T'OJUNITHNUK HA CO®UINICKUY YHUBEPCUTET ,CB. KJIMMEHT OXPUICKI“
DOAKVJITET 110 MATEMATUKA 1 THOOPMATUKA
Tom 111

ANNUAL OF SOFIA UNIVERSITY “ST. KLIMENT OHRIDSKI”
FACULTY OF MATHEMATICS AND INFORMATICS
Volume 111

CAPEC ONTOLOGY GENERATOR

VLADIMIR DIMITROV

CAPEC is an effort coordinated by MITRE Corporation. Its aim is attack pattern
database structured in taxonomies. CAPEC is available as XML document from its
project site. CAPEC structure and content are under permanent change and develop-
ment. It is still not mature database but may be never will.

CAPEC, CWE, and CVE are databases devoted to attacks, weaknesses, and vulnera-
bilities. They refer each other forming a knowledge ecosystem in cybersecurity area.
Traditional approach for knowledge presentation as information does not work well with
conceptualizations under dynamics of this ecosystem and particularly of CAPEC. In
this paper, an alternative approach to CAPEC knowledge presentation is proposed, as
ontology. First, CAPEC structure and content are discussed and then ontology structure
is introduced. CAPEC as ontology opens doors to “open world” concept that is more
adequate to ecosystem dynamics.

CAPEC ontology is programmatically generated from CAPEC database.

CAPEC ontology generator in implemented in Python.

Keywords: cybersecurity, attack patterns, ontology, CAPEC, OWL, Python
2020 Mathematics Subject Classification: 68M25, 68T30, 68U35

CCS Concepts:
e Security and privacy~Formal methods and theory of security~Formal security models;

e Security and privacy~Formal methods and theory of security~Logic and verification

1. ATTACK PATTERNS

CAPEC (Common Pattern Enumeration and Classification) [5] is an effort co-
ordinated by MITRE Corporation. Its aim is attack pattern database structured in
taxonomies.

CAPEC is freely available in XML format from the site.

MITRE Corporation maintains two more initiatives CVE [1] and CWE [11].
These are vulnerability and weakness databases.

DOI:10.60063/GSU.FMI.111.25-33 25



26 V. Dimitrov / CAPEC ontology generator

CVE is mature enough to be maintained officially by NIST as NVD [7].

Original CVE is still maintained by MITRE Corporation for new vulnerability
registration.

NVD contains only analyzed vulnerabilities augmented with additional analytic
information supplied by NIST.

CWE and CAPEC are still not mature. They are under active development.

CVE, CWE, and CAPEC refer to each other forming knowledge ecosystem in
cybersecurity area.

Vulnerabilities are revealed errors, faults, or gaps in specific products fixed by
its version and execution environment. CVE entries are numerous — currently 197676
in March 2023.

Weaknesses (CWE) are vulnerability types. Vulnerability processing includes
type assignment — one or more CWEs are associated with vulnerability under con-
sideration.

Attacks (CAPEC) exploit vulnerabilities. More precisely, attack patterns ex-
ploit one or more weaknesses.

CWE and CAPEC have structures organized by several taxonomies, while CVE
is simply a list.

CWE and CAPEC are still not mature and they contain some discrepancies in
their notation, structure and content.

CWE and CAPEC are distributed as XML documents, while CVE — as JSON
documents.

Our approach is to present CVE, CWE, and CAPEC in OWL [12]. Semantic
web is more suitable for formal knowledge presentation than XML. This is especially
valid when the knowledge base is under development — not mature.

The term “formal knowledge presentation” refers to conceptualized knowledge
presentation, for example via OWL.

CVE, CWE, and CAPEC ontologies are presented in several other publications.

Subject of this paper is CAPEC ontology generation from its XML presentation.

2. CAPEC ONTOLOGY GENERATOR

CAPEC ontology generator does not require parallelism. On 02.01.2023 attack
patterns are 555.

CAPEC ontology generator is published at the following address https://
github.com/VladimirDimitrov1957/CAPEC-ontology-generator. It is implemen-
ted in Python.

