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The purpose of this note is to describe some properties of manifolds endowed with an

almost tangent structure T , T 2 = 0 and an almost complex structure J , J2 = −E,

E = id.

We consider a linear connection ∇ on N , which is compatible with the algebraic struc-

ture, i.e. ∇J = 0, ∇T = 0. The existence of ideals in corresponding algebra implies

the existence of autoparallel submanifolds of N .
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1. ALGEBRAIC PRELIMINARIES

Let us consider a real associative algebra A with the unit element e and two
generators i, ε satisfying

i2 = −e, ε2 = 0,

under the requirement dimA = 4 [1].

We distinguish three cases described by the relations

iε = εi , (1.1)

iε = −εi , (1.2)
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iε+ εi = e. (1.3)

The corresponding algebras are denoted by A1, A2, A3, respectively.

Proposition 1. The algebras A1 and A2 possess nontrivial ideals while A3 is
a simple algebra.

Proof. Let us denote iε = εi = k. Then we have the following table of
multiplications of A1

e i ε k
e e i ε k
i i −e k ε
ε ε k 0 0
k k −ε 0 0

Obviously, {e, i, ε, k} is a basis of A1 and {ε, k} is an ideal with zero-multi-
plication.

Similarly to the previous case, A2 admits an ideal, too.

Now we consider the algebra A3. The mapping

ϕ : A3 →M(2) ,

where M(2) is the algebra of (2× 2) real matrices defined by

ϕ(e) =

(

1 0
0 1

)

, ϕ(i) =

(

0 1
−1 0

)

, ϕ(ε) =

(

0 0
1 0

)

,

is an isomorphism. It is well-known that the algebra M(2) is simple. That com-
pletes the proof. �

2. MANIFOLDS OVER ALGEBRAS

Let N be a manifold of class C∞, TN - the tangent bundle of N , X(N) - the
F (N) - module of global sections of TN , F(N)-the ring the smooth functions on N .
Let A(TN) be the algebra of F (N) - linear operators of X(N). It can be identified
with the algebra of fiber–preserving automorphisms of TN .

Let us consider a real associative algebra A with unit element e. A morphism
of algebras Φ : A → A(TN) such that Φ(e) = I, the identity operator of A(TN)
will be called an A - structure on N . A linear connection ∇ on N is said to be
compatible with the A - structure if ∇Φ(a) = 0, for all a ∈ A, i.e. each operator
Φ(a) is parallel with respect to ∇. An A - structure is said to be integrable if for
each point p exists a neighborhood U , such that the operator Φ(a) for all a ∈ A
have constant components in corresponding coordinate chart.

90 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 89–95.



If B is an ideal of A, we define a distribution D in TN as follows:

Dp = {Φ(b)v ∈ TpN ; for all b ∈ B and v ∈ TpN} .

In other words, at each point p ∈ N , Dp is the image of TpN by the operators
corresponding to the elements of B. This distribution is invariant with respect to
all operators Φ(a), a ∈ A.

Proposition 2. Let A is associative unitary R-algebra, N be a manifold with
A - structure and ∇ be a linear connection on N . If ∇Φ(ai) = 0 for all basis
elements ai of A then ∇ is compatible with A.�

Proof. The operator ∇ : D(N) → D(N) is a differentiation of the tensor
algebra on N . If Φ(ai) = Ai ∈ D

1
1(N), i = 1, 2, 3, 4, it follows that

∇X(AiAj) = ∇X(Ai)Aj +Ai∇X(Aj) = 0

�

The following theorem is proved in [2], p. 118.

Theorem 1. Let (M,∇) be an affinely connected analytical manifold equipped
with an A - structure compatible with ∇. Then the following properties are satisfied:

1. The distribution D is involutive;

2. If N ′ is a maximal integral submanifold of D through any point of N , then
it is autoparallel submanifold of N ;

3. On each N ′ acts the quotient - algebra A/O(B), where O(B) is the annihi-
lator of the ideal B in algebra A.

3. ALGEBRAIC STRUCTURES A1,A2,A3

The integrability conditions of these structures are given in [1].

According to the previous notations, we set Φ(e) = I, Φ(i) = J and Φ(ε) = T ,
by I we denote the unit matrix and we set JT = K. Moreover, we suppose that

ImT = Ker T =
1

2
dimN.

Theorem 2. Let N be a manifold with an integrable algebraic structure of
type Ai, (i = 1, 2) and ∇ be torsion-free connection compatible with the algebraic
structure, i.e. ∇J = 0,∇T = 0. Then there exists an Ai - invariant foliation N ′ in
N , i.e. at any point p ∈ N ′ ⊂ N the tangent space TpN

′ is invariant with respect
to J and T .
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Proof. Case (1): J2 = −I, T 2 = 0, JT = TJ and Ker T = ImT . We denote
by D the distribution Ker T = ImT . It can be easily seen that the following holds:
JD ⊆ D,TD ⊆ D. This implies that n ≡ 0 (mod 4), so we can write n = 4m.

