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1. INTRODUCTION

In most fields of study, knowledge is acquired by way of observations, by rea-
soning about the results of observations and by studying the observations, methods
and theories of other fields and practices.

Ancient Egyptian, Babylonian and Chinese mathematics consisted of rules for
measuring land, computing taxes, predicting eclipses, solving equations and so on.

The ancient Greeks found that in arithmetic and geometry it was possible
to prove that the observation results are true. They found that some truths in
mathematics were obvious and that many of the others could be shown to follow
logically from the obvious ones.

On the other hand, Physics, Biology, Economics and other sciences discover

general truths relying on observations. Besides, not any general truth can be proved
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to be true - it can only be tested for contradictions and inconsistencies. If a scientific
theory is accepted because observations have agreed with it, there is in principle
small doubt that a new observation will not agree with the theory, even if all
previous observations have agreed with that theory. However, if a result is proved
thoroughly and correctly, that cannot happen.

Under what conditions can we be sure that the steps in our investigations are
correct? Are we really sure that what seems to be obvious to us is in fact true?
Can we expect all mathematical truths to follow from the obvious ones? These
questions are not easy to answer.

Disputes and mistakes about what is obvious could be avoided by laying down
certain basic notions, relations and statements, called axioms (postulates assumed
true, but unprovable) for each branch of mathematics, and agreeing that proofs of
assertions must be derived from these. To axiomatize a system of knowledge means
to show that its claims can be derived from a small, well-understood set of axioms
(see also [1]).

Any axiomatic system is subordinated to some conditions.

- The system must be consistent, to lack contradiction, i. e. the ability to
derive both a statement and its negation from the system’s axioms.

Consistency is a necessary requirement for the system.

- Each axiom has to be independent, i. e. not to be a theorem that can be
derived from other axioms in the system.

However, independence is not a necessary requirement for the system.

- The system can be complete, i. e. for every statement, either itself or its
negation is derivable.

There is no longer an assumption that axioms are true in any sense; this al-
lows parallel mathematical theories to be built on alternative sets of axioms (for
instance Axiomatic set theory, Number theory). Euclidean and Non-Euclidean ge-

ometry have a common basic set of axioms; the differences between these important
geometries are based on their alternative axioms of parallel lines.

Another way to avoid mistakes about what is obvious in mathematics could
be the use of rules of inference with purely formal content.

In mathematical logic a propositional calculus (also called sentential calculus
or sentential logic) is a formal system in which formulas of a formal language may
be interpreted to represent propositions.

In [7, 8, 9, 10] we explain methods, based on logical laws, for composition and
proof of equivalent and inverse problems.

In [8] we discuss a way of generating groups of equivalent problems. The
method we propound is based on the logical equivalences

p ∧ ¬q → r ⇔ p ∧ ¬r → q ⇔ p→ q ∨ r,
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where p, q, r are statements.

Using the sentential logic, in [9] and [10] we propose a new problems composing
technology as an interpretation of specific logical models. Clarifying and using the
logical equivalence (see also [12])

(t ∧ p→ r) ∧ (t ∧ q → r) ⇔ t ∧ (p ∨ q)→ r, (∗)

we give an algorithm for composition of inverse problems with a given logical
structure that is based on the steps below.

- Formulating and proving generating problems with logical structures of the
statements as those at the left hand side of (*).

- Formulating a problem with logical structure t∧(p∨q)→ r of the statement.

- Formulating and proving the inverse problem with logical structure t ∧ r →
p ∨ q.

In [7], besides the generalization of criteria A and D for congruence of triangles,
we also illustrate the above algorithm by suitable groups of examples.

In Section 2 of the present paper we describe and discuss different methods
of proof of implicative statements and illustrate by logical models the essence of
specific types of proofs, especially of direct and indirect proofs.

In Section 3 we propose direct proofs of Lehmus-Steiner’s theorem that differ
from any proofs we have come across.

Our investigations in this field are appropriate for training of mathematics
students and teachers.

2. TYPES OF PROOFS

Both discovery and proof are integral parts of problem solving. The discovery

is thinking of possible solutions, and the proving ensures that the proposed solution
actually solves the problem.