CAPEC generator presentation below follows its control flow.

The generator by default works with input data downloaded in “data” subdi-
rectory. With parameter “-d” or “-download” fresh copy of CAPEC database can
be downloaded from CAPEC site.

Procedure main(download) manages the whole generation process.


https://github.com/VladimirDimitrov1957/CAPEC-ontology-generator
https://github.com/VladimirDimitrov1957/CAPEC-ontology-generator

Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 25-33 27

Procedure downloadCAPEC() downloads database copy from CAPEC site. This
copy is compressed in zip format, so the procedure decompresses downloaded file.
CAPEC database is XML document.

Every time validation of input XML document is done using CAPEC XSD
schema. For this purpose, 1xml package is used. It is important to match used
packages because some of them simply does not work or are not usable.

In the next step, XML document presenting the database is parsed to internal
format. This parsed CAPEC database is used in the following operations.

Procedure generateIndividuals(root) performs CAPEC ontology genera-
tion. Parameter “root” presents CAPEC database in parsed internal format.

This procedure copies and modifies ontology shell from file shell.owl. The
result is written in file capec.owl. External references in the last file are presented
as annotations.

Then procedure generateIndividuals(root) generates attack patterns, cat-
egories, and views with:

generateAttackPatternIndividual (item, out_file),

generateCategoryIndividual (item, out_file), and

generateViewIndividual (item, root, out_file)
presented below.

All catalog elements are scanned and corresponding generation procedure is
called.

Finally, procedure ends with generation of object property objects. It is de-
scribed in more details in subsections about AttackPattern, and Individual class.
Figure 1 shows class structures.

Procedure generateAttackPatternIndividual (item, out_file) has param-
eter “item” that contains an internal XML presentation of an attack pattern. For
this attack pattern, the procedure generates an individual description.

Parameter “out_file” is the file in which the ontology is written. Here, more
specifically, the attack pattern individual description is written.

AttackPattern class plays central role for attack pattern individual generation.
An object of this class collects all individual characteristics. Then these characteris-
tics are serialized as a string and written in the ontology file. The class is described
in separate section below.

Procedure generateCategoryIndividual (item, out_file) is simple. It fol-
lows category subelements structure and generates a category individual description.

Procedure generateViewIndividual(item, root, out_file) is hardcoded
by catalog views. The last are very specific to be implemented in some common
generation algorithm.

Individual is the other class in CAPEC generator. It collects information
about the target objects for object properties. This class has extent, i.e. supports
set of all Individual objects.

At the end of procedure generateIndividuals(root), objects from Individual
extent are serialized and appended to the result file.

Class AttackPattern and Individual are presented in Figure 1 as UML class
diagram.



28 V. Dimitrov / CAPEC ontology generator
AttadkPattern Individual
IRI annotations
annotations data_facts
data_facts extend
element name
object_facts object_facts
types object_facts with_annotations
__init_ () types
addAnotation() __init__()
addCWWE() addAnnotation()
addContent() addDataFact()
addContentHistory() addObjectFact()
addDataFact() addObjectFact WithAnnotation()
addDataFactFromAttribute() addType()
addDataFactFromAttributeWithAnnotation() tostring()
addExdudeRelated()
addMembers()
addObjectFact()
addObjectFact WithAnnotation()
addReference()
addRelatedAttackPatterns()
addType()
tostring()

Figure 1. CAPEC generator classes

2.1. ATTACKPATTERN CLASS

AttackPattern instance variables are “element” — internal XML presentation
of attack pattern, individual IRI, dictionary of annotations, dictionary of data facts,
dictionary of object facts, and set of individual types. Data facts present individual
data property instances. Object facts present individual object property instances.

When an object of the class is instantiated, its instance variables are accordingly
initiated.

Method addType (self, aName) adds a type to the individual type set. This
operation is hardcoded for categories because their type is more specifically ex-
tracted.

Method addDataFact(self, tag, path = "", structured = False) adds
a data fact.

The data fact is extracted from a subelement of “element”. The relative path
to this subelement is given by parameter “path”.

