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PASSIVE MOTIONS OF VECTORS AND REPERS

RUMEN SIMEONOV

Pymen Cumeonos . IACCUBHBIE IBVUKEHWA BEKTOPOB U PEIIEPOB

BBoanTca nonATHe 0 MaccMBHOM IBMKEHMM BEKTOPOB M penepoB. laeTca papua-
IMOHHAA XaPaKTEePH3ALMA STOrC MOHATHA. Y Ka3aHhl IPUJIOKEHNS K nuddepenumuansioi
reoMeTPHM KPHMBBIX, a Takke K aHaJHTM4YeCKOi Mexanuke. B uacTHocTH, Ha 2TOM my-
TH €CTeCTBEHHBIM oGpa3oM BbiBeleH mHTerpaa C. Kosanescroit O ABMAEHMM TBEPAOro
TeJa OKOJIO HEeNOABUAKHOU TOUKH.
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R_umen Simeonov. PASSIVE MOTIONS OF VECTORS AND REPERS

The notiofi passive motion of vectors and repers is defined.

A variational characterization is given. Some applications to differential geometry of
curves and to analytical mechanics are made: In particular, using this technique the S.
Kowalewski integral concerning motions of a rigid body with a fixed point is derived in a
natural way. :

§1. DEFINITIONS ‘AND BASIC PROPERTIES '

Let V denote a threedlmentlonal Euclidean vector space over R, and (a, b) =
a - b be the scalar product of elements‘a, b € V. Further by A we’ll denote
a nonempty connected subset of R, C™(4; V) will denote the family of all m
times (m 2> 0) continuously differentiable vector-functions a : A — V. We put
la| = y/a-a, St =SUV) ={a € ¥ :la} = 1} and OP(4; SY) = {e e C™{(A: V)
la(t)] =1, Vt € A}. ‘ '
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- Definition 1. Letc € C™(A; S'),m 2 1anda € C™(A; V), a(t) L c(t)
(. e. a(t) -c(t) = 0), Vt € A. We'll say “a(t) passively follows c(t) for t € A7 iff

(1) v a(t) = A(t)e(t), Vte A4, where A A — R

Here and farther on ()* = d/dt. Since we suppose a(t) - c( ) = 0, it 1s obvious
"that (1) es equivalent to the following

(2) “ aft) = —(a(t) - é()e(t), Wt € A,

Definition 1 is a mathematical formalization of our intuitive idea a vector
a(t), a(t) - e(t) = 9 “to do no rotation around ¢ (t) when t € A”. This is so because
(1) exactly means that a(t) has no component in the plane perpendicular to ¢(t).

Proposition l.Let m2>1, c€ C™(A; S'). Then

a) Given any ty € & and ag €'V, ag L ¢(fo), there exists unique ¢ € C”‘(A V)
such that a(t) passively follows ¢(¢) for t € A and a(ty) = ay.

b)Ifa, be C™(A; V), A, p € R, »(t) = da(t)+pub(l), t € A, where a(t), b(t)
passively follow c(t) for t € A then »(t) passively follows ¢(t) for t € A. :

c) Ifa, be C™(A; V), alt), b(t) passively follow ¢(t) for t € A then af(t) -
b(t) = const for { € A. Under the same assumptions it follows |a(t)| = const,
[6(t)| = const, L(a(t), b()) = const, t € A.

Proof. a) The equation (2) about g = a(t) is equivalent to a linear system
of three scalar differential equations solved with respect to the derivatives. Ac-
cording to the differential equations theory, the equation (2) has unique solution
a € C™(L; V), with a(tg) = ag. It remains to be noted that (2) implies

(d/fdt)(a(t) oft)) = aft) (1) + alt) - &(0) = ~(a(t) - é0)elt)* +a(t) - é(t) = 0,

a(t) - clt) = a(ty) - clty) = ag-¢(tp) =0, VteA.

b) This assertion automatically follows fromi the linearity of the equation (2),
because a(t) L «(1). b(t) L ¢(t) implies #(t) L e(t), YVt € A.
c¢) It is suflicient to prove a(t) - b(t) = Sonst, t € A, We calculate

(d/dt)(a(t) - b(t)) = a(t) - b(t) + a(l) : b(t) =
~(a(t) - é(t))(c(t) - b(1)) *'(b( 1) “é(t))(a(t) - e(t)) =
—(a{t) -é(t)) -0 — (b(t)-e(t ) 0=0, VteA.

