On the Ramsey (3,4)-multiplicity

Authors

  • Nikolay Khadshiivanov
  • Ivan Pashov

Abstract

Let $M_n(3,4)$ be the minimal sum of the 3-clique's and 4-anticlique's numbers in an arbitrary $n$-vertex graph. The asymptotic formula $M_n(3,4)~m(3,4) \Big( \begin{matrix} n\\3 \end{matrix}\Big)$ with $\frac{1}{30} \leq m(3,4) \leq \frac{1}{9}$ is proved

Downloads

Published

1994-12-12

How to Cite

Khadshiivanov, N., & Pashov, I. (1994). On the Ramsey (3,4)-multiplicity. Ann. Sofia Univ. Fac. Math. And Inf., 86(1), 87–93. Retrieved from https://ftl5.uni-sofia.bg./index.php/fmi/article/view/442