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In this paper we study the existence of continuous solutions on a compact interval

of perturbed linear Volterra integral equations. The existence of such a solution is

based on the well-known Leray–Schauder principle for a fixed point in Banach space.

A special interest is devoted to the study of the uniqueness of continuous solution. Our

numerical approach is based on a fixed point method and we apply quadrature rules

to approximate the solution for the perturbed linear Volterra integral equations. The

convergence of the numerical scheme is proved. Some numerical examples are given

to show the applicability and accuracy of the numerical method and to validate the

theoretical results.
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1. INTRODUCTION

Integral equations play a very important role in nonlinear analysis and have
found numerous applications in engineering, mathematical physics, economics, etc.
(see [2], [4], [10]). Many other applications in science are described by integral
equations or integro-differential equations such as the Volterra‘s population growth
model, biological species living together, propagation of stocked fish in a new lake,
the heat radiation and so on [5], [6].
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The existence of solutions of nonlinear integral equations has been considered
in many papers and books [3], [4], [8]. In this paper, we show that under some as-
sumptions the perturbed linear Volterra integral equation has an unique continuous
solution in a bounded and closed interval.

We propose a numerical scheme to approximate the solution of this integral
equation [11] and present some numerical examples to show the accuracy of our
numerical method.

2. PRELIMINARIES

Let X be an arbitrary Banach space with a norm ‖·‖. By C (X,X) we denote
the space of all continuous operators acting in X. Set R+ = [0,+∞).

By C([a, b]) = {x : [a, b] → R is continuous} we denote the Banach space with
the norm ‖x‖

∞
= maxt∈[a,b] |x(t)|.

As usual, Lp([a, b]) = {x : [a, b] → R ;
b
∫

a

|x(t)|p ds <∞} stands for the Banach

space with norm ‖x‖p =

(

b
∫

a

|x(t)|p ds
)1/p

, p ≥ 1.

For r > 0, we set Br = {x ∈ C([a, b]); ‖x‖
∞

≤ r}, i.e., Br is a closed ball.

We consider the perturbed linear Volterra integral equation

x(t) = f(t) +

t
∫

a

K(t, s)x(s)ds+

t
∫

a

V (t, s)g(s, x(s))ds , (2.1)

with given functions f ∈ C([a, b]), g(·, ·) : [a, b]× R→ R and kernels K(·, ·), V (·, ·):
[a, b]× [a, b] → R .

We should mention that an extensive amount of work has been done on the
existence and uniqueness of solutions of some special cases of Volterra integral
equations, see for example [1], [3], [7], [8].

By using the following Leray–Schauder principle, we prove the existence of a
solution of perturbed linear Volterra integral equation (2.1).

Theorem 1 ([7] (Leray-Schauder principle)). Let X be a Banach space and
the operator T ∈ C(X,X) be compact. Suppose that any solution x of x = λTx,
0 ≤ λ ≤ 1 satisfies the a priori bound ‖x‖ ≤M for some constant M > 0. Then T
has a fixed point.

Define the operator T on C([a, b]) by

Tx(t) = f(t) +

t
∫

a

K(t, s)x(s)ds+

t
∫

a

V (t, s)g(s, x(s))ds . (2.2)
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3. THE EXISTENCE OF A SOLUTION

Theorem 2. Let the following conditions be fulfilled:

1). The function g(s, x) satisfies

sup
s∈[a,b],x∈R

(

|g(s, x)| ,
∣

∣

∣

∣

∂g

∂x
(s, x)

∣

∣

∣

∣

)

≤ G(s)φ(|x|), (3.1)

where G(·) is a positive measurable function and φ(·) is positive and continuous
function satisfying

lim
y→+∞

φ(y)

y
= L <∞. (3.2)

2). The kernels K(t, s) and V (t, s) are continuous with respect to t and satisfy

|K(t, s)| ≤ K1(t)K2(s), |V (t, s)| ≤ V1(t)V2(s), (3.3)

where K1(·), V1(·) ∈ C([a, b]) and K2(·), G(·)V2(·) ∈ L1([a, b]).
Then the equation (2.1) has a solution in C([a, b]).

