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We say that G is a (3, 3)-Ramsey graph if every 2-coloring of the edges of G forces a
monochromatic triangle. The (3, 3)-Ramsey graph G is minimal if G does not contain a
proper (3, 3)-Ramsey subgraph. In this work we find all minimal (3, 3)-Ramsey graphs
with up to 13 vertices with the help of a computer, and we obtain some new results
for these graphs. We also obtain new upper bounds for the independence number and
new lower bounds for the minimum degree of arbitrary (3, 3)-Ramsey graphs.
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1. INTRODUCTION

In this work only finite, non-oriented graphs without loops and multiple edges
are considered. The following notations are used:

V(G) - the vertex set of G;

E(G) - the edge set of G;

G - the complement of G;

ω(G) - the clique number of G;

α(G) - the independence number of G;

χ(G) - the chromatic number of G;

NG(v), v ∈ V(G) - the set of all vertices of G adjacent to v;

d(v), v ∈ V(G) - the degree of the vertex v, i.e. d(v) = |NG(v)|;

G(v), v ∈ V(G) - subgraph of G induced by NG(v);
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G− v, v ∈ V(G) - subgraph of G obtained from G by deleting the vertex v and
all edges incident to v;

G− e, e ∈ E(G) - subgraph of G obtained from G by deleting the edge e;

∆(G) - the maximum degree of G;

δ(G) - the minimum degree of G;

Kn - complete graph on n vertices;

Cn - simple cycle on n vertices;

G1 + G2 - graph G for which V(G) = V(G1) ∪ V(G2) and E(G) = E(G1) ∪
E(G2) ∪ E′, where E′ = {[x, y] : x ∈ V(G1), y ∈ V(G2)}, i.e. G is obtained by
connecting every vertex of G1 to every vertex of G2.

All undefined terms can be found in [13].

Each partition

E(G) = E1 ∪ · · · ∪ Er, Ei ∩ Ej = ∅, i (= j (1.1)

is called an r-coloring of the edges of G. We say that H ⊆ G is a monochromatic
subgraph of color i in the r-coloring (1.1), if E(H) ⊆ Ei.

Let p and q be positive integers, p ≥ 2 and q ≥ 2. The notation G → (p, q)
means that for every 2-coloring of E(G) there exists a p-clique of the first color or a
q-clique of the second color. If G → (p, q), we say that G is a (p, q)-Ramsey graph.
Similarly, the expression G → (p1, . . . , pr) is defined for the r-colorings of E(G).

The smallest possible integer n for which Kn → (p, q) is called a Ramsey
number and is denoted by R(p, q). The Ramsey numbers R(p1, p2, . . . , pr) are
defined similarly. The existence of Ramsey numbers was proved by Ramsey in [32].
Only a few exact values of Ramsey numbers are known (see [30]). In this work we
shall use the equality R(3, 3) = 6, which means that K6 → (3, 3) and K5 (→ (3, 3).
Clearly, if ω(G) ≥ 6, then G → (3, 3). In [6] Erdös and Hajnal posed the problem:

Is there a graph G → (3, 3) with ω(G) < 6 ?

Figure 1: The complement of the van Lint graph from [12]
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The first example of a graph which gives an affirmative answer to this question
was given by van Lint. The complement of this graph is presented in Figure 1. Van
Lint did not publish this result himself, but the graph was included in [12]. Later,
Graham [11] constructed the smallest possible example of such a graph, namely
K3 + C5. It is easy to see that the van Lint graph contains K3 + C5 (it is the
subgraph induced by the black vertices in Figure 1).

There exist (3, 3)-Ramsey graphs which do not contain K5. These graphs have
at least 15 vertices [29]. The first 15-vertex (3, 3)-Ramsey graph which does not
contain K5 was constructed by Nenov [25]. This graph is obtained from the graph
Γ presented in Figure 2 by adding a new vertex which is adjacent to all vertices of
Γ.

Figure 2: The Nenov graph Γ from [25]

Folkman [7] constructed a graph G → (3, 3) with ω(G) = 3. The minimum
number of vertices of such graphs is not known. To date, we only know ([31] and
[18]) that this minimum is between 19 and 786.

Obviously, if H is a (p, q)-Ramsey graph, then its every supergraph G is also
a (p, q)-Ramsey graph.

Definition 1.1. We say that G is a minimal (p, q)-Ramsey graph if G → (p, q)
and H (→ (p, q) for each proper subgraph H of G.

It is easy to see that K6 is a minimal (3, 3)-Ramsey graph and there are no
minimal (3, 3)-Ramsey graphs with 7 vertices. The only such 8-vertex graph is the
Graham graph K3+C5, and there is only one such 9-vertex graph, Nenov [22] (see
Figure 3).
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Figure 3: 9-vertex minimal
(3, 3)-Ramsey graph

Figure 4: 10-vertex minimal
(3, 3)-Ramsey graph

For each pair of positive integers p ≥ 3, q ≥ 3 there exist infinitely many
minimal (p, q)-Ramsey graphs [2], [8]. The simplest infinite sequence of minimal
(3, 3)-Ramsey graphs is formed by the graphs K3 + C2r+1, r ≥ 1. This sequence
contains the already mentioned graphs K6 and K3 +C5. This sequence was found
by Nenov and Khadzhiivanov in [27]. Later, it was rediscovered in [3], [9], [35].

