On the 2-coloring diagonal vertex Folkman numbers with minimal possible clique number

Authors

  • Nikolay Kolev
  • Nedyalko Nenov

Keywords:

Folkman graphs, Folkman numbers

Abstract

For a graph $G$ the symbol $G\xrightarrow{v}(p,p)$ means that in every 2-coloring of the vertices of $G$, there exists a monochromatic $p$-qlique. The vertex diagonal Folkman numbers $$ F_v(p,p;p+1)=\min\{|V(G)| : G\xrightarrow{v}(p,p) \;\mbox{and}\; K_{p+1}\not\subset G \} $$ are considered. We prove that $F_v(p,p;p+1)\leq\frac{13}{12}p!,\,\;p\geq 4$.

Downloads

Published

2008-12-12

How to Cite

Kolev, N., & Nenov, N. (2008). On the 2-coloring diagonal vertex Folkman numbers with minimal possible clique number. Ann. Sofia Univ. Fac. Math. And Inf., 98, 101–126. Retrieved from https://ftl5.uni-sofia.bg./index.php/fmi/article/view/132