Proofs are logical descriptions of deductive reasoning and are distinguished
from inductive or empirical arguments; a proof must demonstrate that a statement
is always true (occasionally by listing all possible cases and showing that it holds
in each).

An unproven statement that is believed true is known as a conjecture.

The objects of proofs are premises, conclusions, axioms, theorems (propositions
derived earlier from axioms), definitions and evidence from the real world.

The abilities (techniques) to have a working knowledge of these objects include
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- Rules of inference: simple valid argument forms. They may be divided into
basic rules, which are fundamental to logic and cannot be eliminated without
losing the ability to express some valid argument forms, and derived rules,
which can be proven by the basic rules.

To summarize, the rules of inference are logical rules which allow the deduc-
tion of conclusions from premises.

- Laws of logical equivalence.

Different methods of proof combine these objects and techniques in different
ways to create valid arguments.

According to Euclid a precise proof of a given statement has the following
structure:

- Premises: These include given axioms and theorems, true statements, strict
restrictions for the validity of the given statement, chosen suitable denotations. (It
is given. . .)

- Statement : Strict formulation of the submitted statement. (It is to be proved

that . . .)

- Proof : Establishing the truth of the submitted statement using premises,
conclusions, rules of inference and logical laws.

Let now P and Q be statements. In order to establish the truth of the implica-
tion P → Q, we discuss different methods of proof. Occasionally, it may be helpful
first to rephrase certain statements, to clarify that they are really formulated in an
implicative form.

If “not” is put in front of a statement P , it negates the statement. ¬P is
sometimes called the negation (or contradictory) of P . For any statement P either
P or ¬P is true and the other is false.

Formal proofs. The concept of a proof is formalized in the field of mathe-
matical logic. Purely formal proofs, written in symbolic language instead of natural
language, are considered in proof theory. A formal proof is defined as a sequence
of formulas in a formal language, in which each formula is a logical consequence of
preceding formulas.

In a formal proof the statements P and Q aren’t necessarily related compre-
hensively to each other. Only the structure of the statements and the logical rules
that allow the deduction of conclusions from premises are important.

Hence, to prove formally that an argument Q is valid or the conclusion follows
logically from the hypotheses P , we have to

- assume the hypotheses P are true,

- use the formal rules of inference and logical equivalences to determine that
the conclusion Q is true.

The following logical equivalences illustrate a formal proof:

¬(P → Q)⇔ ¬(¬P ∨Q)⇔ ¬(¬P ) ∧ ¬Q⇔ P ∧ ¬Q.
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Vacuous proof. A vacuous proof of an implication happens when the hy-
pothesis of the implication is always false, i. e. if we know one of the hypotheses
in P is false then P → Q is vacuously true.

For instance, in the implication (P ∧ ¬P )→ Q the hypotheses form a contra-
diction. Hence, Q follows from the hypotheses vacuously.

Trivial proofs. An implication is trivially true when its conclusion is always
true. Consider an implication P → Q. If it can be shown (independently of P )
that Q is true, then the implication is always true.

The form of the trivial proof Q→ (P → Q) is, in fact, a tautology.

Proofs of equivalences. For equivalence proofs or proofs of statements of
the form P if and only if Q there are two methods.

- Truth table.

- Using direct or indirect methods and the equivalence

(P ↔ Q) ⇔ (P → Q) ∧ (Q→ P ).

Thus, the proposition P if and only if Q can be proved if both the implication
P → Q and the implication Q → P are proved. This is the definition of the
biconditional statement.

Proof by cases. If the hypothesis P can be separated into cases p1 ∨ p2 ∨
. . . ∨ pk, each of the propositions p1 → Q, p2 → Q,. . ., pk → Q, is to be proved
separately. A statement P → Q is true if all possible cases are true.

The logical equivalences in this case are (see also [12], p. 81)

p1 → Q ∧ p2 → Q ∧ . . . ∧ pk → Q ⇔ p1 ∨ p2 ∨ . . . ∨ pk → Q ⇔ P → Q.

