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i Geotyl Chobtmou, Ivan Chob&nou LAGMNGE OR EULER? PART THREE: THE
FUTURE -

This paper is the third part of a series of articles on the Eulerian and Lagrangean
dynamical traditions, the first two parts (1, 2} of which have been published in this Annual.
It contains some conceptions on the future development of the investigations on the sta-
- bilization of the logical foundations of analytical mechanics, as the authors see it; in this
connection Hilbert’s sixth problem on the axiomatic consolidation of these foundations is,
naturally, inevitable. After an analysis of the present state of affairs concerning the basic
 mechanical entities, as for instance the gepmetrical background of analytical mechanics,
. the theory of arrows as the genuine mathematical interpretation of the force concept, the
motions in standard vector spaces, the rigid body concept, etc., corresponding definitions
- are proposed together with the main corollaries they imply. The article makes on a large
scale use of resuits obtained in previous publications of the authors.

~
» -
]

This paper is the third and final part of a series of articles published in this
Annual [1, 2] and dealing with the Lagrangean and Eulerian dynamital traditions.
The first part gives a brief historical account gf the birth and rise of these traditions,
and the second treats the present state of affairs in analytical dynamics, in so far
as it may be obsérved in the cprrent mechanical literary sources, as well as the
mt,erplay of the Eulerian and Lagrangean dynamical traditions. This third part is
dedicated to the-fyture developments in analytical mechanics, connected with the
- golution of Hilbert’s sixth problem. as the authors see coming events in it, relying
‘on their own professional experience in the course of many decades and scientific
researcliéa in the domain, concerning mainly the axiomatic consolidation of the
logical foundations of analytical dynamics and the realization of Hilbert’s directive
.concerning the axiomatic codstruction of rational mechanics. '

" As’it is well-known, in his famous Vortrag [3), reported béfore the Second
Mathematical Congress in Paris 1900 Hilbert proposed a list of 23 mathematical
problems set for this century to solve. This list includes, as problem number six,
entitled Mathematische Behandlung der A:nome der Physik, the forming of a system
of axioms for those: theories of physical genesis, mechanics jn the first place, for

. Which the réle of mathematics has already become a decisive one:

-“Durch die Untersuchungen iiber die Grundlagen der Geometrie wird uns die
_Aufgabe nahe gelegt, nach diesem Vorbilde diejenigen physikalischen Disziplinen
aziomatisch ru behandeln, in denen schon heute die. Mathematik eine dervorragende
Rolle spicli: dies sind ‘in erster Linie die Wabhrscheinlichkeitsrechnung wnd die

'Mechamk' [4, Bd. 3, S. 300).

After this exordium Hilbert outlined the contours of a program towards the
solution of his ‘sixth problem containing some standpoints and recommendations
exposed in the typical for him' opfimistic tones. The ensuing development in rational
mechamcs, however, dashed Hilbert’s hopes, and in the course of more than half
- & century after the announcemert of his Mathematische Probleme the execution
of his program seemed to be pogtponed ad Calendas Graecas. As Truesdell has
~commented apropos of Hilbert’s sixth problem, “this problem, like all those he
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proposed concernming the relation between. mathematics and ‘physical .éxperience,
has been neglected by the mathematicians. .. Only two significant atternpts to solve
the part of Hilbert’s sixth problem that cencerns mechanics have been published'
that of Hamel ... and that of Noll...” [5,p. 336]. _
As regards Ha.mel Truesdell is referrmg to his article [6], ensued by [7]. None
of these deserves the qualification “significant attempt”: apropos of (6] see the
critical remarks in [8]; apropos of (7], see the critical analysis in [9] A8 Tegards
Noll, Truesdell is referring to his articles [10 11]. ,

Noll's article [10] is the first actually serious publlc'at.ion in connection with the
Hilbert's sixth problem. It begins with some not especially flattering constatations
apropos of the status quo of the logical foundations of classical mechanics:- '

“It is & widespread belief even today that classical mechanics is a dead subject, .
that its foundations were made clear long ago, and that all that remained to be.done
is to solve special problems. This is.not so. It i is true that mechanics of systems
‘of a finite pumber of mass points has been on a sufficiently rigorous basis sinee

-Newton. Many textbooks on theoretical meghanics dismiss continuous bodies with
the remark that they can be regarded as a limiting case of a particle system with
an increasing number of particles. They cannot. ‘The erroneous belief that they
can had the unfortunate effect that no serious attempt was made for a long period
to put ¢lassical continuum mechanics on a rigorons axiomatic basis” (p. 266).

Noll does nat mention it explicitly, but essentially his criticism is dirécted
against the Lagrangean dynamical tradition. Indeed/ this pamely tradition is that
regards the rigid bodies’ as composed by a great number of mass-points [2]." Let
us remember Lagrange's own standpoint on this question cited in the second part
of this series; “Je considére les corps proposés comme I’assemblage d’une infinité
de corpuscules ot poiiits massifs unis ensemble de maniére qu'’il gardent toajours
nécéssairement entre eux les mémes distances.” Let us remember also the attitudes
towards rigid bodies of the authors of the treatises [12] and [13] analysed in [2]. The
first of them carries things'with a high hand. He rides roughshod over any manners
and customs of mathematical decency. Employmg in 1966 arguments which hardly
would convince Euler in 1765, He states:

“In the classical dvnamics we are concerned with systems havmg a ﬁmt.e num-
ber of degrees of freedom. and it is with such systems we shall be mainly concerned
in- this book. Nevertheless it is*natural to suppose, on physical grounds, that the
fundamental equation [i.¢. D*Alembert-Lagrange’s principle, derived by the author
of [12] for systems of finite number of mas-points only} will also hofd for continuous
systems, where the number of degrees is infinite — for example systemns involving
fluids in motion and vibrating strings. In such problems the summation occunng
in the fundamental equation will be. replaced by integration” (p. 37):

: We shall not comnient these profound thoughts recorded by an authot tak-
ing infinitely many degrees of freedom with mechanics. We shall only note that
such a behavidur is completely within the frames of traditional demeanour of any
Lagrangeanist all over the world. ' ‘o

Coming back to-Hilbert’s sixthi problem we must pa.ss a verdict that is ﬁna]
and there is no appeal: the Largrangean dynamical tradition is the only culprit for

;-
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‘its neglecting on the part of the mathematicians. The argumcnts in favour of thl.s“
sentence are abundantly closely’ discussed in [1, 2} in order to expose them here;
again. If we should formulate in a few wotds the main reasons for this state oﬁ
affairs, we would adduce Truesdell’s appraisal apropob of Lagrange 8 Méchamqu
Analitigue: “... no explanation of concepts ... no attempt to justify any limit.
process by rigorous mathematjces” [5, p. 173]. These characteristic features of the:
Lagrangean dynamical tradition overlived its originator in the course ‘of two clear.
centuriés to become noWadays its most. repulsive distinguishing marks Typical forl
Lagrangean mechanics are:

First, a complete lack of genuine mathematlcal deffinitions.

Second, a complete disregard. of strict mathematica) proofs. v
; In result, mechanical treatises are printed in' Twentieth Century in whlch the
logical spmt of the era before the French Revolution has survived.

" As the case stands, which forming-up place must be chaosen for the onrush
against the positions of Hilbert’s sixth problem? Where should one start from in
order to bridge over the difficulties it conceals, ta break the neck of the task? ¢

Under the circumstances, the sole answer of these questions is: ab ovo Ledae.
But what does ab ovo in analytical mechanics mean?

Let us take as a model some other mathematical theories which are already
conquered territories for the axiomatic approach, such as geometry or arithmetic,
foy instance. What does ab ovo in these theories mean?

 Space! The first and greatest concern of a mathematical theory in the pro-
cess of an axiomatic consolidation of its logical basement is to construct the most
‘natural for this science ‘medium, .in which the phenomena characteristic for the
mathematical theory in question: could proceed. In most cases, though not always,
‘this medium is called space, or something of-the kind, in order to evoke the mental
.picture of a multitude of certain objects: domain, field, line, plane, graph, tree,
body; ring, group, structure, neighbourhood, etc. (One speaks, for instance, of the
line 'of real numbers, of Gauss' plane or plane of camplex numbers, of the body of
-quatqrmons. of the ring of integrals, and 9o on. No wonder that the term space, as
well as the term point as a general denomination for the elements of certain spaces,
arg overburdened with usage, and tliey démand various adjectives with a view to
thejr specification.)- The elements of the specific medium for a given mathematical
theory are, as the saying is, the bricks or the steties the edifice of this theory is
constructed from. For synthetic geometry, for instance, the genuine medium is the
Euclideai space; for arithmetic, depending on circumstances, it is the system of
natural numbers, or the ring of inegers. or the fields of- rational, real, or complex
numbers, etc. Syum guigue.

~ For analytical mechanics the nahve medium — as ait is the native element for
Jbirds, and water far fishes — is the real standard vector space. It is the mathemat-
ical world where the mechanicad entities are borne. the place where their growth
and florescence set in,.the stage where. the mechianical-dramna is running. As well
‘as the real numbers are the building stones for the classical real analysis, and the
complex numbets are the bricks for the classical complex analysis, the real standard
-vectors provide ian_a.lyt.ical mechanics with the most natural, the most convenient,
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and the most resistent building materlal

Between analysis and mechanics. however, there is a difference, though t.ech-
pical. rther than on principle. \While in analysis the terrajn, the building site is
cleared away and organized long ago. in analytncal mechamcs unti very recently it.
was left unkempt and overgrown.

Extra special cares for the GruraJlager: der Analysis were taken in 1930 by
Edmund Landau. who. for the first time in the mathematical literature, gave a
consistent, sufficiently complete, and systematical up to pedant.ry, exposition [14] of
arithmetic of natural. whole. rauonal real, aud complex numbers. It is by no means
absence of mind that this aritlimetical treatise is entitled “Foundations of Analysis”:
never before Landau. in all the mathematical literature, classical analys:s had at
its disposal its natural medium. its bvnuine space -— the fields of real‘and complex
numbers respectively. constructed in'a mathematically itreproachable way.

- (Entre parenthéses: “irreproachable™ is, in mathematics at least, a Inst.orlcal
category. ‘Landau’s exposition bears the marks of his epoch and the tokens of
pioneerdom. 11 will not be useless to discuss this question somewhat. closer.

Landau skitns the cream off age-old scientific toils. In [14] the roads of great
mathematicians meet: it is the juncture of first-rate mathematical ideas

As regards the natural numbers. theugh familiar to mankind frotn Limes memo-
rial, they had 10 wait till the sevenicenth century when Pascal forimulated one of .
their_niost .inpoptant inathematical characteristics, the mathematical induction. ‘
At first this extremely nseful property of the system N of all natural numbers has -
been applied for the goals of arithmetical proofs only. Grassiann [15] has been the
first to use it for clvhnumr.nl purposes: the suin @ + b of the natural numbers a and
b he defined inductively by the two-link- clmm a+l=dand a+t' = (a+b), and
the product ab by al'= a and ab’ = ab+a, u ul« noling the successor, - of the natural
numbet. n. ;

As regurds the whole, rational. and real numhcrs Landau used an appl'oachl
atready classical for mathematies. necording "to which new mathematical object
may be defined as equivalence classes™ i preliminarily appropﬂat.ely defined seta
of well-known mathematical objects. 1f for instace (a, b), (¢, d):€ ‘N2 and by
definition (a. b) ~ (c. d) il u o d=c+4 b, then ~ is an equwaleuco relation in N? -
and any equnnlc'urt class in V2. generated by it, is by definition a whole, number.
Similarly 'is proceeded ‘in the: definitions of rat lonat and real numisers. -

As regards the real muubwrs, Landan disposed of antor’s definition fnom
1872, according to which a feal mbubpr. is an equivalenice class in the set C of -all
Cantorian sequences {r,; )=, ol-rational numbers g, (v=1.2..) ‘At that, the
sequelice {.r,.}y =y is by definition Cantorian iff for any rational £:> 0 there exists:
such a-natural numbers pe that ne > pp andon’ > pe mlply e = .l:,,l < £ As regards
the equivalence relation ~ in € 1. it is defined i in the folloum;, manner: by definition
{215y ~ {w )&, iff for any mutional = > 0 there exists such a natural number Qs
lh.u n >y lmpl}es len = ual< 2. N | .