Content of a data fact element can be structured text. It is marked by the
parameter “structured”.

If data fact content is structured text, function stext(s, tag) is used to re-
move line formatting and codes the text as OWL literal. For the last operation,



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 25-33 29

function flat(s) is used, but that function is used regularly for non-structured
text.

Method addDataFactFromAttribute(self, att) extracts data fact from
“element” attribute. Parameter “att” contains attribute name and it is a data
property name too.

Method addDataFactFromAttributeWithAnnotation(self, el, att, path,
aName) extracts data fact from attributes of “element” subelements. Parameter “el”
contains a subelement tag. If the subelement is not a child of “element”, then the
relative path to it is given by parameter “path”.

It is possible the subelement to have several instances. In that case, the data
fact should be with several values.

Parameter “aName” is a dictionary with keys that are data fact values. Dic-
tionary value is a list of annotations applicable for this data fact. In this method,
only list with one annotation name is used, but presentation is unified with all other
methods.

Method addDataFactWithAnnotation(self, tag, aTag, path = "", name
= None, aName = None, structured = False) is as previous one, but it extracts
data facts from “element” subelements.

Attributes are always extracted from subelement content — not from attribute
values.

Parameters “tag”’ and “aTag’ contents are data fact and annotation element
tags correspondingly. In most of the cases, tag and data property share the same
name. The same is valid for annotation element tag and annotation name. If it
is not true, then data fact and annotation name are set by parameters “name” and
“aName”.

Parameter “path” is used when subelements are not children of “element”.
This is as in the previous method.

Parameter “structured” has the same purpose as in method addDataFact
(self, tag, path = "", structured = False).

Method addAnnotation(self, tag, name = None, path = "", structured
= False) extracts annotations form “element” subelements. If the annotation name
differs from the subelement tag, then parameter “name” is used. The other parame-
ters have the same meaning and usage as in above methods.

Method addReferences(self) is more specific. It extracts references from
“element” — from subelements References and Reference. Annotations are for-
matted as literals. All references are annotations.

Method addContentHystory(self) is specific. It extracts and adds as anno-
tations the content history.

Method addObjectFact(self, path, oName, cName, cADict) extracts ob-
ject facts form “element” subelements.

If subelements are not “element” children, then parameter “path” sets the
relative path to them.

Parameter “oName” contains the object property name.

The target individual type is given by the parameter “cName”.



30 V. Dimitrov / CAPEC ontology generator

Parameter “cADict” is a dictionary. It is used for target individual generation.
Dictionary key is the subelement tag and that attribute is set by “oName” parameter.

Method add0bjectFactWithAnnotation(self, path, oName, cName,
cADict = {}, cSDict = {}, cANDict = {}, references = False, note =
False) extracts object facts with annotations. This is the most complex method.
All parameters including “cADict” have the same purpose and meaning as in the
above method.

Parameter “cSDict” is a dictionary used for extraction of data facts from subele-
ments of some “element” subelements. The dictionary key is the subelement tag,
and the dictionary value is the data fact name. Observed examples are more spe-
cific case because they may reference CVE individuals or simply to be Reference
annotations.

Parameter “cANDict” is a dictionary. It used for annotation extraction for
the target individual from attributes. Target individual is an individual that is
generated. The object fact (object property) points to this target individual. The
dictionary key is the subelement tag and the dictionary value is the annotation name.
Annotations usually are added to the target individual, but in case of techniques and
attack identifiers, annotations are added to the object facts of the target individual.

Method addCWE(self) adds referenced CWE individuals from attack patterns
elements as object facts.

Method addExcludeRelated(self, category) adds excluded category ances-
tors of the attack. The ancestor category is given with parameter “category”.

Method tostring(self) serializes its object into a string containing individual
description.

Method addMembers(self, relationships = False) is used to add views
and categories. Link type is determined via “relationships” parameter — by de-
fault, category members are processed.

Method addRelatedAttackPatterns(self) adds the object facts for related
attack patterns. Here, excluded categories are taken in account.