For any point of N there exist an open neighborhood with a chart (x1, . . . , x4m)
on it such that with respect to the basis ∂/∂x1, . . . , ∂/∂x4m the tensors J and T
have matrix expression:









0 −I 0 0
I 0 0 0
0 0 0 −I
0 0 I 0









and









0 0 0 0
0 0 0 0
I 0 0 0
0 I 0 0









, K =









0 0 0 0
0 0 0 0
0 −I 0 0
I 0 0 0









.

We denote (x1, . . . , x4m) = (xi, xi+m, xi+2m, xi+3m), (i = 1, . . . ,m). Every
integral submanifold N ′ of D = ImT has coordinates (xi0, x

i+m
0 , xi+2m, xi+3m).

We have A = {I, J, T,K}, B = {T,K} - an ideal, the annihilator O(B) = B,
A/O(B) ≈ {I, J}.

The restriction of J on D is the following









0 0 0 0
0 0 0 0
0 0 0 −I
0 0 I 0

















0
0

vi+2m

vi+3m









=









0
0

−vi+3m

vi+2m









.

Here v = (0, 0, vi+2m, vi+3m) ∈ D and by I we denote the unit (n× n)- matrix.

Case (2): JT = −TJ .

Let M be a manifold provided with a A2 - structure. Similarly to the previous
case, one may choose an atlas, such that with respect to any chart Ux ⊂ N the
operators J and T have the form









0 −I 0 0
I 0 0 0
0 0 0 −I
0 0 I 0









and









0 0 0 0
0 0 0 0
I 0 0 0
0 −I 0 0









.

Theorem 2 is proved. �

Now we start considering the last case.

Case (3): N is a manifold provided with a couple J, T of tensor fields of type
(1,1), satisfying J2 = −I, T 2 = 0 and JT + TJ = I. Here it is not necessary to
require that Ker T = ImT , because it follows from the relation between J and T .
Obviously, we can write n = 2m.

Proposition 3. An A3 - structure on a smooth manifold N may be given
equivalently:
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1. By the operators P and Q, such that

P 2 = I, Q2 = I and PQ+QP = 0,

2. By the operators J and P , such that

J2 = −I, P 2 = I and JP = −PJ.

Proof: 1. If we set P = JT − TJ and Q = J + 2T , by using the characteristic
identity in Case (3) we have

P 2 = (JT − TJ)(JT − TJ) = JTJT − JTTJ − TJJT + TJTJ

= JT (I − TJ) + TJ(I − JT ) = JT + TJ = I ,

Q2 = (J + 2T )(J + 2T ) = J2 + 2JT + 2TJ = −I + 2I = I .

2. In analogy with the previous case we have

JP = J(JT − TJ) = J2T − JTJ = −T − J(I − JT )

= −T − J − T = −J − 2T ,

PJ = (JT − TJ)J = JTJ + T = J(I − JT ) + T = J + 2T .

Remark 1. In [1] the structure {J, P} is called a complex product structure.

The next theorem is a modification of the result of A. Andrada [3].

Theorem 3. Let N be a manifold with an A3 -structure, given by the operators
{J, T}. Then:

1. There exists a unique torsion-free connection ∇ with respect to which J and
T are parallel;

2. The leaves of the distribution D = ImT are flat autoparallel submanifolds
of N .

Proof. The connection ∇, which preserves the tensor fields J and P is given
by

∇xY =
1

4
{[X,Y ]− [PX,PY ] + P [X,PY ]− P [PX, Y ]

− J [X, JY ]− J [PX,Q] +Q[X,QY ] +Q[PX, JY ] ,

where Q = −JP .

Since T = 1

2
(PJ − J), it follows that ∇P = ∇J = 0. Our assertion follows

from Proposition 2.

We may choose an atlas on N , whose Jacobian matrices are local constant.
Then the operators J and T have the following form

(

0 I
−I 0

)

and

(

0 0
I 0

)

,

where I is the unit (n× n) - matrix. The theorem is proved. �
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Remark 2. Another proof of the existence and uniqueness of ∇ is given in
[1].

Remark 3. In this case the distribution D = ImT is not invariant with
respect to the operator J .

Remark 4. As it is shown in [1], [3] the connection ∇ does not need to be
flat.

An essential property of the tangent bundle TM is the fact that it bears a tan-
gent structure. More precisely, let π : TM →M and K : TTM → TM be natural
projection and connection maps of ∇, respectively. If X is a vector field on M , we
may define vertical lift Xv and horizontal lift Xh on TM by the relations

(dπ)Xv = 0, KXv = X ,

(dπ)Xh = X, KXh = 0 .

From a basis {X1, . . . , Xn} of X(M) we get the basis of X(TM) : {Xh
k , X

v
n},

k = 1, . . . , n. With respect to this basis the tangent structure has the matrix
expression mentioned above. We define

J̃ : Xh → Xv, Xv → −Xh, J̃2 = −I.

By setting J = −J̃ , this leads us to the A3 algebra.

Theorem 4. The manifold TM can be endowed with integrable operators P ,
Q, subject to the relations

P 2 = I, Q2 = I, PQ = QP = 0.

Proof. Let us set P = JT −TJ and Q = J +2T . By using the identity in Case
(3) of Theorem 2, we can easily verify our statement.

The integrability of J and T implies the integrability of P and Q. �
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