As regards the comiplex numbers Landau dlsposed of llamllt.on 8 deﬁnmon
Accordinrg to Hailton, a complex number is an element of the Larl.eman square
R? of the ﬁeld R of all real numbers. supplied with operatlons addition and multl- ;
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plication definéd by

(1) ? (zl-i yl) + (22’ yﬁ) '__'(zl + ziv /3 +y2)
and '

2) (21, 1)(22) 2) = (2122 — vie; Z2ay2 + 2241)
respectively:.

* There is much more, yet.

As regards .the axiomatization principle in general, Landa.u disposed with
Hilbert’s scheme [16)-from 1899 and the title of Landau’s book [14] imitates the
title of Hilbert’s. .~

'As regards the axiomatization pnncnp]e in arithmetic of natural numbers in
patricalar, Landau disposed with Peano’s scheme [17] from 1889.

‘In such a manner, the book [14] of Landau is of a compilation character. And
yet, for three at least reasons this is a remarkable work that left behind lt.sell' deep
traces in modern mathematics.

- First, Landau has realized for the first txme in, anthmencal literature that
: Gra.ssmann s definition of sum and product of natural numbers requires uncondi-
' tlonally proofs t.hat. such things (two valued furictions, as a matt.er of fact) really
'exlst

" Second, as it has been ‘already underlmed Landau's Grundlagcu dcr Analysis
contains the first systemétical exposition of arithmetic of the mentioned number
syst,ems For this reason it served the purposes of the populaﬂzauon of modern
. views in the domain. '

Last but pot least, Landau has realized quite cleu'ly that claasncal analysis,
cdmplex as well as real, is unthinkable, in up-t,o-date sense of the word, before
4 mathernatically ‘perfect arithmetic' of the fields of complex and real numbers
respectively is pérfurmed :

"~ As regards some “specks”of Landaus expomtlon, we shall pause on one only
 shorteoming. The operation ‘addition in' N is defined in [14] before the order rela-
tion. “This approach is, however, against the mathematical nature of these arith-
metical phenomena: historically counting goes prior to computing; therefore it is
_uther desirable that mathematically order precedes addition. An attempt to re-
store the natural order of things has been ‘undertaken in'the book [18], see’ also
' [19},although the way chosen.in [18] is, obviously, net the shortest poeslble We
close the brackets.) ~

" We dwelt so thdrough!y on these questions, since there is a complete a.nalogy
between classical analysis and analytical mechanics, ‘on the one hand, and between
the field of real numbers and the realt standard vector space, on the other hand.

Vectors are discovered out .and away later tharr numbers, no mater whether
natural; whole, rational, real, or complex. In point of fact, vectors are ‘coevals
w:th quat.emlons or hypercomplex numbers. I'\nrthermore, not only vectors and
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quat.ermons are the same age, but for a long period vector and qua,termon calculus
have been as inseparable as Siamese twins. - _

In the same year, 1844, when Grassmann published the first version [20] of his
Ausdehnungslehre, Hamilton published his first announcement concerning quater-
nions, shortly afterwards ensued by a series [21] of other articles on the same topic.
Since the following developments are of great importance with an eye to the bétter
understandmg of the curgent state of aflairs of vector and*quaternion calculus it
will not be otiose to discuss this matter in some details.

The necessity of a geometrical calculus, alias of a mathematical method for ex-,
presslng quantitatively geometrical phenomena, has been realized already by Leib-
niz. ln a letter to Huygeus dated September 8, 1679, he states:

. je ne suit pas encor content de |'Algebre, en ce qu'elle ne donne ny les
plus cour_t& voyes, ny les plus belles constructions de Geometrie. C’est pourquoy
lorsqu’il s’agit de cela, je croy qu’il nous faut encor une autre analyse proprement
geomet.rique ou lineaira, qui nous exprime directement situm, comme 1'Algebre
exprime magnitudinem.” _ ' ,

Enclosed herewith Leibniz dlspatchcd to lluygens an “Essay”, in which he
explained somewhat closser his main ideas apropos of the “geometrical symbolical
language® (*nouvelle characteristique™). Huygens, whose answer dated November
20, 1679, is hardly encouraging, obviously could not realize that one of the most
genial scientific. foresights was concealed in Leibniz's conception. And no wonder:
Leibniz's pragram towards the creation of a “geometrical”or “lineat” calculus has
been accomphshed more or less satisfactory not until the end of the last century
with the invention of vector algebra and. vector analysis.

(Some historians of mathematics interpret Leibniz’s phrase “une autre anal-
yse proprejnent geometrique ou lineaire, qui nous exprime directement situn” as
a foreboding of topology. We thing that such a standpoint is rather far-fetched
leastwise on account of the adjective “lineaire” this phrase includes.)

In order to stimulate investigations connected with the “analyse geometnque
ou lineaire”: of Leibniz, the German scientific society Firstlich Jablonowski’sche
Gescllschaft announced a competition the aims which were “den von Leibniz er-
fundenen geometrischen Calcul wiederherauszustellen, oder einen ihm ahnlichen .
aufeustellen”. Grassmann carried off the palm. lis prize-winning work [22] has
been puhh;hed in 1847 with a commentar) by Mobius. This is not, by chance.
Nearly twenty years before Grassmann's Ausdehnungslehre, Mdbius published a.
treatise (23] on the “barycentrical calculus”. invented by him, which is regarded as
a predecessor of Grassmanu’ s geometrical analysis™: one is left with the i impression
that some kind of likeness in the titles of [20] and [23] is hardly a coincidence.

.~ During 1 the following cecade in the Journal fir die reine und angewandte Math-
emahl sé\eral arnclea of Grassmann were publisbed where various applications of
his method are made on different problems of geometry. His main work [20] , how-
ever. remained for a long period obscure for the general mathematical public and |
did not sumulate investigations of other authors. Several reasons led to this state
of affairs:

“Ein Zenalter \1elches die i uuagmaren GroB-en noch als unmoghch ansah, und

»
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die “nichteuklidische” Geometrie mit Kopfschiitteln betrachtete, konnte natiirli
‘'sich an den n Dimensionen der Ausdehnungslehre nur wenig Geschmack finden
und noch weniger vielleicht an den ungewohnten Operationen mit ebenso unge-
wohnten Objecten. Dazu kam wohl auch der Umstand, daB die matbematlschem
Krifte der letzten Jahrzehnte vollauf beschaftigt waren mit der Ausbildung der
‘Theorien eines Jacobi, Dirichlet, Steiner, Mdbius, Plicker, Hesse und Anderer, diei
alle einen Kreis eifriger Schiiler um sich sammelten, wahrend dem Verfasser der
Ausdehnungslehre das Geschmack eine gleiche Wirksamkeit versagt hatte. Endlich:
aber darf nicht unberiicksichtigt bleiben, daB das Werk in seiner mehr philosophi-:
schen als mathematischen Form, ungewdhnlichen Inhalt in ungewohnlicher Form'
‘bietend, 'dem Studium groBen Schwierigkeiten -entgegensetzte, deren Bewaltigung
nicht einmal ein sehr lockendes Ziel verhieB. Denn die Ideenkreise des Buches lagen
von denen der iibrigen gleichzeitigen Bestrebungen in der Mathematik weit ent-
fernt,und die raumlichen Anwendungen kamen meist nur der Elementar-Geometrie
zu Gute, welche damals noch unerschiittert auf der Euklldlschen Basis thronte”
24
4 The completely rehashed new edition [25] of [20) was printed in 1862.. In the
course of time the ideas and the technics of the geometrical analysis won it more
and more followers and became generally acknowledged towards the end of the
last century. About that time the complete works [26] of Grassmann have been
published.
_' Meanwhile on the Bntlsll Isles another deVeIopment took place. In the course
of two clear decades Ilamilton publlshed an immense series of articles [27 - 38] on
‘various applications of quaternions, as well as the two books [39 40] . By and by
'the quaternions became Hamilton's fixed-idea. The situation is described rather
vwldly by Felix Kleid in his Lectures on the developement of : t‘lathematxcs in the
last century [41]): : (

“Sehr bald wurden die Quat.ermOnen in Dublin -ein alla andere iiberragender
Gegenstand des mathematischen Interesses, ja sogar ein officielles ‘Examenfach,
ohne dessen Kenntniss kein A'bsolvierung'des Colleges mehr denkbar war. Hamilton
selbst gestaltete sie fiir sich zu einer' Art orthodoxaler Lehre des mathematischen
Credo, in die er alle seine geomet.nschen und sonstigen Interessen hineinzwang, je
mehr ‘sich-gegen Ende. seines Lebens sein Geiét vereinseitigte und unter den Folgen
des' Alkohols vereindiisterte. ~

‘Wie ich schon andeutete, schloss sich an Hamllton eine Schule an, die lhren
Melster -an Starrhelt und Intoleranz noch iiberbot. Sie war gecignet, Gegen-
stromungen hervorzurufen, und so wurden denn die Quaternionen z. B. in Deutsch-
land von der Mekrzahl der Mathematlker llartnackng abgelehnt, bis sie auf dem
Umweg iiber die Physik .in Form der vor allem in der Dynamik un:qntbellrllchcn
Vektoranalysns dennoch emdrangen ‘Sollen wir heute ein Urteil iiber sie geben, so
"ware etwa zu sagen: Die Quaternionen'sind gut und brauchbar-an ihrem Platze;
sie relchen aber in ihrer Buleutung an die gew ohnhchen komplexen Zahlen nicht
heran

* The quatermous (hypercomplet numbers wuln three Inaginary units) are a
natural generahzatlon of the (omplm: mumber concept, whose multiplication is, in
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general non-commutative. Espectally remarkable is t.helr connection with the ro-
tations in the three-dimensional Euclidean space [42, 43). Attaching ourselves to
Klein’s estimation apropos of the significance of quaternions, we should say that,-
while the stardard vectors are the most natural means for the algebraic repre-
sentation of translations in-the Euclidean space, the quaternions aré the genuine
mathematical instrument for the algebraic expression of the rotations in the latter.

Its préégnt aspects the vector calculus is obliged to the American theoretical
physicist Gibbs. As he himself notes, his interest for vector analysis has arisen when
he read the book [44] of Maxwell, in which the methdd of quaternions is applied to
electrodynamical and magnetic investigations. Gibbs soon convinced himself that
the quaternions are unsuitable to this end and began developing independently the
modern apparatus of vector algebra and vector analysis. Meanwhile he provided -
himself with the books [22, 25] of Griassmann, but they exerted a slight influence
on his occupations. Gibbs wrote the text-book [45]) on vector calculus designed for-
students in physics. Later he published several articles [46 51} on vector calculus .
meant to popularize the new method. An important role for the confirmation of
the vector calculus have played the books [52] of Peano.and (53] of Hyde.

In its age of puberty the vector calculus represented a peculiar symbiosis of
geometry and algebra — synthetic geometry at that. The vectors weré initially
introduced as “directed segments™- and even “directed quantities”, with a strong
intuitional appeal to physical experience. Later the vectors were interpreted by
means of ordered triplets (z, y, =) of real numbers z, y, and z. This atmosphere
gave good grounds for the following sarcastic remark of R. von Mises: .

“Wenn man in den gebriulichen Darstcllungen der Vektorrechnung an ihrer
Spitze die Erklarung findet, der Vektor sei cine “gerichtete Grosse”, so muB jeder
Verniinftige erkennen, daB damit sovicl wic nichts gesagt ist. Die andere Definition,
das man ebenso hiufig begeguet, der Vektor sei eine “Zahlenteipel”, ist offenbar zu
weit, denn die Zahl der. Miuncr, Frauen und Kinder an einem Ort ist gewiss kein
Vektor” [%4, S. 155]. - ' -

This has beeh written ‘in 1924. The force of the irony in these words 18 80
overwhelming that “jeder Ve rnunﬂ.’lge is inclined to think that, after they were
published. no author of a text-book on vector calculus would take the liberty to
repeat the Faults Mises is laughing at. Alas, to all appearances, such authors:do not
read the Zedtschrift fir angewandle Mathematik und Mechanik. We are miore than .
sure  we are utterly certain — that most of the text-books on vector calculus
or on theoretical. mechanics (including an introductory chapter on veetor calculus),
printed in this very day. begin with an inevitable eniginatic “definition” of the sort
of “a vector is a directed quantity”™. ‘fhe excuse that other authors are doing jvllst. '
the same is ho exculpation - “it is an accusation: assinus assinsm frical. - . v

Making thelong story short, we find it useful to give a first-hand account of a
case in which the older of the authors of thus article has been a dramatic persona..
For the sake of brevity let us'call him Ivan. When he was an assistant, the head of
the chair of analytical mechanics in the Faculty of Mathematics and Physics of th <
University of Sofia has been Professor Bingovest Dolaptchiev, composing at this
time his- text-book [55] on the subject: As the foreword to the first book of [55]

~
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displays. Ivan took part in the compilation of that part of the {ext-book which
entitled Elements of vector calculus. We lay emphasis on this fact, since furth
down Some criticism is made on the manner the vectors are introduced in [55], ai
it is most important Lo be as clear as day that this criticism s, as a matter of fa:
a self-criticism.