The proof of proposition 1 is completed. :

Any ordered triple R =(a,' b, ¢), such that {a, b, c} is an ortonormed base
in V" will'be called strongly oriented 3-reper in V. The family of all such R will be
denoted by V3. If a, b, c € C™(A; V) and R(t (a(t), b(t), c(t)) € V5, YVt € A
we will write R € C"™(A: V3).
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Definition2. Ifm 21, Re C™(A; Va), R(t) = (a(i) b(t), (), a(t), b(t)
passively follow c(t) for t € ¥ then we‘ll say “R is a passive C”*-motion of a reper
in Vg fort e A”.

Proposition2 Letm2>1, ¢ € C™A; SY), to € A, Ro=
(ao, bo, c(to)) € Va. 'I‘hen there exists an unique passive C™-motionR(t) € Vs, t €
A such that R(tp) =

Proof. Let a, b€ C'"(A V) a(t), b(t) passively follow ¢(t) for t € A, a(tp) =
a0, (to) = big. Accordmg to proposition la) such a and b exist and are unique. We
put R(t) = (a(t), b(t) ¢(t)), t € A and we note that according to proposition 1c)
it follows a(t) - b(t) = ag - bu = 0, |a(t)| = lag] = 1, |b(t)| = |bo] = 1, VYt € A. So
proposition 2 is proved

Proposition3. Letm2>1, c€ C'”‘(A SY), Ri(t) = (a;(2), bi(2), ci(t)),

t€ A, i=1, 2be passive C™-motions of repers Ry, Ry € Va, ¢1(t) = ca(t) = ¢(t),
te A. Then there exists an angle 4. = const, t € A (which is umquely determined
up to an addent 2iw, [ € Z) such that

3) , v ag(t) = cos yay (£) ¥ sinyby (8),
by(t) = — sin yay (&) + cos vby (1)

vt € A. Conversely, if Ry(t) = (a1(t), b1(t), ei(t)), t € A is a passive C™-motion
of areper Ry € V3, m 2 1, v = const, ¢2(t) = ¢1(t) = ¢(t), YVt € A and a2(t), ba(t)
are defined by (3) then the reper R2(t) = (a2(t), b2(t), ¢2(t)) will be a passive
C™-motion of a reper in V3 for t € A.

Proof. Obviously a continuous function ¥(t), t € A satisfying (3) exssts and
is uniquely determined up to an addent 2Iwx, [ € Z. According to proposition 1c)
we have cos ¥(t) = aa(t).- a1(t) = const, sin 7(t) = ay(t) - by(t) = const, t € A This
proves that y(t) =const, t € /_\. The converse assertion follows 1mmed1ately from
proposmon 1b).

§2. A VARIATIONAL CHARACTERIZATION OF THE PASSIVE MOTIONS

We denote B = {(A, u, v) € R® : A + p? + v? £ 1} and consider B as a
homogeneous rigid body with density 1. Let R(t) = (f(t) n(t), ¢(t), t € A,
be an arbitrary C™-motion of a reper R € V3, m = 1. With each such a reper
'R(t), t € &, we associate a motion of the rigid body B using the following formula

_ r(t; A, g, v) = ML) + pn(t) + vC(@), te€ A.'_
The kinetic energy of this motion of B is determined by the formula
Ta(t) = / / / (1 /2)r (6 A Wdxdudy, t€ A,
A24pu340251 ‘

Theoreinl Letm > 1, ¢ € C™(A; si), Rolt) = (aft), b(1), (1)), £ € A,
be a passive C™-motion of a reper R € V3. Let R(t) = (£(1), n(?), ¢(t)), t € A, be
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- an arbitrary C!-motion of a reper R € V3 having the same third vector {(t), t € &
Then for the corresponding kmetlc energies the following inequality

(4) Tr,(t) S Tr(t), Vie A, ;
holds. In (4) equality holds for each € A if and only if R(t), t €A, isa passxw
motion of a reper in V3 too.

Proof. Since Rp and R have one and the same third vector we can ﬁnd 1
contmuously differentiable, function 7(t), te A, for whlch

| (5) . E(t)‘ = cos y(t)a(t) + sin y(1)b(t),
n(t) = —siny(t)a(t) + cos 7(t)b(t)

holds Vt € A. Now we calculate

Tat) = [ [ [ (/2060 + wite) +v¢0) drds

= A2+“2.P‘,2§1 : -

= (1/AEW® + 7@ + (), VieA,

4-////\ dAdudy > 0, 4—const te A

Usmg (5) we find

where

E1) = F()it) + cos 7(15)6(0 + sin y(1)b(2),
W) = —4(1) f(t)—si’m(t)a(t)+ces7(t)l}(t), teA.

Since a(t) and b(t) passively follow ((t) we have a(t) L &(t), a(t) L n(2), (t) j
f(f) bt) L n(t) and consequentb !

(1) = 73(t) + (cosy()a(t) +siny(L)b(2))?,

e}

P = 720 + (= sin y(0)al) + cos 7DD,
EW+ilt) = 2770 +a* () +5°(t),
Tr(t) = AY(1) +Tro(t), VtEA. !

