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The discrete multitime multiple recurrences are common in analysis of algorithms,

computational biology, information theory, queueing theory, filters theory, statistical

physics etc. We discuss in detail the cases of recurrences on a monoid, highlighting

in particular algebraical aspects and original theorems on existence and uniqueness of

solutions.
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1. DISCRETE MULTITIME MULTIPLE RECURRENCE

Generically, we refer to discrete multitime multiple recurrences of the form

x(t+ 1α) = Fα(t, x(t)), ∀t ∈ Zm, t ≥ t0, ∀α ∈ {1, 2, . . . ,m}, (1.1)

where Fα :
{

t ∈ Z
m
∣

∣ t ≥ t1
}

×M → M , α ∈ {1, 2, . . . ,m}, m ∈ N
∗, t0, t1 ∈ Z

m,
t0 ≥ t1; 1α = (0, . . . , 0, 1, 0, . . . , 0) ∈ Z

m, i.e., 1α has 1 on the position α and 0
otherwise; M is a nonvoid set. The unknown function is an m-sequence x :

{

t ∈
Z
m
∣

∣ t ≥ t0
}

→M .

Let us start by presenting two results on the existence and uniqueness of the
recurrence (1.1) solutions (see [4]).
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Proposition 1. If for any (t0, x0) ∈
{

t ∈ Z
m
∣

∣ t ≥ t1
}

×M , there exists at
least one solution x :

{

t ∈ Zm
∣

∣ t ≥ t0
}

→M which verifies the recurrence (1.1) and
the condition x(t0) = x0, then

Fα(t+ 1β , Fβ(t, x)) = Fβ(t+ 1α, Fα(t, x)), (1.2)

∀t ≥ t1, ∀x ∈M, ∀α, β ∈ {1, 2, . . . ,m}.

Theorem 1. We consider the functions Fα :
{

t ∈ Z
m
∣

∣ t ≥ t0
}

×M → M ,
α ∈ {1, 2, . . . ,m}, such that, ∀t ≥ t0, ∀x ∈ M , ∀α, β ∈ {1, 2, . . . ,m}, the relations
(1.2) are fulfilled.

Then, for any x0 ∈M , there exists a unique function

x :
{

t ∈ Zm
∣

∣ t ≥ t0
}

→M,

which verifies

x(t+ 1α) = Fα(t, x(t)), ∀t ≥ t0, ∀α ∈ {1, 2, . . . ,m},

and the condition x(t0) = x0.

2. MULTITIME RECURRENCES ON A MONOID

A monoid is an algebraic structure with a single associative binary operation
and an identity element. Monoids are used in computer science, both in its foun-
dational aspects and in practical programming.

Our aim is to analyse a multitime recurrence on a monoid
(

N, ·, e
)

. We consider
η : N ×M →M , an action of the monoid N on the set M , i.e.

η(ab, x) = η
(

a, (b, x)
)

, η(e, x) = x, ∀a, b ∈ N, ∀x ∈M. (2.1)

We will use the more convenient notation

η(a, x) = ax, ∀a ∈ N, ∀x ∈M

(not to be confused with the operation of monoid N). The relations (2.1) become

(ab)x = a(bx), ex = x, ∀a, b ∈ N, ∀x ∈M.

The action functions aα :
{

t ∈ Z
m
∣

∣ t ≥ t1
}

→ N , α ∈ {1, 2, . . . ,m} (with
t1 ∈ Z

m) define the action recurrence

x(t+ 1α) = aα(t)x(t), ∀α ∈ {1, 2, . . . ,m}, (2.2)

with the unknown function x :
{

t ∈ Zm
∣

∣ t ≥ t0
}

→M , t0 ∈ Z
m, t0 ≥ t1.

Introducing the set
Z :=

{

t ∈ Zm
∣

∣ t ≥ t1
}

and using Proposition 1 and Theorem 1, one can prove easily the following result
(see [5]):
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Theorem 2. a) If, for any (t0, x0) ∈ Z×M , there exists at least one function
x :

{

t ∈ Z
∣

∣ t ≥ t0
}

→ M , which, for any t ≥ t0, verifies the recurrence (2.2) and
the condition x(t0) = x0, then

aα(t+ 1β)aβ(t)x = aβ(t+ 1α)aα(t)x, (2.3)

∀t ∈ Z, ∀x ∈M, ∀α, β ∈ {1, 2, . . . ,m}.

b) If the relations (2.3) are satisfied, then, for any (t0, x0) ∈ Z × M , there
exists a unique function x :

{

t ∈ Z
∣

∣ t ≥ t0
}

→ M , which, for any t ≥ t0, verifies
the recurrence (2.2) and the condition x(t0) = x0.

For any point t = (t1, . . . , tm) ∈ Nm, it is useful to denote

|t| := t1 + . . .+ tm.

Theorem 3. Suppose that the monoid N is commutative. Let us consider
the function (sequence) r : N → N and the elements qα ∈ N , α ∈ {1, 2, . . . ,m},
pαβ ∈ N , α, β ∈ {1, 2, . . . ,m}, with pαβ = pβα, ∀α, β.