As the foreword to [55] testifies, “as a result of discussions:... an axiomal
exposition of vector algebra has been adapted in this book”. Not entering in
details, let us remark that this exposition has the following distinguishing featur

First, it has been realized that the mathematical nature of the vector concept
‘purely algetraic, though the heuristic genesis of this notion is purely geometric. (.
_that, saying vectors, we bear in mind here standard vectors; the algebraic nature
‘other kinds of vectors, as for instance, linear, Euchdean Hermitean etc. has be
- well-known long ago.)

Second, it has been understood that: the most natural scheme according
which the standard vectors must be introduced has to follow the specification chai
groups — linear gpaces — Ewuclidean spaces — standard vector space (thouy;
the last term has not been used in the text-book [55]).

Third, it has been perceived that the specification of an Euclidean space
down to & standard vector space V must be accomplished by means of a fowr
" operation (vector multlphcatlon) in E, introduced under the condmon that it mu
satxsfy a certain number of gpecific for this operation axioms.

‘These specific axioms according to [53, p. 26].are:
Axl-lDabeVlmplyaxb_—(bxa) ,

Ax'15D. A€ R;a, beV imply (Aa) x b= - Md x b).

Ax16 D.a, b, c€V.imply (a+b)xe=axc+bxec.

Ax17D.a, b, c€eVimplyaxb-c=a-bxe.

Ax 18 D. a, b, c € V imply (a'x b) x ¢ = (ae)b— (be)a.

Mdreover, it is supposed a.priori that the Euclidean space .E is n-dlmens:om
n being indeterminate for the present.

Now, the greatest defect in the axiomatic expoemon of the vector algebra in [5
consists in the fact that the conditions Ax 14 D — Ax 16 D' are needless. In oth
‘words, they' are superfluous, redundant, surplus, otiose, unnecessary, expendat
L= \n the capacity of axloms we mean . ¢ .

" Why?

Because they are theorems- They are provable properties of the vector mul
plication, denionstrable on the basis of-the remaining adopted axioms.

- Why did ‘tlie authors of the vector algebra in [55] commit thls error —
‘include theorems in the capacity of axioms?

. Very simply: they were not aware of the fact. They simply dld not know th

"Ax 14 D - Ax 16 D'are theorems rath®®than axioms. Even today the number
the mathematicians who know this [act is mlcroscoplcally small. -Nemo mortalu
omnidus horis sdpil.

"'t Twenty years had to pass before l.he truth emerged For the first time the pro
of Ax 14 D — Ax 16 D was givenin the article [56] containing at the same tin
the most economical system ol' axioms for real standard vectors hitherto know
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Furthermore, it tumed out thm. this momaucal deﬁnmon woth in much more
general mathernatical situations than the real case represents. In other words,
the field R of all real pumbers may be replaced by an arbitrary ordered ﬁeld F.
and the corresponding axioms, mutatis mutandw of course, still imply a consmt.ent
mathematical theory.

In order to make things crystal-clear we shall reproduce the correspondmg
axiomatical definition at full length.

A standard vcctor space over an ordered ﬁcld F is called any ‘set Vp, for which

mappings

(3) T m :Vg—pr

(eddition in VF),

(4) . ma:FxVp—Vp
(multiplication of the elements of F with the elements c‘)f Vr),
(5) - ms:'?}—»F

(scal;r maltiplication of the elements of Vr), and

© mVE— Ve

(vector multcphcahon in Vr) are defined, so tha.t provided by deﬁmt.lon, |
(7) | “a+b=mi((a, b))

(sm;z of a and B),

(8) 1. aa=ma(a, a))

(product of a and a), | '

(9) ab = ms((a, b))

(scala'r product of a and b);

(10) a x b=mu((a, b))

(vector produd of @ and b) and

(11) ' a-b=a+(-b) i

s

(difference of @ and b) the followi ing condmons are satlsﬁed
Ax 1 F.a. b. c€ V¥ imply (a+b)+c=a+(b+c).
Ax 2 F. There exists o € Vr with: @ € Vp implies a+ 0 =a. .
Ax 3 F. a € VF implies} there exists —a € Vp with a + (—a) = 0.7
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Ax 4 F. a € Vp implies: la = a.
Ax 5F. )\, g€ F,a € Vg imply (Ap)a = Mpa).
Ax 6 F. )\ p€F,a€Vpimply (A+p)a= e+ pa.
Ax TF. A€ F;a, b€ Vg imply AMa+b) = da + Ab.
Ax 8 F. a, b € Vp imply ab = ba.
Ax 9 F. ) € F;a, be Vrpimply (Aa)b= A(ab)
Ax 10 F. a, b, c € Vr imply (a+b)c-ac+bc
Ax 11 F. a € Vr implies aa 2 0.
Ax 12 F. a € Vp, aa =0 imply a = o.
Ax 13 F.a, b,ceVpimplyaxb-c=a-bxec.
Ax 14 F. a, b, c € Vp imply (a x b) x ¢ = (ac)b — (bc)a.
Ax 15 F. There exist a, b € Vp with d x b # o.
The elements of Vr are called F-standard vectors. The conditions Ax 1 F —
Ax 15 F are called azioms of a standard vector space over F. The symbols 0 (Ax 11
F, Ax 12 F) and 1 (Ax 4 F) denote the zero and the unit elements of F respectively.
The elements o (Ax 2 F, Ax 3 F, Ax 12 F, Ax 15 F) and —a (Ax 3 F) of Vp are
called the zero vector and the opposite vector of a respectively. The scalar product
aa is denoted, for the sake of brevity, by a? and is called -scalar square of a.
The groups of axioms Ax 1 F — Ax 3 F, Ax 1 F — Ax 7F,and Ax1F
- — Ax 12 F display that any standard vector space over an ordered field F is a
- group, a linear space over F, and an Fucledean space over F respectlvely Hence
the following proposition holds good. :
Pr1F.a beVpimplya+b=>b+a.
The following propositions are also proved [56]:
Pr 2 F.a, b€ Vp imply a x.b=—(b x a).
Pr3 F. A€ F;a, be Vpimply (Aa) xb = A(a x b).
Pr4F.a, beVpimply(a+b)xc=axc+bxe.
(Let us note that Pr 2 F — Pr 4 F are analogues of Ax 14 D — Ax 16 D from {55]
quoted above.) : ‘
By definition V = Vp is called a real standard vectoil space, and its elements
are called real standard vectors. ' :
The following propositions hold:
Pr 5 F. The system of axioms Ax 1 F — Ax 15 F is consistent.
Pr 6 F. The system of axioms Ax 1 F — Ax 15 F is categorical.
Pr 7 F. Any standard vector space over an ordered field F' is a 3- dlmensmnal
Euclidean space .over F.
Pr 5 F is proved by the aid of a model of V¢ constructed ad hoc. It is proposed
by-the Cartesian cube F* of F supplied with the following operations (correspond-
ing to (3) — (6) respectively)

(12) i (1:11 T2, I3)+ (yl: Yo, 3}3) = (1:1 +y1: Za +y21 ‘373+y3),

(13) ‘ ./\(17‘1, Ta, 2}3) = (AQ}I, 4\71?2, ,\33), ' ) ..'
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3
(1:4) (21, 22, 23)(y1s Yo, ¥a) = ) T,

v=1

(15) dx1. x2. x3) X (Y1, y2. y3) = (r2ys — Tayz, T3y — Z1Y3, T1Y2 — T241)

for any A € F and (2, z2, r3), (y1. y2, y3) € FS. Now Ax 1.F — Ax 15 F are
verified for the operations (12) — (15). .

In the general case of any ordered field F the F- standard vectors are deprived
of modules. since the module of a € Vp'is, by definition, the element VaZ of F,
and in the general case such an element does not necessa,riiy exist. “This flaw is
corrigible. if one supposes that F is a Pythagorean field. ‘An ordered ﬁeld P is
called so iff for any a € P with a 2 2 0 there exists 3 € P with 8 2 0 and 2 = a.
This 3 is called the square rootof o. If Pis a P)thagoman field and a € V, , then
the module of @ 1s denoted by « or |a|. :

The question now quite naturally arises whether the above definition of stan--
dard vector spaces over ordered fields tolerates a complex generalization? As it is
well-known, the system of axioms Ax | F — Ax 12 F (with I? instead of F') permits
such a gene ralization. and the result is called an ][ﬂnntean space. Now what about
Ax 1T F Ax 15 F?

Lit us specify the above question: if H is an Hlermitean space, then is it possible
to define a fourth operation vector mulliplication in H , satisflying the conditions Ax
13F - Ax 15 F? | |

(Let us note that only Ax 13 I and Ax 14 [ are specific conditions for the
operation veetor multiplication, whereas Ax 15 F only demands that this operation
is not a trevial one. Andeed ) if Ax 15 F s violated, then the vector multiplication
would put into correspondence the zero-vector for any two vector multipliers: hardly
~omebody would be iterested i such an eperation.)

[t is proved that the answer of this question is negative. In such a manner, at
first sight one remams with the mpression that the system of axioms Ax 1 F —
Ax 15 F does not adinit a complex analogue. >

This conelusion-is a premature one, though. Not everything is lost. A happy
whim may save the situation. Indeed, m view of Ax 8 I the condition-Ax 13 F may -
be reformulated in the following equivalent manner:

"Ax 13 F bis.a, b, celpmplyarxb-c=bxe-a. .

Let us now reformulate the above question with Ax 13 F bis instead of Ax
I3 F A H s a Hermitean space, is it possible to define a fourth operation vector
lilllhl[ill(«lllOll in H ., satisfyving the conditions Ax 13 F bis, Ax 14 F, and Ax 15 F
(naturally with € instead of [)” :

Strange though 1t may seem. this fast question is answered already in 1 the affir-
miative, as it is proved in the article [57]. The results dre formulated immediately
helow - " E N

I Foas an ordered field then the compler ertcnsion, C(F) of F s by definition,
the Cartestan square F~ of £ <upplicd with’ the two operations addition (1) and
multiplication (2) for any two clements (e ) and (e, ya) of F2. After this



remark, we are in a position to formulate the complex extension of Ax 1 F — Ax
15 F:

A standard vecior space over the complezx extension C(F ) of an ordered field
F is called any set V¢ (pj, for which mappings

(16) my : V&F) — Ve

(addition in Ve (py),

(17) my : C(F) x Lc(p) — Ve(ry
(multiplication of tfh'e elements of C(F) with the elements of Vo(ry),
(18) . ms : Vé(F) — C(F) -

(scalar muléz'plicaiion of the elements of Vi F)), and

(19) . my I/g(li‘) —k VC(F)

(vector multiplication in Vg (p)) are defined, so that, prowded (7) — (11), the
following conditions are satisfied: .

Ax 1 C(F).a, b, ceVep imply (a+b)+c= a+(b+c)‘

Ax 2 C(F). There exists o € V¢ (r) with: a € Vg(p) implies a + 0 = a.

.~ Ax 3 C(F). a € Vg (r) implies: there exists —a € V() with a + (-a) = o.

Ax 4 C(F). a € V¢ (p) implies la = a. ;.

Ax 5 C(F). A, p € C(F), a € Vg(py imply (A Ja = A(pa).

Ax 6 C(F). A, pn€ C(F), a € Veipy imply (A + p)a = Aa + pa.

Ax 7 C(F). A€ C(F), a. b € Vg (p) imply A(a + b) = Aa + Ab.

Ax 8 C(F). a, be Vi(p) umply ab = ba.

Ax 9 C(F). A€ C(F); a, be Vepy imply (Aa)b = A(ab)

Ax 10 C(F).a, b, c€ lc(p) imply (a+ b)c = ac+ be.

