ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ" ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 2 — Механика Том 82, 1988

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI" FACULTE DE MATHEMATIQUES ET INFORMATIQUE Livre 2 — Mécanique Tome 82, 1988

PASSIVE MOTIONS OF VECTORS AND REPERS

RUMEN SIMEONOV

Румен Симеонов. ПАССИВНЫЕ ДВИЖЕНИЯ ВЕКТОРОВ И РЕПЕРОВ

Вводится понятие о пассивном движении векторов и реперов. Дается вариационная характеризация этого понятия. Указаны приложения к дифференциальной геометрии кривых, а также к аналитической механике. В частности, на этом пути естественным образом выведен интеграл С. Ковалевской о движении твердого тела около неподвижной точки.

Rumen Simeonov. PASSIVE MOTIONS OF VECTORS AND REPERS

The notion passive motion of vectors and repers is defined.

A variational characterization is given. Some applications to differential geometry of curves and to analytical mechanics are made. In particular, using this technique the S. Kowalewski integral concerning motions of a rigid body with a fixed point is derived in a natural way.

§1. DEFINITIONS AND BASIC PROPERTIES

Let V denote a threedimentional Euclidean vector space over \mathbb{R} , and $(a, b) = a \cdot b$ be the scalar product of elements $a, b \in V$. Further by Δ we'll denote a nonempty connected subset of \mathbb{R} , $C^m(\Delta; V)$ will denote the family of all m times $(m \geq 0)$ continuously differentiable vector-functions $a : \Delta \longrightarrow V$. We put $|a| = \sqrt{a \cdot a}$, $S^1 = S^1(V) = \{a \in V : |a| = 1\}$ and $C^m(\Delta; S^1) = \{a \in C^m(\Delta; V) : |a(t)| = 1, \forall t \in \Delta\}$.

Definition 1. Let $c \in C^m(\Delta; S^1)$, $m \ge 1$ and $a \in C^m(\Delta; V)$, $a(t) \perp c(t)$ (i. e. $a(t) \cdot c(t) = 0$), $\forall t \in \Delta$. We'll say "a(t) passively follows c(t) for $t \in \Delta$ " iff

(1)
$$\dot{a}(t) = \lambda(t)c(t), \quad \forall t \in \Delta, \text{ where } \lambda : \Delta \longrightarrow \mathbb{R}.$$

Here and farther on $()^{\bullet} = d/dt$. Since we suppose $a(t) \cdot c(t) = 0$, it is obvious that (1) es equivalent to the following

(2)
$$\dot{a}(t) = -(a(t) \cdot \dot{c}(t))c(t), \quad \forall t \in \Delta.$$

Definition 1 is a mathematical formalization of our intuitive idea a vector a(t), $a(t) \cdot c(t) = 0$ "to do no rotation around c(t) when $t \in \Delta$ ". This is so because (1) exactly means that $\dot{a}(t)$ has no component in the plane perpendicular to c(t).

Proposition 1. Let $m \ge 1$, $c \in C^m(\Delta; S^1)$. Then

- a) Given any $t_0 \in \Delta$ and $a_0 \in \overline{V}$, $a_0 \perp c(t_0)$, there exists unique $a \in C^m(\Delta; V)$ such that a(t) passively follows c(t) for $t \in \Delta$ and $a(t_0) = a_0$.
- b) If $a, b \in C^m(\Delta; V)$, $\lambda, \mu \in R$, $r(t) = \lambda a(t) + \mu b(t)$, $t \in \Delta$, where a(t), b(t) passively follow c(t) for $t \in \Delta$ then r(t) passively follows c(t) for $t \in \Delta$.
- c) If $a, b \in C^m(\Delta; V)$, a(t), b(t) passively follow c(t) for $t \in \Delta$ then $a(t) \cdot b(t) = \text{const}$ for $t \in \Delta$. Under the same assumptions it follows |a(t)| = const, |b(t)| = const, $\mathcal{L}(a(t), b(t)) = \text{const}$, $t \in \Delta$.
- *Proof.* a) The equation (2) about a = a(t) is equivalent to a linear system of three scalar differential equations solved with respect to the derivatives. According to the differential equations theory, the equation (2) has unique solution $a \in C^m(\Delta; V)$, with $a(t_0) = a_0$. It remains to be noted that (2) implies

$$(d/dt)(a(t) \cdot c(t)) = \dot{a}(t) \cdot c(t) + a(t) \cdot \dot{c}(t) = -(a(t) \cdot \dot{c}(t))c(t)^{2} + a(t) \cdot \dot{c}(t) = 0,$$

$$a(t) \cdot c(t) = a(t_{0}) \cdot c(t_{0}) = a_{0} \cdot c(t_{0}) = 0, \quad \forall t \in \Delta.$$

