ORs OR; ORg )’

Consequently, the vector field

0Q 0Q
X = _— —
( ORy’ ORy ’O’O’O’O’O’O>

is tangent to equi-reliable hypersurfaces.

Let Y be a significant vector field tangent to equi-reliable hypersurfaces, i.e.,
< N, Y >=0. A curve ’}/(t) = (Rl (t), RQ(f), Rg(t), R4(t), R5(t), Rﬁ(t), R7(t), Rg(t))
in an equi-reliable hypersurface is called Y -lozodroma if

<A(t),Y (v(t)) >= const.
For example, the X-loxodromic curves satisfy the first order ODE
—(R1R4R5 — RiRsR4R5RR7)(t) Ry (1)

+(R2R4R5 + R3RgR7 — R2R3R4R5R6R7)(t)R2(t) =0.

Along each Y-loxodroma the reliability is constant. Consequently, the previ-
ous Y-loxodromic curves are locally constrained paths (evolutions) that are equi-
reliable.

Let v(t) be an X -loxodroma. The curve y(t) exp(—At), A > 0 is a decay curve
that is necessary when we built the pullback reliability (to compute mean time to
failure (MTTF)).
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PERTURBED LINEAR VOLTERRA INTEGRAL EQUATIONS
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In this paper we study the existence of continuous solutions on a compact interval
of perturbed linear Volterra integral equations. The existence of such a solution is
based on the well-known Leray—Schauder principle for a fixed point in Banach space.
A special interest is devoted to the study of the uniqueness of continuous solution. Our
numerical approach is based on a fixed point method and we apply quadrature rules
to approximate the solution for the perturbed linear Volterra integral equations. The
convergence of the numerical scheme is proved. Some numerical examples are given
to show the applicability and accuracy of the numerical method and to validate the
theoretical results.

Keywords: perturbed linear Volterra integral equation, Leray—Schauder principle,
compact operator, fixed point method
2010 Math. Subject Classification: 45D05, 47B07, 65D30, 65D32

1. INTRODUCTION

Integral equations play a very important role in nonlinear analysis and have
found numerous applications in engineering, mathematical physics, economics, etc.
(see [2], [4], [10]). Many other applications in science are described by integral
equations or integro-differential equations such as the Volterra‘s population growth
model, biological species living together, propagation of stocked fish in a new lake,
the heat radiation and so on [5], [6].
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The existence of solutions of nonlinear integral equations has been considered
in many papers and books [3], [4], [8]. In this paper, we show that under some as-
sumptions the perturbed linear Volterra integral equation has an unique continuous
solution in a bounded and closed interval.

We propose a numerical scheme to approximate the solution of this integral
equation [11] and present some numerical examples to show the accuracy of our
numerical method.

2. PRELIMINARIES

Let X be an arbitrary Banach space with a norm ||-||. By C (X, X) we denote
the space of all continuous operators acting in X. Set Ry = [0, +00).

By C([a,b]) = {x : [a,b] — R is continuous} we denote the Banach space with
the norm ||z|| , = maxe(q,p |2(t)].

b
As usual, Ly([a,b]) = {z : [a,b] = R; [ |z(t)|” ds < oo} stands for the Banach

1/p
b
space with norm [|z]|, = <f |z ()" ds) ,p> 1.

For r > 0, we set B, = {x € C([a,b]); ||z||,, <}, ie., B, is a closed ball.
We consider the perturbed linear Volterra integral equation

z(t) = f(t) —|—/K(t, s)x(s)ds—i—/V(t,s)g(s,x(s))ds, (2.1)

with given functions f € C([a,b]), g(-,-) : [a,b] x R — R and kernels K(-,-), V(-,-):
[a,b] X [a,b] = R.

We should mention that an extensive amount of work has been done on the
existence and uniqueness of solutions of some special cases of Volterra integral
equations, see for example [1], [3], [7], [8].

By using the following Leray—Schauder principle, we prove the existence of a
solution of perturbed linear Volterra integral equation (2.1).

Theorem 1 ([7] (Leray-Schauder principle)). Let X be a Banach space and
the operator T € C(X,X) be compact. Suppose that any solution x of v = ATz,
0 < A <1 satisfies the a priori bound ||z|| < M for some constant M > 0. Then T
has a fized point.

Define the operator T' on C([a,b]) by

¢ ¢
Ta(t) = f(t) + / K(t, s)z(s)ds + / V(t, 5)g(s, 2(s))ds (2.2)

a a
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3. THE EXISTENCE OF A SOLUTION

Theorem 2. Let the following conditions be fulfilled:
1). The function g(s,x) satisfies

s (las.o)l.| (s, ) < Gls)ale). (3.)

s€la,b],z€R

where G(-) is a positive measurable function and ¢(-) is positive and continuous
function satisfying

lim M

=L < 0. (3.2)
y—+oo Yy

2). The kernels K(t,s) and V (t,s) are continuous with respect to t and satisfy

[K(t,s)| < Ki(t)Ka(s),  [V(E )] < Vi(t)Va(s), (3-3)

where K1(+),Vi(+) € C([a,b]) and Ks(-),G(-)Va(-) € Li([a,b]).
Then the equation (2.1) has a solution in C([a,b]).

Proof. We observe that condition ( 3.2) implies the existence of a positive real
number A > 0 such that ‘@ < %L =L, forall u>A.

First, we shall prove that the operator T : C([a, b]) — C([a,b]) is continuous.

Let « € C([a,b]). Hence for all s € [a, ], one conclude that |z(s)| is contained
in a compact set of Ry.. Moreover, ¢(-) is continuous over R, then one concludes
that there exists a positive constant Ny, such that ¢(|z(s)| < Ng. Let h > 0. On
using assumptions 1) and 2) and applying the dominated convergence theorem,
and using that f € C([a,b]), we have

lim [T%(t + h) — Tz(t)| < lim [f(t + ) — f(2)]
h—0 h—0
t t+h
el [ i |G+ hs) = K69 ds+ [l ol Jim [ Ka(o)ds
h—0 h—0
t

a

t t+h
+N¢/ lim |V (t + h,s) — V(t,s)| G(s)ds + ||V1|| ., Ng lim / Va(s)G(s)ds =0.
h—0 h—0
a t
Next, we shall prove that the operator T is continuous over C([a, b]).

Let {,}52, € C([a, b]) be a sequence converging uniformly to . Since C([a, b])
is complete, then x € C([a,b]). Hence, for alln € N, for all s € [a,b] and O, € [0, 1],
one concludes that |©sx,(s) + (1 — ©,)z(s)| is contained in a compact set of R.

Moreover, ¢(-) is continuous over R, therefore there exists a positive constant M,
such that ¢(|O,x,(s) + (1 — O4)z(s)]) < My.
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From assumptions 1) and 2) for each ¢ € [a, b] we have
Tz (t) — Tx(t)|

< — || o [/|Ktsds+/|Vts

<l — 2l [l 1Kl + Vil V2 - Gl Mo] -

(8 Oszn(s) + (1 - O5)x(s))

ds]

Therefore, nl;ngo |Tx, — Tx| ., = 0or,equivalently, T is continuous over C([a, b]).

Next, we shall prove that the operator T is compact on C([a,b]). Let us set
E:={Tz;z € B,}.

On using Arzella - Ascoli theorem, the compactness of the set E will be ensured
if we show that F is equicontinuous and uniformly bounded.

Let z € B,.. Since ¢(-) is continuous over R, there exists a positive constant
Py such that ¢(|z(s)]) < P, for each s € [a,b]. From assumptions 1) and 2), for
every ¢ € [a, b] we have

Tat)] < Il + [ Kr(OKas)l2(o)]ds + [ ViOValo)G5)o(a(s) s
< Ul + Dl DBl [l + Vil VG, P

Consequently, F is uniformly bounded.
Let « € By, t/,t" € [a,b] and ' < t”. From condition 1) and 2) we obtain

Ta(t") = Ta(t)] < [£(£") = f()]

g

t
wa/mwwawm@+mmwmu/&@@
t/

#

+&/W” VY, 5)| Gls)ds + Py [Vill. /% (s)ds.

By applying the dominated convergence theorem to the right-hand side of the
above inequality, one concludes that tlin;l |Tx(t") — Tx(t')| = 0.
/*) "

Next, we shall prove that any solution of the equation z = ATz, 0 < A <1 is
bounded by the same constant M > 0. Let

= A lloe + 1A IVl V2Gly - sup ¢(u), (3.4)
u€[0,A]

My = max{ | K[ s AVl } (3.5)

M = M exp(M: [|| Kz, + [V2G]l; L)), (3.6)
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Q(s) = Ka(s) + Va(s)G(s)L". (3.7)
Let = € C([a,b]) be a solution bof x = ATz for some 0 < A <1, then we have

[2(O)] < AN flloo + A IIKllloo/Kz(S) |z(s)| ds

I VA / V)G(E) s glads + N1Vl / Va(8)G(s)L |(s)] ds

u€(0,A

b
<Aoo + Vil V2Gl SEDA]Mu) +M2/[K2(8)+V2(8)G(S)L'] |z(s)| ds.

b
Hence, from (3.4), (3.5), (3.7) we get that |(t)| < My + M> [ Q(s) |z(s)| ds.

By using the general version of Gronwall‘s inequality together with the previous
inequality, one concludes that

b
|[z(t)] < My exp(Mz/Q(S)dS) = My exp(My [[| Kally + [[V2Gll, L)) = M.

Since M7 and M, do not depend on x, we conclude that the solutions of x = A\T'x,
0 < XA < 1 are uniformly bounded by the same constant M. Now the Leray—
Schauder principle implies that T has a fixed point in C(]a, b]). O

4. NUMERICAL APPROACH AND ITS CONVERGENCE

In the proof of Theorem 2 we have shown that the continuous solutions of
x = Tz are uniformly bounded by the same constant M, and consequently they
are contained in a closed ball By;. We choose an initial function g € Bj; and
construct the sequence {z,(t)}>2, as follows

Tyt (t) = Ta,(t), n>0,té€]lab]. (4.1)
In the next theorem we show that under certain assumptions the sequence
{zn(t)}52, constructed by (4.1) converges to the unique fixed point & of T.

Theorem 3. Let the following conditions be fulfilled.

1. The conditions of Theorem 2 hold.

2. The functions Ks(-), Vo(-)G(-) € Ly([a,b]) for some p > 1;

3. With the constant M defined by (3.6), the following inequality holds:

1Kl Ell, + Vil V2~ G, _max - o(ful)| (b =) < 1.
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where%—I—%:l and p > 1.
Then the operator T is a contractive mapping in By; and has exactly one fixed

point, say, T(t). Moreover, the generated by (4.1) sequence {x,(t)}5>, convergence
to this fized point, i.e.

lim z,(t) = Z(t) for every t € [a,b], (4.2)

n—oo

and
n

[ — 2|

21 = ol » (4.3)

- 1-L

where 0 < L < 1 is the contraction constant of T.

Proof: Suppose that =,y € Bys. For all s € [a,b] and ©, € [0, 1], there holds
[Osx(s)+(1—04)y(s)) < M. Fort € [a, b], using assumptions 1) and 2) of Theorem
2 and Holder‘s inequality, we obtain

Tz(t) — Ty(t)| < /K1(t)K2(8) |z(s) —y(s)|ds

+ [ Vit | 2

1 1
<l vl |11 W2l 0= @+ Wil o, o(uD IVaG, (- ).

L (s5,0.(s) + (1 - ©)y(s)| |2(s) — y(s)| ds

where 1/p+1/g=1,p > 1.
Let L= (6= )t [IKalc 1Kl + Vil V2, x| ()] By assuunp-
tion 3), we have L < 1, hence the operator T satisfies the Lipschitz condition
[Tz =Tyl < Lllz -yl - (4.4)
If we assume that T has two fixed point Z,y € Bjs, we would have
12 = 3l = I1T% = TGl o < LT = §ll (4.5)

and since 0 < L < 1, it follows that £ = y. Hence, the operator T has a unique
fixed point in By;.

Finally, relations (4.2), (4.3) are proved in a standard way by using equa-
tion (4.4) and [11, p.267, Theorem 5.2.3.], with X = C([a, b]). O

From (3.4) and (3.6) it follows that f € By, hence we can choose f as an initial
function, zo = f. We apply quadrature formulae such as trapezoidal, Simpson and
“3/8”-rule to evaluate numerically the integrals in the operator T.
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4.1. NUMERICAL SCHEME

We construct an uniform mesh on [a,b] with stepsize h: s = a + (k — 1)h,
k =1,n, where a + nh < b < a+ (n+ 1)h. We put t = s in (2.1) and obtain the
following nonlinear integral system for the unknowns x = z(sx), k = 1, n:

Ilzf(sl):f(a)v
Sk Sk
(4.6)
xr = f(sk) + /K(shs)x(s) ds+/V(sk7s)g(s,x(s))ds, k=2,n.
a a
We apply quadrature rules for each k& with nodes si,$2,...,s, and coefficients
h.Agj, k =2,n,j =1,k to approximate the integrals in (4.6) for k = 2, n:
k k
x = f(sk) + hZAkj K (s, s5)x; + hZAkj V(sk,55) 9(sj,x;) + Ri(z),
j=1 j=1

where Ry (z) = O(h") is the error term due to the quadrature rule. We denote

k k
Fr(z1,.. ., 20) = f(s) + hZAkj K(sk, s5) x; + hZAkj V(sk,s5) 9(s5,25) -
j=1

Jj=1

In our calculations we choose two different schemes for coefficients Ay;. The
first scheme is constructed on the base of the trapezium quadrature formulas. The
other is based on the Simpson rule and the 3/8-rule (also called Simpson 3/8) [11,
Section 3.1].

0

The fixed point method with initial condition zj = f(sk), k = 1, n is as follows:

Jfﬁlek(“fia---xi)v k=2n, 1=0,1,2,....

rYn

The convergence of the numerical iterations is proved by Theorem 3.

4.2. EXPERIMENTAL RESULTS

We have tested the efficiency of the proposed numerical scheme on two Volterra
integral equations given in the examples below. In our numerical scheme the iter-
ations stop when B+l = ||z+! — 2| = max\a:}“ — 2| <&, where e = 1077 is the

J

chosen precision. All routines have been written in the software system Wolfram
Mathematica 9.0.

Example 1. Consider the perturbed linear Volterra integral equation

t t

1 t+1 1 1
z(t) = + xsds—l—/ 1+ xz(s)ds
®) t+1 /52—|—S+1 () t+1vs2+5+2 (5)

0 0

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 79-88. 85



with the exact solution x¢%(t) =t +t+1 for t € [0,1]. Obviously, the assumptions
of Theorem 3 are fulfilled.

In Table 1 are shown the errors E? for some iterations with different quadrature
methods and different choice of the step h. It is seen that the iterations in the fixed
point method are more effective for reaching the desired precision than the scheme
with choice of a grid and use of quadrature rule. The left panel of Figure 1 shows
the first approximations 2, i = 0,4. The exact and the approximate solution
based on Simpson quadrature rule with A = 0.2 are shown in the right panel of
Figure 1. Good agreement is demonstrated. The last approximation, the errors
between the last approximate solutions E,?, k = 1,6 and with the exact solution
B¢ = xp? — x§®, k = 1,6 are listed in Table 2.

Table 1: Numerical results for Example 1.

h=0.2 h = 0.02 h = 0.001
Trapezoid Simpson Trapezoid Simpson Trapezoid Simpson
i=1 1.2981 1.2863 1.2862 1.2861 1.2861 1.2861
1=3 0.2942 0.2997 0.3002 0.3003 0.3003 0.3003
1=9 1.42E-5  8.36E-6 5.56E-6  5.49E-6 5.49E-6 5.48E-6

1 =12 4.02E-8 1.60E-8

x(t) x(t)
3.0

—— exact solution
25} *%% approximation

2.0

0.2 0.4 0.6 0.8 1.0 t 0.2 0.4 0.6 0.8 1.0 t

Figure. 1. Left: First 5 approximations; Right: 12-th approximation and the exact solution.
Both graphics demonstrate the results using Simpson’s rules with A = 0.2 for Example 1.

Table 2: Comparison with exact solution in Example 1.

k|

2 3 4 5 6
12

1
Ty 1. 1.24 1.56 1.96 2.44 3.

Ei? | 0. 1.750E-11 1.297E-10  8.309E-10 4.031E-9 1.605E-8
EZ¥ 1 0. -2.283E-12  -1.693E-11 -1.092E-10 -5.359E-10 -2.173E-9
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Example 2. Consider the perturbed linear Volterra integral equation

t t

t+s sln(1 +¢) se~2s
¢ t=sx(s)d ds, telo,1
x(t e+/ s—l—/ 15 2)(1+ 59) a(s) s, te]l0,1]

0 0

It is easily seen that the functions occurring in this integral equation satisfy the
assumptions of Theorem 3.

Table 3: Numerical results for Example 2

h=0.2 h =0.02 h = 0.001
Trapezoid Simpson Trapezoid Simpson Trapezoid Simpson
i=1 8.2666 8.2443 8.2444 8.2442 8.2442 8.2442
t =10 0.0122 0.0008 6.50E-5 5.76E-5 5.76E-5 5.76E-5
i=14 0.0003  4.19E-6 1.16E-8

1 =17 2.06E-5  7.99E-8
1= 23 8.40E-8

Table 3 shows the results analogous to those in Table 1 but for Example 2
Here the role of the quadrature rule and the stepsize of the grid is significant. In
Figure 2 (left panel), the approximations obtained in the first five iterations are
shown. The decrease of the error with increasing the number of iterations is shown
in the right panel of Figure 2, where E'® = 6.06F — 5 and E'* = 1.07E — 8.

x(0) E

0.2 0.4 0.6 0.8 1.0 4 2 4 6 8 10 12 !

Figure. 2. Left: First 5 approximations; Right: The maximum error related to each iteration.
Both graphics demonstrate the results using Simpson’s rules with A = 0.05 for Example 2.
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MANIFOLDS ADMITTING A STRUCTURE OF
FOUR DIMENTIONAL ALGEBRA OF AFFINORS

ASEN HRISTOV, GEORGI KOSTADINOV

The purpose of this note is to describe some properties of manifolds endowed with an
almost tangent structure 7, T2 = 0 and an almost complex structure J, J? = —E,
E =1d.

We consider a linear connection V on N, which is compatible with the algebraic struc-
ture, i.e. VJ =0, VT = 0. The existence of ideals in corresponding algebra implies
the existence of autoparallel submanifolds of V.

Keywords: Four dimentional associative algebra, affinely connected manifold, algebra
of fiber-preserving operators

2010 Math. Subject Classification: 53C15, 58 A30, 53C07

1. ALGEBRAIC PRELIMINARIES

Let us consider a real associative algebra 2l with the unit element e and two
generators i, ¢ satisfying

under the requirement dim 2 = 4 [1].
We distinguish three cases described by the relations
ie = €1, (1.1)

ie = —¢i, (1.2)
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ie+¢ei =e. (1.3)
The corresponding algebras are denoted by 241, 2s, A3, respectively.

Proposition 1. The algebras 2; and 2 possess nontrivial ideals while 23 is
a simple algebra.

Proof. Let us denote ie = ei = k. Then we have the following table of
multiplications of 2y

e i e k
e|e i ¢ k
7 i —e k ¢
el e kK 0 0
klk — 0 0

Obviously, {e,%,¢,k} is a basis of 25 and {e,k} is an ideal with zero-multi-
plication.

Similarly to the previous case, 2l admits an ideal, too.
Now we consider the algebra 3. The mapping

v: A3 = M(2),

where M (2) is the algebra of (2 x 2) real matrices defined by

w0=(g 0) w=(5 5) w0=(170)

is an isomorphism. It is well-known that the algebra M (2) is simple. That com-
pletes the proof. O

2. MANIFOLDS OVER ALGEBRAS

Let N be a manifold of class C*°, TN - the tangent bundle of N, X(N) - the
F(N) - module of global sections of TN, F(N)-the ring the smooth functions on N.
Let A(TN) be the algebra of F(N) - linear operators of X(N). It can be identified
with the algebra of fiber—preserving automorphisms of T'NV.

Let us consider a real associative algebra 20 with unit element e. A morphism
of algebras @ : 2 — A(T'N) such that ®(e) = I, the identity operator of A(T'N)
will be called an 2 - structure on N. A linear connection V on N is said to be
compatible with the 2 - structure if V®(a) = 0, for all a € 2, i.e. each operator
®(a) is parallel with respect to V. An 2 - structure is said to be integrable if for
each point p exists a neighborhood U, such that the operator ®(a) for all a € 2
have constant components in corresponding coordinate chart.
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If 9B is an ideal of 2, we define a distribution D in TN as follows:
D, ={®()v € T,N; forallbe Bandv € T,N}.

In other words, at each point p € N, D, is the image of T,N by the operators
corresponding to the elements of 9. This distribution is invariant with respect to
all operators ®(a), a € A.

Proposition 2. Let 2 is associative unitary R-algebra, IV be a manifold with
A - structure and V be a linear connection on N. If V®(a;) = 0 for all basis
elements a; of A then V is compatible with 2.[]

Proof. The operator V : ®(N) — D(N) is a differentiation of the tensor
algebra on N. If ®(a;) = A; € DI(N), i =1, 2, 3, 4, it follows that

Vx(AiAj) = Vx(A)A; + AiVx(A;) =0

The following theorem is proved in [2], p. 118.