Different methods may be used to prove the different cases.

Direct proof. In mathematics and logic, a direct proof is a way of showing
the truth or falsehood of a given statement by a straightforward combination of
established facts, usually existing lemmas and theorems.

The methods of proof of these established facts, lemmas, propositions and
theorems are of no importance. Their truth or falsehood are to be accepted without

any effort.

However, it is exceptionally important that the actual proof of the given state-
ment consists of straightforward combinations of these facts without making any

further assumptions.

Thus, to prove an implication P → Q directly, we assume that statement P

holds and try to deduce that statement Q must follow.

The structure of the direct proof is:
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- Given - a statement of the form P → Q.

- Assumption - the hypotheses in P are true.

- Proof - using the rules of inference, axioms, theorems and any logical equi-
valences to establish in a straightforward way the truth of the conclusion
Q.

Indirect proof. It is often very difficult to give a direct proof to P → Q. The
connection between P and Q might not be suitable to this approach.

Indirect proof is a type of proof in which a statement to be proved is assumed
false and if the assumption leads to an impossibility, then the statement assumed
false has been proved to be true.

There are four possible implications we can derive from the implication P → Q,
namely

- Conversion (the converse): Q→ P ,

- Inversion (the inverse): ¬P → ¬Q,

- Negation: ¬(P → Q),

- Contraposition (the opposite, contrapositive): ¬Q→ ¬P .

The implications P → Q and ¬Q→ ¬P are logically equivalent.

The implications Q→ P and ¬P → ¬Q are logically equivalent too, but they
are not equivalent to the implication P → Q.

The two most common indirect methods of proof are called Proof by Contra-

position and Proof by Contradiction. These methods of indirect proof differ from
each other in the assumptions we do as premisses.

Proof by contraposition. In logic, contraposition is a law that says that
a conditional statement is logically equivalent to its contrapositive. This
is often called the law of contrapositive, or the modus tollens (denying the

consequent) rule of inference.

The structure of this indirect proof is:

- We consider an implication P → Q.

- Its contrapositive (opposite) ¬Q → ¬P is logically equivalent to the
original implication, i.e.

¬Q→ ¬P ⇔ P → Q.

- We prove that if ¬Q is true (the assumption), then ¬P is true.
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Therefore, a proof by contraposition is a direct proof of the contrapositive.

The proof of Lehmus-Steiner’s theorem in [11] is an illustration of a proof by
contraposition.

Proof by contradiction. In logic, proof by contradiction is a form of proof,
and more specifically a form of indirect proof, that establishes the truth or
validity of a proposition by showing that the proposition’s being false would
imply a contradiction. Proof by contradiction is also known as indirect proof,
apagogical argument, proof by assuming the opposite, and reductio ad impos-

sibility. It is a particular kind of the more general form of argument known
as reductio ad absurdum.

We assume the proposition P → Q is false by assuming the negation of the
conclusion Q and the premise P are true, and then using P ∧¬Q to derive a
contradiction.

Hence, the structure of this indirect proof is:

- We use the equivalence (P → Q)⇔ (¬P ∨Q).

- The negation of the last disjunction is P ∧ ¬Q, i. e.
¬(P → Q)⇔ (P ∧ ¬Q).

- To prove the original implication P → Q, we show that if its negation

P ∧ ¬Q is true (the assumption), then this leads to a contradiction.

In other words, to prove the implication P → Q by contradiction, we assume
the hypothesis P and the negation of the conclusion ¬Q both hold and show
that this is a contradiction (see also [12], p. 188).

A logical base of this method are equivalences of the form

P → Q ⇔ ¬Q ∧ P → ¬P ⇔ ¬(P → Q)→ ¬P ;
P → Q ⇔ ¬Q ∧ P → Q ⇔ ¬(P → Q)→ Q.

Let now T be a valid theorem, statement, axiom or definition of a notion in
the corresponding system of knowledge. The following equivalences can also
be logical base of a Proof by Contradiction of the implication P → Q.

P → Q ⇔ ¬Q ∧ P → ¬T ⇔ ¬(P → Q)→ ¬T.