- b) This assertion automatically follows from the linearity of the equation (2), because $a(t) \perp c(t)$, $b(t) \perp c(t)$ implies $c(t) \perp c(t)$, $\forall t \in \Delta$.
 - c) It is sufficient to prove $a(t) \cdot b(t) = \text{const}, t \in \Delta$. We calculate

$$(d/dt)(a(t) \cdot b(t)) = \dot{a}(t) \cdot b(t) + a(t) \cdot \dot{b}(t) =$$

$$-(a(t) \cdot \dot{c}(t))(c(t) \cdot b(t)) - (b(t) \cdot \dot{c}(t))(a(t) \cdot c(t)) =$$

$$-(a(t) \cdot \dot{c}(t)) \cdot 0 - (b(t) \cdot \dot{c}(t)) \cdot 0 = 0, \quad \forall t \in \Delta.$$

The proof of proposition 1 is completed.

Any ordered triple R = (a, b, c), such that $\{a, b, c\}$ is an ortonormed base in V will be called strongly oriented 3-reper in V. The family of all such R will be denoted by V_3 . If $a, b, c \in C^m(\Delta; V)$ and $R(t) = (a(t), b(t), c(t)) \in V_3$, $\forall t \in \Delta$ we will write $R \in C^m(\Delta; V_3)$.

Definition 2. If $m \ge 1$, $R \in C^m(\Delta; V_3)$, R(t) = (a(t), b(t), c(t)), a(t), b(t) passively follow c(t) for $t \in \Delta$ then we'll say "R is a passive C^m -motion of a reper in V_3 for $t \in \Delta$ ".

Proposition 2. Let $m \ge 1$, $c \in C^m(\Delta; S^1)$, $t_0 \in \Delta$, $R_0 = (a_0, b_0, c(t_0)) \in V_3$. Then there exists an unique passive C^m -motion $R(t) \in V_3$, $t \in \Delta$ such that $R(t_0) = R_0$.

Proof. Let $a, b \in C^m(\Delta; V)$, a(t), b(t) passively follow c(t) for $t \in \Delta$, $a(t_0) = a_0$, $b(t_0) = b_0$. According to proposition 1a) such a and b exist and are unique. We put R(t) = (a(t), b(t), c(t)), $t \in \Delta$ and we note that according to proposition 1c) it follows $a(t) \cdot b(t) = a_0 \cdot b_0 = 0$, $|a(t)| = |a_0| = 1$, $|b(t)| = |b_0| = 1$, $\forall t \in \Delta$. So proposition 2 is proved.

Proposition 3. Let $m \ge 1$, $c \in C^m(\Delta; S^1)$, $R_i(t) = (a_i(t), b_i(t), c_i(t))$, $t \in \Delta$, i = 1, 2 be passive C^m -motions of repers $R_1, R_2 \in V_3, c_1(t) = c_2(t) = c(t)$, $t \in \Delta$. Then there exists an angle $\gamma = \text{const}$, $t \in \Delta$ (which is uniquely determined up to an addent $2l\pi$, $l \in Z$) such that

(3)
$$a_2(t) = \cos \gamma a_1(t) + \sin \gamma b_1(t),$$

 $b_2(t) = -\sin \gamma a_1(t) + \cos \gamma b_1(t)$

 $\forall t \in \Delta$. Conversely, if $R_1(t) = (a_1(t), b_1(t), c_1(t)), t \in \Delta$ is a passive C^m -motion of a reper $R_1 \in V_3$, $m \ge 1$, $\gamma = \text{const}$, $c_2(t) = c_1(t) = c(t)$, $\forall t \in \Delta$ and $a_2(t)$, $b_2(t)$ are defined by (3) then the reper $R_2(t) = (a_2(t), b_2(t), c_2(t))$ will be a passive C^m -motion of a reper in V_3 for $t \in \Delta$.