Three 10-vertex minimal (3, 3)-Ramsey graphs are known. One of them is
K3 + C7 from the sequence K3 + C2r+1, r ≥ 1. The other two were obtained by
Nenov in [24] (the second graph is presented in Figure 4 and the third is a subgraph
of K1 + C9).

The main goal of this work is to find new minimal (3, 3)-Ramsey graphs. To
achieve this, we develop computer algorithms which are presented in Section 3.
Using Algorithm 3.1, in Section 4 we find all minimal (3, 3)-Ramsey graphs with
up to 12 vertices. In the next Section 5 we find all 13-vertex minimal (3, 3)-Ramsey
graphs using Algorithm 3.11. From the graphs found in Section 4 and Section 5 we
obtain interesting corollaries, which are presented in Section 6. With the help of
Algorithm 3.8, in Section 7 and Section 8, respectively, we obtain new upper bounds
for the independence number and new lower bounds for the minimum degree of
minimal (3, 3)-Ramsey graphs with an arbitrary number of vertices.

Similar computer aided research is made in [17], [29], [4], [5], [31], [36], [18]
and [34]. We note that the algorithms from [29] were very useful to us.

This work is an extended version of the author Master Thesis written under
the supervision of Prof. Nedyalko Nenov. The most essential new element is Algo-
rithm 3.8, which is obtained jointly with Prof. Nenov.
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2. AUXILIARY RESULTS

We will need the following results:

Theorem 2.1. ([2],[8]) Let G be a minimal (p, p)-Ramsey graph. Then, δ(G) ≥
(p− 1)2. In particular, when p = 3, we have δ(G) ≥ 4.

Definition 2.2. We say that G is a Sperner graph if NG(u) ⊆ NG(v) for some
pair of vertices u, v ∈ V(G).

Proposition 2.3. If G is a minimal (p, q)-Ramsey graph, then G is not a
Sperner graph.

Proof. Suppose the opposite is true, and let u, v ∈ V(G) be such that NG(u) ⊆
NG(v). We color the edges of G − u with two colors in such a way that there is
no monochromatic p-clique of the first color and no monochromatic q-clique of the
second color. After that, for each vertex w ∈ NG(u) we color the edge [u,w] with
the same color as the edge [v, w]. We obtain a 2-coloring of the edges of G with no
monochromatic p-cliques of the first color and no monochromatic q-cliques of the
second color. �

Theorem 2.4. ([29]) Let G be a (3, 3) - Ramsey graph and G (= K6. If
|V (G)| ≤ 14, then ω(G) = 5.

Figure 5: 14-vertex minimal (3, 3)-Ramsey graph with a single 5 clique

According to Theorem 2.4, every (3, 3)-Ramsey graph G with at most 14 ver-
tices contains a 5-clique. There exist 14-vertex (3, 3)-Ramsey graphs containing
only a single 5-clique, an example of such a graph is presented in Figure 5. The
graph in Figure 5 is obtained with the help of the only 15-vertex bicritical (3, 3)-
Ramsey graph with clique number 4 from [29]. First, by removing a vertex from
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the bicritical graph, we obtain 14-vertex graphs without 5 cliques. After that, by
adding edges to the obtained graphs, we find a 14-vertex (3, 3)-Ramsey graph with
a single 5-clique whose subgraph is the minimal (3, 3)-Ramsey graph in Figure 5.
Let us note that in [29] the authors obtain all 15-vertex (3, 3)-Ramsey graphs with
clique number 4, and with the help of these graphs, one can find more examples of
14-vertex (3, 3)-Ramsey graphs.

Theorem 2.5. ([19]) Let G be a graph and G → (p, q). Then χ(G) ≥ R(p, q).
In particular, if G → (3, 3), then χ(G) ≥ 6.

Corollary 2.6. Let G → (3, 3), let v1, . . . , vs be independent vertices of G and
H = G− {v1, . . . , vs}. Then, χ(H) ≥ 5.

Theorem 2.7. Let G be a minimal (3, 3)-Ramsey graph. Then, for each vertex
v ∈ V(G) we have α(G(v)) ≤ d(v) − 3.

Proof. Suppose the opposite is true, and let A ⊆ NG(v) be an independent set
in G(v) such that |A| = d(v)−2. Let a, b ∈ NG(v)\A. Consider a 2-coloring of the
edges of G− v in which there are no monochromatic triangles. We color the edges
[v, a] and [v, b] with the same color in such a way that there is no monochromatic
triangle (if a and b are adjacent, we chose the color of [v, a] and [v, b] to be different
from the color of [a, b], and if a and b are not adjacent, then we chose an arbitrary
color for [v, a] and [v, b]). We color the remaining edges incident to v with the other
color, which is different from the color of [v, a] and [v, b]. Since NG(v)\{a, b} = A is
an independent set, we obtain a 2-coloring of the edges of G without monochromatic
triangles, which is a contradiction. �

Corollary 2.8. Let G be a minimal (3, 3)-Ramsey graph and d(v) = 4 for
some vertex v ∈ V(G). Then, G(v) = K4.

3. ALGORITHMS

In this section, the computer algorithms used in this work are presented.