The theoretical base of this method of proof is the law of excluded middle (or
the principle of excluded middle). It states that for any proposition, either
that proposition is true, or its negation is true. The law is also known as the
law (or principle) of the excluded third.
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Examples of indirect proofs of Lehmus-Steiner’s theorem are given in [4].

There exist also examples of indirect proofs of implications P → Q in which
the statement ¬Q can be separated into cases q1 ∨ q2 ∨ . . . ∨ qk, k ≥ 2, k ∈ N. In
such a case each of the propositions P → q1, P → q2, . . . , P → qk is to be proved
separately to be false. If moreover the premise P is true it follows that all the
statements qi, i = 1, . . . , k, are false and the conclusion Q is true, i. e.

¬(¬Q) ⇔ ¬(q1 ∨ q2 ∨ . . . ∨ qk) ⇔ ¬q1 ∧ ¬q2 ∧ . . . ∧ ¬qk ⇔ Q.

The logical equivalences in this case are (see also [12], p. 81)

P → ¬q1 ∧ P → ¬q2 ∧ . . .∧ P → ¬qk ⇔ P → ¬q1 ∧¬q2 ∧ . . .∧¬qk ⇔ P → Q.

The indirect proof of Lehmus-Steiner’s theorem given in [3] has in fact logical
structure as the described above although this is not mentioned by the authors.

Proof by construction. In mathematics, a constructive proof is a method
of proof that demonstrates the existence of a mathematical object by creating or
providing a method for creating the object.

In other words, proof by construction (proof by example) is the construction of
a concrete example with a property to show that something having that property
exists.

A simple constructive proof of Lehmus-Steiner’s Theorem is given in [13].

Nonconstructive proof. A nonconstructive proof establishes that a mathe-
matical object with a certain property exists without explaining how such an object
can be found. This often takes the form of a proof by contradiction in which the
nonexistence of the object is proven to be impossible.

Proof by counterexamples. We can disprove something by showing a single
counter example, i. e. one finds an example to show that something is not true.

However, we cannot prove something by example.

Mathematical induction. In proof by mathematical induction, a single base
case is proved, and an induction rule is proved, which establishes that a certain
case implies the next case. Applying the induction rule repeatedly, starting from
the independently proved base case, proves many, often infinitely many, other cases.
Since the base case is true, the infinity of other cases must also be true, even if all
of them cannot be proved directly because of their infinite number.

The mathematical induction is a method of mathematical proof typically used
to establish a given statement for all natural numbers. It is a form of direct proof
and it is done in three steps.

Let N = {1, 2, 3, 4, . . .} be the set of natural numbers, and P (n) be a mathe-
matical statement involving the natural number n ≥ k, k, n ∈ N, k suitably fixed.

- The first step, known as the base step, is to prove the given statement for
the first possible (admissible) natural number k, i.e. to show that P (k) is true for
n = k.
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- The second step, known as the inductive hypothesis, is to assume that for a
natural number i ≥ k the statement P (i), i ∈ N is true.

- The third step, known as the inductive step, is to prove that the given state-
ment P (i) (just assumed to be true) for any one natural number i implies that the
given statement for the next natural number P (i + 1) is true, i. e. to prove that
P (i)→ P (i+ 1).

From these three steps, mathematical induction is the rule from which we infer
that the given statement P (n) is established for all natural numbers n ≥ k.

3. THE LEHMUS-STEINER THEOREM

The Lehmus-Steiner theorem states:.

Theorem 3.1. If the straight line segments bisecting the angles at the base

of a triangle and terminating at the opposite sides are equal, then the triangle is

isosceles.

This so–called equal internal bisectors theorem was communicated by Professor
Lehmus (1780–1863) of Berlin to Jacob Steiner (1796–1867) in the year 1840 with
a request for a pure geometrical proof of it. The request was complied with at the
time, but Steiner’s proof was not published till some years later. After giving his
proof, Steiner considered also the case when the angles below the base are bisected;
he generalized the theorem somewhat; found an external case where the theorem
is not true; finally he discussed the case of the spherical triangle. His solution by
the method of proof by contraposition [11] is considered to be the most elementary
one at that time.