Proof. Obviously a continuous function $\gamma(t)$, $t \in \Delta$ satisfying (3) exists and is uniquely determined up to an addent $2l\pi$, $l \in Z$. According to proposition 1c) we have $\cos \gamma(t) = a_2(t) \cdot a_1(t) = \text{const}$, $\sin \gamma(t) = a_2(t) \cdot b_1(t) = \text{const}$, $t \in \Delta$. This proves that $\gamma(t) = \text{const}$, $t \in \Delta$. The converse assertion follows immediately from proposition 1b).

§2. A VARIATIONAL CHARACTERIZATION OF THE PASSIVE MOTIONS

We denote $B = \{(\lambda, \mu, \nu) \in R^3 : \lambda^2 + \mu^2 + \nu^2 \leq 1\}$ and consider B as a homogeneous rigid body with density 1. Let $R(t) = (\xi(t), \eta(t), \zeta(t)), t \in \Delta$, be an arbitrary C^m -motion of a reper $R \in V_3$, $m \geq 1$. With each such a reper R(t), $t \in \Delta$, we associate a motion of the rigid body B using the following formula

$$r(t; \lambda, \mu, \nu) = \lambda \xi(t) + \mu \eta(t) + \nu \zeta(t), \quad t \in \Delta.$$

The kinetic energy of this motion of B is determined by the formula

$$T_R(t) = \int\limits_{\lambda^2 + \mu^2 + \nu^2 \leq 1} \int\limits_{1}^{\infty} (1/2) r^{2}(t; \lambda, \mu, \nu) d\lambda d\mu d\nu, \quad t \in \Delta.$$

Theorem 1. Let $m \ge 1$, $\zeta \in C^m(\Delta; S^1)$, $R_0(t) = (a(t), b(t), \zeta(t))$, $t \in \Delta$, be a passive C^m -motion of a reper $R_0 \in V_3$. Let $R(t) = (\xi(t), \eta(t), \zeta(t))$, $t \in \Delta$, be

an arbitrary C^1 -motion of a reper $R \in V_3$ having the same third vector $\zeta(t)$, $t \in \Delta$. Then for the corresponding kinetic energies the following inequality

$$(4) T_{R_0}(t) \leq T_R(t), \quad \forall t \in \Delta,$$

holds. In (4) equality holds for each $t \in \Delta$ if and only if R(t), $t \in \Delta$, is a passive motion of a reper in V_3 too.

Proof. Since R_0 and R have one and the same third vector we can find continuously differentiable, function $\gamma(t)$, $t \in \Delta$, for which

(5)
$$\xi(t) = \cos \gamma(t)a(t) + \sin \gamma(t)b(t),$$

$$\eta(t) = -\sin \gamma(t)a(t) + \cos \gamma(t)b(t)$$

holds $\forall t \in \Delta$. Now we calculate

$$T_{R}(t) = \int \int \int \int (1/2)(\lambda \dot{\xi}(t) + \mu \dot{\eta}(t) + \nu \dot{\zeta}(t))^{2} d\lambda d\mu d\nu$$

$$= (1/2)A(\dot{\xi}^{2}(t) + \dot{\eta}^{2}(t) + \dot{\zeta}^{2}(t)), \quad \forall t \in \Delta,$$

where

$$A = \int \int \int \lambda^2 d\lambda d\mu d\nu > 0, \quad A = {\rm const}, \quad t \in \Delta.$$

Using (5) we find

$$\dot{\xi}(t) = \dot{\gamma}(t)\dot{\eta}(t) + \cos\gamma(t)\dot{a}(t) + \sin\gamma(t)\dot{b}(t),$$

$$\dot{\eta}(t) = -\dot{\gamma}(t)\xi(t) - \sin\gamma(t)\dot{a}(t) + \cos\gamma(t)\dot{b}(t), \quad t \in \Delta.$$