The first algorithm is appropriate for finding all minimal (3, 3)-Ramsey graphs
with a small number of vertices.

Algorithm 3.1. Finding all minimal (3, 3)-Ramsey graphs with n vertices,
where n is fixed and 7 ≤ n ≤ 14.

1. Generate all n-vertex non-isomorphic graphs with minimum degree at least
4, and denote the obtained set by B.

2. Remove from B all Sperner graphs.

3. Remove from B all graphs with clique number not equal to 5.

4. Remove from B all graphs with chromatic number less than 6.

5. Remove from B all graphs which are not (3, 3)-Ramsey graphs.

6. Remove from B all graphs which are not minimal (3, 3)-Ramsey graphs.
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Theorem 3.2. Fix n ∈ {7, . . . , 14}. Then, after executing Algorithm 3.1, B
consists of all n-vertex minimal (3, 3)-Ramsey graphs.

Proof. Step 6 guaranties that B contains only minimal (3, 3)-Ramsey graphs
with n vertices. Let G be an arbitrary n-vertex minimal (3, 3)-Ramsey graph. We
will prove that G ∈ B. By Theorem 2.1, δ(G) ≥ 4, and by Theorem 2.3, G is
not a Sperner graph. Since |V (G)| ≤ 14, by Theorem 2.4 we have ω(G) = 5. By
Theorem 2.5, χ(G) ≥ 6. Therefore, after step 4, G ∈ B. �

In Section 4 we apply Algorithm 3.1 to obtain all (3, 3)-Ramsey graphs with
up to 12 vertices. Algorithm 3.1 is not appropriate in the case n ≥ 13, because
the number of graphs generated in step 1 is too big. To find the 13-vertex minimal
(3, 3)-Ramsey graphs, we will apply Algorithm 3.11, which is given below.

In order to present the next algorithms, we shall need the following definitions
and auxiliary propositions:

We say that a 2-coloring of the edges of a graph is (3, 3)-free if it has no
monochromatic triangles.

Definition 3.3. Let G be a graph and M ⊆ V(G). Let G1 be a graph which
is obtained by adding a new vertex v to G such that NG1

(v) =M . We say that M
is a marked vertex set in G if there exists a (3, 3)-free 2-coloring of the edges of G
which cannot be extended to a (3, 3)-free 2-coloring of the edges of G1.

It is clear that if G → (3, 3), then there are no marked vertex sets in G. The
following proposition is true:

Proposition 3.4. Let G be a minimal (3, 3)-Ramsey graph, let v1, . . . , vs be
independent vertices of G and H = G − {v1, . . . , vs}. Then, NG(vi), i = 1, . . . , s,
are marked vertex sets in H.

Proof. Suppose the opposite is true, i.e. NG(vi) is not a marked vertex set in
H for some i ∈ {1, . . . , s}. Since G is a minimal (3, 3)-Ramsey graph, there exists
a (3, 3)-free 2-coloring of the edges of G− vi, which induces a (3, 3)-free 2-coloring
of the edges of H. By supposition, we can extend this 2-coloring to a (3, 3)-free
2-coloring of the edges of the graph Hi = G− {v1, . . . , vi−1, vi+1, . . . , vs}. Thus, we
obtain a (3, 3)-free 2-coloring of the edges of G, which is a contradiction. �

Definition 3.5. Let {M1, . . . ,Ms} be a family of marked vertex sets in the
graph G. Let Gi be a graph which is obtained by adding a new vertex vi to G such
that NGi

(vi) = Mi, i = 1, . . . , s. We say that {M1, . . . ,Ms} is a complete family
of marked vertex sets in G, if for each (3, 3)-free 2-coloring of the edges of G there
exists i ∈ {1, . . . , s} such that this 2-coloring can not be extended to a (3, 3)-free
2-coloring of the edges of Gi.

Proposition 3.6. Let v1, . . . , vs be independent vertices of the graph G and
H = G − {v1, . . . , vs}. If {NG(v1), . . . , NG(vs)} is a complete family of marked
vertex sets in H, then G → (3, 3).
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Proof. Consider a 2-coloring of the edges of G which induces a 2-coloring with
no monochromatic triangles inH. According to Definition 3.5, this 2-coloring of the
edges of H can not be extended in G without forming a monochromatic triangle.
�

It is easy to prove the following strengthening of Proposition 3.4:

Proposition 3.7. Let G be a minimal (3, 3)-Ramsey graph, let v1, . . . , vs be
independent vertices of G and H = G− {v1, . . . , vs}. Then, {NG(v1), . . . , NG(vs)}
is a complete family of marked vertex sets in H. What is more, this family is a
minimal complete family, in the sense that it does not contain a proper complete
subfamily.

Let G be a minimal (3, 3)-Ramsey graph and α(G) ≥ |V(G)| − k ≥ 1. Let A
be an independent set in G such that |A| = |V(G)| − k. Then, |V(G − A)| = k,
and therefore the graph G is obtained by adding an independent set of vertices
to the k-vertex graph G − A. From Proposition 2.3 it is easy to see that for a
fixed k there are a finite number of minimal (3, 3)-Ramsey graphs G for which
α(G) ≥ |V(G)| − k ≥ 1. Below we give an algorithm for finding all minimal (3, 3)-
Ramsey graphs G for which α(G) ≥ |V(G)| − k ≥ 1, where k is fixed (but V(G) is
not fixed).