Ax 11 C(F). a € Vg (r) implies aa 2 0.

Ax 12 C(F). a € Vg(r). aa =0 unpl) a=o.

Ax 13 C(F).a, b, ceVopyimplyaxb-c=bxc-a.

Ax 14 C(F). a, b, ¢ € Ver, imply (a x b) x ¢ = (ac)b — (bc)a.

. Ax 15 C(F). There exist a, b € V(p) with a x b # o.

The elements of Vi py are called C(F)-standard vectors. The conditions Ax 1
C(F) — Ax 15 C(F) are called axioms of a standard vector space over C(F). The
symbols 0 (Ax 11 C(F), Ax 12 C(F)) and 1 (Ax 4 C(F)) denote the zero and the
unil elements of C(F) respectively. The elements o (Ax 2 C(F), Ax 3 C(F); Ax 12
€(F), Ax 15 C(F)) and —a (Ax 3 C(F)) of V(r) are called the zero.yector and the
opposile wc!m of a respectively. The scalar product aa is denoted, for the sake of
brevnty, by a® and is called the scalar square of a.

The groups of axioms Ax 1 C(F) — Ax 3 C(F), Ax 1 C(r") — Ax 7 C(F), and
Ax'1 C(F)  Ax 12 C(F) display that any standard vector space over the complex
extension C'(F') of ‘an ordered field F is a group, a linear space over C(#—and
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an Hermitean space over C(F) respectively. Hence the following proposition holds
ood.

£ Pr 1 C(F). a, be Vg 1mply a+b=b+a.

The following propositions are also proved [57):
# Pr2C(F).a, be Vg(r) imply a x b= —(b x a).

"Pr 3 C(F). A€ C(F); a, b€ Vg(r) imply (Aa) x b= Xa x b).

Pr4 C(F).a, b, ce Vg imply (a+b)xec=axc+bxe.

Ve iscalled a complezr standard vector space, and its elements are called complez
standard vectors.

The following propositions hold

Pr 5 C(F). The system of axioms Ax 1 C(F) — Ax 15 C(F) is consistent.

Pr 6 C(F). The system of axioms Ax 1 C(F) — Ax 15 C(F) is categorical.

Pr 7 C(F). Any standard vector space over the complex extension C(F) of
an ordered field F' is a 3-dimensional Hermitean space over C(F).

Pr 5 C(F) is proved by means,of a model of V¢ (p). It is proposed by the
Cartesian cube C{F)? of C(F), supplied with the operations (12), (13) and

3

(20) | (z1, 22, z3)(01, ¥2, ¥a) = D 2.7,

(21) (x1, 22, £3) X (11, Y2, ¥3) = (T2 — T3¥a, T3¥, — T1¥3, T10 *5231)

for any A € C(F) and (21, 22, 3), (¥1, ¥2, y3) € C(F)3, corresponding to the
mappmgs (16) — (19) respectively. It is-easily verified that these. operatlons in
C(F)3 satisfy the axioms Ax 1 C(F) — Ax 15 C(F).

In the general case of any ordered field F, the C(F)-standard vector are de-
prived of modules, since the module of @ € V() is, by definition, the element Vva?
of C(F). and n the general case such an element does not necessarily exist. This
flaw is corrigible, if one suppose that F is a Pythagorean field. If P is such and
a € V¢ (p). then the module of a is denoted by a or |a. ' :

A more detailed exposition of the algebras of VF and V¢ () may be found in
the populat booklet [38]. '

Finis: Et nunc, et semper, et in saecula saeculorum. ‘

At the beginning of this article the following question has been put: What does
ab ovo in analytical mechanics mean. Now this question may be answered quite
categorically: ab ovo in analytical mechanics means the deductive development of
this science starting from standard vector spaces.

Along with this affirmation, a specific formulation of Hilbert’s sixth problem
concerning the axiomatical consolidation of the logical foundatxons of analytical
mechanics may be given, namely:

Starting from standard vector spaces, by the aid of specific definitions in them
of the basic mechanical entities and of specific axioms concerning these entities,
proceed to the construction of a mathematical theory of motion of mass-points and
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rigid bodies, and of the forces, which generate these motions and are generated by
them. ) ‘

This program may be qualified' as a program-minimum. Indeed, after all,
its realization means proceeding in a model. In other words, once this program
settled, analytical mechanics will be shaped out of the elements of the standard
vector spaces in question. Working in a model before inventing a genuine “pure”
specific system of axioms is a classical mechanism, a time-honoured technique of all
mathematical theories. The examples are plentiful — nomen illis legio — in order
to adduce them here: we shall confine to the most typical. In 1872, if memory:
does not fail, Cantor and Dedekind independently proposed two theories of real
numbers: Cantor’s by means of an equivalence relation in the set of all Cantorian
sequences of rational numbers, as already mentioned above; Dedekind’s by the aid
of Dedekindian sections in the field of all rational numbers. Both theories work in
‘a model. Half a century had to pass, before the modern axiomatic definition of real
numbers was invented. Nalura non facit saltus. Mathematics too.

As regards a program-mazimum, by the opinion of the authors of thls paper
based on the present state of affairs in analytical mechanics, to say even a word
about it at all would mean to act prematurely and thoughtlessly. s F

Leaving programs-maximum whatever for the generations to come, let us fix
our attention on the program-minimum just now formulated, and let us, first and
foremost, put the following quite legitimate question: What has the problem La-
grange or Euler? to do with all this? Why should one connect Hilbert’s sixth
problem, on the one hand, w1th the question “Lagrange or Euler?”, on the other
hand.

The answer is a quit.e simple one. -

First, because Lagrange has nothing to do with Hilbert’s sixth problem.

Second, because without Euler Hilbert’s sixth problem is condemned to remain
a Gordian knot which will be undone by the mathematicians cum mula peperit.

Qut potest capere capiat. If somebody is not concordant with the first affirma-
tion, then this is his problem: as Cicero says, cujusvis hominis est errare, nullius,
nisi insipientis, in errore perseverare. As regards the second affirmation, its proof
is a problem of the authors of the present article, as well as the main aim of the
latter. As regarads the Lagrangeanists, let us remind them the following ancient
words of consolation: Temporis filia  veritas. Lagrange’s times in’ mechanics are
tempi passats. '

Another not incurious question must be answered before proceeding further:
Why should Hilbert’s sixth problem be connected with such “chimeras”, in a physi-
cist’s eyes at least, as complex standard vector spaces, over comple\ extensions of
arbitrary ordered fields at that? Why not confine ourselves to the real standard
vector space solely? After all, the natural phenomena of motion in this world are
accomplished in such-a physical space, which is interpreted ma.thematically most
adequately namely by V| rather than by Ve or even by Ve C(F

The answer of this question is given by Hilbert himself, ln his Matbematzsche
-Probleme:

“Auch wird der Mathematiker, wie er es in der Geometrie getan hat, nicht blof
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die der Wirklichkeit nahe kommenden, sondern iiberhaupt alle logisch moglichen
Theorien zu berucksichtigen haben und stets darauf bedankt sein, einen vollstandi-
gen Uberblick iber die Gesamtheit der Folgerungen zu gewinnen, die das gerade
angenommene Axiomensystem nach sich zieht.” .

... wie er es in der Geometrie getan hat ...” What has the mathematician
“in der Geometrie getan”? .

Starting from the Euclidean geometry — a theory “der Wirklichkeit nahe kom-
mende” — he has invented the non-Euclidean geometry of Lobatchevski — Bolyai
— Gauss with its infinitely many parallels; the projective geometry in which any
two lines in a plane are intersecting; the n-dimensional Euclidean geometries with
an arbitrary n; the “finite” geometries the spaces of which consist of a finite number
of points, lines, and planes. And so on, and so forth, etcetera.

Nicht bloff die der Wirklichkeit nahe kommenden, sondern uberhaupt alle lo-
gisch moglichen Theorien zu bericksichiigen — the very essence of mathematics is
incarnated in this device. Cantor gives expression of the same idea in other words:
das Wesen der Mathematik liegt eben in 1hrer Fretheit. Investigating all possible
theories, the mathematician expands beyond measure the boundaries of both con-
cepts and facts, reaching nec plus ultra borders, across which the notions become
devoid of sense and the theorems untruthful.

" For analytical mechanics, in particular, Hilbert’s motto concerns mamly the
following basic entities: the geometry of the mechanical space, the forces in statics
and dynamics, the motions, and the most fundamental concept of rigid bodies. -
For the time being we shall confine ourselves to these remarks, postponing more
circurnstantial explanations till the mentioned notions are discussed elaborately.

Before we enter into details; let us bring to the fore, in connection with Hilbert’s
advice. one more circumstance, specific for analytical mechanics and especially im-
portant from an ideological point of view. Mechanics has always been under the
action of strong centrifugal forces orientated in two different direction. The first of
thein is the physical tendency. There is hardly a man who has not heard sentences
like “mechanics is the first chapter of physics”. Not a few mathematicians sympa-
thize with this outlook. It would be their p'roblem, if it were not a problem of the
mechanicians also. This point of view has caused damages beyond repair to rational
mechanics, in general, and to analytical mechanics, in particular. The second is the
engineering tendency. It is_even worse than the physical one, for obvious reasons
which we are in no mood to discuss here. In a few words, qualifications of the kind
“mechanics is a physical science” and “mechanics is an engineering science” are by
1O means rara avs in terris.

We are in no humour for disputes dhOlll the nature of mechanics — whether it is
physics or engineering — the more so that any debate of the kind is predestinated to
become a dialog among stone-deaf. The problemis which mechanics? Experimental
mechanics is physics, of course. Technical mechanicg m engineering, O.K. But
analytical mechanies? We heg your pardon.

Now an analytical mechanies in V- <) 1s surely neither physics, nor engineér-
ing. Furthermore, such a perverted thing is beyond the mental constitution of any
normal physicist and engineer.
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head, at least. Indeed, all the basic entities of analytical mechanics, mentioned
above — geometry, forces, motions, rigid bodies — may be defined and developed
in Vo(r). Moreover, the Newtonian and Eulerian dynamical axioms may be for-
mulated in V¢ at least. In such a manner, a complex analytical dynamics may
be constructed, and its natural medium is the complex standard vector space V.
Naturally, the classical real analytical mechanics (i.e. in V) is its particular case,
in the sense that the real numbers are a particular case of the complex ones.

It would be ridiculous to waste time, efforts, and nerves on building-up a
complex analytical mechanics only in order to stop the mouths of physicists and
engineers who know better than the mechanicians what mechanics is. It would
be all the same, as if Grassmann created his 1001-dimensional geometry in order
to convince the geodesists that Euclidean geometry is not geodesy. The complex
. ‘/anar.lytica] mechanics is constructed, however, not ad hoc for physicists and engineers

— it is a by-product in the process of realization of Hilbert’s directive nicht blof
die der Wirklichkeit nahe kommenden, sondern uberhaupt alle logisch moglichen
Theorien zu beriucksichtigen.

After this lyrical digression, let us return to our job. _

The story begins with geometry. Above all things, let us make it pretty clear
that analytical mechanics and synthetic geometry of Euclid pertain to different
incompatible blood types. In order to avoid any possible qui pro quo, let us under-
line that the heuristic role of synthetic geometry for analytical mechanics is entirely
out of the question: this role has been priceless in all the history of mechanics, and
it will remain inestimable in the time to come. Synthetic geometry and analytical
“mechanics are conflicting as far as the process of logical consolidation of the latter
is concerned.

Which are the reasons for these antagonistic relations?

The very nature of either of these mathematical theories. While synthetic
geometry may be qualified as mathematics of situs, analytical mechanics is math-
ematics of motus. Although not impossible, it is, however, extremely difficult —
clumsy, awkward, lubberly, unwiedly, gawky are the true words — to implant
motion in synthetic-geometrical soil. As regards the mathematical description of
motion, all fingers of synthetic geometry are thumbs. It is true that geometers
use the term motion to describe certain geometrical operations; but in the same
- time it 1s also true that these operations are, as a matter of fact, only finite dis-
placements. As a stimulant of mechanical intuition, as a promotive of mechanical
discoveries, as visual illustrator of complicated abstract mechanical results — 4s all
that synthetic geometry is out and ‘out irreplaceable. As a witness of mechanical
events, however, it is totally unreliable. While a great conqueror of new domains
of mechanical knowledge, synthetic geometry is a poor legislator where the logical
laws of analytical mechanics are concerned. ] :

One thing must be unconditionally clear: synthetic geometry must be categor-
ically, ruthlessly, and irretrievably expelled from analytical mechanics before the
first steps towards the solution of Hilbert’s sixth problem are taken. This dictum
may seem ratio ullima; axiomatics, however, brooks no compromises. If one in-
tends to attack Hilbert’s sixth problem, he must once and for all forget not only
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everything he has ever learned in synthetic Euclidean geometry, but even the very
word Euclid. '

What then? Without geometry, analytical mechanics is flesh without skeleton.
Where will the necessary geometry come from?