Since a(t) and b(t) passively follow $\zeta(t)$ we have $\dot{a}(t) \perp \xi(t)$, $\dot{a}(t) \perp \eta(t)$, $\dot{b}(t) \perp \xi(t)$, $\dot{b}(t) \perp \eta(t)$ and consequently

$$\dot{\xi}^{2}(t) = \dot{\gamma}^{2}(t) + (\cos \gamma(t)\dot{a}(t) + \sin \gamma(t)\dot{b}(t))^{2},
\dot{\eta}^{2}(t) = \dot{\gamma}^{2}(t) + (-\sin \gamma(t)\dot{a}(t) + \cos \gamma(t)\dot{b}(t))^{2},
\dot{\xi}^{2}(t) + \dot{\eta}^{2}(t) = 2\dot{\gamma}^{2}(t) + \dot{a}^{2}(t) + \dot{b}^{2}(t),
T_{R}(t) = A\dot{\gamma}^{2}(t) + T_{R_{0}}(t), \quad \forall t \in \Delta.$$

This equality proves (4) and it is clear that we have equality in (4) if and only if $\dot{\gamma}(t) = 0$, $\forall t \in \Delta$, i. e. iff $\gamma(t) = \text{const}$, $t \in \Delta$. According to proposition 3, the last means that R(t), $t \in \Delta$, is a passive motion of a reper in V_3 . Thus Theorem 1 is proved.

§3. CURVATURE, TORSION AND PASSIVE VECTORS

Suppose in V is introduced an orientation (one of two possible) and let \times denote the corresponding vector product operation. Let $r \in C^3(\Delta; V)$ be regular, i. e. $\dot{r}(t) \times \ddot{r}(t) \neq 0$, $\forall t \in \Delta$. As it is common in differential geometry of curves we put τ , ν , $\beta \in C^1(\Delta; V)$, $\tau(t) = r \cdot (t)/|\dot{r}(t)|$, $\beta(t) = (\dot{r}(t) \times \ddot{r}(t))/|\dot{r}(t) \times \ddot{r}(t)|$, $\nu(t) = \beta(t) \times \tau(t), \ \forall t \in \Delta$. In such a case r is called regular curve in V; τ , ν , β . are called tangent, main normal, binormal unit vectors of r. The plane containing the end of the vector r(t) and collinear to the vectors $\tau(t)$, $\nu(t)$ is called tangent plane; the plane containing the end of the vector r(t) and collinear to the vectors $\nu(t)$, $\beta(t)$ is called normal plane.

Let $t_0 \in \Delta$ and $R_{\tau}(t) = (a(t), b(t), \tau(t)) \in V_3, t \in \Delta$, be a passive motion of a reper in V_3 , determined by $R_{\tau}(t_0) = (\nu(t_0), \beta(t_0), \tau(t_0))$. According to proposition 3 such a reper exists and is unique. By virtue of Theorem 1 this reper has the property to rotate itself about $\tau(t)$, $t \in \Delta$, with a minimal kinetic energy. We involve the angle $\gamma(t)$, $t \in \Delta$, $\gamma \in C^0(\Delta; R)$ determined by $\gamma(t_0) = 0$ and

(6)
$$\nu(t) = \cos \gamma(t)a(t) + \sin \gamma(t)b(t),$$
$$\beta(t) = -\sin \gamma(t)a(t) + \cos \gamma(t)b(t), \quad \forall t \in \Delta.$$

Since $r \in \mathbb{C}^3$ it is easy to see that $\gamma \in \mathbb{C}^1(\Delta; R)$. In an analogical way we introduce a passive reper $R_{\beta}(t) = (p(t), q(t), \beta(t)), t \in \Delta, R_{\beta}(t_0) = (\tau(t_0), \nu(t_0), \beta(t_0)),$ and the corresponding angle $\theta \in C^1(\Delta; R)$, $\theta(t_0) = 0$,

(7)
$$\tau(t) = \cos \theta(t) p(t) + \sin \theta(t) q(t),$$

$$\nu(t) = -\sin \theta(t) p(t) + \cos \theta(t) q(t), \quad \forall t \in \Delta.$$

Now it is natural to give the following.

Definition 3. The angle $\gamma(t)$, $t \in \Delta$, is called turning angle (reading from the moment $t=t_0$) of the normal plane. The angle $\theta(t)$, $t\in\Delta$, is called turning angle (reading from the moment $t = t_0$) of the tangent plane.