Since then many mathematicians have published analytical and geometrical
solutions of this “elementary” theorem.

Does there exist a proof of this theorem which is direct? This problem was set
in a Cambridge Examination Paper in England around 1850. In 1853, the famous
Bristish mathematician James Joseph Sylvester (1814–1897) intended to show that
no direct proof can exist, but he was not very successful. Since then, there have
been a number of direct proofs published, but generally speaking they require some
other results which have not been proved directly.

A simple, constructive proof, based mainly on Euclid’s Book III, is given in
[13].

McBride’s paper [5] contains a short history of the theorem, a selection from the
numerous other solutions that have been published, some discussion of the logical
points raised, and a list of references to the extensive literature on the subject. For
the long history of this remarkable theorem see also [6].

Below we propose two strictly direct proofs of Lehmus-Steiner’s theorem.
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Figure 1.

3.1. FIRST PROOF OF THE THEOREM OF LEHMUS-STEINER

Let AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) be the internal bisectors in △ABC,
AA1 = BB1 and AA1 ∩BB1 = J . Then CJ is the internal bisector of ∠ACB. We
use the denotation γ := ∠ACJ = ∠BCJ.

Let also k1 be the circumscribing circle of △ACA1, and k2 the circumscribing
circle of △BCB1 (Figure 1). First we need the following

Proposition 3.2. The cut loci of points, from which two equal segments

appear under the same angle, are equal arcs of congruent circles.

Proof of Proposition 3.2. Consider △ACA1 and △BC1B1, where ∠ACA1 =
∠BC1B1 = 2γ and AA1 = BB1. Let k1 with center O1 be the circumscribing circle
of △ACA1, and k2 with center O2 the circumscribing circle of △BC1B1 (Figure 2).

Figure 2.

The cut loci of points, from which the equal segments AA1 and BB1 appear

under the same angle 2γ, are respectively the arcs ÂCA1 in k1 and B̂C1B1 in k2.
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The perpendicular line O1K (K ∈ AA1) from O1 to the chord AA1 cuts the

arc ÂA1 in k1 at its midpoint H, the perpendicular line O2M (M ∈ BB1) from O2

to the chord BB1 cuts the arc B̂B1 in k2 at its midpoint G.

The right angled triangles △AKH and △BMG are congruent, because of
AK = BM (as a half of equal chords) and ∠KAH = ∠MBG = γ. Hence,
AH = BG and ∠AHK = ∠BGM .

Then, the isosceles triangles △AO1H and △BO2G are congruent and the cir-
cles k1 and k2 have equal radii.

This proves the assertion of the proposition. �

Since the equal segments AA1 and BB1 in △ABC (fig. 1) appear under the
same angle 2γ from C, the circles k1 and k2 have equal radii (Proposition 3.2).

Let now CJ ∩ k1 = H and CJ ∩ k2 = G.

The points H and G lie on the same ray CJ−→. Since CJ bisects the angles
∠ACA1 and ∠BCB1, the point H is midpoint of the arc ÂA1 in k1, and the point

G is midpoint of B̂B1 in k2.

Let K be the midpoint of the chord AA1, M be the midpoint of the chord
BB1, HK ∩ k1 = N and GM ∩ k2 = L. Hence, the segments HN and GL are
diameters of the circles k1 and k2 respectively. The triangles △CHN and △CGL

are right angled with right angles at the vertex C.

The quadrilateral CJKN can be inscribed in a circle and it follows that

|HK||HN | = |HJ ||HC|. (1)

The quadrilateral CJML can be inscribed in a circle and it follows that

|GM ||GL| = |GJ ||GC|. (2)

Remark 3.3. The equalities (1) and (2) are also a consequence of the similarities
△HKJ ∼ △HCN and △GMJ ∼ △GCL.

Since the circles k1 and k2 have equal radii and the chords AA1 and BB1 are
equal, then HK = GM and HN = GL. If we put d = |CJ | > 0, x = |HJ | > 0,
y = |GJ | > 0, then |HC| = x+ d and |GC| = y + d.