For each index α ∈ {1, 2, . . . ,m}, we define the function

aα : N
m → N, aα(t) = qα · p

t1

α1p
t2

α2 · . . . · p
tm

αm · r(|t|), ∀t = (t1, . . . , tm) ∈ Nm.

We shall consider the recurrence (2.2) defined by these functions.

In the previous conditions, for any x0 ∈ M , there exists a unique m-sequence
x : Nm → M , which, for any t ∈ N

m verifies the recurrence (2.2), as well as the
condition x(0) = x0. This m-sequence is defined by

x(t) =
m
∏

α=1

qt
α

α ·
m
∏

α=1

(pαα)
tα(tα−1)

2 ·
∏

1≤α<β≤m

pt
αtβ

αβ ·

|t|−1
∏

j=0

r(j) ·x0, ∀t ∈ N
m \{0} (2.4)

(if m = 1, then the factor
∏

1≤α<β≤m

pt
αtβ

αβ does not appear).

Proof. For any α, β, we have

aα(t+1β) = pαβ ·qα ·p
t1

α1p
t2

α2 · . . . ·p
tm

αm ·r(|t|+1), aβ(t) = qβ ·p
t1

β1p
t2

β2 · . . . ·p
tm

βm ·r(|t|),

aα(t+ 1β)aβ(t) = pαβ · qαqβ · p
t1

α1p
t2

α2 · . . . · p
tm

αmp
t1

β1p
t2

β2 · . . . · p
tm

βm · r(|t|)r(|t|+ 1).

It follows that

aβ(t+ 1α)aα(t) = pβα · qβqα · p
t1

β1p
t2

β2 · . . . · p
tm

βmp
t1

α1p
t2

α2 · . . . · p
tm

αm · r(|t|)r(|t|+ 1).

Since pαβ = pβα, we can write

aα(t+ 1β)aβ(t) = aβ(t+ 1α)aα(t), ∀t ∈ Nm, ∀α, β ∈ {1, 2, . . . ,m}.
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We deduce that the relations (2.3) are satisfied. According to Theorem 2 (with
t0 = t1 = 0), there exists a unique function x : Nm → M , which, for any t ∈ N

m

verifies the recurrence (2.2), and the condition x(0) = x0.

It is sufficient to show that the function defined by the formula (2.4), for
t ∈ Nm \ {0}, and x(0) = x0, verifies the recurrence relation (2.2).

We shall verify the case m ≥ 2; the case m = 1 is treated similarly.

We fix γ ∈ {1, 2, . . . ,m}. We show that for any t ∈ Nm, we have

x(t+ 1γ) = aγ(t)x(t).

Let t ∈ Nm \ {0}. We need the set Pm,2 of the subsets with two elements from

the set {1, 2, . . . ,m}, i.e., Pm,2 =
{

{α, β} ⊆ {1, 2, . . . ,m}
∣

∣

∣
α *= β

}

.

Since pt
αtβ

αβ = pt
βtα

βα , we observe that in the product
∏

1≤α<β≤m

pt
αtβ

αβ the factors

pt
αtβ

αβ occur, taken over all distinct elements {α, β} of the set Pm,2.

If m ≥ 3, we can write

Pm,2 =
{

{γ, α}
∣

∣

∣
α ∈ {1, 2, . . . ,m}, α *= γ

}

∪

∪
{

{α, β} ⊆ {1, 2, . . . ,m}
∣

∣

∣
α *= γ, β *= γ

}

,

hence we have
∏

1≤α<β≤m

pt
αtβ

αβ =
m
∏

α=1
α !=γ

pt
γtα

γα ·
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ . (2.5)

Form = 2, one obtains the relation (2.5), but without the factor
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ .

For m = 2, we denote
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ := e. With this convention, it follows that

the relation (2.5) is satisfied for any m ≥ 2. The relation (2.4) becomes

x(t) =qt
γ

γ ·

m
∏

α=1
α !=γ

qt
α

α · (pγγ)
tγ (tγ−1)

2 ·

m
∏

α=1
α !=γ

(pαα)
tα(tα−1)

2

·

m
∏

α=1
α !=γ

pt
γtα

γα ·
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ ·

|t|−1
∏

j=0

r(j) · x0;

x(t+ 1γ) =qγ · q
tγ

γ ·

m
∏

α=1
α !=γ

qt
α

α · (pγγ)
(tγ+1)tγ

2 ·

m
∏

α=1
α !=γ

(pαα)
tα(tα−1)

2

·
m
∏

α=1
α !=γ

(pt
γtα

γα · pt
α

γα) ·
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ ·

|t|
∏

j=0

r(j) · x0.
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Since
(tγ + 1)tγ

2
= tγ +

tγ(tγ − 1)

2
, it follows that

x(t+ 1γ) = qγ · p
tγ

γγ ·
m
∏

α=1
α !=γ

pt
α

γα · r(|t|) · q
tγ

γ ·
m
∏

α=1
α !=γ

qt
α

α · (pγγ)
tγ (tγ−1)