Method addContent (self, capecID) is specialized for Has_Member object fact
with attack identifier for attack pattern. Parameter “capecID” contains this attack
identifier.

Methods in AttackPattern class are combinations of with / without annota-
tions, from attributes / subelements, from children / other descendants, for data
/ object properties. Here, only combinations that exist in CAPEC ontology and
CAPEC XSD structure are implemented. This note is applicable for Individual
class too.

2.2. INDIVIDUAL CLASS

Individual class is a simplified implementation of AttackPattern class. It
collects the characteristics of the target individuals of the object facts.

Here, class extend is supported (class variable “extend”), from which
the description of all target individuals are serialized at the end of procedure
generateIndividuals (root).



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 25-33 31

Methods addType(self, t), addDataFact(self, d, v), addAnnotation
(self, a, v), addObjectFact(self, d, v), addObjectFactWithAnnotations
(self, d, v, an, av), and tostring(self) are simplified implementations of the
corresponding AttackPattern methods.

3. CONCLUSION

CAPEC generator implementation is similar to that of CWE generator. In
both implementations, the control flow follows corresponding XSD schemas. Both
implementations have two classes AttachPattern/Weakness and Individual. CWE
generator classes are presented as UML class diagram in Figure 2.

From complier/translator point of view, ecosystem generators for CPE,
CVE/NVD, CWE, and CAPEC ontologies are compilers from XML/JSON to OWL.

The components of every compiler are lexical, syntactical, semantical analyzers,
and code generator. In this case, the analyzer functionality is derived from Python
libraries. Only code generators are coded.

For CPE and CVE/NVD generators, concurrent implementations have been
adapted to achieve acceptable production timings. In these implementations, all
available cores and memory are used for processing.

Weakness Individual
IRI annotations
annotations data_facts
data_facts extend
element name
object_facts object_facts
types types

_init_ ()
addAnnotation()

_init_ ()
addAnnotation()

addCAPEC() addDataFact()
addContent() addObjectFact()
addContentHistory() addType()
addDataFact() tostring()

addDataFactFromAttribute()
addDataFactWithAnnotation()
addDemonstrativeExamples()
addMembers()

addObjectFact()

addObjectFact WithAnnotation()
addReferences()
addRelated\Weaknesses()
addType()

tostring()

Figure 2. CWE generator classes




32 V. Dimitrov / CAPEC ontology generator

Many applications have no option to use available computer hardware resources.
Usually, they work with one core and limited memory, independently of the job.
This problem, here, in the above mentioned generators, is roundabout by manual
programming. Today, we are still far away from full automatization of concurrent
programming. Therefore, every change, especially in concurrent programs, is a dif-
ficult task.

Every change in XSD schemas reflect in generator implementations. This hap-
pened at least one time in the year.

Another problem is the change of generator data sources. For example, NIST
plan in September 2023 to retire NVD and CPE data feed supplies and to start only
JSON RESTHfull services for that purpose. Therefore, the corresponding generators
have to be rewritten to meet this change.

All ecosystem ontologies have been presented in OWL Manchester syntax [9].
This syntax is more human readable, but it is not used as input source for currently
available triple stores. The last ones support Turtle syntax [10]. Therefore, the
generators have to be rewritten to generate in Turtle syntax. This process is going on
and some generators available on published yet addresses generate their ontologies
in Turtle syntax. From programming point of view, it is not dramatic change.
Something more, generator codes get simplified.

Ontologies in Turtle syntax for presentation purpose can be easily converted
into Manchester syntax using some tools like Protégé [6] or Robot [].

Ecosystem ontologies must be available in a triple store if we want the ecosystem
to be used. The most important task is to load and update ecosystem ontologies
into some triple store. However, CVE/NVD ontology is really huge. Currently,
ecosystem ontologies contain approximately eight billion triples. Experiment shows
that these ontologies can be loaded in a triple store on modern desktop computer
for two months.

Experiments have been done with BrightstarDB [3] and Apache Jena [1]. These
triple stores have their advantages and disadvantages, but their common problem is
the slow batch load. Both triple stores do not use all available hardware resources.
Apache Jena is somehow better than BrightstarDB, but still is not a solution.