Theorem 1. Let (M, V) be an affinely connected analytical manifold equipped
with an A - structure compatible with V. Then the following properties are satisfied:

1. The distribution D is involutive;

2. If N' is a maximal integral submanifold of D through any point of N, then
it is autoparallel submanifold of N;

3. On each N' acts the quotient - algebra A/O(B), where O(B) is the annihi-
lator of the ideal B in algebra .

3. ALGEBRAIC STRUCTURES 2,25, 3

The integrability conditions of these structures are given in [1].
According to the previous notations, we set ®(e) = I, ®(i) = J and ®(e) =T,
by I we denote the unit matrix and we set JT' = K. Moreover, we suppose that

1
ImT =KerT = idimN.

Theorem 2. Let N be a manifold with an integrable algebraic structure of
type A;, (i = 1,2) and V be torsion-free connection compatible with the algebraic
structure, i.e. VJ = 0,VT = 0. Then there exists an 2; - invariant foliation N’ in
N, i.e. at any point p € N' C N the tangent space T,N' is invariant with respect
toJ and T.
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Proof. Case (1): J> = —I1,T?> =0,JT = TJ and Ker T = ImT. We denote
by D the distribution KerT = ImT. It can be easily seen that the following holds:
JD C D, TD C D. This implies that n = 0 (mod 4), so we can write n = 4m.

For any point of N there exist an open neighborhood with a chart (z?, ..., 2%™)
on it such that with respect to the basis 9/0xz!,...,0/9x*™ the tensors J and T

have matrix expression:

0 -1 0 O 0 0 00 0 0 00
I 0 0 O and 0 0 0 0 K- 0 0 00
0o 0 0 —-I I 0 0 0 )’ |l 0 —-IT 0 0
0 0 I 0 0 I 00 I 0 00
We denote (z!,...,2%M) = (2, xttm gt+2m 2iH3m) (j = 1,...,m). Every

integral submanifold N’ of D = ImT has coordinates (z}, 2™, x?+2m zi+3m),
We have 2= {I,J,T,K}, B ={T, K} - an ideal, the annihilator O(B) = B,
A/O(B) ~{I,J}.

The restriction of J on D is the following

0 0 0 O 0 0
000 0 0 B 0
00 0 =TI vi+2m - _vi+3m
0 0 I 0 ,Ui-‘r3'm Ui+2m

Here v = (0,0, v""2™ ¢i¥3m) € D and by I we denote the unit (n x n)- matrix.

Case (2): JT = -TJ.

Let M be a manifold provided with a 2s - structure. Similarly to the previous
case, one may choose an atlas, such that with respect to any chart U, C N the
operators J and T have the form

0 —I 0 O 0 0 0 O
I 0 0 O q 0O 0 0 O
o 0o o -1 |™ I 0 00
0 0 I 0 0 —I 0 O
Theorem 2 is proved. O

Now we start considering the last case.

Case (3): N is a manifold provided with a couple J, T of tensor fields of type
(1,1), satisfying J> = —I, T? = 0 and JT + T'J = I. Here it is not necessary to
require that Ker T = Im T, because it follows from the relation between J and T.
Obviously, we can write n = 2m.

Proposition 3. An 23 - structure on a smooth manifold N may be given
equivalently:

92 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 89-95.



1. By the operators P and @, such that
P2=71 @*=I and PQ+QP=0,
2. By the operators J and P, such that
J*=—-I, P’=1 and JP=-PJ.
Proof: 1. If we set P =JT —TJ and @ = J + 2T, by using the characteristic
identity in Case (8) we have
P*=JT-TJ)JT -TJ)=JTJT — JTTJ —TJJT +TJTJ
=JTI-TH+TJI-JT)=JT+TJ=1,
Q*=(J+2T)(J+2T)=J* +2JT+2TJ = —T+2[ =1.
2. In analogy with the previous case we have
JP=J(JT -TJ)=JT - JTJ=~-T—J( - JT)
=-T-J-T=-J-2T,
PI=JT-THJ=JTJ+T=JI-JT)+T=J+2T.
Remark 1. In [1] the structure {J, P} is called a complex product structure.

The next theorem is a modification of the result of A. Andrada [3].

Theorem 3. Let N be a manifold with an A3 -structure, given by the operators
{J,T}. Then:

1. There exists a unique torsion-free connection V with respect to which J and
T are parallel;

2. The leaves of the distribution ® = ImT are flat autoparallel submanifolds
of N.

Proof. The connection V, which preserves the tensor fields J and P is given
by
1
V.Y :Z{[X’ Y] - [PX,PY]+ P[X,PY] - P[PX,Y]
where Q = —JP.

Since T' = 1(PJ — J), it follows that VP = VJ = 0. Our assertion follows
from Proposition 2.

We may choose an atlas on N, whose Jacobian matrices are local constant.
Then the operators J and T have the following form

0 I d 0 0
-7 0 an I 0 )

where T is the unit (n x n) - matrix. The theorem is proved. 0
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Remark 2. Another proof of the existence and uniqueness of V is given in
[1].
Remark 3. In this case the distribution D = ImT is not invariant with

respect to the operator J.

Remark 4. As it is shown in [1], [3] the connection V does not need to be
flat.

An essential property of the tangent bundle T'M is the fact that it bears a tan-
gent structure. More precisely, let 7 : TM — M and K : TTM — TM be natural
projection and connection maps of V, respectively. If X is a vector field on M, we
may define vertical lift XV and horizontal lift X on TM by the relations

(dr) X' =0, KX’"=X,
(dm)Xh=X, KX"=0.

From a basis {Xi,...,X,} of X(M) we get the basis of X(TM):{X} X'},
k = 1,...,n. With respect to this basis the tangent structure has the matrix
expression mentioned above. We define

J: X" s XU, XU X" J2=-—I
By setting J = —J, this leads us to the s algebra.

Theorem 4. The manifold TM can be endowed with integrable operators P,
Q, subject to the relations

P?=1, @Q*=1, PQ=QP=0.

Proof. Let us set P = JT —TJ and Q = J+2T. By using the identity in Case
(3) of Theorem 2, we can easily verify our statement.

The integrability of J and 1" implies the integrability of P and Q. O
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meridians or parallels at a constant angle in the Euclidean 3-space. Also we compute the
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1. INTRODUCTION

Loxodromes are curves which intersects all meridians or parallels at a constant
angle on the Earth’s surface. As a result of this, loxodromes do not require a change
of course [4]. Therefore they are usually used in navigation.

The equations of the loxodromes on rotational surfaces were found by Noble
[6].

A natural generalization of rotational surfaces is helicoidal surfaces. Also there
are a lot of helicoidal objects and structures which are related to navigation in
nature, science and engineering, for example; creeper plants, helicoidal staircases,
moving walkways, parking garage ramps, helicoidal railways and so on [1].

The differential equations of the loxodromes on helicoidal surfaces in Euclidean
3-space E3 were obtained by Babaarslan and Yayli [1].
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A canal surface in E? can be defined as envelope of a moving sphere whose
trajectory of centers is a spine curve m(u) with varying radius r(u). When r(u) is
a constant function, the canal surfaces reduce to pipe surfaces [8].

A lot of objects and structures may be represented by using canal surfaces,
for example; blending surfaces and transition surfaces between pipes [7], hoses,
ropes [2], 3D fonts, brass instrument, internal organs of the body in solid modeling
[3], helical channel [5] and tunnels. Some particular examples of canal surfaces are
cylinder, cone, torus, sphere, pipe and Dupin cyclide. Hence canal surfaces are often
used in Computer Aided Geometric Design and Computer Aided Manufacturing
3].

Internal organs of the body, helical channel and tunnels are especially interest-
ing examples of canal surfaces on which navigation is possible.

In this paper, we investigate the differential equations of loxodromes on the
canal surfaces. Also we compute the arc-lengths of loxodromes and give some
examples by using Mathematica.

2. LOXODROMES ON CANAL SURFACES

The parametrization of a canal surface in E? is

C(u,v) = m(u)+r(u) (v/(1 — 7' (u)?)n(u) cosv++/(1 — r'(u)?)b(u) sinv—t(u)r' (u)),

where w is arc-length parameter, 0 < v < 2w, ¢, n and b are the unit tangent,
principal normal and binormal vectors of the spine curve m(u), respectively.

The coefficients of first fundamental form of the canal surface C' with respect
to the base {Cy,C,} are

E=(C,,C,) = (1 —Kkgcosv — h')* + (g7 + hrsinv)? + (¢ — hk cosv)?,

F =(C,,C,) = ¢°7 + ghrsinv,
G =(C,,C,) = ¢°.
Thus the first fundamental form of the canal surface C' is given by the following
equation
ds* = Edu®+ Fdudv + Gdv?
= ((1—kgcosv —h')*>+ (g7 + hxsinv)® + (¢’ — hrk cosv)?)du?
+2(g°7 4 ghksinv)dudv + g*dv?,

where g = g(u) = r(u)\/1 —r'(v)? and h = h(u) = r(u)r'(u); £ = k(u) and
7 = 7(u) are the curvature and the torsion of m(u), respectively [8].

We recall that when 1 — kg cosv — b/ # 0, the canal surface is regular. Also, a
regular canal surface is developable if and only if it is a cylinder or a cone [8].
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The arc-length of any curve on the canal surface C(u,v) between u; and ug is
given by

s :/ ’ vV H(u,v)du,

where

H(u,v) =(1 — kgcosv — h')* + (g7 + hrsinv)® + (¢’ — hk cosv)?
dv dv 2
2(g*t + ghrsinv)— + ¢° ()"
+2(g°7+g nsmv)du +g (du)

A curve on the canal surface C(u, v) in E® which cuts all meridians (v=constant)
or parallels (u=constant) at a constant angle is called a lozodrome.

Let us assume that a loxodrome «(t) is the image of a curve (u(t), v(t)) which
lies on the (uv)-plane under H. The tangent vector o’ (t) has coordinates (u',v")
and the tangent vector C,, has coordinates (1,0) with respect to the basis {C,,, C, }.
Thus, at the intersection point C'(u,v), we have

Edu+ Fdv
VE2du? + 2EFdudv + EGdv?
K(u,v)
L(u,v)’

cos) =

where

K(u,v) = ((1—rkgcosv—h')?+ (g7 + hrsinv)? + (¢ — hkcosv)?)du
—l—(gQT + ghk sinv)dv,

L(u,v) = ((1—rkgcosv—h')*+ (g7 + hxsinv)® + (¢' — hx cosv)2)2(1lu2
+2((1 — kgcosv — h')* + (g7 + hrsinv)® + (¢ — hk cosv)?)
x (¢*1 + ghksinv)dudv
+((1 = kgcosv — B')? + (g7 + hrsinv)® + (¢’ — hk cosv)?) g°dv>.

From this equation, the differential equation of the loxodrome on the canal surface
which cuts all meridians at a constant angle 6 is

2 dv
)+B@_C (2.1)

dv

A (du
with

A=((1-krgcosv—h)>+ (g7 + hrsinv)® + (¢’ — hrcosv)?) g* cos® 6

— (%7 + ghrsinv)?,

Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 97-103. 99



B =-2((1—-kgcosv —h)?*+ (g7 + hrsinv)® + (¢’ — hr cosv)?)
x (¢>1 + ghksinv)sin @,
C =((1-kgcosv—n')* + (g7 + hxsinv)® + (¢’ — he cos v)2)2 sin? 6.

Also, the angle v between the loxodrome and any parallel (u=constant) is
defined by the following equation

Fdu+ Gdv
cosy =
VEGdu? + 2FGdudv + G2dv?
_ M(u,v)
VN (u,v)’
where
M(u,v) = (927 + ghk sin v)du + ¢%dv,
N(u,v) = ((1—kgcosv—h')?+ (g7 + hrsinv)? + (¢’ — hk cosv)?) g*du?

+2(g1 + ghk sinv)g*dudv + g*dv?.

From this equation, the differential equation of the loxodrome on the canal surface
which cuts all parallels at a constant angle v is given by

A +B==C (2.2)
with
A =((1 = kgcosv — h')? + (g7 + hrsinv)® + (¢ — hrcosv)?)g® cos® y
— (g% + ghrsinv)?,
B = — 2(¢*1 4 ghrsinv)g?sin® v,
C =gt sin? .

If we take r = r(u)=constant in equations (2.1) and (2.2), respectively, then we
obtain the differential equation of the loxodrome on pipe surfaces which cut all
meridians (resp., parallels) at a constant angle 6 (resp., 7).

We have not succeeded in finding the general solutions of the differential equa-
tions (2.1) and (2.2) by using analytical methods, so it remains an open problem.
To illustrate the obtained results, we give some examples produced with the help
of MATHEMATICA.
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Example 2.1. Let us consider the spine curve m(u) = (0,0,u + 1). Taking
r(u) =1, 0 = 7/4, u € (0,2), v € (0,27) and v(0) = 0, the arc-length of the
loxodrome is computed as 2v/2. The loxodrome, the meridian (v = 1) and the
canal surface are shown in Figure 1.

Figure. 1. The loxodrome (blue) and the meridian (green) on the canal surface (cylinder)

Example 2.2. Let us consider the spine curve m(u) = (0,0,u). Taking
r(u) =u/2,0 = /3, u € (0,7), up = 1 and v € (0,27), the arc-length of the
loxodrome is computed as 7v/3. Also the loxodrome, the meridian (v = 3) and the
canal surface are shown in Figure 2.

Figure. 2. The loxodrome (blue) and the meridian (green) on the canal surface (cone)
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Example 2.3. Let us consider the spine curve m(u) = (cos u, sin u,0). Taking
r(u) =1/2, vy =7/6, v € (—m,m), u € (0,27) and u(0) = 0, the arc-length of the
loxodrome is computed as 2v/37/3. The loxodrome, the parallel (u = 1/2) and the
canal surface are depicted in Figure 3.

Figure. 3. The loxodrome (blue) and the parallel (green) on the canal surface (torus)

Example 2.4. Consider the spine curve m(u) = (cos(u/v/2), sin(u/v/2), u/V2).
Taking r(u) =1, vy =7/2, v € (2w, m), u € (0,4w) and u(0) = 0, the arc-length of
the loxodrome is computed as 14.2074. Also the loxodrome, the parallel (u = 27)
and the canal surface are shown in Figure 4.

Figure. 4. The loxodrome (blue) and the parallel (green) on the canal surface (helical)

ACKNOWLEDGEMENTS. The main part of this paper was presented at 12-
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1. INTRODUCTION

In most fields of study, knowledge is acquired by way of observations, by rea-
soning about the results of observations and by studying the observations, methods
and theories of other fields and practices.

Ancient Egyptian, Babylonian and Chinese mathematics consisted of rules for
measuring land, computing taxes, predicting eclipses, solving equations and so on.

The ancient Greeks found that in arithmetic and geometry it was possible
to prove that the observation results are true. They found that some truths in
mathematics were obvious and that many of the others could be shown to follow
logically from the obvious ones.

On the other hand, Physics, Biology, Economics and other sciences discover
general truths relying on observations. Besides, not any general truth can be proved
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to be true - it can only be tested for contradictions and inconsistencies. If a scientific
theory is accepted because observations have agreed with it, there is in principle
small doubt that a new observation will not agree with the theory, even if all
previous observations have agreed with that theory. However, if a result is proved
thoroughly and correctly, that cannot happen.

Under what conditions can we be sure that the steps in our investigations are
correct? Are we really sure that what seems to be obvious to us is in fact true?
Can we expect all mathematical truths to follow from the obvious ones? These
questions are not easy to answer.

Disputes and mistakes about what is obvious could be avoided by laying down
certain basic notions, relations and statements, called azioms (postulates assumed
true, but unprovable) for each branch of mathematics, and agreeing that proofs of
assertions must be derived from these. To axiomatize a system of knowledge means
to show that its claims can be derived from a small, well-understood set of axioms
(see also [1]).

Any axiomatic system is subordinated to some conditions.

- The system must be consistent, to lack contradiction, i. e. the ability to
derive both a statement and its negation from the system’s axioms.

Consistency is a necessary requirement for the system.

- Each axiom has to be independent, i. e. not to be a theorem that can be
derived from other axioms in the system.

However, independence is not a necessary requirement for the system.

- The system can be complete, i. e. for every statement, either itself or its
negation is derivable.

There is no longer an assumption that axioms are true in any sense; this al-
lows parallel mathematical theories to be built on alternative sets of axioms (for
instance Aziomatic set theory, Number theory). Fuclidean and Non-Euclidean ge-
ometry have a common basic set of axioms; the differences between these important
geometries are based on their alternative axioms of parallel lines.

Another way to avoid mistakes about what is obvious in mathematics could
be the use of rules of inference with purely formal content.

In mathematical logic a propositional calculus (also called sentential calculus
or sentential logic) is a formal system in which formulas of a formal language may
be interpreted to represent propositions.

In [7, 8, 9, 10] we explain methods, based on logical laws, for composition and
proof of equivalent and inverse problems.

In [8] we discuss a way of generating groups of equivalent problems. The
method we propound is based on the logical equivalences

PAqG—T1T &S pATr—q &S p—>qVT,
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where p,q,r are statements.

Using the sentential logic, in [9] and [10] we propose a new problems composing
technology as an interpretation of specific logical models. Clarifying and using the
logical equivalence (see also [12])

tAp—=1r)AN(tAg—T) & tA(PV Q) — T, (%)

we give an algorithm for composition of inverse problems with a given logical
structure that is based on the steps below.

- Formulating and proving gemerating problems with logical structures of the
statements as those at the left hand side of (*).

- Formulating a problem with logical structure ¢A(pV¢q) — r of the statement.

- Formulating and proving the inverse problem with logical structure t A r —
pVyg.

In [7], besides the generalization of criteria A and D for congruence of triangles,
we also illustrate the above algorithm by suitable groups of examples.

In Section 2 of the present paper we describe and discuss different methods
of proof of implicative statements and illustrate by logical models the essence of
specific types of proofs, especially of direct and indirect proofs.

In Section 3 we propose direct proofs of Lehmus-Steiner’s theorem that differ
from any proofs we have come across.

Our investigations in this field are appropriate for training of mathematics
students and teachers.

2. TYPES OF PROOFS

Both discovery and proof are integral parts of problem solving. The discovery
is thinking of possible solutions, and the proving ensures that the proposed solution
actually solves the problem.

Proofs are logical descriptions of deductive reasoning and are distinguished
from inductive or empirical arguments; a proof must demonstrate that a statement
is always true (occasionally by listing all possible cases and showing that it holds
in each).

An unproven statement that is believed true is known as a conjecture.

The objects of proofs are premises, conclusions, axioms, theorems (propositions
derived earlier from axioms), definitions and evidence from the real world.

The abilities (techniques) to have a working knowledge of these objects include
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- Rules of inference: simple valid argument forms. They may be divided into
basic rules, which are fundamental to logic and cannot be eliminated without
losing the ability to express some valid argument forms, and derived rules,
which can be proven by the basic rules.

To summarize, the rules of inference are logical rules which allow the deduc-
tion of conclusions from premises.

- Laws of logical equivalence.

Different methods of proof combine these objects and techniques in different
ways to create valid arguments.

According to Fuclid a precise proof of a given statement has the following
structure:

- Premises: These include given axioms and theorems, true statements, strict
restrictions for the validity of the given statement, chosen suitable denotations. (It
is given...)

- Statement: Strict formulation of the submitted statement. (It is to be proved
that. . .)

- Proof: Establishing the truth of the submitted statement using premises,
conclusions, rules of inference and logical laws.

Let now P and @) be statements. In order to establish the truth of the implica-
tion P — @, we discuss different methods of proof. Occasionally, it may be helpful
first to rephrase certain statements, to clarify that they are really formulated in an
implicative form.

If “not” is put in front of a statement P, it negates the statement. —P is
sometimes called the negation (or contradictory) of P. For any statement P either
P or =P is true and the other is false.

Formal proofs. The concept of a proof is formalized in the field of mathe-
matical logic. Purely formal proofs, written in symbolic language instead of natural
language, are considered in proof theory. A formal proof is defined as a sequence
of formulas in a formal language, in which each formula is a logical consequence of
preceding formulas.

In a formal proof the statements P and @ aren’t necessarily related compre-
hensively to each other. Only the structure of the statements and the logical rules
that allow the deduction of conclusions from premises are important.

Hence, to prove formally that an argument @ is valid or the conclusion follows
logically from the hypotheses P, we have to

- assume the hypotheses P are true,

- use the formal rules of inference and logical equivalences to determine that
the conclusion @ is true.

The following logical equivalences illustrate a formal proof:

“(P—=Q)e-(-PVQ)e-(-P)AN-Q < PA-Q.
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Vacuous proof. A vacuous proof of an implication happens when the hy-
pothesis of the implication is always false, i. e. if we know one of the hypotheses
in P is false then P — @ is vacuously true.

For instance, in the implication (P A =P) — @ the hypotheses form a contra-
diction. Hence, @ follows from the hypotheses vacuously.

Trivial proofs. An implication is trivially true when its conclusion is always
true. Consider an implication P — Q. If it can be shown (independently of P)
that @ is true, then the implication is always true.

The form of the trivial proof Q — (P — Q) is, in fact, a tautology.

Proofs of equivalences. For equivalence proofs or proofs of statements of
the form P if and only if @ there are two methods.

- Truth table.
- Using direct or indirect methods and the equivalence

(PQ) & (P—=>Q) AN (Q—P).

Thus, the proposition P if and only if Q@ can be proved if both the implication
P — @ and the implication Q — P are proved. This is the definition of the
biconditional statement.

Proof by cases. If the hypothesis P can be separated into cases p; V p2 V
...V p, each of the propositions p; — Q, p2 — @,..., pr — @, is to be proved
separately. A statement P — @ is true if all possible cases are true.