Proof. We observe that condition ( 3.2) implies the existence of a positive real

number A > 0 such that
∣

∣

∣

φ(u)
u

∣

∣

∣
≤ 3
2L = L′, for all u ≥ A.

First, we shall prove that the operator T : C([a, b]) → C([a, b]) is continuous.

Let x ∈ C([a, b]). Hence for all s ∈ [a, b], one conclude that |x(s)| is contained
in a compact set of R+. Moreover, φ(·) is continuous over R+, then one concludes
that there exists a positive constant Nφ, such that φ(|x(s)| ≤ Nφ. Let h > 0. On
using assumptions 1) and 2) and applying the dominated convergence theorem,
and using that f ∈ C([a, b]), we have

lim
h→0

|Tx(t + h) − Tx(t)| ≤ lim
h→0

|f(t + h) − f(t)|

+ ‖x‖
∞

t
∫

a

lim
h→0

|K(t + h, s) − K(t, s)| ds + ‖K1‖
∞

‖x‖
∞

lim
h→0

t+h
∫

t

K2(s)ds

+Nφ

t
∫

a

lim
h→0

|V (t + h, s) − V (t, s)|G(s)ds + ‖V1‖
∞
Nφ lim

h→0

t+h
∫

t

V2(s)G(s)ds = 0 .

Next, we shall prove that the operator T is continuous over C([a, b]).

Let {xn}∞n=1 ∈ C([a, b]) be a sequence converging uniformly to x. Since C([a, b])
is complete, then x ∈ C([a, b]). Hence, for all n ∈ N , for all s ∈ [a, b] and Θs ∈ [0, 1],
one concludes that |Θsxn(s) + (1 − Θs)x(s)| is contained in a compact set of R+.
Moreover, φ(·) is continuous over R+, therefore there exists a positive constant Mφ

such that φ(|Θsxn(s) + (1−Θs)x(s)|) ≤Mφ.
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From assumptions 1) and 2) for each t ∈ [a, b] we have

|Txn(t) − Tx(t)|

≤ ‖xn − x‖
∞





t
∫

a

|K(t, s)| ds +

t
∫

a

|V (t, s)|

∣

∣

∣

∣

∂g

∂x
(s,Θsxn(s) + (1 − Θs)x(s))

∣

∣

∣

∣

ds





≤ ‖xn − x‖
∞

[

‖K1‖
∞

‖K2‖1 + ‖V1‖
∞

‖V2 · G‖1Mφ

]

.

Therefore, lim
n→∞

‖Txn − Tx‖
∞

= 0 or, equivalently, T is continuous over C([a, b]).

Next, we shall prove that the operator T is compact on C([a, b]). Let us set
E := {Tx ;x ∈ Br}.

On using Arzella - Ascoli theorem, the compactness of the set E will be ensured
if we show that E is equicontinuous and uniformly bounded.

Let x ∈ Br. Since φ(·) is continuous over R+, there exists a positive constant
Pφ such that φ(|x(s)|) ≤ Pφ for each s ∈ [a, b]. From assumptions 1) and 2), for
every t ∈ [a, b] we have

|Tx(t)| ≤ ‖f‖
∞

+

t
∫

a

K1(t)K2(s) |x(s)| ds+
t

∫

a

V1(t)V2(s)G(s)φ(|x(s)|)ds

≤ ‖f‖
∞

+ ‖K1‖∞ ‖K2‖1 ‖x‖∞ + ‖V1‖∞ ‖V2G‖1 Pφ.

Consequently, E is uniformly bounded.

Let x ∈ Br, t
′, t′′ ∈ [a, b] and t′ < t′′. From condition 1) and 2) we obtain

|Tx(t′′)− Tx(t′)| ≤ |f(t′′)− f(t′)|

+ ‖x‖
∞

t′
∫

a

|K(t′′, s)−K(t′, s)| ds+ ‖x‖
∞

‖K1‖∞
t′′
∫

t′

K2(s)ds

+Pφ

t′
∫

a

|V (t′′, s)− V (t′, s)|G(s)ds+ Pφ ‖V1‖∞
t′′
∫

t′

V2(s)G(s)ds.