BraghtstarDB is well integrated in .NET environment. Automatically, OWL
ontologies can be presented as C# classes and used for object-oriented development.
At the same time, there is access with SPARQL to its ontologies, but that is all.

Apache Jena is a complex of many Semantic web tools, but their integration
is achieved via Java programming. Therefore programming in Apache Jena is not
very automated.

The problem with CVE/NVD ontology actualization can be solved following
NIST proposition. Vulnerabilities are organized in chunks by years. Therefore, they
can be loaded once. Then, NIST offers data feed for modified vulnerabilities. This
patch can be applied to update quickly CVE/NVD content.



Ann. Sofia Univ., Fac. Math. and Inf., 111, 2024, 25-33 33

ACKNOWLEDGEMENTS

This paper is prepared with the support of MIRACle: Mechatronics, Innova-
tion, Robotics, Automation, Clean Technologies — Establishment and Development
of a Center for Competence in Mechatronics and Clean Technologies — Laboratory
Intelligent Urban Environment, funded by the Operational Program Science and
Education for Smart Growth 2014-2020, Project BG 05M20P001-1.002-0011.

REFERENCES

[1] Apache Jena, A free and open source Java framework for building Semantic Web and
Linked Data applications, https://jena.apache.org.

[2] S. Barnum and A. Sethi, Attack patterns as a knowledge resource for build-
ing secure software, Cigital, Inc., 2007, https://capec.mitre.org/documents/
Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf.

[3] BrightstarDB, A native RDF database for the .NET platform, https://
brightstardb.com.

[4] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design patterns: Elements of
reusable object-oriented software, Boston, MA, Addison-Wesley, 1995.

[5] MITRE Corporation, CAPEC (Common Pattern Enumeration and Classification),
2023, http://capec.mitre.org.

[6] M. A. Musen, The Protégé project: A look back and a look forward, AI Matters 1(4)
(2015) 4-12, https://doi.org/10.1145/2757001.2757003.

[7] NIST, NVD (National Vulnerability Database), 2023, http://nvd.nist.gov.

[8] Open Biological and Biomedical Ontology Foundry (OBO), ROBOT, ROBOT is an
OBO Tool, http://robot.obolibrary.org.

[9] W3C, OWL 2 Web Ontology Language, Manchester Syntax (Second Edition),
W3C Working Group Note, 11 December 2012, https://www.w3.org/TR/owl2-
manchester-syntax.

[10] W3C, RDF 1.1 Turtle, Terse RDF Triple Language, W3C Recommendation, 25
February 2014, https://wuw.w3.org/TR/turtle.

[11] W3C, Shapes Constraint Language (SHACL), W3C Recommendation, 20 July 2017,
http://www.w3.org/TR/shacl.

[12] W3C, Semantic Web, Web Ontology Language (OWL), 2023, https://wuw.u3.org/
OWL.

Received on January 3, 2024
Accepted on February 27, 2024

VLADIMIR DiMmITROV

Faculty of Mathematics and Informatics
Sofia University “St. Kliment Ohridski”
5, James Bourchier Blvd.

1164 Sofia

BULGARIA

E-mail: cht@fmi.uni-sofia.bg


https://jena.apache.org
https://capec.mitre.org/documents/Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf
https://capec.mitre.org/documents/Attack_Patterns-Knowing_Your_Enemies_in_Order_to_Defeat_Them-Paper.pdf
https://brightstardb.com
https://brightstardb.com
http://capec.mitre.org
https://doi.org/10.1145/2757001.2757003
http://nvd.nist.gov
http://robot.obolibrary.org
https://www.w3.org/TR/owl2-manchester-syntax
https://www.w3.org/TR/owl2-manchester-syntax
https://www.w3.org/TR/turtle
http://www.w3.org/TR/shacl
https://www.w3.org/OWL
https://www.w3.org/OWL

	Attack patterns
	CAPEC ontology generator
	AttackPattern class
	Individual class

	Conclusion