The logical equivalences in this case are (see also [12], p. 81)
P1 > QAP > QAN...Apr—Q & p1VpV...Vpr, = Q & P—Q.

Different methods may be used to prove the different cases.

Direct proof. In mathematics and logic, a direct proof is a way of showing
the truth or falsehood of a given statement by a straightforward combination of
established facts, usually existing lemmas and theorems.

The methods of proof of these established facts, lemmas, propositions and
theorems are of no importance. Their truth or falsehood are to be accepted without
any effort.

However, it is exceptionally important that the actual proof of the given state-
ment consists of straightforward combinations of these facts without making any
further assumptions.

Thus, to prove an implication P — @ directly, we assume that statement P
holds and try to deduce that statement ) must follow.

The structure of the direct proof is:
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- Given - a statement of the form P — Q.
- Assumption - the hypotheses in P are true.

- Proof - using the rules of inference, axioms, theorems and any logical equi-
valences to establish in a straightforward way the truth of the conclusion

Q.

Indirect proof. It is often very difficult to give a direct proof to P — @. The
connection between P and ) might not be suitable to this approach.

Indirect proof is a type of proof in which a statement to be proved is assumed
false and if the assumption leads to an impossibility, then the statement assumed
false has been proved to be true.

There are four possible implications we can derive from the implication P — @,
namely

- Conversion (the converse): Q — P,

- Inversion (the inverse): =P — =@,

- Negation: ~(P — Q),

- Contraposition (the opposite, contrapositive): =Q — —P.

The implications P — @ and =@ — —P are logically equivalent.

The implications @ — P and =P — —(Q are logically equivalent too, but they
are not equivalent to the implication P — Q.

The two most common indirect methods of proof are called Proof by Contra-
position and Proof by Contradiction. These methods of indirect proof differ from
each other in the assumptions we do as premisses.

Proof by contraposition. In logic, contraposition is a law that says that
a conditional statement is logically equivalent to its contrapositive. This
is often called the law of contrapositive, or the modus tollens (denying the
consequent) rule of inference.

The structure of this indirect proof is:

- We consider an implication P — Q.

- Tts contrapositive (opposite) =Q — —P is logically equivalent to the
original implication, i.e.

-QQ - P & P—=Q.

- We prove that if =Q is true (the assumption), then =P is true.
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Therefore, a proof by contraposition is a direct proof of the contrapositive.

The proof of Lehmus-Steiner’s theorem in [11] is an illustration of a proof by
contraposition.

Proof by contradiction. In logic, proof by contradiction is a form of proof,
and more specifically a form of indirect proof, that establishes the truth or
validity of a proposition by showing that the proposition’s being false would
imply a contradiction. Proof by contradiction is also known as indirect proof,
apagogical argument, proof by assuming the opposite, and reductio ad impos-
sibility. It is a particular kind of the more general form of argument known
as reductio ad absurdum.

We assume the proposition P — @ is false by assuming the negation of the
conclusion @ and the premise P are true, and then using P A =@ to derive a
contradiction.

Hence, the structure of this indirect proof is:

- We use the equivalence (P — Q) < (=P V Q).

- The negation of the last disjunction is P A =Q), i. e.
(P = Q)< (PA=Q).

- To prove the original implication P — @, we show that if its negation
P A =Q is true (the assumption), then this leads to a contradiction.

In other words, to prove the implication P — @ by contradiction, we assume
the hypothesis P and the negation of the conclusion =) both hold and show
that this is a contradiction (see also [12], p. 188).

A logical base of this method are equivalences of the form
P—=Q ©-QANP—=-P &=(P—Q)—-P;
P—-Q ©-QANP—-Q & -(P—->Q)—Q.
Let now T be a valid theorem, statement, axiom or definition of a notion in

the corresponding system of knowledge. The following equivalences can also
be logical base of a Proof by Contradiction of the implication P — Q.

P—Q & -QANP—-T &—-(P—Q)— —T.

The theoretical base of this method of proof is the law of excluded middle (or
the principle of excluded middle). Tt states that for any proposition, either
that proposition is true, or its negation is true. The law is also known as the
law (or principle) of the excluded third.
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Examples of indirect proofs of Lehmus-Steiner’s theorem are given in [4].

There exist also examples of indirect proofs of implications P — @ in which
the statement —() can be separated into cases ¢1 Vg V...V qx, k> 2,k € N. In

such a case each of the propositions P — ¢, P — ¢o,..., P — q; is to be proved
separately to be false. If moreover the premise P is true it follows that all the
statements ¢;, i = 1,..., k, are false and the conclusion @ is true, i. e.

2(0Q) & @ VeV Va) & g A A Ang & Q.
The logical equivalences in this case are (see also [12], p. 81)

P—>-¢ANP——-gAN..NP—-q & P— @ A-@N...N-q, <& P — Q.

The indirect proof of Lehmus-Steiner’s theorem given in [3] has in fact logical
structure as the described above although this is not mentioned by the authors.

Proof by construction. In mathematics, a constructive proof is a method
of proof that demonstrates the existence of a mathematical object by creating or
providing a method for creating the object.

In other words, proof by construction (proof by example) is the construction of
a concrete example with a property to show that something having that property
exists.

A simple constructive proof of Lehmus-Steiner’s Theorem is given in [13].

Nonconstructive proof. A nonconstructive proof establishes that a mathe-
matical object with a certain property exists without explaining how such an object
can be found. This often takes the form of a proof by contradiction in which the
nonexistence of the object is proven to be impossible.

Proof by counterexamples. We can disprove something by showing a single
counter example, i. e. one finds an example to show that something is not true.

However, we cannot prove something by example.

Mathematical induction. In proof by mathematical induction, a single base
case is proved, and an induction rule is proved, which establishes that a certain
case implies the next case. Applying the induction rule repeatedly, starting from
the independently proved base case, proves many, often infinitely many, other cases.
Since the base case is true, the infinity of other cases must also be true, even if all
of them cannot be proved directly because of their infinite number.

The mathematical induction is a method of mathematical proof typically used
to establish a given statement for all natural numbers. It is a form of direct proof
and it is done in three steps.

Let N ={1,2,3,4,...} be the set of natural numbers, and P(n) be a mathe-
matical statement involving the natural number n > k, k,n € N, k suitably fixed.

- The first step, known as the base step, is to prove the given statement for

the first possible (admissible) natural number k, i.e. to show that P(k) is true for
n==k.
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- The second step, known as the inductive hypothesis, is to assume that for a
natural number ¢ > k the statement P(i), ¢ € N is true.

- The third step, known as the inductive step, is to prove that the given state-
ment P(4) (just assumed to be true) for any one natural number ¢ implies that the
given statement for the next natural number P(i + 1) is true, i. e. to prove that
P(i) = P(i+1).

From these three steps, mathematical induction is the rule from which we infer
that the given statement P(n) is established for all natural numbers n > k.

3. THE LEHMUS-STEINER THEOREM

The Lehmus-Steiner theorem states:.

Theorem 3.1. If the straight line segments bisecting the angles at the base
of a triangle and terminating at the opposite sides are equal, then the triangle is
isosceles.

This so—called equal internal bisectors theorem was communicated by Professor
Lehmus (1780-1863) of Berlin to Jacob Steiner (1796-1867) in the year 1840 with
a request for a pure geometrical proof of it. The request was complied with at the
time, but Steiner’s proof was not published till some years later. After giving his
proof, Steiner considered also the case when the angles below the base are bisected;
he generalized the theorem somewhat; found an external case where the theorem
is not true; finally he discussed the case of the spherical triangle. His solution by
the method of proof by contraposition [11] is considered to be the most elementary
one at that time.

Since then many mathematicians have published analytical and geometrical
solutions of this “elementary” theorem.

Does there exist a proof of this theorem which is direct? This problem was set
in a Cambridge Examination Paper in England around 1850. In 1853, the famous
Bristish mathematician James Joseph Sylvester (1814-1897) intended to show that
no direct proof can exist, but he was not very successful. Since then, there have
been a number of direct proofs published, but generally speaking they require some
other results which have not been proved directly.

A simple, constructive proof, based mainly on Euclid’s Book III, is given in
[13].

McBride’s paper [5] contains a short history of the theorem, a selection from the
numerous other solutions that have been published, some discussion of the logical
points raised, and a list of references to the extensive literature on the subject. For
the long history of this remarkable theorem see also [6].

Below we propose two strictly direct proofs of Lehmus-Steiner’s theorem.
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Figure 1.

3.1. FIRST PROOF OF THE THEOREM OF LEHMUS-STEINER

Let AA; (A € BC) and BB (By € AC) be the internal bisectors in A ABC,
AA; = BBy and AA; N BBy = J. Then CJ is the internal bisector of ZACB. We
use the denotation v :=ZLACJ = ZBCJ.

Let also k1 be the circumscribing circle of AAC Ay, and ko the circumscribing
circle of ABCB; (Figure 1). First we need the following

Proposition 3.2. The cut loci of points, from which two equal segments
appear under the same angle, are equal arcs of congruent circles.

Proof of Proposition 3.2. Consider AACA; and ABC, By, where ZACA; =
/BC1By = 2v and AA; = BB;. Let k; with center O; be the circumscribing circle
of AAC' Ay, and ko with center Oz the circumscribing circle of ABC; By (Figure 2).

Figure 2.

The cut loci of points, from which the equal segments AA; and BB, appear
under the same angle 2+, are respectively the arcs ACA; in k; and BC1 B in ks.
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The perpendicular line O1K (K € AA;) from O; to the chord AA; cuts the
arc AA; in k; at its midpoint H, the perpendicular line OoM (M € BBy) from Os
to the chord BB; cuts the arc BB; in ks at its midpoint G.

The right angled triangles AAKH and ABMG are congruent, because of
AK = BM (as a half of equal chords) and ZKAH = ZMBG = ~. Hence,
AH = BG and ZAHK = /BGM.

Then, the isosceles triangles AAO; H and ABO>G are congruent and the cir-
cles k1 and ks have equal radii.

This proves the assertion of the proposition. O

Since the equal segments AA; and BBy in AABC (fig. 1) appear under the
same angle 2 from C, the circles k; and ko have equal radii (Proposition 3.2).
Let now CJNk; = H and CJNky =G.

The points H and G lie on the same ray C'J7. Since C'J bisects the angles
ZACA, and ZBC By, the point H is midpoint of the arc AA; in k1, and the point
G is midpoint of EB\l in ks.

Let K be the midpoint of the chord AAy, M be the midpoint of the chord
BBy, HK Nky = N and GM N ky = L. Hence, the segments HN and GL are
diameters of the circles k; and ko respectively. The triangles ACHN and ACGL
are right angled with right angles at the vertex C.

The quadrilateral CJK N can be inscribed in a circle and it follows that
|HK||[HN| = [HJ||HC|. (1)

The quadrilateral C'JM L can be inscribed in a circle and it follows that
(GMI|GL| = |GJ||GC. (2)

Remark 3.3. The equalities (1) and (2) are also a consequence of the similarities

AHKJ ~ AHCN and AGMJ ~ AGCL.

Since the circles k1 and ko have equal radii and the chords AA; and BB are
equal, then HK = GM and HN = GL. If we put d =|CJ| >0, =z = |HJ| > 0,
y=|GJ| >0, then |[HC| =2+ d and |GC| =y + d.

The left-hand sides of equalities (1) and (2) are equal, so are their right hand
sides. Hence

z(z+d)=yly+d) & (z—y)(zr+y+d) =0. (3)

Since =+ y + d # 0, equality (3) is equivalent to the equality

1

—y=0.—— =
vy r+y+d

0,

which directly implies « = y.
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Remark 3.4. If we denote the equal positive left-hand sides of equalities (1)
and (2) by a?, we get respectively the quadratic equations

?+dr—ad’=0 & (x—l—g)Q—(Wf:O
(er\/zm?iJ;d?er)(w_\/W—d)

= =0

= T —

7

Vda? +d? —d 0 ( n Vda? + d? +d)71
2 -\ 2
and, analogously,

y* +dy —a® =0,

with the same solution
1
a:zyzi (\/4a2+d2—d).

Hence, the points H and G, which lie on the same ray, coincide and CG is the
common chord of the circles k1 and k».

C

/
Voo

Figure 3.

As a consequence of the conditions

- C@G is a common side,

- LACG = ZBCG (CQG is the bisector of ZACB),

- LCAG = ZCBG (CG is the common chord of two circles with equal radii,

—

hence m = CB1G),

the triangles AAGC and ABGC are congruent (Figure 3).

Thus, CA = CB and AABC is isosceles. The direct proof of Theorem 3.1 is
complete. O
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Remark 3.5. In this proof, the condition that the segments AA; and BB; are
internal bisectors of the angles based at AB in AABC' is not necessary.

It is only of importance that they are equal by length cevians and their inter-
section point lies on the bisector of ZACB.

We recall that a cevian is a line segment which joins a vertex of a triangle with
a point on the opposite side (or its extension).

In fact we proved directly the following

Theorem 3.6. If in a AABC the segments AA, (A; € BC) and BBy (B €
AC) interesct at a point on the bisector of ZACB and are equal by length, then
AN ABC is isosceles.

3.2. SECOND PROOF OF THE THEOREM OF LEHMUS-STEINER

The idea for this proof comes from Problem 2.1-2.16 in [2]: Find a direct proof
of Lehmus-Steiner’s theorem as a consequence of Stewart’s theorem.
We need the notion algebraic measure (relative measure) of a line segment.

On any straight line there are two (opposite to each other) directions. The
azis is a couple of a straight line and a fixed (positive) direction on it.

Let g™ denotes any axis. For any non zero line segment MN on gt we can
define its relative (algebraic) measure by MN = e|M N|, where ¢ = +1 in case M
has the same direction as g7, and ¢ = —1 in case M N has the opposite direction
with respect to g*.

Stewart’s theorem yields a relation between the lengths of the sides of a triangle
and the length of a cevian.

Let in A ABC the line segment CP, P € AB, be a cevian (more general, let
{C; A, B, P} be a quadruple of points such that A, B, P are collinear).

Theorem 3.7 (Theorem of Stewart). If A, B, P are three collinear points and
C' is any point then

\CA?-BP +|CB|?> PA+|CP]?-AB + BP - PA-AB = 0.

Remark 3.8. Using the Pythagoras theorem, the proof of Steward’s theorem
is a simply verification.

In what follows we prove the equal internal bisectors theorem in the following
formulation.

Theorem 3.9. The straight line segments bisecting the angles at the base of
a triangle and terminating at the opposite sides are equal if and only if the triangle
1s isosceles.
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Figure 4.

Let AA; (A € BC) and BB, (B; € AC) be respectively the internal bisectors
of ZCAB and ZCBA in a triangle ABC (Figure 4).

Since the triples {B, A1,C} and {A, B;,C,} consist of collinear points there
exist integers a and 8 such that

BA=aBC, AC=(1-a)BC, 0<a<l;

4
AB,=BAC, BiC=(1-B)AC, 0<p<1. W

Using the fact that AA; (A; € BC) and BBy (B; € AC) are the internal
bisectors of ZCAB and ZC'BA in a triangle ABC, i. e. that

CA, _|CAl OB, |CB|
A/B |AB]” BA |BA|’

from relations (4) we obtain

o ABL__ A

[AB|+ |AC]’ [AB[+AC]’ )
5___14B] | _g__1BC

[AB| +|BC|’ [AB| +]BC|

Applying Stewart’s theorem for the quadruple {A4; B, A;,C}

|AB|?.A,C +|AA,|>.CB + |AC|>*.BA, + A,C.CB.BA,; =0,
and for the quadruple {B; A, By,C}

|BA|?.B,C + |BB;|*.CA+ |BC|*.AB, + B,C.CA.AB; =0,

from (4) and (5) we get

ABI||AC
ABIACL i ap| 4 |aC)? - |BCP),

AA 2 = APIAY]
A= TaB T 1A
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AB||BC
ABIBOL (1 4B+ |BC)? - |ACP),

|BBi|* = ———
(IAB[+[BC)

and finally
(JAA1| + |BB:)
|AB|

X{ | [AC|IBC|(ABP+ LAC’|2+|BC|2+2AB|(AC|+|BC’|)+AC||BC|)}
(|AB[+|BC)*(|AB|+]AC|)? '

(144:] = |BB1) = (|AC|] - [BCY))

Using the denotations

(1441 +|BBi])

X =
|AB|
and

Y__{ |AC||BC|(|AB2+|AC|2+|BC|2+2AB|(AC|+|BC|)+AC||BC|)}
' ([AB|+[BC|)*(|AB|+]ACY)? ’

we rewrite the last equation in the form
(JAA:| = |BB1|) X = (|AC| = [BC|) Y.

Since X # 0 and Y # 0, the latter equation is equivalent to the equation
X
(|Adi] = [BBi|) 3 = [AC| = |BC]. (6)

Now, from (6) we see that | AA;| = |BB;1| < |AC| = |BC|, which completes
this direct proof of Lehmus-Steiner’s theorem. O

Remark 3.10. e In this proof, the condition that the segments AA; and
BB are internal bisectors of the angles based at AB in AABC' is necessary.

e Using equalities (5) we compute

[AB|

=P = (4B ¥ JAC)(|AB| + [BC])

(|BC| — [ACY)
and obtain
A1B, | AB & a=p8 <& |AC|=|BC|.

The following statement is easily proved directly.

Proposition 3.11. Let AA; (A; € BC) and BBy (B; € AC) be respectively
the internal bisectors of ZCAB and ZCBA in A ABC. Then N ABC is isosceles
if and only if A1By || AB.
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Proof. Let AA; (A; € BC) and BB (B; € AC) be the internal bisectors of
ZCAB and ZCBA, respectively, in A ABC.

- Let A1B; || AB (Figure 5).

It follows that A AA1B; and A BB A; are isosceles and the quadrilateral
ABA1B1 is a trapezium with |ABl| = |BA1| (: |A1B1D

Hence, A ABC' is isosceles.

Figure 5.

- Let now A ABC' be isosceles and B1By L AB (By € AB), AjAy; 1 AB
(A2 € AB)

Since A AA;B = A BB A (Figure 5), then |AA;| = |BBy|.
HQDCG, AAAlAQ = ABBlBQ7 |A1A2‘ = |BlBQ| and AlBl || AB.

0

In view of this proposition we can reformulate the Lehmus-Steiner theorem in
the following form:

Theorem 3.12. Let AA; (A1 € BC) and BBy (B € AC) be respectively
the internal bisectors of ZCAB and ZCBA in ANABC. If |AA| = |BBy|, then
A1By || AB.
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SMALL MINIMAL (3, 3)-RAMSEY GRAPHS

ALEKSANDAR BIKOV

We say that G is a (3,3)-Ramsey graph if every 2-coloring of the edges of G forces a
monochromatic triangle. The (3, 3)-Ramsey graph G is minimal if G does not contain a
proper (3,3)-Ramsey subgraph. In this work we find all minimal (3, 3)-Ramsey graphs
with up to 13 vertices with the help of a computer, and we obtain some new results
for these graphs. We also obtain new upper bounds for the independence number and
new lower bounds for the minimum degree of arbitrary (3, 3)-Ramsey graphs.
Keywords: Ramsey graph, clique number, independence number, chromatic number

2000 Math. Subject Classification: 05C55

1. INTRODUCTION

In this work only finite, non-oriented graphs without loops and multiple edges
are considered. The following notations are used:
V(G) - the vertex set of G;
E(G) - the edge set of G;
G - the complement of G;
(@) - the clique number of G;
(@) - the independence number of G;
(

a
X(@G) - the chromatic number of G;
Ng(v),v € V(G) - the set of all vertices of G adjacent to v;

(
d(v),v € V(Q) - the degree of the vertex v, i.e. d(v) = |Ng(v)|;
G(v),v € V(G) - subgraph of G induced by N¢g(v);
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G —v,v € V(G) - subgraph of G obtained from G by deleting the vertex v and
all edges incident to v;

G — e,e € E(G) - subgraph of G obtained from G by deleting the edge e;

A(G) - the maximum degree of G;

0(G) - the minimum degree of G;

K, - complete graph on n vertices;

C,, - simple cycle on n vertices;

G1 + G; - graph G for which V(G) = V(G1) U V(G2) and E(G) = E(G1) U
E(G2) U E', where E' = {[z,y] : 2 € V(G1),y € V(G2)}, i.e. G is obtained by
connecting every vertex of G to every vertex of Gs.

All undefined terms can be found in [13].

Each partition

E(G)=E1U---UE,, ENE;j=0, i#] (1.1)

is called an r-coloring of the edges of G. We say that H C G is a monochromatic
subgraph of color i in the r-coloring (1.1), if E(H) C E;.

Let p and ¢ be positive integers, p > 2 and g > 2. The notation G — (p,q)
means that for every 2-coloring of E(G) there exists a p-clique of the first color or a
g-clique of the second color. If G — (p, q), we say that G is a (p, ¢)-Ramsey graph.
Similarly, the expression G — (p1,...,p,) is defined for the r-colorings of E(G).

The smallest possible integer n for which K,, — (p,q) is called a Ramsey
number and is denoted by R(p,q). The Ramsey numbers R(p1,pa,...,p,) are
defined similarly. The existence of Ramsey numbers was proved by Ramsey in [32].
Only a few exact values of Ramsey numbers are known (see [30]). In this work we
shall use the equality R(3,3) = 6, which means that K¢ — (3,3) and K5 /4 (3, 3).
Clearly, if w(G) > 6, then G — (3,3). In [6] Erdds and Hajnal posed the problem:

Is there a graph G — (3,3) with w(G) <6 ?