By applying the dominated convergence theorem to the right-hand side of the
above inequality, one concludes that lim

t′→t′′
|Tx(t′′)− Tx(t′)| = 0.

Next, we shall prove that any solution of the equation x = λTx, 0 ≤ λ ≤ 1 is
bounded by the same constant M > 0. Let

M1 = |λ| ‖f‖
∞

+ |λ| ‖V1‖∞ ‖V2G‖1 sup
u∈[0,A]

φ(u) , (3.4)

M2 = max{λ ‖K1‖∞ , λ ‖V1‖∞} , (3.5)

M =M1 exp(M2 [‖K2‖1 + ‖V2G‖1 L′]) , (3.6)
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Q(s) = K2(s) + V2(s)G(s)L
′. (3.7)

Let x ∈ C([a, b]) be a solution of x = λTx for some 0 ≤ λ ≤ 1, then we have

|x(t)| ≤ |λ| ‖f‖
∞

+ |λ| ‖K1‖
∞

b
∫

a

K2(s) |x(s)| ds

+ |λ| ‖V1‖
∞

b
∫

a

V2(s)G(s) sup
u∈[0,A]

φ(u)ds + |λ ‖|V1‖
∞

b
∫

a

V2(s)G(s)L′ |x(s)| ds

≤ |λ|

[

‖f |
∞

+ ‖V1‖
∞

‖V2G‖1 sup
u∈[0,A]

φ(u)

]

+ M2

b
∫

a

[K2(s) + V2(s)G(s)L′] |x(s)| ds.

Hence, from (3.4), (3.5), (3.7) we get that |x(t)| ≤M1 +M2
b
∫

a

Q(s) |x(s)| ds.

By using the general version of Gronwall‘s inequality together with the previous
inequality, one concludes that

|x(t)| ≤M1 exp(M2
b

∫

a

Q(s)ds) =M1 exp(M2 [‖K2‖1 + ‖V2G‖1 L′]) =M.

Since M1 and M2 do not depend on x, we conclude that the solutions of x = λTx,
0 ≤ λ ≤ 1 are uniformly bounded by the same constant M . Now the Leray–
Schauder principle implies that T has a fixed point in C([a, b]). �

4. NUMERICAL APPROACH AND ITS CONVERGENCE

In the proof of Theorem 2 we have shown that the continuous solutions of
x = Tx are uniformly bounded by the same constant M , and consequently they
are contained in a closed ball BM . We choose an initial function x0 ∈ BM and
construct the sequence {xn(t)}∞n=0 as follows

xn+1(t) = Txn(t), n ≥ 0, t ∈ [a, b]. (4.1)

In the next theorem we show that under certain assumptions the sequence
{xn(t)}∞n=0 constructed by (4.1) converges to the unique fixed point x̃ of T .

Theorem 3. Let the following conditions be fulfilled.

1. The conditions of Theorem 2 hold.

2. The functions K2(·), V2(·)G(·) ∈ Lp([a, b]) for some p ≥ 1;

3. With the constant M defined by (3.6), the following inequality holds:
[

‖K1‖∞ ‖K2‖p + ‖V1‖∞ ‖V2 ·G‖p max
u∈[−M,M ]

φ(|u|)
]

(b− a) 1

q < 1,
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where 1
p + 1

q = 1 and p ≥ 1.

Then the operator T is a contractive mapping in BM and has exactly one fixed
point, say, x̃(t). Moreover, the generated by (4.1) sequence {xn(t)}∞n=0 convergence
to this fixed point, i.e.

lim
n→∞

xn(t) = x̃(t) for every t ∈ [a, b], (4.2)

and

‖xn − x̃‖
∞

≤ Ln

1− L ‖x1 − x0‖∞ , (4.3)

where 0 < L < 1 is the contraction constant of T .

