COMPLETE SYSTEMS OF WEBER - HERMITE FUNCTIONS
Abstract
Let $\{ D_\nu(z) \}_{\nu \in C}$ be system of Weber - Hermite functions. It is proved that the system $(*)$ is complete in the space $L_2(-\infty, + \infty)$ if $0 < \omega < 4/3$ and $Re \sigma > -1/2$. The completeness of Hermite functions $(**)$ in the same space is a particular case $(\omega=1, \sigma=0)$Downloads
Published
1991-12-12
How to Cite
Rusev, P. (1991). COMPLETE SYSTEMS OF WEBER - HERMITE FUNCTIONS. Ann. Sofia Univ. Fac. Math. And Inf., 82(1), 13–24. Retrieved from https://ftl5.uni-sofia.bg./index.php/fmi/article/view/519
Issue
Section
Articles