Algorithm 3.8. (A. Bikov and N. Nenov) Finding all minimal (3, 3)-Ramsey
graphs G for which ω(G) < q and α(G) ≥ |V(G)| − k ≥ 1, where q and k are fixed
positive integers.

1. Denote by A the set of all k-vertex graphs H for which ω(H) < q and
χ(H) ≥ 5. The obtained minimal (3, 3)-Ramsey graphs will be output in the set B,
let B = ∅.

2. For each graph H ∈ A:

2.1. Find all subsets M of V(H) which have the properties:

(a) Kq−1 (⊆ H[M ], i.e. M is a K(q−1)-free subset.

(b) M (⊆ NH(v), ∀v ∈ V(H).

(c) M is a marked vertex set in H(see Definition 3.3).

Denote by M(H) the family of subsets of V(H) which have the properties (a),
(b) and (c). Enumerate the elements of M(H): M(H) = {M1, . . . ,Mt}.

2.2. Find all minimal complete subfamilies of M(H) (see Definition 3.5). For
each such found subfamily {Mi1 , . . . ,Mis} construct the graph G = G(Mi1 , . . . ,Mis)
by adding new independent vertices v1, v2, . . . , vs to V(H) such that NG(vj) =
Mij , j = 1, . . . , s. Add G to B. If there are no complete subfamilies of M(H),
then no supergraphs of H are added to B.

3. Remove the isomorphic copies of the graphs from B.

4. Remove from B all non-minimal (3, 3)-Ramsey graphs.

Remark 3.9. It is clear that if G is a minimal (3, 3)-Ramsey graph and
ω(G) ≥ 6, then G = K6. Obviously there are no (3, 3)-Ramsey graphs with clique
number less than 3. Therefore, we shall use Algorithm 3.8 only for q ∈ {4, 5, 6}.
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Theorem 3.10. After executing Algorithm 3.8, the set B coincides with the set
of all minimal (3,3)-Ramsey graphs G for which ω(G)<q and α(G)≥|V(G)|−k≥1.

Proof. From step 2.2 it becomes clear that every graph G which is added to B
is obtained by adding independent vertices v1, . . . , vs to a graph H ∈ A. Therefore,
α(G) ≥ s = |V(G)| − |V(H)| = |V(G)| − k. From ω(H) < q and Kq−1 (⊆
H[NG(vi)], i = 1, . . . , s, it follows that ω(G) < q. According to Proposition 3.6,
after step 2.2 B contains only (3, 3)-Ramsey graphs, and after step 4 B contains
only minimal (3, 3)-Ramsey graphs.

In order to prove that B contains all minimal (3, 3)-Ramsey graphs which fulfill
the conditions, consider an arbitrary minimal (3, 3)-Ramsey graph G for which
ω(G) < q and α(G) ≥ |V(G)| − k ≥ 1. We will prove that G ∈ B.

Denote s = |V(G)| − k ≥ 1. Let v1, . . . , vs be independent vertices of G and
H = G−{v1, . . . , vs}. By 2.6, χ(H) ≥ 5. Therefore, after executing step 1, H ∈ A.

From ω(G) < q it follows ω(G(vi)) < q − 1. By Proposition 2.3, G is not a
Sperner graph, and therefore NG(vi) (⊆ NH(v), ∀v ∈ V(H). According to Proposi-
tion 3.4, NG(vi) are marked vertex sets in H. Therefore, after executing step 2.1,
NG(vi) ∈ M(H), i = 1, . . . , s.

From Proposition 3.7 it becomes clear that {NG(v1), ..., NG(vs)} is a minimal
complete subfamily of M(H). Therefore, in step 2.2 the graph G is added to B.

Thus, the theorem is proved. �

In order to find the 13-vertex minimal (3, 3)-Ramsey graphs we shall use the
following modification of Algorithm 3.8 in which n = |V(G)| is fixed:

Algorithm 3.11. Modification of Algorithm 3.8 for finding all n-vertex min-
imal (3, 3)-Ramsey graphs G for which ω(G) < q and α(G) ≥ n − k ≥ 1, where q,
k and n are fixed positive integers.

In step 2.2 of Algorithm 3.8 add the condition to consider only minimal com-
plete subfamilies {Mi1 , ...,Mis} of M(H) in which s = n− k.

4. MINIMAL (3, 3)-RAMSEY GRAPHS WITH UP TO 12 VERTICES

We execute Algorithm 3.1 for n = 7, 8, 9, 10, 11, 12, and we find all minimal
(3, 3)-Ramsey graphs with up to 12 vertices except K6. In this way, we obtain
the known results: there is no minimal (3, 3)-Ramsey graph with 7 vertices, the
Graham graph K3 + C5 is the only such 8-vertex graph, and there exists only one
such 9-vertex graph, the Nenov graph from [22] (see Figure 3). We also obtain the
following new results:

Theorem 4.1. There are exactly 6 minimal 10-vertex (3, 3)-Ramsey graphs.
These graphs are given in Figure 14, and some of their properties are listed in
Table 2.
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Theorem 4.2. There are exactly 73 minimal 11-vertex (3, 3)-Ramsey graphs.
Some of their properties are listed in Table 3. Examples of 11-vertex minimal
(3, 3)-Ramsey graphs are given in Figure 15 and Figure 16.