Figure 1: The complement of the van Lint graph from [12]
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The first example of a graph which gives an affirmative answer to this question
was given by van Lint. The complement of this graph is presented in Figure 1. Van
Lint did not publish this result himself, but the graph was included in [12]. Later,
Graham [11] constructed the smallest possible example of such a graph, namely
K; + Cs. Tt is easy to see that the van Lint graph contains K3 + Cj5 (it is the
subgraph induced by the black vertices in Figure 1).

There exist (3,3)-Ramsey graphs which do not contain K5. These graphs have
at least 15 vertices [29]. The first 15-vertex (3,3)-Ramsey graph which does not
contain K5 was constructed by Nenov [25]. This graph is obtained from the graph
I" presented in Figure 2 by adding a new vertex which is adjacent to all vertices of
r.

Figure 2: The Nenov graph I' from [25]

Folkman [7] constructed a graph G — (3,3) with w(G) = 3. The minimum
number of vertices of such graphs is not known. To date, we only know ([31] and
[18]) that this minimum is between 19 and 786.

Obviously, if H is a (p, ¢)-Ramsey graph, then its every supergraph G is also
a (p,q)-Ramsey graph.

Definition 1.1. We say that G is a minimal (p, q)-Ramsey graph if G — (p, q)
and H 4 (p,q) for each proper subgraph H of G.

It is easy to see that K4 is a minimal (3,3)-Ramsey graph and there are no
minimal (3, 3)-Ramsey graphs with 7 vertices. The only such 8-vertex graph is the
Graham graph K3+ Cs, and there is only one such 9-vertex graph, Nenov [22] (see
Figure 3).
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Figure 3: 9-vertex minimal Figure 4: 10-vertex minimal
(3,3)-Ramsey graph (3,3)-Ramsey graph

For each pair of positive integers p > 3, ¢ > 3 there exist infinitely many
minimal (p,q)-Ramsey graphs [2], [8]. The simplest infinite sequence of minimal
(3,3)-Ramsey graphs is formed by the graphs K5 + Cy,11,7 > 1. This sequence
contains the already mentioned graphs Kg and K3+ C5. This sequence was found
by Nenov and Khadzhiivanov in [27]. Later, it was rediscovered in [3], [9], [35].

Three 10-vertex minimal (3,3)-Ramsey graphs are known. One of them is
K3 + C7 from the sequence K3 + Co.11,7 > 1. The other two were obtained by
Nenov in [24] (the second graph is presented in Figure 4 and the third is a subgraph

of Kl + Cg)

The main goal of this work is to find new minimal (3, 3)-Ramsey graphs. To
achieve this, we develop computer algorithms which are presented in Section 3.
Using Algorithm 3.1, in Section 4 we find all minimal (3, 3)-Ramsey graphs with
up to 12 vertices. In the next Section 5 we find all 13-vertex minimal (3, 3)-Ramsey
graphs using Algorithm 3.11. From the graphs found in Section 4 and Section 5 we
obtain interesting corollaries, which are presented in Section 6. With the help of
Algorithm 3.8, in Section 7 and Section 8, respectively, we obtain new upper bounds
for the independence number and new lower bounds for the minimum degree of
minimal (3, 3)-Ramsey graphs with an arbitrary number of vertices.

Similar computer aided research is made in [17], [29], [4], [5], [31], [36], [18]
and [34]. We note that the algorithms from [29] were very useful to us.

This work is an extended version of the author Master Thesis written under
the supervision of Prof. Nedyalko Nenov. The most essential new element is Algo-
rithm 3.8, which is obtained jointly with Prof. Nenov.
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2. AUXILIARY RESULTS

We will need the following results:

Theorem 2.1. ([2],[8]) Let G be a minimal (p, p)-Ramsey graph. Then, 6(G) >
(p —1)2. In particular, when p = 3, we have §(G) > 4.

Definition 2.2. We say that G is a Sperner graph if Ng(u) C Ng(v) for some
pair of vertices u,v € V(G).

Proposition 2.3. If G is a minimal (p, q)-Ramsey graph, then G is not a
Sperner graph.

Proof. Suppose the opposite is true, and let u,v € V(G) be such that Ng(u) C
Ng(v). We color the edges of G — u with two colors in such a way that there is
no monochromatic p-clique of the first color and no monochromatic g-clique of the
second color. After that, for each vertex w € Ng(u) we color the edge [u,w] with
the same color as the edge [v, w]. We obtain a 2-coloring of the edges of G with no
monochromatic p-cliques of the first color and no monochromatic g-cliques of the
second color. O

Theorem 2.4. ([29]) Let G be a (3,3)- Ramsey graph and G # Kg. If
|[V(G)| < 14, then w(G) = 5.

BN

Figure 5: 14-vertex minimal (3, 3)-Ramsey graph with a single 5 clique

According to Theorem 2.4, every (3, 3)-Ramsey graph G with at most 14 ver-
tices contains a 5-clique. There exist 14-vertex (3,3)-Ramsey graphs containing
only a single 5-clique, an example of such a graph is presented in Figure 5. The
graph in Figure 5 is obtained with the help of the only 15-vertex bicritical (3, 3)-
Ramsey graph with clique number 4 from [29]. First, by removing a vertex from
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the bicritical graph, we obtain 14-vertex graphs without 5 cliques. After that, by
adding edges to the obtained graphs, we find a 14-vertex (3, 3)-Ramsey graph with
a single 5-clique whose subgraph is the minimal (3, 3)-Ramsey graph in Figure 5.
Let us note that in [29] the authors obtain all 15-vertex (3, 3)-Ramsey graphs with
clique number 4, and with the help of these graphs, one can find more examples of
14-vertex (3, 3)-Ramsey graphs.

Theorem 2.5. ([19]) Let G be a graph and G — (p,q). Then x(G) > R(p,q).
In particular, if G — (3,3), then x(G) > 6.

Corollary 2.6. Let G — (3,3), let v1,...,vs be independent vertices of G and
H=G-—{vi,...,vs}. Then, x(H) > 5.

Theorem 2.7. Let G be a minimal (3,3)-Ramsey graph. Then, for each vertex
v € V(G) we have a(G(v)) < d(v) — 3.

Proof. Suppose the opposite is true, and let A C Ng(v) be an independent set
in G(v) such that |A| = d(v) —2. Let a,b € Ng(v)\ A. Consider a 2-coloring of the
edges of G — v in which there are no monochromatic triangles. We color the edges
[v,a] and [v,b] with the same color in such a way that there is no monochromatic
triangle (if a and b are adjacent, we chose the color of [v, a] and [v, b] to be different
from the color of [a, ], and if @ and b are not adjacent, then we chose an arbitrary
color for [v, a] and [v, b]). We color the remaining edges incident to v with the other
color, which is different from the color of [v, a] and [v,b]. Since Ng(v)\{a,b} = Ais
an independent set, we obtain a 2-coloring of the edges of G without monochromatic
triangles, which is a contradiction. O

Corollary 2.8. Let G be a minimal (3,3)-Ramsey graph and d(v) = 4 for
some vertex v € V(G). Then, G(v) = Ky.

3. ALGORITHMS

In this section, the computer algorithms used in this work are presented.
The first algorithm is appropriate for finding all minimal (3, 3)-Ramsey graphs
with a small number of vertices.

Algorithm 3.1. Finding all minimal (3,3)-Ramsey graphs with n vertices,
where n is fized and 7 <n < 14.

1. Generate all n-vertex non-isomorphic graphs with minimum degree at least
4, and denote the obtained set by B.

2. Remove from B all Sperner graphs.

3. Remove from B all graphs with clique number not equal to 5.

4. Remove from B all graphs with chromatic number less than 6.

5. Remove from B all graphs which are not (3,3)-Ramsey graphs.

6. Remove from B all graphs which are not minimal (3,3)-Ramsey graphs.
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Theorem 3.2. Fizn € {7,...,14}. Then, after executing Algorithm 3.1, B
consists of all n-vertex minimal (3,3)-Ramsey graphs.

Proof. Step 6 guaranties that B contains only minimal (3,3)-Ramsey graphs
with n vertices. Let G be an arbitrary n-vertex minimal (3, 3)-Ramsey graph. We
will prove that G € B. By Theorem 2.1, §(G) > 4, and by Theorem 2.3, G is
not a Sperner graph. Since |V(G)| < 14, by Theorem 2.4 we have w(G) = 5. By
Theorem 2.5, x(G) > 6. Therefore, after step 4, G € B. O

In Section 4 we apply Algorithm 3.1 to obtain all (3,3)-Ramsey graphs with
up to 12 vertices. Algorithm 3.1 is not appropriate in the case n > 13, because
the number of graphs generated in step 1 is too big. To find the 13-vertex minimal
(3,3)-Ramsey graphs, we will apply Algorithm 3.11, which is given below.

In order to present the next algorithms, we shall need the following definitions
and auxiliary propositions:

We say that a 2-coloring of the edges of a graph is (3,3)-free if it has no
monochromatic triangles.

Definition 3.3. Let G be a graph and M C V(G). Let Gy be a graph which
is obtained by adding a new vertex v to G such that Ng, (v) = M. We say that M
is a marked vertex set in G if there exists a (3, 3)-free 2-coloring of the edges of G
which cannot be extended to a (3,3)-free 2-coloring of the edges of G .

Tt is clear that if G — (3,3), then there are no marked vertex sets in G. The
following proposition is true:

Proposition 3.4. Let G be a minimal (3,3)-Ramsey graph, let vy,...,vs be
independent vertices of G and H = G — {v1,...,vs}. Then, Ng(v;),i =1,...,s,
are marked vertex sets in H.

Proof. Suppose the opposite is true, i.e. Ng(v;) is not a marked vertex set in
H for some i € {1,...,s}. Since G is a minimal (3, 3)-Ramsey graph, there exists
a (3,3)-free 2-coloring of the edges of G — v;, which induces a (3, 3)-free 2-coloring
of the edges of H. By supposition, we can extend this 2-coloring to a (3, 3)-free
2-coloring of the edges of the graph H; = G —{v1,...,v;-1,0i41,...,0s}. Thus, we
obtain a (3, 3)-free 2-coloring of the edges of G, which is a contradiction. O

Definition 3.5. Let {My,..., My} be a family of marked vertex sets in the
graph G. Let G; be a graph which is obtained by adding a new vertex v; to G such
that Ng,(v;) = My, i = 1,...,s. We say that {Mx,...,Ms} is a complete family
of marked vertex sets in G, if for each (3,3)-free 2-coloring of the edges of G there
exists i € {1,...,s} such that this 2-coloring can not be extended to a (3,3)-free
2-coloring of the edges of G;.

Proposition 3.6. Let vq,...,vs be independent vertices of the graph G and
H =G —{vy,...,vs}. If {Ng(v1),...,Ng(vs)} is a complete family of marked
vertex sets in H, then G — (3,3).
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Proof. Consider a 2-coloring of the edges of G which induces a 2-coloring with
no monochromatic triangles in H. According to Definition 3.5, this 2-coloring of the

edges of H can not be extended in G without forming a monochromatic triangle.
O

It is easy to prove the following strengthening of Proposition 3.4:

Proposition 3.7. Let G be a minimal (3,3)-Ramsey graph, let vy, ..., vs be
independent vertices of G and H = G — {v1,...,vs}. Then, {Ng(v1),..., Ng(vs)}
is a complete family of marked vertex sets in H. What is more, this family is a
minimal complete family, in the sense that it does not contain a proper complete
subfamily.

Let G be a minimal (3, 3)-Ramsey graph and «(G) > |V(G)|—k > 1. Let A
be an independent set in G such that |A] = |V(G)| — k. Then, |V(G — A)| =k,
and therefore the graph G is obtained by adding an independent set of vertices
to the k-vertex graph G — A. From Proposition 2.3 it is easy to see that for a
fixed k there are a finite number of minimal (3,3)-Ramsey graphs G for which
a(G) > | V(G)| — k > 1. Below we give an algorithm for finding all minimal (3, 3)-
Ramsey graphs G for which a(G) > | V(G)| — k > 1, where k is fixed (but V(G) is
not fixed).

Algorithm 3.8. (A. Bikov and N. Nenov) Finding all minimal (3, 3)-Ramsey
graphs G for which w(G) < q and o(G) > |V(G)| — k > 1, where ¢ and k are fized
positive integers.

1. Denote by A the set of all k-vertex graphs H for which w(H) < q and
X(H) > 5. The obtained minimal (3,3)-Ramsey graphs will be output in the set B,
let B=10.

2. For each graph H € A:

2.1. Find all subsets M of V(H) which have the properties:

(a) Ky—1 & HM], i.e. M is a K(4_1)-free subset.

(b)) M & Ng(v),Vv € V(H).

(c) M is a marked vertex set in H (see Definition 3.3).

Denote by M(H) the family of subsets of V(H) which have the properties (a),
(b) and (c). Enumerate the elements of M(H): M(H) = {M,..., M}

2.2. Find all minimal complete subfamilies of M(H) (see Definition 3.5). For
each such found subfamily {M;,, ..., M;_} construct the graph G = G(M,,, ..., M;.)
by adding new independent vertices vi,va,...,vs to V(H) such that Ng(v;) =
M;,,j =1,...,5. Add G to B. If there are no complete subfamilies of M(H),
then no supergraphs of H are added to B.

8. Remowve the isomorphic copies of the graphs from B.

4. Remove from B all non-minimal (3,3)-Ramsey graphs.

Remark 3.9. [t is clear that if G is a minimal (3,3)-Ramsey graph and
w(G) > 6, then G = Kg. Obuiously there are no (3,3)-Ramsey graphs with clique
number less than 3. Therefore, we shall use Algorithm 3.8 only for q € {4,5,6}.
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Theorem 3.10. After executing Algorithm 3.8, the set B coincides with the set
of all minimal (3,3)-Ramsey graphs G for which w(G)<q and o(G)>|V(G)|—-k>1.

Proof. From step 2.2 it becomes clear that every graph G which is added to B
is obtained by adding independent vertices vy, ..., vs to a graph H € A. Therefore,
a(G) > s = |V(G)| - |V(H)| = |V(G)] — k. From w(H) < ¢ and K41 ¢
H[Ng(v;)],i = 1,...,s, it follows that w(G) < ¢. According to Proposition 3.6,
after step 2.2 B contains only (3,3)-Ramsey graphs, and after step 4 B contains
only minimal (3, 3)-Ramsey graphs.

In order to prove that B contains all minimal (3, 3)-Ramsey graphs which fulfill
the conditions, consider an arbitrary minimal (3,3)-Ramsey graph G for which
w(G) < g and a(G) > | V(G)| — k > 1. We will prove that G € B.

Denote s = | V(G)| — k > 1. Let vy,...,vs be independent vertices of G and
H=G—{v1,...,vs}. By 2.6, x(H) > 5. Therefore, after executing step 1, H € A.

From w(G) < ¢ it follows w(G(v;)) < ¢ — 1. By Proposition 2.3, G is not a
Sperner graph, and therefore Ng(v;) € Ng(v),Vv € V(H). According to Proposi-
tion 3.4, Ng(v;) are marked vertex sets in H. Therefore, after executing step 2.1,
Ng(’l}i) S M(H),Z =1,...,s.

From Proposition 3.7 it becomes clear that {N¢(v1), ..., Na(vs)} is a minimal
complete subfamily of M(H). Therefore, in step 2.2 the graph G is added to B.

Thus, the theorem is proved. O

In order to find the 13-vertex minimal (3, 3)-Ramsey graphs we shall use the
following modification of Algorithm 3.8 in which n = | V(G)| is fixed:

Algorithm 3.11. Modification of Algorithm 3.8 for finding all n-vertex min-
imal (3,3)-Ramsey graphs G for which w(G) < q and a(G) > n —k > 1, where q,
k and n are fixed positive integers.

In step 2.2 of Algorithm 3.8 add the condition to consider only minimal com-
plete subfamilies {M;,, ..., M;.} of M(H) in which s =n — k.

4. MINIMAL (3, 3)-RAMSEY GRAPHS WITH UP TO 12 VERTICES

We execute Algorithm 3.1 for n = 7,8,9,10,11,12, and we find all minimal
(3,3)-Ramsey graphs with up to 12 vertices except Kg. In this way, we obtain
the known results: there is no minimal (3, 3)-Ramsey graph with 7 vertices, the
Graham graph K3 + Cj5 is the only such 8-vertex graph, and there exists only one
such 9-vertex graph, the Nenov graph from [22] (see Figure 3). We also obtain the
following new results:

Theorem 4.1. There are exactly 6 minimal 10-vertex (3,3)-Ramsey graphs.
These graphs are given in Figure 14, and some of their properties are listed in
Table 2.
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Theorem 4.2. There are exactly 73 minimal 11-vertex (3,3)-Ramsey graphs.
Some of their properties are listed in Table 3. Examples of 11-vertex minimal
(3,3)-Ramsey graphs are given in Figure 15 and Figure 16.

Theorem 4.3. There are exactly 3041 minimal 12-vertex (3, 3)-Ramsey graphs.
Some of their properties are listed in Table 4. Examples of 12-vertex minimal (3, 3)-
Ramsey graphs are given in Figure 17 and Figure 18.

We will use the following enumeration for the obtained minimal (3, 3)-Ramsey
graphs:
- G101, - --,G10.6 are the 10-vertex graphs;
- G111, -.-,G11.73 are the 11-vertex graphs;
- G121, -..,G12.3041 are the 12-vertex graphs;

The indices correspond to the order of the graphs’ canonical labels defined in
nauty [20].

Detailed data for the number of graphs obtained at each step of the execution
of Algorithm 3.1 is given in Table 1.

Step of n=8| n=9 n =10 n=11 n=12
Algorithm 3.1

1 424 | 15471 | 1249 973 | 187 095 840 | 48 211 096 031
2 59 | 2365 206 288 | 33 128 053 | 9 148 907 379
3 9 380 41 296 8 093 890 | 2 763 460 021
4 1 7 356 78 738 44 904 195
5 1 3 126 23 429 11 670 079
6 1 1 6 73 3041

Table 1: Steps in finding all minimal (3, 3)-Ramsey graphs with up to 12 vertices

5. MINIMAL (3,3)-RAMSEY GRAPHS WITH 13 VERTICES

The method we apply for findning all 13-vertex minimal (3, 3)-Ramsey graphs
consists of two parts:

1. First, we find the 13-vertex minimal (3,3)-Ramsey graphs with indepen-
dence number 2. We use that (see [30]) R(3,6) = 18, and that all graphs G for
which a(G) < 3 and w(G) < 6 are known [21]. Among them, the 13-vertex graphs
are 275 086. By computer check, we find that exactly 13 of these graphs are minimal
(3,3)-Ramsey graphs.

2. It remains to find the 13-vertex minimal (3, 3)-Ramsey graphs with inde-
pendence number at least 3. To do this, we execute Algorithm 3.11 with n = 13;
k = 10; ¢ = 6. First, in step 1 of Algorithm 3.11 we find all 1 923 103 graphs
H with 10 vertices for which w(H) < 5 and x(H) > 5. After that, in step 2 of
Algorithm 3.11 we add 3 independent vertices to the obtained 10-vertex graphs,
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[E@)]  #]4G) # | AG) # | a(G) # | x(G) # | [Aut(G)]  #
30 1|4 119 6|2 316 6|4 2
31 115 4 3 3 8 2
32 2(6 1 16 1
33 1 84 1
34 1
Table 2: Some properties of the 10-vertex minimal (3, 3)-Ramsey graphs
[E@)]  # ] (G) # | A(G) # | a(G) # | x(G) # | [Aut(G)]  #
35 6|4 518 1|2 416 7311 20
36 13 15 58 | 10 72 13 66 2 29
37 23 | 6 10 4 3 4 14
38 25 6 1
39 5 8 4
41 1 12 1
16 3
24 1
Table 3: Some properties of the 11-vertex minimal (3, 3)-Ramsey graphs
[E@)]  #]4G) # | AG) # | o(G) # | x(G) # | [Aut(G)]  #
38 54 129 [ 8 4372 124 [ 6 3041 | 1 1792
39 27 | 5 2178 | 9 1196 | 3 2431 2 851
40 144 | 6 611 | 11 1802 | 4 485 4 286
41 418 | 7 123 5 1 6 1
42 1014 8 67
43 459 12 16
44 224 16 18
45 351 24 6
46 299 32 1
47 84 36 1
48 16 96 1
108 1
Table 4: Some properties of the 12-vertex minimal (3, 3)-Ramsey graphs
[E@)]  # ] (G) # | A(G) # | a(G) # | x(G) # | [Aut(G)]  #
41 414 13725 | 8 16 | 2 1316 306 622 | 1 251 976
42 44 | 5 191 504 | 9 61678 | 3 218802 | 7 13 ]2 46 487
43 220 | 6 85932 | 10 175108 | 4 86 721 3 10
44 1475 | 7 15391 | 12 69 833 | 5 1097 4 6 851
45 7838 | 8 83 6 2 6 83
46 28 805 8 916
47 33 810 12 129
48 26 262 16 106
49 39 718 24 44
50 62 390 32 12
51 59 291 36 3
52 34132 40 1
53 10 878 48 11
54 1 680 72 3
55 86 96 2
56 2 144 1

Table 5: Some properties of the 13-vertex minimal (3, 3)-Ramsey graphs
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and thus, we obtain all 306 622 minimal (3, 3)-Ramsey graphs with 13-vertices and
independence number at least 3.
Finally, we obtain the following

Theorem 5.1. There are exactly 306 635 minimal 13-vertex (3,3)-Ramsey
graphs. Some of their properties are listed in Table 5. FEzxamples of 13-vertex
minimal (3,3)-Ramsey graphs are given in Figure 6, Figure 20 and Figure 21.