From the standard vector spaces. It ex1sts there embryomcally It must be
carried and born.

At that, rejecting the services of synthetic ‘geometry as far as axiomatic pro-
cesses are concerned, one is following a maxim as old as the hills and especially
recommendable in .such cases: principia non sunt multiph'canda praeter necessi-
tatem. -

Getting down to the forward delivery of the convenient geometry for analytical
mechanics, let us remember something from synthetic geometry — since, as Landau
[14] used to say, we have not yet forgotten it entirely. As it is well-known, in analytic
geometry it is proved (by the aid of synthetlc-geometrlcal con&deratmns) that any
line ! has an equation of the kind

(22) ‘ - rxa=>,

where 7 is a current radius-vector (the radius-vector of any point of I) and a, b are
given vectors with

(23) a # o, ab=0. ' oo

At that, the equation (22) defines ! unequivocally, but the inverse is not true: ! has
infinitely many equations of the kind (22), and any of them is obtamable from (22)
by muitlplymg it with an appropriate real number

(24) | A £ 0.

In other words,

(25) . . rxc=d
is an equation of ! if, and only if, there exists (24) with
(26) a=2Xe, b= Ad

This fact once realized, the equation (22) becomes already needless: one may imag-
ine a line | as the set of all ordered pairs (a, b) of vectors @ and b with (23),
obtainable from one another by multiplication with arbitrary non-zero numbers A
according to (26).

Let us formalize these conclusions, regarding the set

(27) ' A ={(a, b) € VZ: a# o, ab=0}
of gll ordered pairs ( a. b) of real standard vectors a and b with (23). Let us write

(28) ) (a, b) ~ (¢, d)
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iff there exists a real A with (24) and (26). It is easily seen that (28) is an equivalence

relation in the set (27). Now any equivalence class in A, generated by the relation

(28), may be called a line. ' ;
Similarly, any plane p has an equation of the kind

(29) re = aq,
where ¢ is a given vector with

(30) , c#to

and a is a given real number. Now all the above considerations may be repeated
with (29) instead of (22). Formalizing the corresponding conclusions, one arrives
at the set '

31y - ‘ I = {(e, a)é'VxR:«c#o}j

of all ordered pairs (¢, a) of a real standard vector ¢ with (30) and a real number
a. Let us write '

32 (e, a) ~ (d, B)
iff there exists a real A with (24) and |
(33) | e=xl, o= Aj

It is easily seen again that (32) is an equivalence relation in the set (31). Now any
equivalence class in II, generated by the relation (32), may be called a plane.
; What of it? ; ' ‘

Neither more nor less than the fact that in such a manner the linear analytic
geometry (the analytic geometry of points, lines, and planes) can be constructed
axiomatically without whatever appeal to synthetic geometry — as if it does not ex-
ist at all. (It exists, of course, and moreover, it suggests what to do next in order to
obtain, in analytical form, naturally, namely the synthetic Euclidean geometry and
not some of its distant relatives.) The manner this end can be achieved pedantically
is displayed in the article [59]; therefore we shall refrain here from any technicalities
whatever. Let us note in passing that in such a way the linear analytical geometry
becomes wholly emancipated from synthetic Euclidean geometry. - N

There are, however, some remarks to be made in this connection, which are a
matter of principle. ' |

In the first place, the definitions of lines and planes as equivalence classes in
A and II respectively are somewhat ungainly: This can be avoided in the following
manner. (Let us hote that the scheme exposed below is not specific for A and II.
It is applicable every time when new mathematical objects are defined as equiva-
lence classes in appropriate set of beforehand defined objects supplied with suitable
equivalence relations.)
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Let the set A be supplied with*an equivalence relation ~ and let B and C be
primary sets (1.e. unknown sets of unknown objects which only now will have to
pe defined implicitly), satisfying the following condltlons

Ax1S.CCAxB.

~ Ax 2 S. a.€ A implies: there exists' 8 € B with (o, f) € C.

Ax 3 S. (ay, Bu)eC (v =1, 2), a; ~ az imply 81 = F.

Ax 4 S. g € Bimplies: there exists o € A with (a, f) € C.

Ax 5 S. (a,, B) €C (v =1, 2) imply a; ~ as.

It is proved that the system axioms Ax 1S — Ax 5 S is consistent and catego-
rical, see [60). This system is called the model-axiomatizing scheme and it proposes
an axiomatic definition of the equivalence class concept. As a matter of fact, Ax 1
S — Ax 5 S define implicitly the elements of the set B, and the set C establishes
a correspondence between the elements of A and B.

If one puts A = Ain Ax 1S — Ax5 S, then B is the set of all lines. Similarly,
B is the set of all planes provided A = 1II.

The only difference between the definitions by means of equivalence classes, on
the one hand, and by the aid of the model-axiomatizing scheme, on the other hand,
consists in the fact that the latter is not so categorical as the first one. Indeed, in
the case of lines, for instance, a line is an equivalence class in A generated by the
equivalence relation (28) provided (26) and nothing else, whereas Ax 1S — Ax 5
S with A = A define the lines not so unambiguously.

Let us, for the sake of brevity, write a&f iff (o, ) € C; In such a case o is
called associated with 3, and 3 is called determined by «. Und{er this notation Ax
2 S — Ax 5 S may be written in the equivalent form: ’

Ax 2°. a € A implies: there exists § € B with a&f.

- Ax 3". a,,&ﬁ,, (b’ = 1, 2), -~ (g imply ,81 = ﬁg.

Ax 4*. 3 € B implies: there exists o € A with a&f.

Ax 5. a, &3 (v =1, 2) imply a; ~ a3.

After these remarks, let us say sonie words more about the above definitions
of lines and planes.

It is immediately seen that one can substitude F' and Vg for R and V respec-
tively in the definitions (27) and (31), and these definitions still work. In such a
manner one obtains not one, but infinitely many linear analytical geometries, one
for every F. Since the algebras of V and Vg are identical (as far as continuity is
not concerned), these analytic geometries are very similar among themselves.

Not so obviousis the fact that one can also substitute C(F') and V¢ (p) for R and
V respectively in the definitions (27) and (31) without turning them meaningless.
We shall proceed now to the effective execution of such an exchange. -

Instead of (27) and (31) let us consider the sets

4

(34) Aciry = {(a, ) € VEpy : a#o, ab=0}
and )
(35) " Mer) = {(¢, @) € Very x C(F) : ¢c# 0}
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respectively and let by definition .

(36) | (a1, by) ~ (az, by)
and
) (37) (Cl. 01) o (Cz, 02)

for any (ay, b,) € Agr), (ev, a,) € lery (v.= 1, 2) iff there exists A € C(F)
with (24) and ‘ " : :

(38) ‘ a; = Aaz, b = ng, ' . =

o (39) 2 C; = Acz, (s8] :Xaz

respectively, A denoting the conjugate element of . It is easily seen that (36) and
(37) are equivalence relations in (34) and (35) respectively. -

Let us now apply the model-axiomatizing scheme to the sets (34) and (35), in
other words with A = A¢( F) and A = ll¢(F) respectively, denoting B with L¢(r)
in the first case and with P¢(ry in the second. Using the &-version of Ax 2 S —
Ax 5 S, i.e. Ax 2* — Ax 5%, we obtain the following two systems of conditions:
Ax 2 L. (a, b) € Ac(r) implies: there exists [ € L¢(p) with (a, b)&l.

Ax 3 L. (ay, b)&l, (v =1, 2), (a1, by) ~ (a2, b2) imply {; = I5.

Ax 4 L.l € Lc(p) implies: there exists (a, b) € Ac(r) with (a, b)&l

Ax 5 L. (ay, b,)&l (v =1, 2) imply (a;, b1) ~ (a2, b2)

and s '

Ax 2 P. (¢, a) € llg(r) implies: there exists p € PC'(F) with (e, a)&p.

Ax 3 P. (cy, a)&p. (v =1, 2), (€1, a1) ~ (c2, a2) imply p1 = ps2.

Ax 4 P. p € Pc(r) implies: there exists (¢, a) € llg(r) with (¢, a)&p.

Ax 5 P. (¢, a,)&p (v =1, 2) imply (c1, 1) ~ (€2, a2).

~ Then the elements of Le(py and Pe(py are called C(F')-lines and C(F)-planes
respectively, and the mathematical theory, based on Ax 2 L — Ax 5 L and Ax 2
P — Ax 5 P, as well on the specific properties of the equivalence relations (36)
and (37) in the sets (34) and (35) respectively, is called the C(F)-linear analytic
geometry and is denoted by G¢(r). The development of Gc(r) consists in revealing
those properties of the elements of the sets (34) and (35), which are invariant with
respect to the equivalence relations (36) and (37) respectively. The basic definitions
and propositions of G¢(r) are exposed pedantlcally in the article [61], so that we
shall not dwell here on any technicalities in tlus connectxon Two remarks are,
.however, expedient. :

First, we shall concent to take the “real” F-case for immersed in the ‘com-
plex” C(F) case in the same way, as the real numbers are considered as dispersed
among the complex ones, i.e. R C C. In other words, we shall agree to perceive
F as a subfield of C(F), i.e. F C C(F), and similarly to graps Vr as a standard
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vector subspace of Vo(ry, i.e. VP C Ve(r). In other words, we shall think that Vi
is obtainable from V¢ () by putting @ = « for any « € C(F') in the corresponding
axioms of Vo(p) (in Ax 8 C(F) in the first place). We shall not discuss the logical
side of such an agreement, emphasizing here on the technical advantages: impor-
tant in the moment for us is the fact that such a convention is very suitable and
economizing. It saves us, for instance, the necessity to define explicitly the F-linear
analytic geometry G, i.e. by means of Ax 2L — Ax 5L and Ax2P — Ax 5
‘P with F and V instead of C(F) and Vg(F) respectively. We shall accept that
GF C Ge¢(r), if the notation has any sense. .

The second remark concerns the relations between Gg and Gc(r). Strange
though it may seem, these geometries are rather ‘similar, though naturally not
identical. There are differences on principle, it is true. In any case, there do
not exist isotropic lines and planes in Gc():‘), and this question deserves a closer
discussion.

The point is that G¢(r), or rather Gc, is not the single complex analytic geo-
metry up to now proposed. Another version may be found, for instance, in the text-
book [62] of B. Petkanchin. It is erected by means of the following constructions.
Let Pc be the Cartesian cube C? of the field C of the complex numbers, supplied
with the four operations (12) — (15) for any A € C and for any (z1, z3,. z3),
(¥1» ¥2, ys) € C3. It is proved that they satisfy Ax 1 F — Ax 10 F, Ax 13 F —
Ax15F and Pr 1 F — Pr 4 F (with C and Pc instead of F and V, respectlvely)
while the statements of Ax 11 F and Ax 12 F (again with C and"P¢ instead of F
and Vp respectively) are, in the general case, violated. Then a complex analytic
geometry in the “space” Pc may be constructed that has nothing to do with Ge:
the existence of isotropic lines and planes is the main if exotic characteristic-features
of this geometry, and the roots of this phenomenon penetrate the ruins of the said
violated axioms.