Theorem 4.3. There are exactly 3041 minimal 12-vertex (3, 3)-Ramsey graphs.
Some of their properties are listed in Table 4. Examples of 12-vertex minimal (3, 3)-
Ramsey graphs are given in Figure 17 and Figure 18.

We will use the following enumeration for the obtained minimal (3, 3)-Ramsey
graphs:
- G10.1, . . . , G10.6 are the 10-vertex graphs;
- G11.1, . . . , G11.73 are the 11-vertex graphs;
- G12.1, . . . , G12.3041 are the 12-vertex graphs;

The indices correspond to the order of the graphs’ canonical labels defined in
nauty [20].

Detailed data for the number of graphs obtained at each step of the execution
of Algorithm 3.1 is given in Table 1.

Step of n = 8 n = 9 n = 10 n = 11 n = 12
Algorithm 3.1
1 424 15 471 1 249 973 187 095 840 48 211 096 031
2 59 2 365 206 288 33 128 053 9 148 907 379
3 9 380 41 296 8 093 890 2 763 460 021
4 1 7 356 78 738 44 904 195
5 1 3 126 23 429 11 670 079
6 1 1 6 73 3041

Table 1: Steps in finding all minimal (3, 3)-Ramsey graphs with up to 12 vertices

5. MINIMAL (3, 3)-RAMSEY GRAPHS WITH 13 VERTICES

The method we apply for findning all 13-vertex minimal (3, 3)-Ramsey graphs
consists of two parts:

1. First, we find the 13-vertex minimal (3, 3)-Ramsey graphs with indepen-
dence number 2. We use that (see [30]) R(3, 6) = 18, and that all graphs G for
which α(G) < 3 and ω(G) < 6 are known [21]. Among them, the 13-vertex graphs
are 275 086. By computer check, we find that exactly 13 of these graphs are minimal
(3, 3)-Ramsey graphs.

2. It remains to find the 13-vertex minimal (3, 3)-Ramsey graphs with inde-
pendence number at least 3. To do this, we execute Algorithm 3.11 with n = 13;
k = 10; q = 6. First, in step 1 of Algorithm 3.11 we find all 1 923 103 graphs
H with 10 vertices for which ω(H) ≤ 5 and χ(H) ≥ 5. After that, in step 2 of
Algorithm 3.11 we add 3 independent vertices to the obtained 10-vertex graphs,
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|E(G)| # δ(G) # ∆(G) # α(G) # χ(G) # |Aut(G)| #

30 1 4 1 9 6 2 3 6 6 4 2
31 1 5 4 3 3 8 2
32 2 6 1 16 1
33 1 84 1
34 1

Table 2: Some properties of the 10-vertex minimal (3, 3)-Ramsey graphs

|E(G)| # δ(G) # ∆(G) # α(G) # χ(G) # |Aut(G)| #

35 6 4 5 8 1 2 4 6 73 1 20
36 13 5 58 10 72 3 66 2 29
37 23 6 10 4 3 4 14
38 25 6 1
39 5 8 4
41 1 12 1

16 3
24 1

Table 3: Some properties of the 11-vertex minimal (3, 3)-Ramsey graphs

|E(G)| # δ(G) # ∆(G) # α(G) # χ(G) # |Aut(G)| #

38 5 4 129 8 43 2 124 6 3 041 1 1 792
39 27 5 2 178 9 1 196 3 2 431 2 851
40 144 6 611 11 1 802 4 485 4 286
41 418 7 123 5 1 6 1
42 1 014 8 67
43 459 12 16
44 224 16 18
45 351 24 6
46 299 32 1
47 84 36 1
48 16 96 1

108 1

Table 4: Some properties of the 12-vertex minimal (3, 3)-Ramsey graphs

|E(G)| # δ(G) # ∆(G) # α(G) # χ(G) # |Aut(G)| #

41 4 4 13 725 8 16 2 13 6 306 622 1 251 976
42 44 5 191 504 9 61 678 3 218 802 7 13 2 46 487
43 220 6 85 932 10 175 108 4 86 721 3 10
44 1 475 7 15 391 12 69 833 5 1 097 4 6 851
45 7 838 8 83 6 2 6 83
46 28 805 8 916
47 33 810 12 129
48 26 262 16 106
49 39 718 24 44
50 62 390 32 12
51 59 291 36 3
52 34 132 40 1
53 10 878 48 11
54 1 680 72 3
55 86 96 2
56 2 144 1

Table 5: Some properties of the 13-vertex minimal (3, 3)-Ramsey graphs
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and thus, we obtain all 306 622 minimal (3, 3)-Ramsey graphs with 13-vertices and
independence number at least 3.

Finally, we obtain the following

Theorem 5.1. There are exactly 306 635 minimal 13-vertex (3, 3)-Ramsey
graphs. Some of their properties are listed in Table 5. Examples of 13-vertex
minimal (3, 3)-Ramsey graphs are given in Figure 6, Figure 20 and Figure 21.

We denote the obtained 13-vertex (3, 3)-Ramsey graphs byG13.1, . . ., G13.306635.