The left-hand sides of equalities (1) and (2) are equal, so are their right hand
sides. Hence

x(x+ d) = y(y + d) ⇔ (x− y)(x+ y + d) = 0. (3)

Since x+ y + d .= 0, equality (3) is equivalent to the equality

x− y = 0 .
1

x+ y + d
= 0,

which directly implies x = y.
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Remark 3.4. If we denote the equal positive left-hand sides of equalities (1)
and (2) by a2, we get respectively the quadratic equations

x2 + dx− a2 = 0 ⇔
(
x+

d

2

)2
−
(√4 a2 + d2

2

)2
= 0

⇔
(
x+

√
4 a2 + d2 + d

2

)(
x−

√
4 a2 + d2 − d

2

)
= 0

⇔ x−
√
4 a2 + d2 − d

2
= 0 .
(
x+

√
4 a2 + d2 + d

2

)
−1

= 0,

and, analogously,
y2 + dy − a2 = 0,

with the same solution

x = y =
1

2

(√
4a2 + d2 − d

)
.

Hence, the points H and G, which lie on the same ray, coincide and CG is the
common chord of the circles k1 and k2.

Figure 3.

As a consequence of the conditions

- CG is a common side,

- ∠ACG = ∠BCG (CG is the bisector of ∠ACB),

- ∠CAG = ∠CBG (CG is the common chord of two circles with equal radii,

hence ĈA1G = ĈB1G),

the triangles △AGC and △BGC are congruent (Figure 3).

Thus, CA = CB and △ABC is isosceles. The direct proof of Theorem 3.1 is
complete. �
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Remark 3.5. In this proof, the condition that the segments AA1 and BB1 are
internal bisectors of the angles based at AB in △ABC is not necessary.

It is only of importance that they are equal by length cevians and their inter-
section point lies on the bisector of ∠ACB.

We recall that a cevian is a line segment which joins a vertex of a triangle with
a point on the opposite side (or its extension).

In fact we proved directly the following

Theorem 3.6. If in a △ABC the segments AA1 (A1 ∈ BC) and BB1 (B1 ∈
AC) interesct at a point on the bisector of ∠ACB and are equal by length, then

△ABC is isosceles.

3.2. SECOND PROOF OF THE THEOREM OF LEHMUS-STEINER

The idea for this proof comes from Problem 2.1–2.16 in [2]: Find a direct proof

of Lehmus-Steiner’s theorem as a consequence of Stewart’s theorem.

We need the notion algebraic measure (relative measure) of a line segment.

On any straight line there are two (opposite to each other) directions. The
axis is a couple of a straight line and a fixed (positive) direction on it.

Let g+ denotes any axis. For any non zero line segment MN on g+ we can

define its relative (algebraic) measure by MN = ε|MN |, where ε = +1 in case
−−→
MN

has the same direction as g+, and ε = −1 in case
−−→
MN has the opposite direction

with respect to g+.

Stewart’s theorem yields a relation between the lengths of the sides of a triangle
and the length of a cevian.

Let in △ABC the line segment CP, P ∈ AB, be a cevian (more general, let
{C;A,B, P} be a quadruple of points such that A,B, P are collinear).

Theorem 3.7 (Theorem of Stewart). If A,B, P are three collinear points and

C is any point then

|CA|2 ·BP + |CB|2 · PA+ |CP |2 ·AB +BP · PA ·AB = 0.

Remark 3.8. Using the Pythagoras theorem, the proof of Steward’s theorem
is a simply verification.

In what follows we prove the equal internal bisectors theorem in the following
formulation.

Theorem 3.9. The straight line segments bisecting the angles at the base of

a triangle and terminating at the opposite sides are equal if and only if the triangle

is isosceles.
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Figure 4.

Let AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) be respectively the internal bisectors
of ∠CAB and ∠CBA in a triangle ABC (Figure 4).