(Let us note,- parenthetically, that these inferences have far -reaching sequels
in differential geometry. The same complex analytic geometry in Pc is used by the
author of [62] in his text- book [63] on differential geometry. In the foreword of [63]
one reads:

“IloyTH BCUYKM B'BIIPOCHU Ca pazmenmu B KOMNJEKCHOTO mpo-
ctpancTBo. OOGMKHOBEHO TPETHpaHETO Ha BBLIIPOCUTE € €HAKBO B PEaJHOTO
M B KOMIOJIEKCHOTO NMPOCTPAHCTBO, Thbil KATO U3XOJAHUTE TIOJIOXKEHUA CA €IHA U
cbmy. Pasinuma ce ABABAT NOHAKOIA CaMO B JOKA3BAHETO HA Te3M M3XOLHH
nonoxenua. Ho uMa 1 reomeTpnunn oBeKTH, Bb3MOKHM C & M O B KOMILIEK-
CHOTO NPOCTPAHCTBO, KAKBUTO Ca HAlpUMEp M30TPONHUTE KpuBHU. TeopuAta
Ha Te3¥ KPUBH € M3M0XKEHa TYK C II'bJIHOTA, KAKBATO PAAKO Ce Cpellla B KHUCH
ot nonoben poa...”

In the introduction of the book one reads:

“B UANOTO CAEABAILO M3JOMKEHHe IIe pasriexiaMe 0GMKHOBEHO reoMerT-
PHUUYHKM GUrypH, Pa3MOJIOKEHM B KOM IO J € KC HO T 0 TpunmaMepHo Es-
KJIMIOBO MpPOCTPaHCTBO E,, Taka ue me MMaMe paboTa ¢ KOMITJIEKCHM TOYKH,
NpaBy, pPaBHUHM, BEKTOPH, KOOPAMHATHH cHcTeMu ¥ mnp. CaMo NpH HAKOU
B'BIIPOCH LI Ce orpaHMYaBaMe, KOeTO lile CIIOMeHaBaMe M3PUYHO, Ha (QUrypH
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B pealiHOTO TpuuMepHo EBkimaoBo npocrpancTBo E,, KoeTo € YacT
ot E.; ToraBa llle MaMe IpeJ BUA CaMO PeaiHM TOMKH, TIPABN, PABHUHM, BEK-
TOPM, KOOPIAMHATHH CHUCTEMM M T.H. M 1€ Ka3Bame, ye paborum “B E.” unm
“p peanuusa cayuaii”. Obaue oT MeToAMYHU CHOOparKeHHMA MHOIO BBIIPOCH
oTHauaJio e 6baaT Tpetupanu B E, U ciel ToBa pa.3rJ1e>i<,na.HuH'ra e 6baatT
o6o6maBaHu U pa3llMpABaHU 3a E..”

As these texts imply, the mathematical phllosophy of [63] is the followmg one.
By definition E, = R3; points and vectors are defined as elements of E.. The
analytic and differential geometries in F, .are well-known long ago. Now all the
paraphernalia of these geometries are formally transplanted in E¢, provided by
definition E, = C®, supplied with the operations (12) — (15) (i.e., as a matter of
fact, E. of [63] is what above has been denoted by Pc: we have good grounds to
avoid the notation E.). All these manipulations. are entlrely dlfferent from those
by means of which G¢ is constructed.

If now G, rather than the analytic geometry from [62], is put in the ground-
work of a complex differential geometry I'c, the latter will be entirely different from
the hybrid proposed in [63].)

_ A most interesting problem now arises. As it is well-known, along with the

arithmetical model of V, realized by the aid of the operations (12) — (15) in R3,
there exists a geometrical model too, realized by synthetic-geometrical means. To
" be more specific, let P be the set of all Euclidean points (i.e. points of the synthetic
Euclidean geométry) and let a relation ~ be introduced in the Cartesian square
P2 of P, defined in the following manner: if (A,, B v) € P? (v =1, 2), then by
definition £ :

(40) (A1, B1}~ (A2, By),

iff the following conditions are satisfied:
1. Ay = By, A2 = By, or A # By, A2 # B and the line A131 is parallel to
the line A9 Bs.
: 2. If Ay # By, Ay # B, then the segments A1 B1, A2B> have the same
directions.

3. If Ay # B1, A2 # B, then the segments A) By, A2Bs have the same lengths.

It is obvious that (40) is an equivalence relation in P2. Now any equivalence
class in PZ%, generated by (40), is by definition a real standard vector.

In order that this denomination gets justified, definitions of operations addition
of vectors, multiplication of real numbers with vectors, scalar and vector multipli-
cations of vectors are given, and it is proved that these operations satisfy Ax 1 F
— Ax 15 F (with R and V instead of F and Vp respectively). Quod erat agendum.

For the sake of brevity, let G = Gg and let E denote the synthetic Euclidean
geometry constructed axiomatically by the aid of the system of axioms Sy proposed
to this end by Hilbert in his famous work [16]. The following bilateral mathematical
process may now be realized. o

On the one hand, one can-model £ in G. In other words, one can select
appropriate entities in G, call them “points”, “lines”, “planes”, etc., and prove
that the axioms of Sy are satisfied under these definitions.
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On the other hand. one can model G in E. Since G is constructed by means-
of real standard vectors, the meaning of this statement is that one can model them
in E, as indicated above.

And that is all. Insuch a manner it is proved that there is no essential difference
between E and G. All the difference consists in technicalitites, if one may say so.

So much about G. What about G¢?

The trouble is that, as far as our knowledge goes, we do not yet dispose of
such a geometry — let us, hypothetically, call it E~ — that the relations between
E and G. described above could be imitated with EF¢ and G¢ instead.

In other words, the geometers have not yet invented such a (hypothetical again)
complex synthetic (Hermitean rather than Euclidean) geometry that should have
G ¢ for its analytical equivalent. ’

Putting it another way, no complex variant of Hilbert’s Axtomensystem Sy
is up to now proposed — such at that, that the corresponding complex synthetlc
geometry E¢ could model G¢ and, inversely, could be modelled by Gc¢.

The solution of this Problemata novum, ad cutus solulionem geoinetrict invi-
tantur (as Johann Bernoulli announced his problem in Acta eruditorum: determine
that smooth curve in a vertical plane, connecting two points A and B in it, along
which a heavy mass-point must move in order to arrive at B, starting from A, for
the shortest time) may be facilitated in virtue of the following observation.

First, the analytic version G¢ of E¢ exists. Otherwise, ‘E¢ 1s, 1n a sense,
familiar. The task consists, then, in discovering such complex analogues of the
axioms of Sy . which could |mplv Cie synthetically.

Second. taking into consideration the mathematical structures of G and G¢,
one could select those axioms of Sy that will remain authoritative for E¢ too. As
it is well-known. Hilbert divided the axiomns-of the Euclidean geometry into five
groups:

“Die Axiomgruppe I: Aziome der Verknipfunyg.

Die Axiomgruppe 1l: Aziome der Anordnung.

Die Axiomgruppe I1I: Aziome der Kongruenz.

Die Axiomgruppe IV: Azom der Parallelen.

Die Axiomgruppe V: Ariome der Stetigkeit” [16, S. V; our italics].

Now everybody who is familiar with Hilbert’s geometrical axiomatics [16] and
“with the analytic geometries in complex standard vector spaces [61] will ascertain
that all Hilbert’s axioms listed above must remain true for E¢, with the only
exception of die Aziomgruppe 1.

Indeed, substituting in (7 the field " of the complex numbers for the field R
of the real numbers in order to obtain G, one dispenses with Anordnung since
C, in contrast to R, is deprived of such an attribute. The situation here is very
similar with that of complex analysis in comj.arison with the real one: the true in.

the real analysis theorem, according to which if lim z, = llm yn = exists and
n—ou
fzp, <:in<yn(n=1,2,...), then Lm z, alsoexists a.nd, 1S equal to |, becomes
. N—s00 ,

not only-untrue, but even meaningless in the complex case, since the inequalities
Ty < zn < yn are now devoid of sense.
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Let us also note that, as regards the Aziome der Stetigkeit, they remain true
for G¢, but must be reformulated or rejected at all, if one desires to construct
axiomatically G¢(ry with an arbitrary F rather than Ge.

All these problems belong to the future. As already mentioned, the solution
of !:he formulated above Problemata novum, ad cuius solutionem Geomelrici invi-
tantur is still in-cunabula. The complex analogue Ly of Sy once settled, G¢ will
propose a second, geometrical this time, model of V¢ (and possibly of Ve (r)), along
with the arithmetical one, proposed by C? together with the opelatlons (12), (13)
and (20), (21) in it.

That much about the interplay of analyt.lcai mechamcs and geometry. In
which manner the real and complex analytic geometries may be used in analytical
mechanics in order to supply it with motions, rigid bodies, and forces — all this
will be manifested. later. Before we undertake the next step, let us make a brief
summing-up.

Starting from the algebraic notions of ordered fields, in general and of the
fields of the real and complex numbers, in particular, we defined axiomatically Vg
and Vi(r), in general, and V and V¢, in particular. Then we proceeded to analytic
geometries G¢ and G¢(r) in Vp and Ve respectlvely What now lies ahead is a
good algebraic theory of arrows.

Sliding vectors (vecteurs glissants, gleitende Vektoren, CKOABITULUE BEXTROPDL)
are no vectors at all, as it will be seen 1immediately below. Their genesis is a purely
physical one. They have been destined to describe mathematically forces acting on
mass-points and rigid bodies, and it is worth notmg that they did their duty with
merit deserving the highest praise.

Very much nonsense has been written in the philosophical, physical, and even
mathematical literature in connection with the “meaning”, “nature”, or “essence”
of forces: stupidity is unforbiddable. As a matter of fact, a mathematician is inter-
ested not in “what a mathematical object is?” (this question is void of sense), but in
“how to describe it mathematically?”. Making a long story short, let us pronounce
the final verdict: in analytical mechanics forces are described mathematically by
atrows. Now what does an “arrow” mean?

‘We must begin from afar. ,

Let us first see, in a book chosen at random, how are. shdmg vectors tradition-
ally introduced in the mathematical literature:

“Janum MosTOMy cieaylollee onpeaejeHue:

Bexmopom nasvsaemcs seaununa, mpaxmepusywomaﬂcx NOMUMO u:wepﬂ-
0ULE20 €€ 8 ONPEdEnENNHbLT edunuyaz MEPbL YUCAA, €UE CEOUM HANPABAEHUEM 8
npocmpancmae . .. ' '

‘ OTMeTuM, UTO Pa3nMyalOT BEKTOPLl TPeX PoJoB: C B 0 6 0 X H Bl e,
nepeABuKHBbl e [sliding vectors) ¥ onpenenersusle BEKTODHL
BBenenHble HaMU BeKTODPLI OTHOCATCA K THUIY CBOGOIHBIX, TaK KaK TOYKY MX
NPUJIOKEHHA MOXKHO BBIOMpATh. 110 MPOMU3BONY. ¥ MepeABMKHBIX BEKTOPOB TOY-

' KY TNPHUIIOXKEHNA BEKTOPa MOXKHO MepeMellaTh NPOM3BOJIbHO. BACAb CAMOT0 BEK-

TOpa, TaK UTO MOCJe[HBIA MOMKET JieaTb Ha JMoboi yacTU onpeleseHHoM
npamoii. Ilpumepom nepeasmxHoro BekTOpa ABNAETCA CUNa, NPUIOKEHHAA
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K TBEPAOMY Tesly, Tak KaK 3a TOUKY MpPHJIOKEHUA CHJIB MOMKHO B3ATH JMIO6YI0
' gOUYKY Ha JMHUM AelcTBuA cuibl. HakoHen, y onpenefneHHBIX BEKTOPOB TOU-
Ka MPUIOXKEHUA BEKTOpa NOJDKHa OhiTh 3adukcupoBaHa. Tak, Harpumep, npu
PACCMOTPEHMH ABWKEHMA KUIKOCTH 3a TOUKY NPHUIIOKEHUA CHIIH, AeiicTBylO-
meH Ha Kakylo-nubo 4acTHIly *XKMIAKOCTH, NPUHUMAETCA HEKOTOPaA TOUKA Ca-
MOH YacCTHLBI. '

MN3yueHue nepelBMWKHLIX M ONpeAeNeHHLIX BEKTOPOB CBOAUTCA K HM3yue-
HHUIO CBO6OIHBIX BEKTOPOB, MOYEMY NOCTATOYHO O PAHUUMTLCA PACCMOTPEHM-
€M TOJILKO MOCJeaHbIX.”