As was noted, all graphs G for which α(G) < 3 and ω(G) < 6 are known and
fromR(3, 6) = 18 it follows that these graphs have at most 17 vertices. By computer
check we find that there are no minimal (3, 3)-Ramsey graphs with independence
number 2 and more than 13 vertices. Thus, we prove the following

Theorem 5.2. Let G be a minimal (3, 3)-Ramsey graph and α(G) = 2. Then,
|V(G)| ≤ 13. There are exactly 145 minimal (3, 3)-Ramsey graphs for which
α(G) = 2:

- 8-vertex: 1 (K3 + C5);

- 9-vertex: 1 (see Figure 3);

- 10-vertex: 3 (G10.3, G10.5, G10.6, see Figure 14);

- 11-vertex: 4 (G11.46, G11.47, G11.54, G11.69, see Figure 16);

- 12-vertex: 124;

- 13-vertex: 13 (see Figure 21);

By executing Algorithm 3.11(n = 10, 11, 12; k = 7, 8, 9; q = 6), we find all
minimal (3, 3)-Ramsey graphs with 10, 11 and 12 vertices and independence number
greater than 2. In this way, with the help of Theorem 5.2, we obtain a new proof
of Theorem 4.1, Theorem 4.2 and Theorem 4.3.

6. COROLLARIES FROM THE OBTAINED RESULTS

6.1. MINIMUM AND MAXIMUM DEGREE

By Theorem 2.1, if G is a minimal (3, 3)-Ramsey graph, then δ(G) ≥ 4. Via
very elegant constructions, in [2] and [8] it is proved that the bound δ(G) ≥ (p−1)2

in Theorem 2.1 is exact. However, these constructions are not very economical in
the case p = 3. For example, the minimal (3, 3)-Ramsey graph G from [8] with
δ(G) = 4 is not presented explicitly, but it is proved that it is a subgraph of a
graph with 17577 vertices. From the next theorem we see that the smallest minimal
(3, 3)-Ramsey graph G with δ(G) = 4 has 10 vertices:

Theorem 6.1. Let G be a minimal (3, 3)-Ramsey graph and δ(G) = 4. Then,
|V(G)| ≥ 10. There is only one 10-vertex minimal (3, 3)-Ramsey graph G with
δ(G) = 4, namely G10.2 (see Figure 14). What is more, G has only a single vertex
of degree 4. For all other 10-vertex minimal (3, 3)-Ramsey graphs G, δ(G) = 5.
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Figure 6: 8-regular 13-vertex minimal (3, 3)-Ramsey graph

Let G be a (3, 3)-Ramsey graph. By Theorem 2.5, χ(G) ≥ 6 and from the
inequality χ(G) ≤ ∆(G) + 1 (see [13]) we obtain ∆(G) ≥ 5. From the Brooks’
Theorem (see [13]) it follows that if G (= K6, then ∆(G) ≥ 6. The following related
question arises naturally:

Are there minimal (3, 3)-Ramsey graphs which are 6-regular?

(i.e. d(v) = 6, ∀v ∈ V(G))

From the obtained minimal (3, 3)-Ramsey graphs we see that the following theorem
is true:

Theorem 6.2. Let G be a regular minimal (3, 3)-Ramsey graph and G (= K6.
Then, |V(G)| ≥ 13. There is only one regular minimal (3, 3)-Ramsey with 13
vertices, and this is the graph presented in Figure 6, which is 8-regular.

Regarding the maximum degree of the minimal (3, 3)-Ramsey graphs, we ob-
tain the following result:

Theorem 6.3. Let G be a minimal (3, 3)-Ramsey graph. Then:

(a) ∆(G) = |V(G)| − 1, if |V(G)| ≤ 10.

(b) ∆(G) ≥ 8, if |V(G)| = 11, 12 or 13.

6.2. CHROMATIC NUMBER

By Theorem 2.5, if G is a (3, 3)-Ramsey graph, then χ(G) ≥ 6.

From the obtained minimal (3, 3)-Ramsey graphs we derive the following re-
sults:
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Theorem 6.4. Let G be a minimal (3, 3)-Ramsey graph and |V(G)| ≤ 12.
Then χ(G) = 6.

Theorem 6.5. Let G be a minimal (3, 3)-Ramsey graph and |V (G)| ≤ 14.
Then χ(G) ≤ 7. The smallest 7-chromatic minimal (3, 3)-Ramsey graphs are the
13 minimal (3, 3)-Ramsey graph with 13 vertices and independence number 2, given
in Figure 21.

Proof. Suppose the opposite is true, i.e. χ(G) ≥ 8. Then, according to [26],
G = K1 + Q, where Q is the graph presented in Figure 7. The graph K1 + Q is
a (3, 3)-Ramsey graph, but it is not minimal. By Theorem 6.4, there are no 7-
chromatic minimal (3, 3)-Ramsey graphs with less than 13 vertices. The graphs in
Figure 21 are 13-vertex minimal (3, 3)-Ramsey graphs with independence number
2, and therefore these graphs are 7-chromatic. By computer check, we find that
among the 13-vertex (3, 3)-Ramsey graphs with independence number greater than
2 there are no 7-chromatic graphs. �

Figure 7: Graph Q

6.3. MULTIPLICITIES

Definition 6.6. Denote by M(G) the minimum number of monochromatic
triangles in all 2-colorings of E(G). The number M(G) is called a K3-multiplicity
of the graph G.