Theorem 2. For each regular curve $r \in C^3(\Delta; V)$ the curvature k(t) and the torsion $\sigma(t)$ can be expressed in the following way

(8)
$$k(t) = \dot{\theta}(t)|\dot{r}(t)|^{-1}, \quad \sigma(t) = \dot{\gamma}(t)|\dot{r}(t)|^{-1}, \quad \forall t \in \Delta.$$

The following (Frenet's) formulas

(9)
$$\dot{\tau}(t) = \dot{\theta}(t)\nu(t),$$

(10)
$$\dot{\nu}(t) = -\dot{\theta}(t)\tau(t) + \dot{\gamma}(t)\beta(t),$$
(11)
$$\dot{\beta}(t) = -\dot{\gamma}(t)\nu(t),$$

$$\dot{\beta}(t) = -\dot{\gamma}(t)\nu(t),$$

hold $\forall t \in \Delta$.

Proof. First we'll prove (9), (10), (11). From (7) and (6) it follows

$$\dot{\tau}(t) = \dot{\theta}(t)\nu(t) + \cos\theta(t)\dot{p}(t) + \sin\theta(t)\dot{q}(t),$$
$$\dot{\beta}(t) = -\dot{\gamma}(t)\nu(t) - \sin\gamma(t)\dot{a}(t) + \cos\gamma(t)\dot{b}(t).$$

Since $\tau(t) = \lambda(t)\dot{r}(t)$, $\lambda(t) = |\dot{r}(t)|^{-1}$, $\beta(t) = \mu(t)(\dot{r}(t) \times \ddot{r}(t))$, $\mu(t) = |\dot{r}(t) \times \ddot{r}(t)|^{-1}$ $\dot{\tau}(t) \cdot \beta(t) = (\dot{\lambda}(t)\dot{r}(t) + \lambda(t)\ddot{r}(t)) \cdot \mu(t)(\dot{r}(t) \times \ddot{r}(t)) = 0$, $\forall t \in \Delta$, and p(t), q(t) passively follow $\beta(t)$ for $t \in \Delta$ it is evident that

$$\cos\theta(t)\dot{p}(t) + \sin\theta(t)\dot{q}(t) = \dot{h}(t)\beta(t) = (\dot{\tau}(t)\cdot\beta(t))\beta(t) = 0.$$

Thus (9) is proved. By the same manner we have

$$-\sin \gamma(t)\dot{a}(t) + \cos \gamma(t)\dot{b}(t) = g(t)\tau(t) = (\dot{\beta}(t)\cdot\tau(t))\tau(t) = (-\beta(t)\cdot\dot{\tau}(t))\tau(t) = 0$$
 and (11) is proved. Since $\nu = \beta \times \tau$ we obtain

$$\dot{\nu}(t) = \dot{\beta}(t) \times \tau(t) + \beta(t) \times \dot{\tau}(t) = -\dot{\gamma}(t)(-\beta(t)) + \dot{\theta}(t)(-\tau(t))$$

which proves (10).

It is known from differential geometry [1, p. 44] that $\dot{\tau}(t) \cdot \nu(t) = |\dot{r}(t)|k(t)$ and $\dot{\beta}(t) \cdot \nu(t) = -\sigma(t)|\dot{r}(t)|$, $\forall t \in \Delta$. This, (9) and (11) prove (8). Theorem 2 i proved.

We would like to mention that if t = s is natural parameter, i. e. if $|\dot{r}(t)| = 1$ $\forall t \in \Delta$ then (8) has the very simple form

(8')
$$k(s) = \theta'(s), \ \sigma(s) = \gamma'(s), \ \forall s \in \Delta.$$

§4. PASSIVE VECTORS AND THE S. KOWALEWSKI INTEGRAL

Let us consider the classical problem concerned the motion of a rigid body having a fixed point O. Let $R(t) = (\xi(t), \eta(t), \zeta(t)), t \in \Delta$, be a reper immobilicattached to the body and such that $O\xi$, $O\eta$, $O\zeta$ are main inertial axes for the point O. Let A, B, C be the corresponding inertial moments, and let