Proof: Suppose that x, y ∈ BM . For all s ∈ [a, b] and Θs ∈ [0, 1], there holds
|Θsx(s)+(1−Θs)y(s)) ≤M . For t ∈ [a, b], using assumptions 1) and 2) of Theorem
2 and Holder‘s inequality, we obtain

|Tx(t)− Ty(t)| ≤
t

∫

a

K1(t)K2(s) |x(s)− y(s)| ds

+

∫ t

a

V1(t)V2(s)

∣

∣

∣

∣

∂g

∂x
(s,Θsx(s) + (1−Θs)y(s))

∣

∣

∣

∣

|x(s)− y(s)| ds

≤ ‖x− y‖
∞

[

‖K1‖∞ ‖K2‖p (b− a)
1

q + ‖V1‖∞ max
u∈[−M,M ]

φ(|u|) ‖V2G‖p (b− a)
1

q

]

,

where 1/p+ 1/q = 1, p ≥ 1.

Let L = (b− a) 1

q

[

‖K1‖∞ ‖K2‖p + ‖V1‖∞ ‖V2G‖p max
u∈[−M,M ]

φ(|u|)
]

. By assump-

tion 3), we have L < 1, hence the operator T satisfies the Lipschitz condition

‖Tx− Ty‖
∞

≤ L ‖x− y‖
∞
. (4.4)

If we assume that T has two fixed point x̃, ỹ ∈ BM , we would have

‖x̃− ỹ‖
∞

= ‖T x̃− T ỹ‖
∞

≤ L ‖x̃− ỹ‖
∞
, (4.5)

and since 0 < L < 1, it follows that x̃ ≡ ỹ. Hence, the operator T has a unique
fixed point in BM .

Finally, relations (4.2), (4.3) are proved in a standard way by using equa-
tion (4.4) and [11, p.267, Theorem 5.2.3.], with X = C([a, b]). �

From (3.4) and (3.6) it follows that f ∈ BM , hence we can choose f as an initial
function, x0 ≡ f . We apply quadrature formulae such as trapezoidal, Simpson and
“3/8”-rule to evaluate numerically the integrals in the operator T .
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4.1. NUMERICAL SCHEME

We construct an uniform mesh on [a, b] with stepsize h: sk = a + (k − 1)h,
k = 1, n, where a+ nh ≤ b < a+ (n+ 1)h. We put t = sk in (2.1) and obtain the
following nonlinear integral system for the unknowns xk = x(sk), k = 1, n:

x1 = f(s1) = f(a) ,

xk = f(sk) +

sk
∫

a

K(sk, s)x(s) ds+

sk
∫

a

V (sk, s) g(s, x(s)) ds , k = 2, n .
(4.6)

We apply quadrature rules for each k with nodes s1, s2, . . . , sk and coefficients
h.Akj , k = 2, n, j = 1, k to approximate the integrals in (4.6) for k = 2, n:

xk = f(sk) + h

k
∑

j=1

Akj K(sk, sj)xj + h

k
∑

j=1

Akj V (sk, sj) g(sj , xj) +Rk(x) ,

where Rk(x) = O(h
r) is the error term due to the quadrature rule. We denote

Fk(x1, . . . , xn) = f(sk) + h
k

∑

j=1

Akj K(sk, sj)xj + h
k

∑

j=1

Akj V (sk, sj) g(sj , xj) .

In our calculations we choose two different schemes for coefficients Akj . The
first scheme is constructed on the base of the trapezium quadrature formulas. The
other is based on the Simpson rule and the 3/8-rule (also called Simpson 3/8) [11,
Section 3.1].

The fixed point method with initial condition x0k = f(sk), k = 1, n is as follows:

xi+1k = Fk(x
i
1, . . . , x

i
n) , k = 2, n , i = 0, 1, 2, . . . .

The convergence of the numerical iterations is proved by Theorem 3.

4.2. EXPERIMENTAL RESULTS

We have tested the efficiency of the proposed numerical scheme on two Volterra
integral equations given in the examples below. In our numerical scheme the iter-
ations stop when Ei+1 = ‖xi+1 − xi‖ = max

j
|xi+1j − xij | ≤ ε, where ε = 10−7 is the

chosen precision. All routines have been written in the software system Wolfram
Mathematica 9.0.

Example 1. Consider the perturbed linear Volterra integral equation

x(t) =
1

t+ 1
+

t
∫

0

t+ 1

s2 + s+ 1
x(s) ds+

t
∫

0

1

t+ 1

1√
s2 + s+ 2

√

1 + x(s) ds
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