In [10] the K3-multiplicities of all complete graphs are computed, i.e. M(Kn)
is computed for all positive integers n. Similarly, the Kp-multiplicity of a graph
is defined [14]. The following papers are dedicated to the computation of the
multiplicities of some concrete graphs: [15], [16], [33], [1], [28].

With the help of a computer, we check the K3-multiplicities of the obtained
minimal (3, 3)-Ramsey graphs and we derive the following results:
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Theorem 6.7. If G is a minimal (3, 3)-Ramsey graph, |V(G)| ≤ 13 and
G (= K6, then M(G) = 1.

We suppose that the following hypothesis is true:

Hypothesis 6.8. If G is a minimal (3, 3)-Ramsey graph and G (= K6, then
M(G) = 1.

In support to this hypothesis we prove the following:

Proposition 6.9. If G is a minimal (3, 3) -Ramsey graph, G (= K6 and
δ(G) ≤ 5, then M(G) = 1.

Proof. Let v ∈ V(G) and d(v) ≤ 5. Consider a 2-coloring of E(G− v) without
monochromatic triangles. We will color the edges incident to v with two colors in
such a way that we will obtain a 2-coloring of E(G) with exactly one monochromatic
triangle. To achieve this, we consider two cases:

Case 1: d(v) = 4. By Corollary 2.8, G(v) = K4. Let Nv = {a, b, c, d} and
suppose that [a, b] is colored with the first color. Then, [c, d] is also colored with
the first color (otherwise, by coloring [v, a] and [v, b] with the second color and
[v, c] and [v, d] with the fist color, we would obtain a 2-coloring of E(G) without
monochromatic triangles). Thus, [a, b] and [c, d] are colored in the first color. We
color [v, a] and [v, b] with the first color and [v, c] and [v, d] with the second color.
We obtain a 2-coloring of E(G) with exactly one monochromatic triangle [v, a, b].

Case 2: d(v) = 5. Since ω(G) ≤ 5, in NG(v) there are two non-adjacent
vertices a and b. From G → (3, 3) it follows easily that in G(v) − {a, b} there is an
edge of the first color and an edge of the second color. Therefore, we may assume
that in G(v) − {a, b} there is exactly one edge of one of the colors, say the first
color. We color [v, a] and [v, b] with the second color and the other three edges
incident to v with the first color. We obtain a 2-coloring of E(G) with exactly one
monochromatic triangle. �

In the end, we note that, according to [27], M(K3 +C2r+1) = 1, r ≥ 2, which
also supports our hypothesis.

6.4. AUTOMORPHISM GROUPS

Denote by Aut(G) the automorphism group of the graph G. We use the nauty
programs [20] to find the number of automorphisms of the obtained minimal (3, 3)-
Ramsey graphs with 10, 11, 12 and 13 vertices. Most of the obtained graphs have
small automorphism groups (see Table 2, Table 3, Table 4 and Table 5). We list
the graphs with at least 60 automorphisms:

- The graphs of the formK3+C2r+1: |Aut(K3+C5)| = 60. |Aut(K3+C7)| = 84,
|Aut(K3 + C9)| = 108;

- |Aut(G12.2240)| = 96 (see Figure 18);
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- |Aut(G13.255653)| = 144, |Aut(G13.248305)| = 96, |Aut(G13.304826)| = 96,
|Aut(G13.113198)| = 72, |Aut(G13.175639)| = 72, |Aut(G13.302168)| = 72 (see Figure
20);

7. UPPER BOUNDS ON THE INDEPENDENCE NUMBER OF THE
MINIMAL (3, 3)-RAMSEY GRAPHS

In regard to the maximal possible value of the independence number of the
minimal (3, 3)-Ramsey graphs, the following theorem holds:

Theorem 7.1. ([23]) If G is a minimal (3, 3)-Ramsey graph, G (= K6 and
G (= K3 + C5, then α(G) ≤ |V (G)| − 7. There is a finite number of graphs for
which equality is reached.

From Theorem 7.1 it follows that by executing Algorithm 3.8(q = 6; k = 8)
we obtain all minimal (3, 3)-Ramsey graphs G for which α(G) = |V(G)| − 7 or
α(G) = |V(G)| − 8. Hence, we derive the following supplements to Theorem 7.1:

Theorem 7.2. There are exactly 11 minimal (3, 3)-Ramsey graphs G, for
which α(G) = |V(G)| − 7:

- 9-vertex: 1 (Figure 3);

- 10-vertex: 3 (G10.1, G10.2, G10.4, see Figure 14);

- 11-vertex: 3 (G11.1, G11.2, G11.21, see Figure 15);

- 12-vertex: 1 (G12.163, see Figure 17);

- 13-vertex: 2 (G13., G13., see Figure 19);

- 14-vertex: 1 (see Figure 8).

Theorem 7.3. There are exactly 8633 minimal (3, 3)-Ramsey graphs G for
which α(G) = |V(G)| − 8. The largest of these graphs has 26 vertices, and it is
given in Figure 9. There is only one minimal (3, 3)-Ramsey graph G for which
α(G) = |V(G)| − 8 and ω(G) < 5, and it is the 15-vertex graph K1 + Γ from [25]
(see Figure 2).