This citation is taken from the ninth edition [64, ctp. 6 — T] of a treatise
especw.lly dedicated to vector calculus and it inevitably reminds the estimation
_“so muB jeder Vernlinftige erkennen, daB damit soviel als nichts gesagt ist” of v.
Mises. The book [64] makes no unhappy exception. The same fate haunts the
sliding vectors in the hands of almost any author of *a book on vector calculus
or theoretical mechanics.- The situation reminds the legend of the destroying of
the Alexandrian Library. Someone of the priesthood allegedly has said: “If these
books are in concordance with the Alcoran (or the Bible, no matter), then they
are redundant; if they contradict it, then they are harmful.” In the same way,
definitions of the kind quoted above are needless if the reader alrea’fﬁr knows what
does a sliding vector mean; if he does not, then they are wholly futile.

Turning back to the already cited text-book [55] let us note, as a kind of self-
criticism, that at the time when it was written, neither its author, nor the elder
of the authors of this article, knew how the sliding vectors must be defined most
properly. Because of that reason the exposition of the theory of sliding vectors in
[565], as well as in the second ‘edition [65] of the book, seems today unsatisfactory.
In both edition about 50 pages are assigned to sliding vectors.- The main reason for
such a prodigality is rooted in the fact that the exposition is, in essence, synthetic-
geometrical. « B .

Let us discuss this problem in some details.

- The intuitive idea, incarnated in the original notion of a sliding vectors, consists
in the simultaneous perception of two different mathematical objects, genetically
united in an indivisible whole. These objects are a line [ and a vector s, lying
on [ or at least parellel to it. Conceptually, this idea is connected with the image
of a force acting on a rigid body. The line ! interprets mathematically the line
of action or the directriz of the force, and the vector s its magnitude. In older
treatises on mechanics this mental picture is materialized in a pleasant if naive way
by illustrations: 1 is portrayed in the form of a stretched string, while s in pictured
as a man’s hand pulling the string.

- Many years ago an attempt (none too fehcntous) was made to formalize math-
ematically -these intuitive ideas. In the article [66] a sliding vector is defined, in
plain words, as an ordered pair (8, ) of a vector 8 and a line { parallel to s; this
definition works, but works rather arduously.

It turns out, however, that this definition may be reformulated in a most
profitable way. Let us write down an equation of the line I: since it is parellel to
8, there certainly exists a vector m, so that one of the equations of I (there are
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infinitely many, as :we know) reads: |

(41) ‘ rX8=1m.
At that; obviously

(42) : s#o, sm=0.

This settled, let us regard the ordered pair (s, m) with (42) instead of ti
ordered pair (s, {). Both pairs are equivalent in the following sense: if (s, m)
given, then [ is given too through its equation (41), hence (s, {) is known; inversel
if (s, 1) is gived, then m is given through (41), hence (s, m) is known.

These observations lead to the following alternative definition of a sliding ve
tor: so is called any ordered pair

(43) ; §=(s, m),

of real standard vectors 8, m, satisfying (42) For the same reason for which t}
number zero is 1ntroduced thls deﬁmtlon is supplemented with that of the ze:
sliding vector

(44) ’ : 6= (o, 0)
while (43) with (42) are called non-zero sliding vectors.  *

A developed algebraic theory of sliding vectors based on the definitions (4
and (43) with (42) is proposed in the article [67].

Before proceeding further, let us underline an important act of the author .
[55 .

¢ As it is completely clear from the definitions (43) and (44), a sliding vecto
zero or non-zero, is no vector at all: it is a pair of vectors. That is why tl
term “sliding vector” is extremely inadequate, being psychologically misleading -
a crymg ine'cpedlence Obviously, a new term must be invented. After some di
cussions, the author of [55] decided to substitute the term arrow for the tradition
skiding vector, and nowadays, through the text-book [55], it enjoys popularity, .
this country at least.

(Forces being interpreted by means of arrows, do not believe an author of
book on theoretical mechamcs who state$ that “forces.are vectors”: he is misleadir

you.)

The definitions (44) and (43) with (42) are, however, by no means necessari
connected with the real standard vector space V. Obviously, the idea to substitu
Vr and even Vg () for V in these definitions is quite natural and rather temptin
In result one ontains not a single, but infinitely many algebraic theories of arrov
— one for any F both in V& and Veery- -1t is natural to call the arrows of tl
first kind real, and those of the second kind camplez ones. We shall sketch nc
the general contours of such a theory, working, for the sake of generality, in tl
complex case of VC(F), the real one being obtainable automatlcally by virtue of t§
agreement to accept the inclusion Vp C Ve(r).

90



Let by definition
(45) | Ac(ry) ={(s, m) € Vg(m : 8 & o, sm = 0Vs=m=o}.

The elements of A¢(fy are called C(F)-arrows (or simply arrows, for the sake of
brevity). If

(46) (s, m) € Ac(r),

then s and m are called the basis and the moment of 5 respectively, provided (43).
The definitions (34) and (45) imply the inclusion

(47) Acry C Acry-

e
If
(48) §€ Acer);

-

then § is called a non-zere arrow. The arrow o defined by (44) is called the zero-
arrow.

If (48), then there exists exactly one'l € L¢(r) with §&I. The line ! is called
the directriz of § and is denoted by dir §. In such a manner, if (48), then

(49) | & dirs .
If

(50) - - ] r e Ver),

(51) b ’ §€ Ac(r)

and (43), then the vector defined by
(52) - mom,§=m+s8x7T

is called the r-moment of 5, and » is ‘called the pole of mom,. §. Obvmusly, (51)
and (43) imply g »

(53) * ; M = mom,3.
Besides
(54)'_ : : mom, ¢ =0

for any pole r.
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If (50) and

(55) l € Legry,

(56) (a, b) &

t,hén' 7 is called incident with {iff (22). In such a case it is written

(57) ‘ . T

In case (57) in violated, r is called no;;-incident with . In such a case it is written
rZ 1. : :
. Let

(58) | 7 € Vorry,

(59) _— 5Zdirs.

Then (51),.(41-3). (58), (59), and the definition of the relation (57) imply
(60) | ‘ - PXs=m. |
Now (50), (60), and (52) imply

(61) | P-r)xs=pxs+s8xr=m+sx7r=mom,5.

Most of the text-books on theoretical mechanics define mom,.5 by the expression

in the left-hand side of (61). The definition (52), however, is preferable, since it

possesses the most important for a mathematical definition characteristic of econo-

my. - ‘ ’
-If (51), (43),

62y ro€Ver  w=1,2),
then (52) implies | |
(63) K mom,., § — fnomﬁé': 8 x (ry —r2).

The relation (63) is called the connection between the moments of an arrow with
respect to the poles (62). It implies

(64) | : 8 -mom,, § = s - mom,, 5.

The relation (64) is, however, trivial, since both its -sides are a priori zeroes: (52)
‘and (42) imply - . + B ¢
(65) _ s -mom,5 =0 7

-92. A —— "i"“';;;__'.



for any pole (50). The relation’
(66) ‘ (r1 — r2) -mom,,§ = (r; — r2) - mom,,§

implied by (63) is, however, non-trivial,' except when 71 = 7r».
The sum of the arrows

(67) ‘ 5 € Aciry _ (v=1, 2),
defined by x |

(68) - e 51 + 52 = (81 + 82, my + ma)

provided

(69) 5, = (8y, Mm,) B o (v=1, 2),

does not necessarily exist: the right-hand side of (68) belongs to A¢(F) if, and only
- ; :

(70) 81+ 8 =0, m4ms= o

or

(71) _ $1+ 82 #0, (81 +82)(mqy +ma)=0.
The arrow

(7?) o =F=(-s, —m)

provided (51), (43) is called the opposite of 5. On the other hand, (67), (69); and
(45) imply ‘ :

(73) .o s,m, =0 o {r=1, 2}
Now (73) imply that (T}l) are equivalent to

(74) * , | 81+ 82 #0, sma+ 32;711 = {,

In such a manner. the sum (68) of the arrows (69) exists if, and only if, 55 = —5'1 of

(74) holds good. Hence, the set (45) of all €'(F)-arrows is a system with partially
defined addition.
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Let us pass over to systems of arrows. By this term in analytical mechanics
finite sets

. (75) ' i = {5‘”}3;1 '

of arrows
(76) EUEAC(F)_ _ : (7 = Ly 5 n)

are understood. Let

(77) : & = (85; m,) _ (v=1,. , ).
Then the sums |

’ . ' n n
(78) o 8= Z B = Z'm',,
v=1 .

-

are called the basis and the moment of s respectively.

" If (50), then the vector defined by

(79) . moin, § =mMm+8x7r

——

is called the moment of the system of arrows s with respect to r, and 7 is called
the pole of mom, s . The analogv between the dPﬁlllthI]S (52) emd (79) 1s obv:ous
Evidently, '

- (80) m = mom, §,

similar to (53). The relations (78), (79), and (52) imply

(81) mom, s = Zmy-_{-Zsuxr

v=1
n - n ~ -
S = Z(?n,, +8, x7)= Emom,é',,. v .
T w=1 v=1 . ' .

CIE(75) — (78), (62), then (79) implies

(82) ' - mom,, s —mom;, s =8 X (r; —72)

J—

similar to (63). The relation (82) is called the conncction hetween the moments of
a system of arrows with respect to the poles (62). 1t implies

- (83) & MOoNl,, § = $-Mmon,, s
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and

84) : (1 — 72)-mom,, s = (r; — ) - MoOM,, §
1_— -——

similar to (64) and {66) respectively. Confrary to (64), however the relatlon (83)
is by no means trivial, since. in general.

(85) - & omome s # (.

Since

(86) ; S - NOM, & = 8M "

for any pole » by virtue of (79), the quantity

v

(87): : I = smn

is called the first scalar invartant of s. If

(88) | o 5 o,

then the quantity

(89) =20

&

is called the second scalar imvariant of s.

The analogue for.systems of arrows ol theé notion directriz of an arrow is the
so-called azis of the systemn in question. As well as the notion directrix becomes
meanin'gless in the case of the zero-arrow. the axis of a system of arrows does not
exist save in the cage (8%).

Let (88) hold and ket the following pmhl{ m be ,)m determine all poles 50)
for which

(90) - ' 8 X oI, § = 0.

The condition (90) is a vector- algebraic equation with respect to ». In view of (79),
it s equawa]ent to

(91). - (m+sxr)xs=o,
1e. to ‘
(92) C ' .‘(rx.s)x.s=m><.s.



The equation (92), together with (88), implies-t.ha‘l, there exists o € C(F) with

('93)\ TX8=as+ f-—%-(:—?;w

A scalar multiplication of (93) with s implies

(94) ‘ as® =0
and’(94), _(88) imply
(95) '- a=0.

Nc?w (93), (95) imply

(96) ‘ rxs:sx(mxs)

¥
Now, by virtue of (88),
' 8 x (mxs) :

(97) 8, S € Ac(p).
Hence there exists exactly one I € L¢ () with
(98) (.. M) &l
It is called the azis of s and is denoted by ax s. In such a manner,

“ 8 x (m x 3)\ ,
(99) . - _ %~ & ax s.

In such a way, the geometrical place of all points » € Vg(r), for which (90)
holds provided (88), is the line ax s, defined by (99). |

If (51), (43), (88) hold and-
(100) s = {5},

- i.e. the system s consists of the single non-zero arrow §, then the relation (99)

changes into

~(101) . (s, m) & ax{5}.
Since by definition
(102) | (s, m) & dir§,
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it is immediately seen that the notion azis of a system of arrows indeed is a gene-
ralization of the notion directriz of a single arrow, provided (88) in both cases.
It is proved that if (50), (58),

——

(103) . rlaxs, plaxs,
then ’

S 2 e
(104) % (mom, 5)* < (momgzs )*.

In such a manner, the moments of a system-of arrows have minimal modules with
respect to the poles incident with its axis (if it exists, and if modules exist in Vg (p)).
A most important characteristic of a system of arrows s is its rank, denot.ed

by rank s. It is defined in the following manner.
If G C Ve(r) and a mapping
(105) S F: G— Ve

is defined, then it is called a vector field over G.
A system s of arrows being given, the mapping

(106) ‘ i Verry — Ve
defined by

(107) () = mom, s | 5 (r € Vo)
1s called the moment field of 8; (107) and (79) imply

(108) | - pr)=m+sxr (r € Vo)

provnded (75) — (78):
The mazimal number of linearly mdependent elements of the moment field of
a system s of arrows. L.e. of the set . ‘

(109) N (T R
representing the image of V¢ p) through p, is called the rank of 5. According to

this deﬁmtlon rank 5 is one of the numbers 0, 1, 2 and 3, any four elements of

Very being linearly dependent :
A system s of arrows being given, the direct determination of rank 8, ie. by

an immediate d])pll(‘allOI] of the above definition, is an unpfeasmg task Indeed to
prove that rank s = 3 means to.find such poles

(110) V ' r, & L"C'(kf') ‘ (V = 1u 21 3)1
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that mom,., s (v=1, 2, 3) are lineatly_independent,_ ie.