Since the triples {B,A1, C} and {A,B1, C, } consist of collinear points there
exist integers α and β such that

BA1 = αBC, A1C = (1− α)BC, 0 < α < 1;

AB1 = β AC, B1C = (1− β)AC, 0 < β < 1.
(4)

Using the fact that AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) are the internal
bisectors of ∠CAB and ∠CBA in a triangle ABC, i. e. that

CA1

A1B
=
|CA|
|AB| ,

CB1

B1A
=
|CB|
|BA| ,

from relations (4) we obtain

α =
|AB|

|AB|+ |AC| , 1− α =
|AC|

|AB|+ |AC| ,

β =
|AB|

|AB|+ |BC| , 1− β =
|BC|

|AB|+ |BC| .
(5)

Applying Stewart’s theorem for the quadruple {A;B,A1, C}

|AB|2.A1C + |AA1|2.CB + |AC|2.BA1 +A1C.CB.BA1 = 0,

and for the quadruple {B;A,B1, C}

|BA|2.B1C + |BB1|2.CA+ |BC|2.AB1 +B1C.CA.AB1 = 0,

from (4) and (5) we get

|AA1|2 =
|AB||AC|

(|AB|+ |AC|)2 {(|AB|+ |AC|)2 − |BC|2},
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|BB1|2 =
|AB||BC|

(|AB|+ |BC|)2 {(|AB|+ |BC|)2 − |AC|2},

and finally

(|AA1| − |BB1|)
(|AA1|+ |BB1|)

|AB| = (|AC| − |BC|)

×
{
1+

|AC||BC|(|AB|2+ |AC|2+|BC|2+2|AB|(|AC|+|BC|)+|AC||BC|)
(|AB|+|BC|)2(|AB|+|AC|)2

}
.

Using the denotations

X :=
(|AA1|+ |BB1|)

|AB|

and

Y :=

{
1+

|AC||BC|(|AB|2+|AC|2+|BC|2+2|AB|(|AC|+|BC|)+|AC||BC|)
(|AB|+|BC|)2(|AB|+|AC|)2

}
,

we rewrite the last equation in the form

(|AA1| − |BB1|)X = (|AC| − |BC|)Y.

Since X .= 0 and Y .= 0, the latter equation is equivalent to the equation

(|AA1| − |BB1|)
X

Y
= |AC| − |BC|. (6)

Now, from (6) we see that | AA1| = |BB1| ⇔ |AC| = |BC|, which completes
this direct proof of Lehmus-Steiner’s theorem. �

Remark 3.10. • In this proof, the condition that the segments AA1 and
BB1 are internal bisectors of the angles based at AB in △ABC is necessary.

• Using equalities (5) we compute

α− β =
|AB|

(|AB|+ |AC|)(|AB|+ |BC|) (|BC| − |AC|)

and obtain

A1B1 ‖ AB ⇔ α = β ⇔ |AC| = |BC|.

The following statement is easily proved directly.

Proposition 3.11. Let AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) be respectively

the internal bisectors of ∠CAB and ∠CBA in △ABC. Then △ABC is isosceles

if and only if A1B1 ‖ AB.
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Proof. Let AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) be the internal bisectors of
∠CAB and ∠CBA, respectively, in △ABC.

- Let A1B1 ‖ AB (Figure 5).

It follows that △AA1B1 and △BB1A1 are isosceles and the quadrilateral
ABA1B1 is a trapezium with |AB1| = |BA1| (= |A1B1|).
Hence, △ABC is isosceles.

Figure 5.

- Let now △ABC be isosceles and B1B2 ⊥ AB (B2 ∈ AB), A1A2 ⊥ AB

(A2 ∈ AB).

Since △AA1B ∼= △BB1A (Figure 5), then |AA1| = |BB1|.
Hence, △AA1A2

∼= △BB1B2, |A1A2| = |B1B2| and A1B1 ‖ AB.

�

In view of this proposition we can reformulate the Lehmus-Steiner theorem in
the following form:

Theorem 3.12. Let AA1 (A1 ∈ BC) and BB1 (B1 ∈ AC) be respectively

the internal bisectors of ∠CAB and ∠CBA in △ABC. If |AA1| = |BB1|, then
A1B1 ‖ AB.
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