$$P = -Mg(a_{31}(t)\xi(t) + a_{32}(t)\eta(t) + a_{33}(t)\zeta(t)) = -Mgk,$$

$$k = a_{31}(t)\xi(t) + a_{32}(t)\eta(t) + a_{33}(t)\zeta(t),$$

$$k(t) = 0, \qquad t \in \triangle, \qquad |k| = 1$$

be the weight-force. The force P is applied at the mass center G of the body being in consideration. Let us suppose that $OG = \xi_G \xi(t) + \eta_G \eta(t) + \zeta_G \zeta(t)$, $\eta_G = \zeta_G = 0$ $\xi_G = \text{const}$, $\forall t \in \Delta$. As it is wellknown [2, p. 513], the Euler equation for this problem has the form

(12)
$$A\omega_{\xi} = (B - C)\omega_{\eta}\omega_{\zeta},$$

$$B\omega_{\eta} = (C - A)\omega_{\zeta}\omega_{\xi} + Mg\xi_{G}a_{33},$$

$$C\omega_{\zeta} = (A - B)\omega_{\xi}\omega_{\eta} - Mg\xi_{G}a_{32},$$

$$a_{31} = \omega_{\zeta}a_{32} - \omega_{\eta}a_{33},$$

$$a_{32} = \omega_{\xi}a_{33} - \omega_{\zeta}a_{31},$$

$$a_{33} = \omega_{\eta}a_{31} - \omega_{\xi}a_{32}.$$

Let us remember also the following identities

(13)
$$\xi(t) = \omega_{\zeta}(t)\eta(t) - \omega_{\eta}(t)\zeta(t),
\dot{\eta}(t) = -\omega_{\zeta}(t)\xi(t) + \omega_{\xi}(t)\zeta(t),
\dot{\zeta}(t) = \omega_{\eta}(t)\xi(t) - \omega_{\xi}(t)\eta(t),$$

true for $t \in \Delta$.

According to Proposition 1c) for any vector $b(t) = b_1(t)\xi(t) + b_2(t)\eta(t)$, b_1 , b_2 — scalars, which is in the plane $O\xi\eta$ and passively follows the vector $\zeta(t)$ we have |b(t)| = const, $t \in \Delta$, i. e. $b_1^2(t) + b_2^2(t) = \text{const}$, $t \in \Delta$. It becomes clear that if b_1 and b_2 are polynomials of the unknown ω_{ξ} , ω_{η} , ..., a_{31} , a_{32} , ... then $I = b_1^2 + b_2^2$ will be a first integral of system (12). Following the S. Kowalewski idea let us involve the isomorphism $\langle \ \rangle : C \to O\xi\eta$, $\langle \lambda + \mu i \rangle = \lambda\xi + \mu\eta$. In the plane $O\xi\eta$ we have the vectors $\omega_{\xi\eta} = \omega_{\xi}\xi + \omega_{\eta}\eta$ and $a = a_{31}\xi + a_{32}\eta$. It is clear that a suitable way to find a vector b with coefficients b_1 , b_2 being polynomials of ω_{ξ} , ω_{η} , a_{31} , a_{32} is to put $b = \langle b_1 + b_2 i \rangle$, $b_1 + b_2 i = f(z, m)$, $z = \omega_{\xi} + \omega_{\eta} i$, $m = a_{31} + a_{32} i$, where f(z, m) is a polynomial of the complex variables z, m. We could begin with f = m, f = z, and so on. Very soon we come to the possibility $f(z, m) = z^2 - m$.

The ore m 3. The vector $b = \langle z^2 - m \rangle$, where $z = \omega_{\xi} + \omega_{\eta} i$, $m = a_{31} + a_{32} i$, passively follows ζ when $t \in \Delta$, for $\omega_{\xi}(t_0)$, $\omega_{\eta}(t_0)$, $\omega_{\zeta}(t_0)$, $a_{33}(t_0)$ — arbitrary initial values, if and only if A = B = 2C and $Mg\xi_G = C$.