We denote the obtained 13-vertex (3, 3)-Ramsey graphs by Gis.1, - - -, G13.306635-

As was noted, all graphs G for which a(G) < 3 and w(G) < 6 are known and
from R(3,6) = 18 it follows that these graphs have at most 17 vertices. By computer
check we find that there are no minimal (3,3)-Ramsey graphs with independence
number 2 and more than 13 vertices. Thus, we prove the following

Theorem 5.2. Let G be a minimal (3,3)-Ramsey graph and o(G) = 2. Then,
|V(G)| < 13. There are exactly 145 minimal (3,3)-Ramsey graphs for which
a(G) =2:

- 8-vertex: 1 (K3 + Cs);

- 9-vertex: 1 (see Figure 3);

- 10-vertez: 3 (G103, G105, G106, see Figure 14);

- 11-vertex: 4 (G11.46, G11.47, G11.54, G11.69, see Figure 16);

- 12-vertex: 124;

- 13-vertex: 13 (see Figure 21);

By executing Algorithm 3.11(n = 10,11,12;k = 7,8,9;¢ = 6), we find all
minimal (3, 3)-Ramsey graphs with 10, 11 and 12 vertices and independence number
greater than 2. In this way, with the help of Theorem 5.2, we obtain a new proof
of Theorem 4.1, Theorem 4.2 and Theorem 4.3.

6. COROLLARIES FROM THE OBTAINED RESULTS

6.1. MINIMUM AND MAXIMUM DEGREE

By Theorem 2.1, if G is a minimal (3, 3)-Ramsey graph, then 6(G) > 4. Via
very elegant constructions, in [2] and [8] it is proved that the bound §(G) > (p—1)?
in Theorem 2.1 is exact. However, these constructions are not very economical in
the case p = 3. For example, the minimal (3,3)-Ramsey graph G from [8] with
0(G) = 4 is not presented explicitly, but it is proved that it is a subgraph of a
graph with 17577 vertices. From the next theorem we see that the smallest minimal
(3,3)-Ramsey graph G with §(G) = 4 has 10 vertices:

Theorem 6.1. Let G be a minimal (3, 3)-Ramsey graph and §(G) = 4. Then,
|V(G)| > 10. There is only one 10-vertex minimal (3,3)-Ramsey graph G with
0(G) =4, namely Gro.2 (see Figure 14). What is more, G has only a single vertex
of degree 4. For all other 10-vertex minimal (3,3)-Ramsey graphs G, §(G) = 5.
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Figure 6: 8-regular 13-vertex minimal (3, 3)-Ramsey graph

Let G be a (3,3)-Ramsey graph. By Theorem 2.5, x(G) > 6 and from the
inequality x(G) < A(G) + 1 (see [13]) we obtain A(G) > 5. From the Brooks’
Theorem (see [13]) it follows that if G # Kg, then A(G) > 6. The following related
question arises naturally:

Are there minimal (3, 3)-Ramsey graphs which are 6-reqular?

(i.e. d(v) =6,Yv € V(G))

From the obtained minimal (3, 3)-Ramsey graphs we see that the following theorem
is true:

Theorem 6.2. Let G be a regular minimal (3,3)-Ramsey graph and G # K.
Then, |V(G)| > 13. There is only one regular minimal (3,3)-Ramsey with 13
vertices, and this is the graph presented in Figure 6, which is 8-regular.

Regarding the maximum degree of the minimal (3, 3)-Ramsey graphs, we ob-
tain the following result:

Theorem 6.3. Let G be a minimal (3,3)-Ramsey graph. Then:
(a) AG) =[V(G)| =1, if[V(G)| < 10.
(b) AG) =8, if|V(G) =11, 12 or 13.

6.2. CHROMATIC NUMBER
By Theorem 2.5, if G is a (3, 3)-Ramsey graph, then x(G) > 6.

From the obtained minimal (3,3)-Ramsey graphs we derive the following re-
sults:
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Theorem 6.4. Let G be a minimal (3,3)-Ramsey graph and |V(G)| < 12.
Then x(G) = 6.

Theorem 6.5. Let G be a minimal (3,3)-Ramsey graph and |V(G)| < 14.
Then x(G) < 7. The smallest 7-chromatic minimal (3,3)-Ramsey graphs are the
13 minimal (3, 3)-Ramsey graph with 13 vertices and independence number 2, given
in Figure 21.

Proof. Suppose the opposite is true, i.e. x(G) > 8. Then, according to [26],
G = K| + Q, where Q is the graph presented in Figure 7. The graph K; + @ is
a (3,3)-Ramsey graph, but it is not minimal. By Theorem 6.4, there are no 7-
chromatic minimal (3, 3)-Ramsey graphs with less than 13 vertices. The graphs in
Figure 21 are 13-vertex minimal (3, 3)-Ramsey graphs with independence number
2, and therefore these graphs are 7-chromatic. By computer check, we find that
among the 13-vertex (3,3)-Ramsey graphs with independence number greater than
2 there are no 7-chromatic graphs. O

Figure 7: Graph Q

6.3. MULTIPLICITIES

Definition 6.6. Denote by M(G) the minimum number of monochromatic
triangles in all 2-colorings of E(G). The number M(G) is called a Ks-multiplicity
of the graph G.

In [10] the Ks-multiplicities of all complete graphs are computed, i.e. M(K,)
is computed for all positive integers n. Similarly, the K,-multiplicity of a graph
is defined [14]. The following papers are dedicated to the computation of the
multiplicities of some concrete graphs: [15], [16], [33], [1], [28].

With the help of a computer, we check the K3-multiplicities of the obtained
minimal (3, 3)-Ramsey graphs and we derive the following results:
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Theorem 6.7. If G is a minimal (3,3)-Ramsey graph, |V(G)| < 13 and
G # Kg, then M(G) = 1.

We suppose that the following hypothesis is true:

Hypothesis 6.8. If G is a minimal (3,3)-Ramsey graph and G # Kg, then
M(G) =1.

In support to this hypothesis we prove the following:

Proposition 6.9. If G is a minimal (3,3)-Ramsey graph, G # Kg and
0(G) <5, then M(G) = 1.

Proof. Let v € V(G) and d(v) < 5. Consider a 2-coloring of E(G — v) without
monochromatic triangles. We will color the edges incident to v with two colors in
such a way that we will obtain a 2-coloring of E(G) with exactly one monochromatic
triangle. To achieve this, we consider two cases:

Case 1: d(v) = 4. By Corollary 2.8, G(v) = K4. Let N, = {a,b,¢,d} and
suppose that [a,b] is colored with the first color. Then, [c,d] is also colored with
the first color (otherwise, by coloring [v,a] and [v,b] with the second color and
[v,¢c] and [v,d] with the fist color, we would obtain a 2-coloring of E(G) without
monochromatic triangles). Thus, [a,b] and [c, d] are colored in the first color. We
color [v,a] and [v,b] with the first color and [v, ¢] and [v, d] with the second color.
We obtain a 2-coloring of E(G) with exactly one monochromatic triangle [v, a, b].

Case 2: d(v) = 5. Since w(G) < 5, in Ng(v) there are two non-adjacent
vertices a and b. From G — (3, 3) it follows easily that in G(v) — {a, b} there is an
edge of the first color and an edge of the second color. Therefore, we may assume
that in G(v) — {a, b} there is exactly one edge of one of the colors, say the first
color. We color [v,a] and [v,b] with the second color and the other three edges
incident to v with the first color. We obtain a 2-coloring of E(G) with exactly one
monochromatic triangle. 0

In the end, we note that, according to [27], M (K5 + C2r41) = 1, r > 2, which
also supports our hypothesis.

6.4. AUTOMORPHISM GROUPS

Denote by Aut(G) the automorphism group of the graph G. We use the nauty
programs [20] to find the number of automorphisms of the obtained minimal (3, 3)-
Ramsey graphs with 10, 11, 12 and 13 vertices. Most of the obtained graphs have
small automorphism groups (see Table 2, Table 3, Table 4 and Table 5). We list
the graphs with at least 60 automorphisms:

- The graphs of the form K3+Cs,11: |Aut(K3+Cs)| = 60. |Aut(K3+C7)| = 84,
|Aut(K3 4 Co)| = 108;

- |Aut(G12.2240)| = 96 (see Figure 18);
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- |Aut(Gi3.255653)| = 144, |Aut(G13.248305)] = 96, |Aut(G13.304826)] = 96,
|Aut(G13.113108)| = 72, |Aut(Gi3.175639)| = 72, |Aut(Gi3.302168)] = 72 (see Figure
20);

7. UPPER BOUNDS ON THE INDEPENDENCE NUMBER OF THE
MINIMAL (3,3)-RAMSEY GRAPHS

In regard to the maximal possible value of the independence number of the
minimal (3, 3)-Ramsey graphs, the following theorem holds:

Theorem 7.1. ([23]) If G is a minimal (3,3)-Ramsey graph, G # Kg and
G # K3+ Cs, then o(G) < |V(G)| — 7. There is a finite number of graphs for
which equality is reached.

From Theorem 7.1 it follows that by executing Algorithm 3.8(¢ = 6;k = 8)
we obtain all minimal (3, 3)-Ramsey graphs G for which o(G) = |V(G)| — 7 or
a(G) = | V(G)| — 8. Hence, we derive the following supplements to Theorem 7.1:

Theorem 7.2. There are exactly 11 minimal (3,3)-Ramsey graphs G, for
which o(G) = |V(G)| - 7:

- 9-vertex: 1 (Figure 3);

- 10-vertez: 8 (Gio.1, G102, G104, see Figure 14);

- 11-vertez: 8 (G111, G11.2, G11.21, see Figure 15);

- 12-vertezx: 1 (G12.163, see Figure 17);

- 18-vertez: 2 (G13., G1s., see Figure 19);

- 14-vertex: 1 (see Figure 8).

Theorem 7.3. There are exactly 8633 minimal (3,3)-Ramsey graphs G for
which o(G) = |V(G)| — 8. The largest of these graphs has 26 vertices, and it is
given in Figure 9. There is only one minimal (3,3)-Ramsey graph G for which
a(G) = |V(G)| — 8 and w(G) < 5, and it is the 15-vertex graph K1 + T from [25]
(see Figure 2).

Corollary 7.4. Let G be a minimal (3,3)-Ramsey graph and |V(G)| > 27.
Then, a(G) < |V(G)| = 9.

According to Theorem 7.3, if G is a minimal (3, 3)-Ramsey graph, w(G) < 5,
and G # K1 + T, then o(G) < |V(G)| — 9. From Theorem 2.4 it follows that by
executing Algorithm 3.8(¢ = 5; k = 9) we obtain all minimal (3, 3)-Ramsey graphs
G for which w(G) < 5 and a(G) = | V(G)| — 9, and the graph K7 +I'. As a result
of the execution of this algorithm we derive:

Theorem 7.5. There are exactly 8903 minimal (3,3)-Ramsey graphs G for
which w(G) < 5 and a(G) = | V(G)|—=9. The largest of these graphs has 29 vertices,
and it is given in Figure 10.
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Figure 10: 29-vertex minimal (3, 3)-Ramsey graph
with clique number 4 and independence number 20
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Corollary 7.6. Let G be a minimal (3,3)-Ramsey graph such that w(G) < 5
and | V(G)| > 30. Then o(G) < |V(G)| — 10.

8. LOWER BOUNDS ON THE MINIMUM DEGREE OF THE
MINIMAL (3,3)-RAMSEY GRAPHS

According to Proposition 3.4, if G is a minimal (3, 3)-Ramsey graph, then for

each vertex v of G, N¢(v) is a marked vertex set in G — v, and therefore Ng(v) is
a marked vertex set in G(v).

Figure 11: (3, 3)-free 2-coloring of the edges of Ky

It is easy to see that if W C V(G) and |W| < 3, or |[W| =4 and G[W] # Ky,
then W is not a marked vertex set in G. A (3, 3)-free 2-coloring of K4 which cannot
be extended to a (3, 3)-free 2-coloring of K5 is shown in Figure 11. Therefore, the
only 4-vertex graph N such that V(N) is a marked vertex set in N is Kjy.

Ns.1 Ns.2 Ns.3

Figure 12: The graphs N5.1, N5.2, N353

With the help of a computer, we obtain that there are exactly 3 graphs N with 5
vertices such that Ky ¢ N and V(IV) is a marked vertex set in N. Namely, they are

the graphs N5 1, N5.0 and N5 3 given in Figure 12. Note that N51 C N0 C Ns.3.
From these results we derive
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Theorem 8.1. Let G be a minimal (3,3)-Ramsey graph and w(G) < 4. Then
0(G) = 5. If v e V(G) and d(v) = 5, then G(v) = Ns; for some i € {1,2,3} (see
Figure 12).

The bound §(G) > 5 in Theorem 8.1 is exact. For example, the graph G =
K, +T from [25] (see Figure 2) has 7 vertices v such that d(v) = 5 and G(v) = Ns 3.

/.

e

Nsg.1 Ns.2 Ns.3

Ng.4 Ngs Ns.s Ng.7

Figure 13: The graphs Ng;, i=1,...,7

With the help of a computer, we also obtain that the smallest graphs N such
that K3 ¢ N and V(NV) is a marked vertex set in N have 8 vertices, and there
are exactly 7 such graphs. Namely, they are the graphs Ng;,¢ =1,...,7 presented
in Figure 13. Among them, the minimal graphs are Ng 1, Ngo and Ng 3, and the
remaining 4 graphs are their supergraphs. Thus, we derive the following

Theorem 8.2. Let G be a minimal (3,3)-Ramsey graph and w(G) = 3. Then,
0(G) > 8. If v € V(G) and d(v) = 8, then G(v) = Ns; for some i € {1,...,7} (see
Figure 13).
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Figure 14: 10-vertex minimal (3, 3)-Ramsey graphs
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Figure 15: 11-vertex minimal (3, 3)-Ramsey graphs

with independence number 4
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Figure 16: 11-vertex minimal (3, 3)-Ramsey graphs

with independence number 2
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Figure 18: 12-vertex minimal

Figure 17: 12-vertex minimal

(3,3)-Ramsey graph
with 96 automorphisms

(3,3)-Ramsey graph
with independence number 5
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Figure 19: 13-vertex minimal (3, 3)-Ramsey graphs

with independence number 6
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Figure 20: 13-vertex minimal (3, 3)-Ramsey graphs

with a large number of automorphisms
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Figure 21: 13-vertex minimal (3, 3)-Ramsey graphs

with independence number 2
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SQEMA is a set of rules for finding first-order correspondents of modal formulas, and
can be used for proving axiomatic completeness. SQEMA succeeds for the Sahlqvist
and Inductive formulas.

A deterministic, terminating, but sometimes failing algorithm based on SQEMA for
a modal language with nominals, reversed modalities and the universal modality -
ML(T,U) - is presented. Deterministic SQEMA finds first-order correspondents, and
it can be used to prove di-persistence. It succeeds for the Sahlqvist and Inductive
formulas.

The axiomatic system for ML(T, U) is shown and its strong completeness is proven. It
is shown that adding di-persistent formulas as axioms preserves strong completeness.

Deterministic SQEMA is extended for the language of pre-contact logics using a modi-
fied translation into ML(T, U). Deterministic SQEMA succeeds for the Sahlqvist class
of pre-contact formulas.
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1. INTRODUCTION

The problem of the existence of first-order correspondent formulas for modal
formulas was proposed by van Benthem. This problem is not computable, as shown
by Chagrova in her PhD thesis in 1989, see [4]. However, there have been solutions
for some modal formulas. The most famous class of formulas for which there is a
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first-order correspondent is the Sahlqvist class, shown in [19], where one can use the
Sahlqvist-van Benthem algorithm as described in [23] and [3] to obtain first-order
correspondents.

There are other algorithms for finding first-order correspondents, for example
in [11] Gabbay and Ohlbach introduced the SCAN algorithm, and in [20], Szalas
introduced DLS. SCAN is based on a resolution procedure applied on a Skolemized
translation of the modal formula into the second-order logic, while DLS works on
the same translation, but is based on a transformation procedure using a lemma
by Ackermann. Both algorithms use a procedure of unskolemization, which is not
always successful.

In [6, 7, 8, 10, 9] another algorithm, called SQEMA, for computing first-order
correspondents in modal logic is introduced. It is based on a modal version of the
Ackermann Lemma. SQEMA works directly on the modal formulas without trans-
lating them into the second-order logic and without using Skolemization. SQEMA
succeeds not only on all Sahlqvist formulas, but also on the extended class of in-
ductive formulas introduced in [5, 16]. There are examples of modal formulas on
which SQEMA succeeds, while both SCAN and DLS fail, e.g.: (O(Op < q) — p).

As proved in [6, 7, 8] SQEMA only succeeds on d-persistent (for languages
without nominals) or di-persistent (for reversive languages with nominals) — and
hence, by [3, 5, 15, 16|, canonical formulas, i.e., whenever successful, it not only
computes a local first-order correspondent of the input modal formula, but also
proves its canonicity and therefore the canonical completeness of the modal logic
axiomatized with that formula. This extends to any set of modal formulas on
which SQEMA succeeds. Thus, SQEMA can also be used as an automated prover
of canonical model completeness of modal logics.

An implementation of SQEMA in Java was given in [13]. Some additional
simplifications were added to the implementation thanks to a suggestion by Re-
nate Schmidt, which helps the implementation to succeed on formulas such as
((@0p — 00p) v (Mp — Op)).

The universal modality and nominals were introduced in [17].

In [14], SQEMA was augmented to ML(O, [U]), the basic modal language ex-
tended by adding the universal modality. In [7], SQEMA for a reversive language
with nominals is discussed, promising an extension with [U]. In [10], SQEMA with
downwards monotonicity for Ackermann’s rule is presented. In [22, 9], an extension
of SQEMA for a reversive language with [U] and nominals is introduced, with the
output being in the first-order p-calculus.

In this paper, we define a deterministic and terminating strategy for using the
SQEMA rules for the language with universal modality, countably infinitely many
couples of converse modalities, and nominals, ML(7, U). We show that Determinis-
tic SQEMA always succeeds on Sahlqvist and inductive formulas. We show, like in
[7], that Deterministic SQEMA succeeds only on di-persistent formulas. We show
the axiomatic system for ML(T,U) and its strong completeness, following closely
[17, 18, 12, 3]. Like in [15, 16, 5, 21], we show strong completeness of di-persistent
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formulas. Therefore, Deterministic SQEMA can be used to prove strong axiomatic
completeness of a formula. We extend Deterministic SQEMA to the language of
pre-contact logics, using a modified form of the translation from [1] as to obtain
Sahlqvist formulas from Sahlqvist formulas of the pre-contact language, as defined
in [2], so that Deterministic SQEMA succeeds on them. Completeness of all pre-
contact formulas is shown in [1].

2. PRELIMINARIES

We use 1, j, k, I, m, n for natural numbers. If a and b are words, we write
a 2 biff a occurs in b. If a is a word and b is a sequence or a set of words, a S b
means that a occurs in some of the words of b. The negation of a A b is denoted

by a X' b.
Definition 1. (Formulas of ML(T, U)) Formulas of ML(T,U) are:

¢ == L|TIpiles|=61( v 9)l(6 A 9)|0:6]0; 6|08 T; 6

where cg, c1,... are nominals, pg,p1,... are propositional variables, and there are
at most countably many pairs of mutually converse bozes and diamonds. We denote
“any box” by 0, its converse by 07!, “any diamond” by ¢, its converse by ¢ . (U)
means Qg, [U] means Oy. PROP(¢) is the set of propositional variables, occurring
in @. NOM(¢) is the set of nominals, occurring in @. ¢ is pure iff PROP(@) = 0.
(¢1 — ¢2) stands for (—¢1 V @2), A\(@1,...,¢n) for n > 0 and different ¢; stands
for (p1 A ... (pp—1 Adn)...) ifn >0, and T otherwise. \/(¢1,...,¢n) forn >0
and different ¢; stands for (@1 V... (Pp—1VPy,)...)if n >0, and L otherwise. We
emphasize a disjunction in a formula by using V instead of V. We also use 7 for
formulas. We use the standard definitions for a positive/negative occurrence of p in
¢, for ¢ being positive/negative in p, and for ¢ being positive/negative.

Definition 2. (New Nominal) We denote by cx X ¢ iff ¢ is the first
nominal, such that for all n > k: ¢, X' ¢. We denote by ¢ X' T for a set of
modal formulas ' iff for all ¢ € I': ¢ X = ¢.

Definition 3. (Kripke Frame) A Kripke frame for ML(T, U), or just a frame,
is a tuple (W, R), where W is a non-empty set of possible worlds, also a universe,
and for all ¢, R(4) C W x W are accessibility relations, where R(0) = W x W. We

use F for frames, w, u, v for possible worlds, and s for sets of possible worlds. If
w € W, we say that w is in F.