Corollary 7.4. Let G be a minimal (3, 3)-Ramsey graph and |V(G)| ≥ 27.
Then, α(G) ≤ |V(G)| − 9.

According to Theorem 7.3, if G is a minimal (3, 3)-Ramsey graph, ω(G) < 5,
and G (= K1 + Γ, then α(G) ≤ |V(G)| − 9. From Theorem 2.4 it follows that by
executing Algorithm 3.8(q = 5; k = 9) we obtain all minimal (3, 3)-Ramsey graphs
G for which ω(G) < 5 and α(G) = |V(G)| − 9, and the graph K1 + Γ. As a result
of the execution of this algorithm we derive:

Theorem 7.5. There are exactly 8903 minimal (3, 3)-Ramsey graphs G for
which ω(G) < 5 and α(G) = |V(G)|−9. The largest of these graphs has 29 vertices,
and it is given in Figure 10.
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Figure 8: 14-vertex minimal
(3, 3)-Ramsey graph

with independence number 7

Figure 9: 26-vertex minimal
(3, 3)-Ramsey graph

with independence number 18

Figure 10: 29-vertex minimal (3, 3)-Ramsey graph
with clique number 4 and independence number 20
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Corollary 7.6. Let G be a minimal (3, 3)-Ramsey graph such that ω(G) < 5
and |V(G)| ≥ 30. Then α(G) ≤ |V(G)| − 10.

8. LOWER BOUNDS ON THE MINIMUM DEGREE OF THE
MINIMAL (3, 3)-RAMSEY GRAPHS

According to Proposition 3.4, if G is a minimal (3, 3)-Ramsey graph, then for
each vertex v of G, NG(v) is a marked vertex set in G− v, and therefore NG(v) is
a marked vertex set in G(v).

Figure 11: (3, 3)-free 2-coloring of the edges of K4

It is easy to see that if W ⊆ V(G) and |W | ≤ 3, or |W | = 4 and G[W ] (= K4,
thenW is not a marked vertex set in G. A (3, 3)-free 2-coloring of K4 which cannot
be extended to a (3, 3)-free 2-coloring of K5 is shown in Figure 11. Therefore, the
only 4-vertex graph N such that V(N) is a marked vertex set in N is K4.

N5.1 N5.2 N5.3

Figure 12: The graphs N5.1, N5.2, N5.3

With the help of a computer, we obtain that there are exactly 3 graphsN with 5
vertices such that K4 (⊂ N and V(N) is a marked vertex set in N . Namely, they are
the graphs N5.1, N5.2 and N5.3 given in Figure 12. Note that N5.1 ⊂ N5.2 ⊂ N5.3.
From these results we derive
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Theorem 8.1. Let G be a minimal (3, 3)-Ramsey graph and ω(G) ≤ 4. Then
δ(G) ≥ 5. If v ∈ V(G) and d(v) = 5, then G(v) = N5.i for some i ∈ {1, 2, 3} (see
Figure 12).

The bound δ(G) ≥ 5 in Theorem 8.1 is exact. For example, the graph G =
K1+Γ from [25] (see Figure 2) has 7 vertices v such that d(v) = 5 and G(v) = N5.3.

N8.1 N8.2 N8.3

N8.4 N8.5 N8.6 N8.7

Figure 13: The graphs N8.i, i = 1, . . . , 7

With the help of a computer, we also obtain that the smallest graphs N such
that K3 (⊂ N and V(N) is a marked vertex set in N have 8 vertices, and there
are exactly 7 such graphs. Namely, they are the graphs N8.i, i = 1, . . . , 7 presented
in Figure 13. Among them, the minimal graphs are N8.1, N8.2 and N8.3, and the
remaining 4 graphs are their supergraphs. Thus, we derive the following

Theorem 8.2. Let G be a minimal (3, 3)-Ramsey graph and ω(G) = 3. Then,
δ(G) ≥ 8. If v ∈ V(G) and d(v) = 8, then G(v) = N8.i for some i ∈ {1, . . . , 7} (see
Figure 13).
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APPENDICES

G10.1 G10.2 G10.3

G10.4 G10.5 G10.6

Figure 14: 10-vertex minimal (3, 3)-Ramsey graphs

G11.1 G11.2 G11.21

Figure 15: 11-vertex minimal (3, 3)-Ramsey graphs
with independence number 4
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G11.46 G11.47

G11.54 G11.69

Figure 16: 11-vertex minimal (3, 3)-Ramsey graphs
with independence number 2

G12.163

Figure 17: 12-vertex minimal
(3, 3)-Ramsey graph

with independence number 5

G12.2240

Figure 18: 12-vertex minimal
(3, 3)-Ramsey graph

with 96 automorphisms
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G13.1 G13.2

Figure 19: 13-vertex minimal (3, 3)-Ramsey graphs
with independence number 6

G13.113198 G13.175639 G13.248305

G13.255653 G13.302168 G13.304826

Figure 20: 13-vertex minimal (3, 3)-Ramsey graphs
with a large number of automorphisms
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G13.193684 G13.193760 G13.193988

G13.265221 G13.265299 G13.299797

G13.301368 G13.302151 G13.302764

G13.305857 G13.306448 G13.306460

G13.306470

Figure 21: 13-vertex minimal (3, 3)-Ramsey graphs
with independence number 2
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