 This equality proves (4) and it is clear that we have equality in (4) if and only i
¥(t) =0, VIt € A, 1. e. iff ¥(t) =const, t € A. According to proposition 3, the las
means that R(1), t € A is a passive motion of a reper in V3. Thus Theorem 1 i
proved. ‘

e ot caea o
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§3. CURVATURE, TORSION AND PASSIVE VECTORS

Suppose in V is introduced an orientation (one of two possible) and let x
denote the corresponding vector product operation. Let r € C3(A; V) be regular,
i. e. #(t) x #(t) # 0, Vt € A. As it is common in differential geometry of curves
we put 7, v, B € CY(A; V), 7(t) = r-(t)/|F(t)], B(2) = (#(t) x #(t))/|F(t) x F(2)],
p(t) = B(t) x T(t), Vt € A. In such a case r is called regular curve in V; 7, v, 8 .
are called tangent, main normal, binormal unit vectors of r. The plane containing
the end of the vector r(¢) and collinear to the vectors 7(t), v(t) is called tangent
plane; the plane containing the end of the vector r(t) and collinear to the vectors

v(t), B(t) is called normal plane. " .

Let tg € A and R,(t) = (a(t), b(t), 7(t)) € Vs, t E A, be a passive motion
of a reper in V3, determined by R.(t0) = (¥(to), B(to), r(to)) According to
proposition 3 such a reper exists and is unique. By virtue of Theorem 1 this reper
has the property to rotate itself about 7(¢), ¢t € &, with a minimal kinetic energy.
We involve the angle v(¢), t € A, ¥ € C%(A; R) determined by ¥(to) = 0 and

(6) v(t) = cosy(t)a(t) + siny(t)b(t),
B(t) = -—siny(t)a(t)+ cos y(1)b(1), Vte 4.

Sincer € C3 it is easy to see that ¥ € C!(A; R). In an analogical way we introduce

a passive reper Rg(t) = (p(t), ¢(t), B(t)), t € &, Rp(to) =(7(to), ¥(to), B(to)),

and the correspondmg angle 8 € C1(4; R), 6(to) = 0 i

M ) = cosO(t)p(t) +sin0(t)a(t),
v(t) = -—sinf(t)p(t) + cosb(t)q(t), Vte A.

Now it is natural to give the following.
Definition 3. The angle 4(t), t € A, is called turning angle (reading |
from the moment ¢ = to ) of the normal plane. The angle 8(1), t € A, is called
turning angle (reading from the moment ¢ = ¢p) of the tangent plane.
Theorem 2. For each regular curve r € C3(A; V) the curvature k(t) and
the torsion o(t) can be expressed in the following way

11 k(t) = 0@ o(t) = YOOI, Ve A.
The following (Frenet’s) formulas |

(9) | #t) = 6w (),

(10) . - v(t) = =0(t)r(t) + 7 (1)A(2),

(11) B = ),

hold V2 € A. |
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* Proof. First we'll prove (9), (10), (11). From (7) and (6) it follows
fil) = (5( t)w(t) + cosB(t)p(t) + sin 6{(t)q(1),
B(t) = =%(t)w(t) — siny(t)a(t) + cos ¥(2)b(t).
Since r() = NOFO, () = | (O Bit) = WO O, WD) = 17 x H)|
T(t)-8(t) = (A@)r()+ )7 (1)) -p(t)( '(f)x.i"(t)) =0,Vi € A, and p(t) q(t) passivel
follow 3(t) fort € A it is mldent that ,
cos 8(t)p(t) + sin G(t)q t) = h(t)3(t) = (7(t) - B(t)),@(t) =1
Thus (9) is proved. By the same manner we have
—siny(t)a(t) + cos y()b(t) = g(t)7(t) = (B(t) - T(W))r(t) = (—=B(t)- #(1)7(t) =
and (11) is proved. Since v = ,L’3 x T we obtain
o) = B(t) x (1) + A1) x #(t) = ~HO(-A0) + 0(t)(~(t))
which proves (10). |
It is known from differential geometry [1, p. 44] that 7(t) - v(t) = Ir(t)lk(
and 3(1) v(t) = —o(t)|#(t)}, YVt € A. This, (9) and {11) prove (8). Theorem 2 i
proved. _ - ‘ '
- We would like to, mention that if { = s is natural parameter, i. e. if [?(t)| = 1
VYt € A then (8) has the very simple form i