Definition 4. (Kripke Model) Let F = (W, R). A Kripke model for ML(T, U),
or just a model, is a tuple (F,V, A), where V : PROP — P(W) is a valuation, and
A :NOM — W is an assignment. We say that the model thus defined is based on
F. We use M for models, V for valuations, A for assignments. If w € W, we say
that w is in M. M = (F, V', A) is named iff A is surjective.
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Definition 5. (Modal Truth and Validity). Let F = (W, R), M = (F,V A),
and w € W. We say that, by induction on ¢, ¢ is true in M at w, denoted by
M,w IF ¢ iff:

-Mwl-T

-MwlF L

-M,wl-piff w e V(p)

-M,w Ik ciff w= Ale)

- M,’UJ I+ —\¢1 1ffM,'wH4 ¢1

- M,'w I- (¢1 \/¢2) lffM,’l.U I+ ¢1 or M,w I+ ¢2

-M,w Ik (91 A o) if Mw IF ¢y and M, w I+ ¢o

-M,w Ik ;¢ iff for some v € W: w R (i) v and M, v I- ¢

- M, w I O; ¢y iff for some v € W: v R(i) w and M, v I ¢y

-M,w - O;¢, iff for all v € W: w R(7) v implies M, v IF ¢

- M, w IF O; ¢ iff for all v € W: v R(i) w implies M, v I ¢y

We say that ¢ is true in M iff for allw € M: M, w I ¢. We say that ¢ is valid in F at
w (local validity), denoted by F,w IF ¢, iff for every model M based on F, M, w I+ ¢.
We say that ¢ is valid in F (frame validity) iff ¢ is true in every model based on F
iff for allw in F, ¢ is valid in F at w. We say that ¢ is valid, denoted by I @, iff it is
valid in all frames. The extension of ¢ in M, denoted by [¢]y, is the set of all w € W
such that M,w IF ¢. It is clear that, if My = (F,V;,A;) and Mg = (F, V3, Ag)
agree on NOM(¢) U PROP(¢), meaning that V3 | PROP(¢) = Vo | PROP(¢) and
A; | NOM(¢) = A2 | NOM(¢), then [@]y;, = [¢ly,. We say that ¢ and ¢o are
semantically equivalent, denoted by ¢ = ¢a, iff for every model M, their extensions
in M are equal. We say that ¢ and ¢o are opposite iff ¢1 = —¢po We say that ¢
and @9 are locally frame-equivalent, denoted by ¢y ~ ¢, iff for every frame, F and
every w in F: F w |- ¢y iff F,w IF ¢o. We define a modified assignment as follows:
Ale — w|(¢) := w and Ale — w|(¢) := A(¢') for all ¢ distinct from e¢. We define a
modified model as follows: M[ec — w] := (F,V, Alec — w]).

If for a F and for a w in F, we have that for every M over F, there is a wy in
F: M[cx — w],ws IF ¢, then ¢ is called relatively k-true in F at w, F,w I, ¢.

For a given k, two formulas ¢; and @9 are locally frame-equivalent with respect
to ¢, denoted by @1 ~k @2, iff for every frame F and every w in F, we have that
F,’U) ”_k ¢1 iff F,w ”_k ¢2.

Definition 6. (Uniform Substitution) We denote by ¢1[p/¢’] the word ob-
tained from ¢y, where each occurrence of p (if any) has been replaced with ¢'.
According to Definition 1, the word thus constructed is also a formula, ¢o. We call
the rule for obtaining @9 from ¢; uniform substitution of p by ¢’ in ¢,.

Proposition 7. (Properties of the Uniform Substitution)

1. Let M; and M3 be based on F and be such that they agree on the nominals
and variables, occurring in ¢, except for p. If [¢']y, = [¢" ]y, then [B[p/@ ]y, =
[8[p/¢" I,

2. fF I+ ¢, then F I- ¢[p/¢'].
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3. If ¢' = ¢", then ¢[p/¢'] = ¢[p/¢"].

Proof. Follows directly from the definitions. O

If the elements of PROP(¢) are, in left-to-right order of initial occurrence in
¢: p1,...,pp with n > 0, and the elements of NOM(¢) are, in left-to-right order
of initial occurrence in ¢: ¢1,...,6y, with m > 0, then [@] is an operator from
n.m-tuples of n sets of states and m states to a set of states, defined thus: if M =
(F,V,A) is a model, V(p1) = s1,...,V(pn) = spn, Alc1) = w1,..., Alem) = W,
then [@](s1,..., 80, Wi,...,wn) is [@]y-

Definition 8. (General Discrete Frame) Let F = (W, R). We say that (F, W)
is a general discrete frame for ML(T,U), or just a general discrete frame, iff W C
P(W) is non-empty and the following conditions hold:
- for everyw e W, {w} e W
- W is closed under [—po]
- W is closed under [(pg V p1)]
- W is closed under [{po] for all diamonds ¢.
W is the set of admissible valuations. It is clear that W, € W. It is clear that
F with universe W is also the full general discrete frame (F,P(W)). We use g for
general discrete frames, W for sets of admissible valuations. If g = (F, W), then we
denote by g the underlying frame of g, F. wisin g iffitising,. M = (g,,V,A)
is a model over g iff for each propositional variable p, V(p) € W. An induction on
¢ shows that if M is a model over g, then [¢]y\; € W for any formula. ¢ is valid in
g, denoted with g IF @, iff it is true in all models over g.

¢ is di-persistent iff for every g, g IF ¢ iff g» IF ¢. As we show later, di-
persistence is a sufficient condition for strong axiomatic completeness of a formula.

For every named M over F, there is a g = (F, {[¢]y | ¢ € ML(T,U)}). This
helps to prove strong axiomatic completeness of di-persistent formulas.

Definition 9. (Local Equivalence for General Discrete Frames) We say that
$1 and @9 are locally di-equivalent, denoted by ¢1 ~ ¢g, iff for every g and every w
ing: g,wl- ¢ iff g,w IF ¢s.

If for a g and for a w in g, we have that for every M over g, there is a wg in g:
Mlcx — w],ws Ik @, then @ is called relatively k-true in g at w, g, w Iy ¢.

For a given k, we say that ¢ and ¢g are locally di-equivalent with respect to
¢k, denoted by ¢y ~ @e, iff for every general discrete frame g and every w in g, we
have that g, w IFg ¢1 iff g, w IFg Pa.

Because every frame is also a full general discrete frame, if @¢; =~ ¢2, then
#1 ~k ¢2, and if 1 ~ @2, then ¢1 ~ @2.

Proposition 10. (Sufficient Condition for Di-Persistence) Let ¢ be a modal
formula, let cx be such that cx X' ¢, let ¢' be such that ¢’ is a pure formula and
(ck NP) ~ ¢'. Then ¢ is di-persistent.

Proof. Let g be a general discrete frame and let w be in g. Then:

g, w I- ¢ iff (because cx X' @)
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g, w kg (e A @) iff (because of di-equivalence)
g,w Ik @' iff (because ¢’ is pure)
9y, w by ¢ iff (because of di-equivalence)

9y, w g (e A @) iff (because cx X' @)
g.,wl-o. O
A direct corollary to the above is that every pure formula is di-persistent.

3. FIRST-ORDER CORRESPONDENCE PROBLEM

We define a first-order language with equality and binary predicate symbols.
The language is called FOL. We use ¥ for FOL formulas.

Definition 11. (First-Order formulas) FOL formulas are:

P = L[T|(@" =2")[(a’ ri ") || (¥ V)| (4 A )| Fzep|Vaep,

where xg,x1,... are individual variables, r1,r2,... are binary relational predicate
symbols, = is equality, 3 and V are quantifiers. An occurrence of  in ¥ is bound
iff it occurs in an occurrence of x; or of Vx; in 9. Any occurrence of x in 9
that is not bound is free. We say that x is a free variable of ¥ iff 1 contains a free
occurrence of £. We say that 1 is closed, or that 9 is a sentence iff it has no free
variables. We denote by FREE(9) the set of all free variables of 9. If the elements
of FREE(®) are, in left-to-right order of initial occurrence in 9, x1, . . .,z for some
k > 0, then we denote ¢ by 9¥(x1,...,Z5), wheren > 0 and n > k.

Definition 12. (Semantics of FOL formulas) Let F be a Kripke frame and let
M = (F,V,A) be a Kripke model over F. We extend A to all individual variables
as follows: A(x;) := A(c;). We use the usual semantics of M E 9. We say that 9 (x)
is true in F at w, F E 9¥[w] iff for some model M over F: M[¢; — w] F 9(z;). We
say that 4 is valid in F (Kripke frame validity) iff 9 is true in every model based
on F. Thus, ¥(z) is valid in F iff ¢(z) is true in F at every state in F.

Definition 13. (First-order Correspondence) We say that a modal formula ¢
and FOL formula () are locally correspondent, denoted ¢ ~ (), iff for every
frame F and every state w in F: F w IF ¢ iff F F ¢[w]. We say that ¢ and ¥ are
globally correspondent iff for every frame F: F Ik ¢ iff F E 9. It is clear that, if ¢
and 9 (z) are locally correspondent, then they are globally correspondent.

For a given k, we say that ¢ and v (xx) are locally correspondent with respect
to ¢, denoted by ¢ ~p P (xg), iff for every frame F and every w in F, we have that:
F.wltg ¢ iff FEyw]

An easy argument shows that if ¢ X' ¢, and (cx A @) ~g ¥(ax), then ¢ ~
P (). Also, if @1 ~k @2, and if o ~k P (xk), then @1 ~k Y(xk).

Combined with the properties of local frame equivalence, we now have a suffi-
cient condition for the existence of a local first-order correspondent:
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Proposition 14. (Sufficient Condition for First-order Correspondence) Let
¢ be a modal formula, let cx X ¢, let ¢’ be such that ¢’ is a pure formula,
(ck N@) ~k ¢', and ¢’ ~ P(zx). Then ¢ ~ p(xx). L

An immediate corollary of propositions 14 and 10 is the following:

Proposition 15.  (Sufficient Condition for Di-Persistence and First-order
Correspondence) Let ¢ be a modal formula, let ¢ be such that cg X' ¢, let
&1,...,¢0n be a sequence, such that ¢y is (cx A @), ¢ = ¢; for any 1 < i < j <n,
and ¢, is a pure formula, such that ¢n ~g ¥ (zx). Then it follows that:

L. ¢ ~p(z).

2. ¢ is di-persistent. O

As we show later, it is enough to have ¢ and ¢y, to find a ¥(z), and also ¢
is uniquely defined for ¢. Therefore, if such a sequence for ¢ exists, we call ¥ (zy)
a solution for ¢.

Therefore, a good approach for both finding first-order correspondents and for
proving that a formula is di-persistent is to have rules for elimination of proposi-
tional variables that replace formulas with formulas that are locally di-equivalent
with respect to a given nominal.

For reducing the size of the problem, we need a lemma for conjunctions.

Lemma 16. (Conjunction Lemma)

1. Let ¢1 ~ 1 (zx) and @2 ~ tha(zx). Then (¢1 A d2) ~ (Y1 (zk) A P2(2k)).
2. If ¢1 and ¢2 are di-persistent, then so is (¢1 A ¢2).

Proof. For 1, let w be a world in F. Then, by the hypothesis, F,w I+ ¢, iff
F IF ¢ [w] and F,w F ¢o iff F F 9o[w]. Let F,w I (¢1 A ¢2). Then, F,w I- ¢ and
F,w |- ¢2. Therefore, F F 91 [w] and F F ¢q[w], so F E (1 (xx) A 2(zk))[w]. The
converse direction is analogous.

For 2, it follows directly from the definition of di-persistence. O

Therefore, to find a solution for A(71,...,7xs), it is enough to find solutions
for each of v1,...,7, with respect to the same cg, such that ¢z X* A(71,..., "),
and to take the conjunction of the solutions, then this becomes a solution for the
whole formula.

4. DETERMINISTIC SQEMA

A formula ¢ is in negation normal form iff = occurs only in front of atomic
formulas.

We follow [6, 10]. First, we give a simplified informal definition of the algorithm.
Let ¢ be the input modal formula. The goal is to obtain a nominal ¢, and a pure
formula ¢', such that cx X' ¢ and ¢ ~} ¢’. Then it is very easy, as we show below,
to obtain a local first-order correspondent for ¢.
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First, we negate ¢ and rewrite it in negation normal form, obtaining v. We
start eliminating variables by a process similar to Gaussian elimination. Thus, we
solve a system of equations (actually a conjunction of disjunctions), starting with
a system with the single equation (—cg V<y). We eliminate each variable separately,
so let p be the current variable to eliminate. The elimination is carried out by
applying the following rules:

Ackermann rule:

/\((al \/p)v AR (ana \/p))/\

R A LA
A@1,....0,,) bt

where p X' {ai,...,a,,,01,...,0,,} and A\(By,...,B,,) is negative in p.

O-rule: (¢1 VOge) = (O 61V ¢2)

O-rule: (=" VO@) = (= vV O’') A (=" V @) , where ¢’ is a new nominal.

Now we are ready to formalize the algorithm.

Proposition 17. (SQEMA rules)

1. Equivalence rule.

If ¢1 = ¢, then ¢y =~ ¢2. As per Proposition 7, we can also replace (occur-
rences of) subformulas with semantically equivalent ones.

2. Polarity reversing rule.
~¢ ~x ~d[p/-p.

3. Positive elimination rule.

Let ¢ be positive in p. Then —¢ =~ —@[p/T].
4. Negative elimination rule.
Let ¢ be negative in p. Then —¢ ~ —@[p/L].
5. O-rule.
(@' A (61 VOa)) ~k (@' A (@O ' V 62).
6. O-rule.
Let ¢” be such that ¢’ X' {ck,c',¢',¢}. Then:
(@' A (= VOB)) (¢ A (= vV OT) A (=" V ¢))).

7. The Ackermann rule. Let e, ... ,ay,,601,...,0,, be formulas which contain
no occurrences of p, let B;,...,8,, be formulas which are either negative or
downwards monotone in p. Let:

Y == A1 Vp),...,(an, VD),B1,---,B,,,01,....0,,)

'Y” = ﬁ/\(/\(ﬂlv"‘7ﬂnb)h’/_'/\(o‘17"'7ana)}7017'"ﬂont)
Then: v ~ 4".

Proof. For the equivalence rule, the result follows immediately.

The rest of the rules are in the form —¢’ ~; —¢” for some formulas ¢’ and
¢"”. Let g be a general discrete frame, and let w be a world in g. To prove
that =@’ ~ —¢", it is enough to prove that for every model M over g, such that
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lex]y = {w} and M IF ¢/, there is a model M’ over g, such that [cg]yy = {w} and
M’ I ¢"”, and vice versa.

Polarity reversing rule: Because negations of admissible valuations are admis-
sible, we set M’ to be equal to M, except [p]yy is set to be the complement of [p]y;.
The implication follows by Definition 5. The converse follows analogously.

Positive elimination rule: Let W be the universe of M. By induction on ¢, we
get that [¢]y € [¢lp/ T]lm-

First, let [ex]y; = {w} and M IF ¢. We set M’ to be equal to M, except [p]yy
is set to be W, which is admissible. We have that W = [¢]y; C [o[p/ Tl =
[¢lp/ T\ by Proposition 7. Therefore, [@¢lp/T|lyy = W.

Now, let [cx]y = {w} and M I- ¢[p/T]. We construct M’ in the same way, and
it is straightforward to prove that [¢]y\y = W.

Negative elimination rule: Follows from the polarity reversing rule and the
positive elimination rule.

O-rule: Let Rg be the (converse) relation of M, which corresponds to 0.

First, let M IF (¢’ A (¢1 VOg2)), suppose that M ¥ (¢' A (O ‘¢ V ¢2)). Then,
there is a wy € W: M,w; ¥ (O '¢1 V ). Then, M, w; ¥ O ‘¢ and M, w; ¥ ¢s.
Therefore, there is awe € W: M, we ¥ ¢1 and we R w1. However, M IF (¢1 VOd¢2),
therefore M, ws I+ O¢o, so M, wy IF ¢2, contradiction.

Now, let M I (¢/ A (O "¢y V ¢3)), suppose that M W (¢' A (¢1 V Og)).
Analogously to the above, we derive a contradiction.

Q-rule: Let M = (g4,V,A). Let R¢ be the relation or converse relation of M,
corresponding to ¢.

First, let M I (¢' A (=€ V 0@)), and let wy := A(¢/). Then, M,w; IF ¢¢. So,
there is a wy € W: wy Ry w2 and Mwy I+ ¢. We set M := M[¢” — wq]. By
Proposition 7, and by the hypothesis on ¢”, the condition holds.

Now, let M IF (¢' A ((=¢ V O¢”) A (—=€¢” V ¢))). Then, M IF (¢' A (=€ V O)).

The Ackermann rule: It is easy to show that if B8 is negative in p, then it is
downwards monotone in p. Let & be A(a1,...,an,), B be A(B1,...,Pn,), and B
be downwards monotone in p. First, let M I =y, so M IF (@ V p) and M I+ 8.
Then, [-a]y C [ply, therefore W = [B]y € [Blp/—ally, so M I —". Now, let
M- —", and let M = (F,V, A). Let V'(p) := [-a]y, and let V'(p') := V(p') for
other variables p’. Let M’ := (F, V' A). Then, M’ IF —'. O

Definition 18. (Standard Translation) In the function definition below,
st(n,z, @) stands for special standard translation for pure formulas, or simply stan-
dard translation. For st(n,z,@), we assume that ¢ is pure, that z is x;, such that
¢; does not occur in ¢, and that n is such that ¢, X* > {ci, @}
st(n,z, 1) := 1
stin,z, T):=T
st(n,x,¢;) = (x = ;)
st(n,x, —@) := —st(n,z, )
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st(n,zi, ($1 V @2)) = (st(n,xi, 1) V st(n’,x;,¢2)), where n’ is the least number
such that n’ >n, n’ > ¢ and for all z;, occurring in st(n,z;,¢1), n’ > j.
st(n,z;, ($1 A @2)) = (st(n,xi, 1) A st(n’,x;,¢2)), where n’ is the least number
such that n’ >n, n' > ¢ and for all z;, occurring in st(n,z;,¢1), ' > j.
st(n,z, (U)@) := Fxpst(n + 1, 24, 9)

st(n,z, 00 ‘@) := Izpst(n+ 1,2, 9)

st(n,z, [U]@) := Vapst(n + 1, 2,, )

st(n,z, 0o @) := Vanst(n + 1, z,, @)

st(n,z, Oid ) =3z (T ri xn) Ast(n+ 1,2,,0))

stin,z,0; @) := Jxn((Tn 1 ) A st(n+ 1, 2n,0))

st(n,z, i) :=Van(~(2 15 2n) V st(n + 1,20, 8))

stn,z,0;7'@) := Vap (~(2g s ) V st(n + 1,2, 0))
It is immediate that st defines a unique function if the conditions for it hold. It is
also clear that the result of st can be effectively obtained.

An easy, but somewhat tedious, induction on pure formulas ¢ shows that,
under the above assumptions for n and z;, for any model M and any world w in
M, it is the case that M,w I ¢ iff M[¢; — w] E st(n, z;,¢). We call this the main
property of st.

Lemma 19. (Standard Translation Lemma) Let ¢ be a nominal, and let
¢ be a pure formula. Then for ¢ there can be effectively obtained a first-order
formula ¥ (xg), such that ¢ ~g Y (zk).

Proof. Let i be such that ¢; X' @. Consider ¥: Vz;, ...V, Jv;st(n,xi, ),

where ¢, X" - {ci, ¢}, and [j1,...,jm] are such that [¢;,,...,¢;,,] is the list of
members of NOM(¢) \ {cx} in left-to-right order of initial occurrence in ¢. Note
that 9 can be denoted by ¥ (xg), because the only free variable, if any, is zx. We
show that ¢ ~y 9(xg). For convenience, denote —¢ by ¢'.

For given F and w in F, let M = (F,V, A) be a model over F such that
M,w IF ¢z and M I+ ¢'. By the main property of st, for every wy in F: M[¢; —
w] E st(n, x;,¢’) it M,w, |- ¢'. Therefore, M E Vx;st(n,x;,¢'). Because A assigns
every nominal, M & 3z, ... 3z, Va;st(n,z;,¢'). Because A(cx) = w, and because
xk is the only free variable in Jx;, ...3x; Va;st(n,z;,¢'), if any, we have that
FE 3z, ... 3z, Vaist(n, z;, ¢ ) w).

Now, for given F and w in F, let F F 3z, ... 3z, Va;st(n,z;,¢')[w]. Let M
be any model over F, then M[cxy — w]| F 3z, ... 3z;, Vaist(n,z;,¢"). We define
the model M’ over F, such that M’,w IF ¢, and M’ I ¢/. Because there are states
Vjy,---,0j5,, in F, such that Mg — w][c;, — vy ]...[¢),, — v, ] F Vaist(n,z;, ¢'),
we set M’ to the above modification of M. We show that M’ F Va;st(n,z;,¢') iff
M’ I ¢'. But this follows by the main property of st and Definition 12. O

Now, we need a deterministic and terminating strategy for applying the SQEMA
rules. Equations are formulas of the kind (¢! — {¢”) or of the kind (¢’ ¥ ¢”), such
that ¢’ and @¢” are in negation normal form. A system is a formula of the kind
= A(x1,--.,Xn) for some n > 0, where x1,...,Xn are equations. We use o for sys-
tems of equations and x for equations. o is solved for p iff there are no occurrences
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of pin ¢. o is solved iff it is pure. The algorithm first splits the input formula,
by the conjunction lemma, into several systems of equations, trying to solve each
of them in sequence. Below, we say that ¢ is a new mominal, if ¢ is such that:
if v1,...,7, are all formulas that have occurred as input or dlcging the execution
of any branch of the algorithm so far, it is the case that ¢ X* ~ {y1,...,n} (see
Definition 2).

Ifois~ Alxi,--.,Xm), we denote by o[x;//X1,- - Xm): " AX1s-- -3 Xi=1,X1:

s Xims Xj+1s - - - - Xn). We denote by o[p//—p] the system of equations, produced

from o, where, simultaneously, every occurrence of p has been replaced with —p
and every occurrence of —p has been replaced with p.