Proof. We have $z^2 - m = \omega_{\xi}^2 - \omega_{\eta}^2 - a_{31} + (2\omega_{\xi}\omega_{\eta} - a_{32})i$, $b = b_1\xi + b_2\eta$,

(14)
$$b_1 = \omega_{\xi}^2 - \omega_{\eta}^2 - a_{31}, \qquad b_2 = 2\omega_{\xi}\omega_{\eta} - a_{32}.$$

In accordance with Definition 1, b will follow passively if and only if $\dot{b}(t) \cdot \xi(t) = 0$ and $\dot{b}(t) \cdot \eta(t) = 0$, $\forall t \in \Delta$. Using (13) we obtain

$$\dot{b}(t) = \dot{b}_1(t)\xi(t) + \dot{b}_2(t)\eta(t) + b_1(t)\dot{\xi}(t) + b_2(t)\dot{\eta}(t),$$

$$\dot{b}(t) \cdot \xi(t) = \dot{b}_1(t) - b_2(t)\omega_{\zeta}(t),$$

$$\dot{b}(t) \cdot \eta(t) = \dot{b}_2(t) + b_1(t)\omega_{\zeta}(t)$$

for each $t \in \Delta$. According to (14) we have

$$\dot{b}_{1} - b_{2}\omega_{\zeta} = 2\omega_{\xi}\dot{\omega}_{\xi} - 2\omega_{\eta}\dot{\omega}_{\eta} - \dot{a}_{31} - (2\omega_{\xi}\omega_{\eta} - a_{32})\omega_{\zeta},$$

$$\dot{b}_{2} + b_{1}\omega_{\zeta} = 2\dot{\omega}_{\xi}\omega_{\eta} + 2\omega_{\xi}\dot{\omega}_{\eta} - \dot{a}_{32} + (\omega_{\xi}^{2} + \omega_{\eta}^{2} - a_{31})\omega_{\zeta}.$$

Now from (12) follows

$$\dot{b}_1 - b_2 \omega_{\zeta} = 2 \left(\frac{B - C}{A} - 1 - \frac{C - A}{B} \right) \omega_{\xi} \omega_{\eta} \omega_{\zeta} + \left(-2Mg \frac{\xi_G}{B} + 1 \right) \omega_{\eta} a_{33},$$

$$\dot{b}_2 + b_1 \omega_{\zeta} = \left(2 \frac{B - C}{A} - 1 \right) \omega_{\eta}^2 \omega_{\zeta} + \left(2 \frac{C - A}{B} + 1 \right) \omega_{\xi}^2 \omega_{\eta}$$

$$+\left(2Mg\frac{\xi G}{B}-1\right)\omega_{\xi}a_{33}.$$

Consequently $\dot{b}_1 - b_2 \omega_{\zeta} = 0$ and $\dot{b}_2 + b_1 \omega_{\zeta} = 0$, $\forall t \in \Delta$ and for arbitrary ω_{ξ} , ω_{η} , ω_{ζ} , a_{33} if and only if $2Mg\xi_G = B$ and

$$\frac{B-C}{A} - 1 - \frac{C-A}{B} = 0, \quad 2\frac{B-C}{A} - 1 = 0, \quad 2\frac{C-A}{B} + 1 = 0.$$

Solving the last system we find the unique possibility $A = B = 2C = 2Mg\xi_G$. With this Theorem 3 is proved.

If we change the time t by $\tau = \lambda t$, where $\lambda = (Mg\xi_G/C)^{1/2}$ then in (12) on the place of $Mg\xi_G$ will appear C. In such a way we see that the condition $Mg\xi_G = C$ is not essential.

C o r o l l a r y. If $\eta_G = \zeta_G = 0$ and the change $\tau = \lambda t$, $\lambda = (Mg\xi_G/C)^{1/2}$ is already made then

$$I = (\omega_{\xi}^2 - \omega_{\eta}^2 - a_{31})^2 + (2\omega_{\xi}\omega_{\eta} - a_{32})^2$$

will be a first integral of the system (12) if and only if A = B = 2C.

After all above we have seen how the S. Kowalewski integral could be derived constructing an appropriate passive vector. Something more — the conditions A = B = 2C appear as some necessary conditions for realizing such a construction.

LITERATURE

- 1.Белько, И. В., А. А. Бурдун, В. И. Ведерников, А. С. Феденко. Дифференциальная геометрия. Минск, 1982.
- 2. С у с л о в, Г. К. Теоретическая механика. Москва Ленинград, 1946.

Received 29. III. 1989