(8) k(sy=0'(s), a(s) = 7(s), Vs€ A
§4. PASSIVE VECTORS AND THE S. KOWALEWSKI INTEGRAL

Let us consider the classical problem concerned the motion of a rigid bod,
having a fixed point O. Let R(t) = (&(t), n(t), (1)}, t € A, be a reper . immobill;
attached to the body and such that O&, Oy, O¢ are main inertial axes for the pom
O. Let A, B, (' be the corresponding inertial moments, and let,

P= "MJ(HslU)E( )+ﬂ.5»(’)71“) + agz3(t)C()) = —Mglk, .

k= "s](”f(”‘*"; (u(t) + azs()C(L),

kit) = 0, te A, m—l ’ 1

be the weight-force. The force P is applied at the mass center G of lhe body bein,
in consideration. Let us suppose that OG = £GE() +nan(t) + (e C(t), ng = (¢ = 0
€c = const, VI € A. As it is wellknown [2, p. 513], the Euler equation for thq
problem has the form

!
!

L=l A = (B = O, _
Buw; = (€= A)wiwe + Mg€gass,

Cw = (A= Bwewy — Mgécas, ;

azy = wcas: — wyass, 5

az» = weda3z — w(aa), }

. asz; = u‘é,,a;;l — weagzs. _ !
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Let us remember also the following identities

(13) ) = we(tn(t) = wyt)((t),
T)(t) —wg(i').‘;'(t) + W£(t)C(t),
() = wy(t)(t) —welt)n(r),

true fort € A.

According to Proposition 1c) for any vector b(t) = b1(2)€(t) + bo(t)r)(t), by, by
— scalars, which is in the plane Of7n and passively follows the vector ¢(¢) we have
|6(t)| = const, t € A, 1. e. b3(t) + b3(t) = const, t € A. It becomes clear that if b,
and b, are polynomlals of the unknown wg, wy,, ..., as1, aza, ... then I = b3+ b3
will be a first integral of system (12). Following the S. Kowalewski idea let us
involve the isomorphism () : C — O€&n, (A + pi) = Af + un. In the plane O¢n we
have the vectors wey = wef+wyn and a = az1é+azan. It is clear that a suitable way
to find a vector b with coefficients b,; b2 being polynomials of we, w,, az;, a2 is to
put b = (b1 +bat), by +bai = f(2, m), z = wg +w,,i', m = as; + a32t, where f(z, m)
is a polynomial of the complex variables z, m. We could begin with f =m, f = 2,
and'so on. Very soon we come to the possibility f(z, m) = 22 — m.

Theorem 3. The vector b = (z® —m), where z = wg +wyi, m = ag; +as2i,
passively follows ¢ when t € A, for we(to), wp(to), w¢(to), ass(lo) — arbitrary
initial values, if and only if A = B = 2C and Mgés = C

Proof. We have 22 —m = wg - w;;’ — a31 + (2wewy — aaa)i, b= 0,8 + ban,

(14) bl = w? = wg = asi, 62_ = 2w£w,, — asa.

In accordance with Definition 1, b will follow passively if and only if b(t) -E(t) &=
and b(t) - n(t) = 0, VYt € A. Using (13) we obtain

() = b)) + Ba(t)n(e) + ba(OEW) + ba(e)i(d),
B(t) - €(t) = by (t) = ba(t)we(t),

bt) -ty = ba(t) + by (t)we(2)
for each t € A. According to (14) we have

‘b[ = bgwc = 2&)&@5 s 26:),7(4:),7 = d31 o (2&)5(.0,7 - a3g)w<,

\ b byw; = 2wewy + 2wew, — a3z + (w§‘+ w,"; —a3 )uw.

Now from (12) follows

— B-C C-A
bl—_bgwc;Z(—A——l— B )wfuﬂwc .p( 2Mg§§-+l)w,,033,

: Bedt £ :
bg-.}-blw(;:(QT—l) ,, ¢+(2-T+l)w§w,,
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+ (2Mg€-£ - 1) wegass.
o B )
Consequently 51 — bow¢ = 0 and 62 + biw¢ =.0, Yt € A and for arbitrary we, wy,
w¢, aas if and only if 2M g€ = B and
B-C C - A B-C C-A

Solvmg the last system we find the umque pOSSlblllty A=B=2C = 2Mgég;.
With this Theorem 3 is proved.

If we change the time t by 7 = At, where A = (M g€g/C)*/?then in (12) on the
place of Mgéc will appear C. In such a way we see that the condition Mgfg =
is not essential.

Corollary Ifnpeg=(c=0 and the change P ok Ai A (Mgég/C)V? is
already made then

(UE w = 031) + (waw,, = 03'))

will be a first integral of the system (12) if and only if A = B = 2C.

After all above we have seen how the S. Kowalewski integral could be derived
constructing an appropriate passive vector. Something more — the conditions
A = B = 2C appear as some necessary conditions for realizing such a construction.
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