We now describe a deterministic version of the SQEMA algorithm from [6].
The algorithm Deterministic SQEMA
INPUT: ¢ € ML(T,U)
OUTPUT: (success, fol(¢)) or (failure)

STEP 1: Rewrite ¢ in negation normal form. Then, distribute all boxes,
which are not in the scope of a diamond, and all disjunctions, over conjunctions as
much as possible, using the semantic equivalences:

Rule 1.1: O(¢1 A ¢p2) = (O AOge)
Rule 1.2: ((¢1 A d2) V d3) = ((¢1V ¢3) A (d2 V ¢3))
Rule 1.3: (¢1V (¢2 A ¢3)) = (61 V ¢2) A (é1V ¢3))

Thus, obtain ¢ = A(¢1, ..., d,) where no further applications of rules 1.1, 1.2
or 1.3 are possible on any ¢;. Now reserve the nominal ¢, such that cx X' = 10}
(see Definition 2), and use it throughout the steps. Proceed with STEP 2, applied
separately on each of the subformulas ¢;, and if it succeeds for all ¢;, proceed
to STEP 5. Otherwise, if anyone of the branches for a single ¢ fails, then return
(failure) as output and stop.

STEP 2: Let ¢; be one of the conjuncts from STEP 1. Let ¢’ be the normalized
form, of —¢;, which we define below, but for now it suffices to know that it means
that ¢’ is in negation normal form, and any variable, that occurs only positively or
negatively in —¢; has been replaced, by the positive or negative elimination rules,
with T, or L, respectively. Now, construct the equation (—c ¥ ¢'), where ¢ is the
nominal from STEP 1. By the sufficient condition and the equivalence rule, try
solving o: = A((—ck V ¢')) by proceeding to STEP 3.

STEP 3: Let the current system be o. For every permutation of PROP (o), try
it as the wvariable elimination order, trying to eliminate each variable in that order
by proceeding to STEP 4 with a new, empty backtracking stack. If a permutation
succeeds, and thus, all propositional variables have been eliminated from the current
system, proceed to STEP 5. If all elimination orders fail, report failure for the
current system and go back to executing STEP 2.

STEP 4: Take the propositional variable p that has to be eliminated and
the system o as input. Save a backtracking context (p,oq), to the stack for the
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application of the polarity reversing rule, but only if the input hasn’t come out of
the stack. Deterministically apply the SQEMA rules in order to try eliminating all
occurrences of p, converting g to o1. Use the deterministic strategy for SQEMA
rules application which is shown below. If p has been eliminated, report success
and return the normalized form of oy (defined below) to STEP 3 to try eliminating
the remaining variables. If this fails, check if the backtracking stack is empty. If it
is empty, report failure to eliminate p and resume executing STEP 3 to try other
permutations. Otherwise, backtrack to the context (p,o() from the top of the
stack, which may apply to a previous variable, then execute STEP 4 with p’ and
oy[p’//—p'], skipping the saving of backtracking context.

STEP 5: If this step is reached by all branches of the execution, then all
propositional variables have been eliminated from all systems resulting from the
input formula. Let all pure systems be o1, ... In For each pure system o;, let
NOM(oi)\{ex} = {¢; IS },andlet cm; X {cw, 04} (see Definition 2). Using
the standard translatlon lemma, let fol;(¢) be: V.. Vg A, st(Mi+1, T, , 03).

Let fol(¢) be A(foly(®),...,fol,(#)), by the conjunction lemma, Lemma 19. Re-
turn the result (success, fol(¢)).

Now, we define: a) the normalization of a formula used in STEP 2 with dia-
mond extraction, b) the normalization of a system of equations used in STEP 4,
and c) the deterministic SQEMA rules application strategy.

a) It is clear how we can obtain a formula in negation normal form for a given
7, such that Oy L and 0o 1 do not occur, because these are semantically equivalent
to [U] and (U). We use this procedure to reduce the number of subformulas in the
output, by applying the equivalence rule for some obvious boolean and modal laws,
as well as the following rules for the universal modality:

For j € {1,2}, we use U; for either [U] or (U), we use {, for either V or A.

Replace with Replace with
(1 = (U)ea) T (U)n V), for o= =1 | T
UrUsy Uzy (U)v Vo) (U
OUry (UwVDL) (U)y V) (U
[U(Uim1 § Uay2) | (Ui § Uay2) || ((U)y A7) Oy
[U) (Ui § v2) (le U WUhe) || (U)yAY) ¥
[U]=e ([Uln Axe), for ya =1 | L
OUry (UW/\OT) ([UlyAOv) [Uly
(U)(Urn § Uay2) | (Uim § Uay2) || ([Uly Ay) Uly
(U) (U1 G 72) (Uim1 §(U)y2) || ([U]y vOy) Oy
(U)e T ([Ulyv7) v

Then, we define a procedure for constructing a conjunctive normal form, using
the standard definition of this notion. It is clear how this normal form can be
constructed. During this construction, also perform diamond extraction, applying
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the rule (O’ Vv 0¢") = O(¢' V ¢"). Attempt to eliminate semantically equivalent
or opposite members of any disjunction, by comparing their normal forms. The
output must not have subformulas of the kind (L { ) or (y { L).

Two improvements can be made: during the elimination, a tableaux method
for ML(T,U) could be used to prove an equivalence, instead of comparing nor-
mal forms. Also, in the conjunction construction phase, modal resolution can be
performed, as in example 6.14 of [7].

This is the normalization procedure for 7, which produces the normal form of
v: First, convert v to negation normal form, then convert the result to conjunctive
normal form simultaneously performing diamond extraction, by the equivalence
rule, then perform box extraction using the semantic equivalence (O¢y A O¢o) =
O(¢1 A2), and finally replace any variables that occur only positively or negatively
in v with T, or L, respectively. Repeat the whole process until no further changes
to the formula can be made.

b) Now, we normalize a system of equations o. Let & be = A(x1,...,Xn). Let
¢' be the normal form of A(x1,...,Xn).- If ¢ is of the kind (—e V ¢"), then the
normal form of o is = A\((—=e Y ¢")); otherwise, it is = A((L Y ¢')).

¢) The deterministic strategy for applying the SQEMA rules for a given variable
p is to use the step function (given below) repeatedly until either a formula without
occurrences of p is reached, or failure is obtained.

Definition 20. (Deterministic SQEMA Step) We describe a single step of the
strategy, which is uniquely defined for o and p.

(1) If p X* o, then the result is o.

(2) Else, if o is ~“A((@1 ¥ p),...,(an, ¥ 0),By,...,B,,,01,...,0,,), where
ng > 0,my >0, 0y >0,p X {ag,...,¢n,,01,...,0,}, and By,...,8,,
are formulas which are negative in p, then we can apply the Ackermann
rule for p and 0. Let for 1 <1 < n;, B be obtained from B by replac-

ing all occurrences of —p with A(eq,...,a,,). Then the result for o is
-AB, ... ,,B’nb,éh,...,am).
This can be improved by allowing 81, ..., 8, to be downwards monotone in p.

This can be tested by proving [U]([U](@" — p') — [U](Bilp/p'] — Bilp/P"])),
such that p’ X' By and p” X* By, using a tableaux method.

(3) If we are not in any of the above two cases, then there is at least one positive
occurrence of p in o, which is not in an equation of the kind (a V¥ p), such
that p X' a. For convenience, let & be = A(x1,...,Xm), let j be the least
number, such that p occurs positively in x;, x; is not as described, and let
let x; be (¢I V).

(3.1) If @1 is (@2 A @3), then, by the equivalence rule, the result for o is
olx;j// (@' Y é1), (¢ Y ¢2)].

(3.2) If ¢1 is (@2 V ¢3), then there are three cases. If p X* ¢2, then by the
equivalence rule the result for o is o[x;//((¢' V ¢2) Y ¢3)]. Otherwise, if
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P X' #3, then, by the equivalence rule, the result for o is o[x;//((¢' v
@3) ¥ @2)]. Otherwise, the result for o is failure.
(3.3) If ¢1 is Oga, by the box rule, the result for o is ax;//(O71¢" ¥ ¢1)].
(3.4) If ¢ is Qg2 and @' is either —¢' or (L V —¢'), then, by the diamond
rule, let ¢” be a new nominal, then the result for o’ is o[x;//(¢ —
o), (=" VY ¢1)).

(3.5) If we are not in any of the above four cases, the result for o is failure.

It is immediate that the above describes a uniquely defined effective function
over the systems of equations and propositional variables. We denote the function
by step.

Immediately by the definition of step, we have that o =y step(o,p) by the
SQEMA rules, Proposition 17.

We prove that the application of step can be composed only finitely many times
for o and p, before reaching either a o', such that p X o', or failure.

Indeed, if the result is ever obtained by (1), (2), (3.5), or the failing condition
of (3.2), it is clear that this is the final application of step. Therefore, suppose there
is an infinite sequence of results, obtained by (3.1), (3.3), (3.4), or the non-failing
conditions of (3.2). Then, there is an infinite sequence 09,071, . .., and let Sy, Sy, ...
be the sum of lengths of right-hand sides of equations in the corresponding o-s. It
is clear that Sy > 0 and for ¢ < j, S; > S, which is impossible. Therefore, we can
only apply step a finite number of times. d

This concludes our definition of Deterministic SQEMA and the proof for its
soundness and termination.

5. SAHLQVIST AND INDUCTIVE FORMULAS

We now examine some famous classes of elementary formulas and we prove
that Deterministic SQEMA succeeds for them.

We use ideas from the proofs in [6].

Definition 21. (Sahlqgvist formulas) A bozed atom is a formula ¢, which is
either a propositional variable p or ¢, where ¢’ is a boxed atom. A Sahlquist
antecedent is a formula built up from T, 1, boxed atoms and negative formulas,
using A, V and . A Sahlquist implication is of the form (¢' — @), where ¢’ is a
Sahlqvist antecedent and ¢" is positive. A Sahlquist formula (in the classical defini-
tion) is built up from Sahlqvist implications by using boxes and conjunctions, and
by applying disjunctions only between formulas which do not share propositional
variables. An extended Sahlquist formula is built up from Sahlqvist implications by
using boxes, conjunctions, and disjunctions. From now on, we simply say Sahlquist
formula instead of extended Sahlquist formula.

A bozed piece is a formula ¢ which is either p, O¢@’, Neg, (pure\ ¢'), (¢’ V pure)
or (§1 A ¢h), where ¢', ¢}, and ¢4 are boxed pieces, Neg is a negative formula,
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pure is a pure formula, ¢ is in negation normal form, disjunction over conjunction
distribution may only apply to negative or pure subformulas of ¢.

A good piece is a formula ¢ which is built up from boxed pieces using A and ¢
such that ¢ is in negation normal form, disjunction over conjunction distribution
may only apply to negative or pure subformulas of ¢, and also the following diamond
distribution rule — Q(y1 Vy2) = (071 V O2) — may only be applied to diamonds
within negative or pure subformulas.

We denote by é a formula which is either a boxed piece, or of the form (—¢V ¢)
where ¢ is a good piece. We denote by 8’ a formula which is either a 4, or of the
kind ((L V —e¢) V ¢) where ¢ is a good piece. We denote by §” a formula which is
either a 8, or of the kind (¢ V —¢) where ¢ is a good piece.

Proposition 22. If ¢ is a system of equations, where each equation x of o is
such that either x is a §’, or x is of the form (L Y A(8Y,...,d0)), then

1) Applying step gives a system of the same kind, and never failure.

2) The result of a system normalization procedure on o is also a system of the
same kind.

3) On Sahlqgvist input formulas, Deterministic SQEMA only works on systems
of the above kind. g

Corollary 23. Deterministic SQEMA succeeds on every Sahlqvist formula at
the first permutation of its variables, without backtracking. O

Definition 24. (Inductive formulas) Let # be a symbol, which is not in
the alphabet of ML(T,U). # is a box-form of #. If B(#) is a box-form of #,
then OB(#) is a box-form of # for any O, and (¢ — B(#)) is a box-form of
# for any positive formula ¢. Replacing all occurrences of # in B(#) with p,
we get B(p), a boz-formula of p. The only positive occurrence of p in B(p) is
the head of B(p), and any other occurrence of a propositional variable in B(p)
is inessential. For convenience, we also say that p is the head of B(p) and the
variables which have inessential occurrences in B(p) are inessential. A monadic
regular formula (MRF) is a modal formula built up from T, L, positive formulas
and negated box-formulas by applying A, V and OO. The dependency graph of a
set of box-formulas B = {B1(p1),...,Bn(pn)} is a directed graph G(B) = (V, E)
where V = {p1,...,pn} is the set of heads in B and E is the set of edges, such that
(pi,pj) € E iff p; occurs as an inessential variable in a box-formula from B with
head p;j. A directed graph is acyclic iff it does not contain directed cycles. The
dependency graph of an MRF ¢ is the dependency graph of the set of box-formulas
which occur in the construction of ¢ as an MRF. A monadic inductive formula
(MIF) is a monadic regular formula with an acyclic dependency graph. We say
that a conjunction of MIFs is an inductive formula.

We extend the definitions to negation normal forms of the above.

We define an extended boz-formula of p thusly: p is an EB(p), OEB(p) is an
EB(p), (EB;(p) A EBg(p)) is an EB(p), if Neg’ and Neg"” are negative formulas,
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then each of (Neg’ V EB(p)), (EB(p) V Neg'), (Neg” A EB(p)) and (EB(p) A Neg")
is an EB(p), and also EB(p) is in negation normal form. Here, p is the head of the
extended box-formula, any occurrences of propositional variables in any of the Neg’
formulas is inessential. The dependency graph of EB(p) is defined analogously to
the above, but note that the variables of any Neg” do not count as inessential.

PureBoz is a pure formula built up from negated nominals, 1, V and [I.

We say that a formula ¢ is a Good formula if it is such that ¢ is in negation
normal form, and ¢ is either EB(p), Neg, (¢1 A ¢2), O¢' outside the scope of
boxes and disjunctions, O¢’, (¢’ V PureBoz), or (PureBox V ¢'), where Neg is a
negative formula, ¢, ¢; and ¢ are Good formulas, and also the following diamond
distribution rule — Q(y1 V 7y2) = (01 V O2) — may only be applied to diamonds
within negative or pure subformulas. The dependency graph of Good is the union
of the dependency graphs of the occurring formulas of kind EB(p), and we require
that all Good formulas have an acyclic dependency graph.

A good system is a system of equations ¢ = = A(x1, - - ., Xn), such that every x;
is a good equation with an acyclic dependency graph G(x;) defined below, G(o) =
U{G(x1),...,G(xn)}, G(o) is acyclic, where exactly one of the following holds for
each x;:

good.1. x; is either (Neg;, ¥ Neg;,) or (¢ — Oc!), with G(x;) = (0, 0),

good.2.1. x; is not of kind good.1, but is either (—¢; ¥ Good;) or ((LV —¢;) VY
Good;), with G(x;) = G(Good;),

200d.2.2. x; is not of the kind good.1 or good.2.1., but is (PureBoz Y Good';),

such that 1. there are no diamonds in Good'; outside of box-formulas or negative
subformulas, 2. G(x;) = G(Good';),

good.3. X; is not of the above kinds, but x; is (Neg: ¥V EB%(p;)), such that x;
is some EB;(p;) with an acyclic graph, and G(x;) = G(EB;(pi)),

good.4. x; is not of the above kinds, but x; is (L ¥ A(d1,...,m)), where
each 0, is either 1. negative with G(4,) = (0,0), 2. (-¢ V Good) or (Good V —c)
with G(6;) = G(Good), 3. (PureBox V Good') or (Good' \/ PureBoz) with G(J;) =
G(Good"), such that there are no diamonds in Good’ outside of box-formulas or
negative formulas, or 4. an EB with G(J,;) = G(EB) - an acyclic graph. The graph
G(xi) = U{G(d1),...,G(m)} is acyclic.

Claim 25. Every output of step, where the input is a good system, is a good
system.

Proof. Consider result, which is step(o,p), where for ¢ the invariant holds. We
show that result is not failure and that the invariant holds for result.

If result is obtained from (1), then the invariant holds.

If result is obtained from (2), the Ackermann rule, then result is o', o is
“Allar ¥Yp),....(an, Y D),B1;-,Bn,,01,...,0,,), such that p X' ai,...,an,,
01,...,0,,. Then, each (a ¥ p) is of the form good.2.1, good.2.2, good.3, or good.4,
so each a is a Neg, and the occurrences of —p within every B are in occurrences of
a Neg within 8.
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It remains to prove that G(o’) is acyclic. It would follow that the graph of
every resulting equation is acyclic and that each of the resulting equations are in
some of the good equation forms.

Because of the replacement, for every edge {(q1, q2) of G(o”) either (g1, g2) is an
edge of G(o) or there are edges (¢q1,p) and (p, ¢2) of G(¢). Then for every cycle in
G(d’) there is a corresponding cycle in G(a). Hence G(o') is acyclic.

Then o’ is a good system.

If result is obtained from (3.1), then result is 6’. We have split on A an equation
of type good.2.1, good.2.2, good.3, or good.4. Equations of type good.2.1 split into
two equations of type good.2.1, or one of type good.1l and one of type good.2.1.
Equations of type good.2.2 split into two equations of type good.2.2, or one of type
good.1 and one of type good.2.2. Equations of type good.3 split into two equations
of the same kind, or one of kind good.1 and one of kind good.3. Equations of
kind good.4 split into two equations, each of them of type either good.1, good.2.2,
200d.3, or good.4. All resulting equations are good equations, because the resulting
equations have graphs that are subgraphs of the original ones. Hence ¢’ is a good
system.

If result is obtained from (3.2), then let the changed equation of o be x, which
is (@' Y (¢2 V ¢3)). We have that x is not negative, and because of the invariant for
o and the definition of Good, we have that x is either of type good.2.1, good.2.2,
good.3, or good.4 with m = 1.

First, let x be of type good.2.1, good.2.2 or good.3. Then ¢’ is negative.
Because the graph of x is acyclic, either p X' @2, with @2 negative or pure and ¢3
a Good formula, or vice versa. So result is ', not failure, and the invariant holds
for ¢’ because we have converted x to an equation of type good 2.1, good 2.2 or
good.3 with a graph that is the same.

Now, let x be of type good.4 with m = 1. Then ¢’ is L. Then, because p occurs
positively in x, there are three cases for (¢2 V ¢3). If (¢2 V @3) is (—c V Good) or
(PureBoz v Good'), thenp X* ¢2. If (¢2V ¢3) is (Good V —c) or (Good' v PureBoz),

then p X' ¢3. In these two cases we have converted x into an equation of type
good.2.1 or good.2.2. If (¢2 V ¢3) is an EB(p’) with an acyclic graph, then clearly
p is p'. Either ¢s is negative and p X* @2 or @3 is negative and p X' ¢3. In this
case we have converted x into an equation of type good.3.

In either case, result is ¢’ and the invariant holds for ¢”.

If result is obtained from (3.3), then result is ¢’. Suppose for the sake of
contradiction that we have changed an equation x of kind good.4. Then either x is
a negative formula, which contradicts the fact that x is not of kind good.1, or the
right-hand side of x is a box, which contradicts the fact that x is not of kind good.3.
Now, because p occurs positively in the changed equation of o, there are three cases.
First, an equation of type good.3 was changed, then we have converted the equation
into another one of type good.3 with a graph that is the same. Second, we have
converted an equation of type good.2.2 into another one of the same kind, with a
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graph that is the same. Third, we have converted an equation of type good.2.1
into an equation of type good.2.2 with a graph that is the same. Therefore, the
invariant holds.

If result is obtained from (3.4) or from (3.5), let the first equation of & where
p occurs positively and which is not of kind (a ¥ p) such that p ¥ a, be x, which
is (¢’ Y Od2). Because x is not negative, x can only be of type good.2.1, and the
result can only have been obtained from (3.4). The invariant holds because we have
converted x into an equation of type good.l and an equation of type good.2.1. O

Claim 26. Every output result of the system normalization procedure, where
the input is a good system, is a good system.

Proof. 1t can be verified that the negation normal form procedure, followed by
the conjunctive normal form procedure with diamond extraction, followed by the
box extraction procedure, output a good system with a graph which is a subgraph
of a graph of the original. O

Claim 27. On inductive input formulas, Deterministic SQEMA only works
on good systems, with the starting equation being either of kind good.1 or of kind
good.2.1.

Proof. By Claim 25 and Claim 26, it is enough to show that every initial
equation is one of the kinds good.1, good.2.1, good.2.2, good.3, or good.4.

It can be verified that every initial equation on inductive formula inputs is of

kind good.1 or good.2.1. 0

Corollary 28. Deterministic SQEMA succeeds on every inductive formula at

the first permutation of its variables, without backtracking. O
6. EXAMPLES

Let us consider the formula ((ypg — [Ulpo). After negation and normalization,
the initial equation is (—cg ¥ ((U)-po A Uipg)). The system is split into two
equations using the Equivalence Rule: (—co Y (U)—pg), (—co ¥ Oipg). Then, the
Box-Rule is applied: (—co Y (U)=po), (07 =co V¥ po). After that, the Ackermann
Rule is applied: (—co ¥ (U)O7 —co). The final result is: (success, Va1 (zo r1 1)),

Now, let us take Lob’s formula (O1(01po — po) — Uipo). The initial equa-
tion is (—eg Y (O17po A1 (G170 V po))). The Equivalence Rule is applied: (—¢g ¥
O17p0), (mco ¥ 01 (O1-poVpo)). The Box-Rule is applied: (=co ¥ O1-po), (07 1o ¥
(017poVpo)). This is where we have our first failure to eliminate py, so backtracking
occurs. We backtrack to the initial equation, reversing the polarity of pg: (—c¢o ¥
(O1po A 01 (O1po0 V —po))). The Equivalence Rule is applied: (—¢o ¥ O1p0), (—co ¥
01(01po V =po))- The Box-Rule is applied: (~co ¥ O1po), (07 =co ¥ (O1po V —po))-
Here we fail again. The backtracking stack is empty, so the result is (failure).
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7. AXIOMATIZATION OF ML(T,U)

Here, we follow the axiomatic system for nominals and universal modality,
described in [17, 18, 12], with some differences in the proofs.