(111) " mom,, § X Mom,, § - MOM,, § #0.

Similaflj, t§ pr;n;e that rank s = 2 means, to demonstrate that (110) imply
(112) | mom,, s X mom,, s - m'om,.a s =0,

and, second, to find such poles (62), that mom,, s (v = 1 2) are linearly indepen-
dent. ie.

(113) _ | | mom,, § x mo'm,.ai # o.

Furtﬁer, to prove that rank 5= 1 means, first, to deménstrate that (62). imply

(114) mom,, § X mom,, s = 0

(S

and, second, to find such a polé (50) that
(115) - ~_ mom, s #o.

At last, to prove that rank s = 0 means to demonstrate /

(116) = - miom, 5 = 0 o (r € Vo)

All this is, as already said, an unwellcome procedure.. Fortunately, it becomes
unnecessary in view of the following statement, usually called the rank-theorem for
systems of arrows:

The conditions ( 75) = [78) lmply

0 s =0, m=o,
o 1 ) s=0, m#o,
(117) rank s = . iff ,
’ i 2 4 #10, ‘sm = 01
3 sm #0
respectively.

Two diferent proofs of the rank-theorem may be found in the article [68].
~ It’is obvious that the application of the rank-theorem reduces the determi-
nation of rank stoa Schablon: a system of arrows 5 being defined by (75) —

(77), one has to. form s and m according to (78) and to see, which of the mutually
exclusive cases in the right-hand side of (117} is at hand.
. Let us note, by the way, that the definition (79) implies: mom, s is invariant

with respect to the pole r iff 8 = o.
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The rank of a system of arrows plays an important role in the theory of such
systems. For the time being we shall pause upon one only of its applications.

A key role in the theory of arrows and in its applications to statics and dy-
namics of mass-points and especially of rigid bodles plays the notion of equwaleni
sysiems of arrows.

While the basis s and the moment m of a smgle arrow who]ly determine it,
the same is not true as regards systems of arrows. In other words, there exist two
at least (infinitely many, as a matter of fact) diferent systems of arrows with the
same basis and the same moment. Yet, we shall use the notation s (s, m) in order

to mark that the system s has the basis s and the moment m: all the same, s and
m are certain charactenstlcs of 5,as for instance the rank-theorem displays.

Two systems of arrows s,,(s‘,, m,) (v=1, 2) are called equivalent iff

(118) . 81 =8y, m;=m,.

In such a case, it is written

5

(119) ) . : - 8§ ~ S32.

It is trivially seen that (119) is an equivalence relation in the set S¢(ry of all

systems of C(F)-arrows. Any equivalence class in Sc(r) generated by it is called a
C(F)-action or simply an action.

The time-honoured experience of mechanicians, both experimental and theo-
retical, displays that the mechanical behaviour, statical as well as dynamical, of
mass-points and rigid bodies is predestmated by the actions of forces, rather than
by the special systems of forces determining these actions, inasmuch as forces are
represented mathematically by arrows. In other words, if a mass-point or a rigid
body is in equilibrium or in a motion under the action of a given system of arrows
31(31 , M1}, and if the system s- .(s, M) is substituted for 31, then the mass-point

or the rigid body in question w ill remain in equilibrium or wxll accomplish the same
motion as before if, and only if, s; and s2 are equivalent, i.e: iff (119) or, just the

same, (118) holds. :

As the case stands, it is easy to explain why dld mechanicians, especially at
the early age of mechanics, when the analytical methods were not yet developed,
and the mechanicians were compelled to work synthetically, strive to substitute a
system of forces 5. acting on a mass-point or on a rigid body, with another one s,,

—

equivalent to st hnt 'simpler” than 51, especially in cases, when s, was a “compli-

-—

cated™ one. Tn s spite of the fact that the characteristics “simple” and “complicated”
are not unambiguous ones, it is intuitively clear what is meant by them: for in-
stance. consisting of a smaller number of elements. This. process has been called
the reducation of the system of forces in question, and it has been accomplished by
the succesive application of a’certain amount of synthetic-geometrical operations
called elementar-statical operations. They are four in number:
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1. If a given system of forces s contains two forces §) and § which possess a
sum §j + 59, then substitute §; + s) n s for 57 and 8.

2. If§ E s and 5y, 59 are such arrows that §; +32 = ¥, then substltute 51 and
§a2 in 5 for 5.

3. If 6 € s, then eliminate it from s .

4. Add G to s. -

It should be noted that the elementar-statical operations, accomplished on .a
system of arrows s, do not alter the basis and the moment of s, so that, no matter

how many elementar-statical operations are pelformed on s, the result is always a
system of arrows equivalent to s.

In order to realize the importance that formerly was attached to the process of
reducation of systems of forces, let us note that 30 clear pages are set aside in the
text-book [55] for various particularities connected with equlvalence and reduction
of systems of arrows. .

In the course of time, the mechanicians arrived at four * ‘simplest” or elementar
kinds of systems of arrows, to one of which any system of arrows can be reduced by
means of elementar-statical operations. These four types of systems are as follows

1. The zero-system o= {d}, consisting of the zero-arrow & only.

2. A dipol 5 con51stmg of two non-zero arrows §, (u =1, 2) with 8, +82 = o,
m; + Mo = 0,

3. The mono—system =1 s} consisting of a smgle NON-zero arrow §.
_ 4. A bi-system (3, consisting of two non-zero arrows §, (v = 1, 2) with non-
parallel non-intersecting directrices.

The following remarks are not useless. -

First, while the elementar systems o and H (cases 1 and 3 respectlve]y) are

.wholly determined, the elementar systems & and B (cases 2 and 4 respectlvely)

-—

are not. The meaning of this statement is that there exist two at least (infinitely
many, as a matter of fact) different dipols 61 and (5') with é; ~ 6-; as well as two

pa—

at least (also infinitely many, in point of fact) dlfferent bi- systern 51 and ﬁg with

,@1 ~ L% Tlus is the meaning of the use of the definite atricle “the” n the cases 1

and 3, and of the indefinite article in cases 2 and 4.
Second, if §, = (s,, m,) (v = 1 2), then by definition dir 5, (u =1, 2) are
intersectilg if, and only if,

u kil

(120) sy X8 #0,  syms+ symy £ 0.

The rank-theorem proposes a criterion for a natural classification in the set
Sc(r) of all systems of C(F)-arrows, possessing a completely determined mechan-
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ical significance. It is based on the following reduction-lemma:

’

s=0, m=o,

(121) s(s, m) ~ < iff #=0, m#o,
= s#o0, sm=0,

sm #£ 0.

lIw {anlo

Now the rank-theorem and the reduction-lemme, imply the so-called reductzon-
theoremi:
If s € Sc(ry, then:

-

(122) 5§ ~ { iff rank s =

I =)

|
l@ie la>nlo

\

The rank-theorem plays an important role in kinematics of rigid bodies, more
exactly in the so-called statical-kinematical analogy, but this is a problem we shall
discuss in due time. '

This is almost all one must know about arrows at all costs. The theory of
arrows is a vast one, but all that remains are, from a mechamcal point of view at
least, particularities. '

Up to now all considerations have been of a purely algebraic nature. The
following step toward the axiomatic consolidation of the logical foundations of an-
alytical mechanics consists in development of theories of motions and rigid bodies.
Now, on the very threshold of these theories one is faced with the necessity of vector
analysis.

Those are topics that will be discussed in the continuation of this paper. For
the time being we shall append the last pieces of information from vector algebra
that will be necessary in the following exposition. They concern mainly the so-
called vectors of Gibbs. :

Let He(py be an Hermitean space over C(F), i.e. a set, in which three opera-
tions (16) — (18) are defined, satisfying the conditions A\ 1 C(F) — Ax 12 C(F)
(wnth H instead of V) -and let

(123) . ~ a, € Hep | (r=1,..., n),
(124) | . Gla)p=, #£0
provided by definition ‘
| ai aa,
(125) Gl iy =] emsssssnssnsanes
| anay a?
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Then the vectors aeﬁned by

e
L %= T

aiay

----------------------

----------------------

are called Gibbs’ vectors or reciprocal vectors of the vectors (123).
(As it is well-known, the condition (124) is necessary and sufficient for the
linear mdependénce of the vectors (123); for n linearly independent elements of

Hc(r) it is said that they constitute a reper.)

r=1,...

, 1)

The following propositions describe the basic properties of reciprocal vectors

Pr 8 C(F). (123), (124) irply
(127) ~ a;‘.au = {
Pr 9 C(F). (123), (124) imply
(128)

Pr 10 C(F). (123), (124) imply
(129) |
Pr 11 C(F). (123), (124) imply
(130) |
Pr 12 C(F). (123), (124) imply

(131) _ (a;') ' =a,
Pr 13 C(F). (123), (124) imply
(132) , a’=a,
i |
(133) a,,a,,’=°{1 =
0 (s#v)

102

1 (#=V_)_ |
0 (n#v)

. 0_12{1 (n=v)
YT o w#w)

G(a;')2. :# 0.

G(a,)p=1G(a;");

(B, v=1,
(, v=1,...
1=1.
(v=1,
=1,

(B, v=1,..

oo, 1.



v=1

Let H(a,)"_, denote the linear span of (123) provided (124), i.e. the set

(134)' H(ay);-; = {Zaya., : g C(F) (=1 : n)} .

v=1

Then: -

Pr 14 C(F). (123), (124),
(135) , TE€ H(ay)y=
impl); _

. . _ \
(136) S zn:(ragl)a.,. ;
- w=l

Pr 15 C(F). (123), (124), (135) imply
(137) | = Z(ra,)a;l.
' ’ v=1l

Pr 16 C(F). (123), (124), |
(138) Y ae ). ' (wv=1,..., n)

imply: there exist exactly one (135) with

(139) | ray =, | w=1,..., n),
namely
(140) r=) aa;t

: v=1

Pr 17 C(F). (123), (124) imply: there exists exactly one (135) with
(141) ra, =0 S (v=1,..., n),

namely

(142) » . r=o.
Pr 18 C(F). If
(143) : | a, € VC_(F) s | (r=1, 2, 3),
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(144) .01 X as - as # 0

then _
(145) ' | a-1 = Gvtl X Guia
- a; X as-as

provided

(146) . ayi+3 = ay @
Pr 19 C(F). If (50),

(147) .  ay EVe(r)

(148) b, € Vor)

(149) rxa,=b,

then

(150) " aub,+ayb, =0
Pr 20 C(F). (50), (147), ‘ '

(151)  ay Xaz#o0,

(152) rxa, =o

imply (142). .
Pr 21 C(F). (143), (144),

(153) o b, € Vo(r)
(154) | aub, +a,b, =0

imply: there exists exactly one (50') with

(155) rxa,=b,
namely | |
' ‘ , : 138

ey & -1
(156) | | =g ;a,, x b,.
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l(u: 1, 2)f

(, v=1,.2):

v=12)

(r=1, 2, 3),

(B, v=1,2,3)
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Pr 22 C(F). (147), 148), (150), (151) imply: there exists exactly one (50)
with (149), namely (156) provided

(157) asz = a; X aa,

(158) bs = (by - a3 x aj)a;! 4 (bz- a2 x a1)az .

The mechnical praxis necessitates the solving of four only systems of algebraic
vector equations in the main. Three of them are the systems (139), (149), and
(155), considered in Pr 16 C(F), Pr 22 C(F), and Pr 21 C(F) respectively. The,
fourth is discussed in the following proposition.

Pr 23 C(F).a€C(F);a, b, c€Very,a#0,ab=0 1mply

1. If ac # 0, then there exists exactly one (50) with

(159) rxa=>b,
(160) : ‘ re = a,
namely

(161) . ooy ERLERD
ac
2. If ac = 0, aa + ¢ x b = o, then any solution (50) of (159) is a solution of

(160) too. but the inverse is not true.
3. fac =0, aa + ¢ x b # o, then there exists no (50) with (159), (160)

(To-be continued.)
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