We show an axiomatic system for the valid formulas from the language ML(T, U).
For simplicity of the axiomatic system, we use implications and we only use {, A, V,
—and T as defined symbols. We use p and ¢ for variables. Therefore, our language
for this section becomes:

¢ == Llple|(¢ — ¢)|[Tig|T; '

Definition 29. (Admissible Form) Let # be a symbol, which is not in the
alphabet of ML(T,U). # is an admissible form. If AF(#) is an admissible form,
then so are OAF(#) and (¢ — AF(#)). The formula, obtained by replacing all
occurrences of # with ¢ in AF(#) is denoted by AF(¢).

We use the same notation for nominal substitution, replacing a nominal with

another nominal, as the notation for uniform substitution.
Azioms:

The axioms of propositional calculus.

(K) (O(p — ¢) — (Op — Ogq)) for every box O

(T for U) ([Ulp — p)

(B for U) (p— [U)(U)p)

(4 for U) ([Ulp — [U][U]p)

(U) ([U]p — Op) for every box O

(GP) (p = 0O; <> 1p) for every number 4

(HF) (p = 0O, O,p) for every number %

(Noml) (U)e

(Nom2) ((U) (¢ Ap) — [U)(c - p))

Rules:

o1, ($1 — ¢2) Gen: K2

Modus Ponens (MP): ™ , ey

Uniform Substitution: ‘ﬁbfﬁ}‘ﬁl]’ Nominal Substitution: ¢[c’¢/c"]7
AF(—c) for some ¢ X AF (#)
AF(1)

Cov*:

A normal modal logic, or just logic, is a set of formulas A such that A contains
all axioms and is closed under applications of the five rules.

K (7,1 is the smallest logic. Let ¢ be a formula. We denote the smallest logic,
which contains ¢ by K7,y +@ , and ¢ is called the aziom of K7 1) +¢. We denote
by Fa ¢ iff @ € A. We use the capital greek letters I', A, 3 for sets of formulas. A
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A-theory I is a set of formulas I" such that A C I" and T is closed under applications
of MP and the infinitary rule Cov:

AF (—e) for all ¢
Cov: —————————
o AF(L)
The A-theory of a set of formulas T, Tha(T), is the smallest A-theory such
that T' C Tha(T). Despite the infinitary rule, the deduction lemma holds:

Lemma 30. (Deduction Lemma) (¢1 — ¢2) € Tha(T) iff ¢p2 € Tha(TU{¢1}).

Proof. The left to right direction is obvious. Let ¢o € Tha(I' U {¢1}) and
let TV := {¢' | (p1 — ¢') € Tha(T')}. Easily, ¢ € TV and A C Thy(T') C
IV. Also, I" is closed under applications of MP. To see that I is closed under
applications of Cov, let AF(#) be an admissible form, and suppose that for each
nominal ¢, AF(—¢) € I". Then, by propositional reasoning, for each nominal ¢:
(p1 — AF(—c)) € Tha(T"). Applying Cov to (¢p1 — AF(#)), we get that (¢ —
AF (L)) € Tha(T), therefore AF (L) € I, so I" is closed under applications of Cov.
Therefore, Tha(T'U{¢1}) C I, so by the definition of I, (¢1 — ¢2) € Tha(T). O

A set T'is A-consistent iff L & Tha(T'), and is A-inconsistent, otherwise. T is a
complete A-theory, iff T is a A-consistent A-theory, and for every formula ¢, it is the
case that either ¢ € I' or —¢ € I'. T' is a mazimal A-theory, iff " is a A-consistent
A-theory, and for any set ¥ such that I' C X, ¥ is A-inconsistent.

Corollary 31. A theory is maximal iff it is complete.

Proof. First, let I' be a complete A-theory and let for some set ¥ such that
FCX ¢eX\TI. Then —¢ €T, so by propositional reasoning | € Thx(X). Now,
let T' be a maximal A-theory and let ¢ ¢ I'. Then, L € Tha(I' U {¢}), so by the
deduction lemma, (¢ — 1) € T', therefore —¢ € T'. O

Note that the classical Lindenbaum lemma here has the following form:

Lemma 32. (Lindenbaum Lemma) Let I" be A-consistent. Then I' can be
extended to a complete A-theory.

Proof. Let ¢1,¢a,... be an enumeration of all formulas of ML(T,U). We
construct by induction an infinite chain of A-consistent A-theories ' C T C ...
with the property that for every i > 1, either ¢; € I'; or =¢; € I'; in the following
way. Let g be Tha(T'). Thus I'y is A-consistent. Suppose that I'; is defined.

1. T U{¢;} is A-consistent, let T'; 11 = Tha(T; U {p:}).

2. If T'; U {¢;} is A-inconsistent, then —¢; € I';. There are two cases.

2.1. If ¢; is not in the form AF (L), then let I';41 =T;.

2.2. If ¢ is AF (L) for some admissible form AF'(#), then we show that there
is a nominal ¢; such that I'; U {=AF(—¢;)} is A-consistent. Suppose for the sake
of contradiction that for all e: T'; U {=AF(—¢)} is A-inconsistent. Then by the
deduction lemma, for all ¢: (mAF(—¢) — L) € I';, hence for all e: AF(—c) € T.
Since T'; is a A-theory, by Cov, AF (L) € T';, so ¢; € I';. Thus I'; is A-inconsistent,
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which contradicts the A-consistency of I';. We conclude that there is a nominal ¢;
such that T'; U {—AF(—¢;)} is A-consistent. Let ;11 be Tha(T; U {—AF(—¢;)}).

According to the construction, I';;1 is a A-consistent extension of T';.

Let F+ = Ufio Fz

First note that | ¢ I'" since for all 4 >0, | ¢ T;.

Now we show that I'* is closed under applications of Modus Ponens. Let
o1, (¢1 — ¢2) € T'F. Then there is a step i such that ¢, (¢p1 — ¢2) € I';. But Iy is
closed under applications of MP, so ¢ € I'; C I'T.

We now show that I'T is closed under applications of Cov. Let there be an
AF (#) such that for all e: AF(—¢) € I'" and suppose for the sake of contradiction
that AF(L) ¢ T'". There is an index i such that AF(L) is ¢;, and by case 2.2
of the construction, there is a nominal ¢’ such that “AF(-¢') € I';;; C I't. By
propositional reasoning, | € I'", contradiction. Therefore, I'" is closed under
applications of Cov.

Since every formula is ¢; for some ¢, by the construction either ¢; € I';11 or
—¢; € T'y11. Thus I't is a complete A-theory. O

We denote by T'kp ¢ if ¢ € Tha(T'). Thus § 5 ¢ iff Fo ¢. M, w I T iff for all
¢, M,w IF ¢. We say that ¢ is a local semantic consequence of I' over the class
S of frames, denoted by I' IFg ¢, or, if I' = 0, as S I ¢, iff for every frame F € S,
every model M over F and every state w from F, it is the case that if M, w |- T,
then M, w I ¢. The class of frames of A, Fr(A), is the class S of all frames F such
that F IF A. T is satisfiable on S iff there is an F € S, an M over F and a w in F
such that M, w IF T'.

Our goal is to examine the relationship between  and IF.
Soundness: If T4 ¢, then I' I-p.p) @

Proof. All axioms are valid. Every rule preserves validity on any given frame.
The result follows in the usual way. 0

The converse, known as strong completeness, can be proven for some logics.
Here, like in [21], we prove it for K(p ) and K(pyy + @ for di-persistent ¢.

Strong Completeness, First Form: If ' I-p.n) @, then T' 5 @.

Strong Completeness, Second Form: 1f T' is A-consistent, then T is satisfiable
on Fr(A).

Proposition 33. The two forms of strong completeness are equivalent.

Proof. See [3]. Note that here we use the deduction lemma.

For every box O, we denote by OT" the set {¢ | O¢ € T'}.

Lemma 34. Let I', ¥ and A be A-consistent A-theories. Then

1. The set IV := 0O is a A-theory and if for some formula ¢, O¢ ¢ T', then I is
A-consistent.

2. [U]T' is A-consistent, [U]I' C T and [U]T" C OT" for every box.
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3. If T is complete, then O¢ ¢ T' iff there is a complete A-theory ¥ such that
OrCy¥ and ¢ ¢ X.

. If I" and ¥ are complete, then [(;I" C X iff D;lZ CrT.

. If T and 3 are complete, then [U]I' C X iff [U]X CT.

. If T, ¥ and A are complete, [U]I' C ¥ and [U]E C A, then [UJA CT.

. If T and X are complete and [U]l' C X, then [U]T' = [U]Z.

=S

Proof. We only show 1. The proofs for the rest are standard, and follow easily
from the axioms, 1., the deduction lemma and the Lindenbaum lemma.

Let (¢1 — ¢2),¢1 € IV, therefore O(¢py — ¢2),0¢p1 € T'. Because of (K),
Fa (D(¢1 — (/1)2) — (D¢1 — D(bz)), therefore, by MP, D(bz eTl, so ¢2 el

Now, let for all ¢, AF(—¢) € I'. Then for all ¢, OAF(—¢) € T, so by Cov,
OAF(L) €T and hence AF(L) € T".

Finally, if O¢ ¢ T, then ¢ ¢ I and hence I is A-consistent. O

For given A and a complete A-theory I', let F be (W, R), where W is the set
of all complete A-theories ¥, such that [U]I' C ¥, R(0) = W x W and for ¢ > 0,
(31,%2) € R(3) iff ;%7 C Xo. Then F is called the A-canonical frame for T'.

Proposition 35. Let A be a logic, I" be a complete A-theory. If F = (W, R)
is the A-canonical frame for I", then

1. for every £ € W at least one ¢ € ¥.

2. for every c there is exactly one ¥ € W such that ¢ € X.

Proof. 1. Let ¥ be a complete A-theory. Suppose that for all ¢, ¢ ¢ ¥. Then, by
the completeness of X, for all ¢, —¢ € X. Therefore, by Cov, 1 € ¥, contradiction.

2. First, we show that for every ¢, there is a > € W such that ¢ € 3. Suppose
this is not the case, so there is a ¢ such that for all ¥ € W, ¢ ¢ 3. Then —¢ € X,
therefore [U]—e¢ € T, which contradicts axiom (Nom1). Second, let for some ¢ there
be ¥1,%5 € W, such that ¢ € 31 N Xy. Let ¢ € 1. Then, (¢ A ¢) € ¥1. Suppose
¢ ¢ Yo, then (¢ — —¢) € Xo. Now, there are two cases. First, if [U](¢c — —¢) € Xa,
then because of the definition of W, (¢ — —¢) € X;, contradiction. Second, if
[Ul(e = —¢) ¢ X, then -[U](ec — —¢) € Xg, so (U)(e A ¢) € 3a, then because of
(Nom2), [U](e — ¢) € 3a, but [U]Xs C X9, s0 ¢ € Xg, contradiction. So, we have
that 3; C 35. The converse inclusion is proven similarly, so ¥; = 3. O

It easily follows that all axioms of K7 ) are valid in any A-canonical frame.

We are now ready to define the A-canonical model for a given complete A-theory
I'. Let F = (W, R) be the A-canonical frame for I', then we define M := (F,V, A),
where V(p) := {£ € W | p € £}, and A(c) := X, where ¥ is the only element of
W, such that ¢ € 3. The definition of A is correct by Proposition 35. It follows
that M is a named model.

Lemma 36. (Truth Lemma) Let M = ((W,R),V, A) be the A-canonical
model for some complete A-theory I". Then for any formula ¢ and any ¥ in M,
¢ € Xiff M, X IF ¢.
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Proof. Induction on ¢. For atomic ¢ and for L, the result follows by the
definition of the canonical model. For (¢1 — ¢2), the result follows by the induction
hypothesis and propositional reasoning. For [ Lo: first, let Py lp € . Let
W' = {¥ e W | ;Y C X}. Because for any A-complete theory ¥', [U]¥ C
0;%’, we have that for all ¥/, such that [U]Y C ;X C %, it is the case that
[U]E" = [U]S = [U]T, therefore ' € W. Then, for all these ¥/, ;'S C ¥, so
¢ € Y. Therefore, by the induction hypothesis, for all these ¥': M, X’ Ik ¢, so,
by the definition of R(3) and Definition 5, M, ¥ I O; '¢. Now, let M, % IF O0; ' ¢.
Then, using the same definition of W', we have that for all such ', we can use
the induction hypothesis and find that ¢ € ¥'. Because W' contains exactly all X',
such that O, 1% € ¥, then it follows that 0, ¢ € ©. For O;, the result follows
by Lemma 34. O

Theorem 1 (1) K(r,y) is strongly complete. (2) K(r,u) + ¢ is strongly com-
plete for any di-persistent modal formula ¢.

Proof. We use the second form of strong completeness. Like [15, 16, 5, 21]:

We show (1) and (2) together. Let A be either K(pyy or Ky ) + ¢. Let I’
be a A-consistent set. By the Lindenbaum lemma, there is a complete A-theory
't extending I'. We construct the canonical model M for I'™ and let its universe
be W. By the truth lemma, I'" is satisfiable in M at I'*", therefore I' also is. The
frame of M, F, also validates all axioms of K (), which proves (1). For (2), it
remains to prove that F validates ¢. Because M is a named model, we construct
g = (F, W), where W = {[¢']; | ¢’ € ML(T,U)}. Because ¢ is di-persistent, it is
enough to show that g IF ¢. Clearly, M is a model over g and M IF ¢, so [¢],, = W.
If PROP(¢) U NOM(¢) = 0, then we are done. Otherwise, let all propositional

variables occurring in ¢ be, in left-to-right order of initial occurrence, p1, ..., pn,
and let the nominals of ¢ be, in left-to-right order of initial occurrence, c1, ..., cp.
Then, clearly, for any model M’ over g, [¢]\;, = [¢](s1,- -, Sn, w1, ..., wp) for some

S1y--+,8, € Wand wy, ..., w, € W, which, by the definition of W as the extensions
in M of all possible formulas, and the fact that every w; contains a nominal, is equal
to the following set: [¢[p1/d1,...,Pn/Pn,c1/ch,. .. cm/c )]y for some formulas
@1,...,d, and some nominals ¢},...,c,,. However, A C ¥ for any complete A-
theory X, and A is closed under applications of uniform substitution and nominal
substitution. Therefore, for all ¥ € W: ¢[p1/d1, .-, Pn/Pn 1/t em/cl,] € 2.

So, by the truth lemma, the result follows. O
Corollary 37. For all formulas ¢, for which Deterministic SQEMA succeeds,
K7,y + ¢ is strongly complete.
Proof. All formulas, for which Deterministic SQEMA succeeds, are di-persistent,
so the result follows by the above theorem. O
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8. PRE-CONTACT LOGICS

The language of pre-contact logics (PCL) is a first-order language with equality
(=) and without quantifiers. It is intended to be a propositional language for point-
free theories of space, as outlined in [1].

Boolean terms of PCL are: 7 ::= p|0|1| — 7|(7 UT)|(7 N7) where p is a variable,
0 and 1 are boolean constants. Atomic formulas are: « == L|T|(r = 7)|(t <
7)|C (7, 7) where part-of (<) and contact (C) are binary predicates. Pre-Contact
formulas are: ¢ ::= a|-9|(¥ V) |(¥ A)). We may use — and <> as defined symbols
with their usual meaning.

The usual definitions of Kripke frames and Kripke models are used.

If M = (F,V) is a model, where F = (W, R), then the valuation V can be
extended to all boolean terms in the following way:

V0)=0,V(1) =W

V(=m1) =W\ V(n)

V((Tl @] Tg)) = V(Tl) @] V(Tg)

V(i Nm))=V(n)NV(r)

The definition of truth of atomic formulas in a Kripke model M is as follows:

ME (1 =m) iff V(r) = V(m)

ME (11 < 7o) iff V(1) C V(m)

ME C(r, ) iff JxTy(z € V(m) Ay € V() Ax R(1) y)

Truth of pre-contact formulas in M is defined in the standard way.

We say that 1 is valid in a frame F, F F ¢, iff ¢ is true in all models over F.

It is shown in [1] that pre-contact formulas can be represented as formulas of
ML(T,U). More precisely, there is a translation t : PCL — ML(T,U) with the
property that for every PCL formula ¢ and every Kripke model M, M E v iff
M IF t(¢). For describing the translation, we use the defined symbol < in the
language ML(T,U) with its usual meaning,.

This translation t maps variables to propositional variables. Function symbols
map to the corresponding boolean connectives. t(0) = L € ML(T,U), t(1) =T €
ML(T,U). Let 11,72 be terms. The predicate symbols translate as follows:

t((m = 72)) = [U](t(m1) < t(72))

t((n < 7)) = [U](t(m1) = t(72))

t(C(71,72)) = (U)(t(11) A O18(72))

The boolean connectives translate to themselves.

Now, we discuss Sahlqvist PCL formulas, as defined in [2].

A positive term is built up from variables, —0 and 1, using only U and N.

A negation-free formula is built up from —(7; = 0) and C(71, 72), where 71 and
To are positive terms, using only T, V, and A.
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A positive formula is built up from —(m = 0), (- = 0), (11 = 1), C(71,72),
and ~C(—7y, —72), where 71 and 75 are positive terms, using only T, V, and A.

A Sahlquist formula v is an implication (¢ — s), where 1 is negation-free,
and 1, is positive.

To translate Sahlqvist formulas, as defined in [2], into Sahlgvist formulas in
ML(T,U), we define a modified translation t’ as follows:

"(0) :== L € ML(T,U)
):=T e ML(T,U)
—7) := —=t/(7) where 7 is any term

(1 Um)) := (t'(11) V t/(72)), where 71 and 7» are any terms
"((r1 N72)) := (t'(m1) At/ (72)), where 71 and 72 are any terms
"((=7=0)) := [U]t/(7), where T is any term.
t'((r =1)) := [UJt/(7), where 7 is any term.
t' (11 = 1)) = [U](t'(m1) < t/(m2)), where (11 = 72) is not as in the above
two cases
I

(t/(11) — t'(72)), where 7y and 75 are any terms
"(11) A O1t'(72)), where 71 and 72 are any terms
"(=C (=11, —72)) := [U](t'(m1) V O1t'(72)), where 71 and 72 are any terms

(
t/(
t/(=(r =0)) := (U)t'(r), where 7 is any term
t/ (=) := =t/ (¢), where —) is not as in the above two cases
t'((11 Vap2)) == (t/(¥1) V t'(¢h2)) for any 41 and 9o
/(11 Ath2)) = (t/(¥1) A t'(¢h2)) for any 91 and 9o

It is easy to see, by induction on PCL terms and PCL formulas, that for any
PCL formula 1, ¢ and t’(¢)) are true in the same models.

We show now how to derive a result from [2] that Sahlqvist formulas have
a first-order correspondent as a corollary to the fact that Deterministic SQEMA
succeeds on all Sahlqvist ML(T, U) formulas.

Theorem 2 The modified translation maps Sahlquist PCL formulas to Sahlquist
implications from ML(T,U).

Proof. An easy induction on PCL terms shows that t’(7) for a positive term
7 is a positive ML(T,U) formula. Similarly, it is simple to show that t'(y) for
a positive ¢ is a positive ML(T,U) formula. It remains to show that t’ maps
negation-free PCL formulas to ML(T, U) Sahlqvist antecedents. This again follows
from an easy induction, using the definition of t’. O

We use Deterministic SQEMA for the language of Pre-Contact Logic, by trans-
lating a pre-contact formula to a formula of ML(T,U), using t’, and running De-
terministic SQEMA on the translation. It immediately follows that Deterministic
SQEMA succeeds on the modified translation of any Sahlqvist PCL formula.
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It was proved in [1] that: Every pre-contact formula is complete with respect
to the class of finite frames defined by it. Hence, every pre-contact formula is
complete.

Theorem 3 FEvery PCL formula v, on whose modified translation Determin-
istic SQEMA succeeds and produces a FOL formula 1)’ is complete on the class of
frames defined by 1.

Proof. By the properties of Deterministic SQEMA, t/(¢) and ¢’ are locally corre-
spondent, therefore globally correspondent. By the properties of t’, ¢ and t'(4)
define the same class of frames, so ¥ and 1)’ define the same class of frames, there-
fore they define the same class of finite frames. By the above-mentioned result
in [1], ¥ is complete in the class of finite frames, defined by ', and therefore is
complete in the class of all frames, defined by v’ O

9. CONCLUSION

We have shown sufficient conditions for di-persistence and for the existence
of first-order correspondents. We have shown that SQEMA can be reduced to
a Deterministic SQEMA. We have proven that it always succeeds for Sahlqvist
and inductive formulas, and that it always terminates. We have shown the strong
completeness of all formulas, on which Deterministic SQEMA succeeds, in the
language of ML(T, U). We have extended Deterministic SQEMA so that it succeeds
on all Sahlqvist formulas of the pre-contact language. Deterministic SQEMA could
be extended via a resolution procedure and a tableaux method in the normalization
procedure and via a tableaux method in the step function.

It would be interesting to show how Deterministic SQEMA can be modified to
succeed on all formulas having only the universal modality.
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