2 ·
m
∏

α=1
α !=γ

(pαα)
tα(tα−1)

2

·
m
∏

α=1
α !=γ

pt
γtα

γα ·
∏

1≤α<β≤m
α !=γ, β !=γ

pt
αtβ

αβ ·

|t|−1
∏

j=0

r(j) · x0 = aγ(t)x(t)

For t = 1γ , the relation (2.4) reads as

x(1γ) = qγ · r(0) · x0 = aγ(0)x(0),

hence the equality x(t+ 1γ) = aγ(t)x(t) is true also for t = 0. �

Remark 1. If we use additive notation, i.e., the operation on N is denoted
by “ + ” and η(a, x) = a + x (a ∈ N , x ∈ M), then the recurrence relation (2.2)
reads as

x(t+ 1α) = aα(t) + x(t), ∀α ∈ {1, 2, . . . ,m}.

In Theorem 3, we have aα(t) = qα + t1pα1 + t2pα2 + . . . + tmpαm + r(|t|).
Formula (2.4) can be written

x(t) =

m
∑

α=1

(

tαqα +
tα(tα − 1)

2
pαα

)

+
∑

1≤α<β≤m

tαtβpαβ +

|t|−1
∑

j=0

r(j) + x0.

Corollary 1. Let (M, ·) be a semigroup. We consider the function (sequence)
r : N → N

∗ and the elements qα ∈ N
∗, α ∈ {1, 2, . . . ,m}, pαβ ∈ N

∗, α, β ∈
{1, 2, . . . ,m}, with pαβ = pβα, ∀α, β.

For each index α ∈ {1, 2, . . . ,m}, we define the function

aα : N
m → N

∗, aα(t) = qα · p
t1

α1p
t2

α2 · . . . · p
tm

αm · r(|t|), ∀t = (t1, . . . , tm) ∈ Nm.

Then, for x0 ∈ M , there exists a unique m-sequence x : Nm → M , which, for
any t ∈ Nm, verifies

x(t+ 1α) = x(t)aα(t), ∀α ∈ {1, 2, . . . ,m}, (2.6)

and the condition x(0) = x0. For any t ∈ Nm \ {0}, we have

x(t) = x

(

m
∏

α=1

qt
α

α ·
m
∏

α=1

(pαα)
tα(tα−1)

2 ·
∏

1≤α<β≤m

pt
αtβ

αβ ·

|t|−1
∏

j=0

r(j)
)

0 (2.7)

(if m = 1, the factor
∏

1≤α<β≤m

pt
αtβ

αβ does not appear).
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Proof. We apply Theorem 3 to the commutative monoid
(

N, ·, e
)

= (N∗, ·, 1
)

and the action

η : N∗ ×M →M, η(a, x) = xa, ∀a ∈ N∗, ∀x ∈M.

�

Remark 2. a) If in Corollary 1 the semigroup (M, ·) is a monoid, then we can
consider: qα ∈ N, pαβ ∈ N (with pαβ = pβα) and r : N→ N (i.e., qα, pαβ , r(j) can
be eventually zero). The conclusion in Corollary 1 reads similarly and the solution
of the recurrence (2.6) is defined by the formula (2.7).

The proof follows by applying Theorem 3 to the commutative monoid
(

N, ·, e
)

=
(N, ·, 1

)

and the action

η : N×M →M, η(a, x) = xa, ∀a ∈ N, ∀x ∈M.

b) If in Corollary 1 the semigroup (M, ·) is a monoid, and the element x0 of M
is chosen invertible, then we can consider qα ∈ Z, pαβ ∈ Z (with pαβ = pβα) and
r : N → Z (i.e., qα, pαβ , r(j) are integers). The conclusion in Corollary 1 writes
similarly, and the solution of the recurrence (2.6) is defined also by the formula
(2.7).

The proof can be obtained by applying Theorem 3 to the commutative monoid
(

N, ·, e
)

= (Z, ·, 1
)

and the action

η : Z× U(M)→ U(M), η(a, x) = xa, ∀a ∈ Z, ∀x ∈ U(M),

where U(M) is the set of invertible elements in M ; the set U(M), with operation
induced by that of M , is a group.

Many other original results, regarding the multitime recurrences, can be found
in [3]-[8]. Some related sources are [1], [2], [9]-[12].

3. EXAMPLE OF MATRIX 3-SEQUENCE

Let us determine the matrix 3-sequence X : N3 → M2(R), which, for any
t = (t1, t2, t3) ∈ N3, verifies the recurrence relations











X(t1 + 1, t2, t3) = X(t1, t2, t3)2
t1 ·3t

2+1·7t
3
·(t1+t2+t3+1),

X(t1, t2 + 1, t3) = X(t1, t2, t3)5·3
t1 ·2t

3
·(t1+t2+t3+1),

X(t1, t2, t3 + 1) = X(t1, t2, t3)11·7
t1 ·2t

2
·(t1+t2+t3+1),

and the condition X(0, 0, 0) = A :=

(

1 −2
4 7

)

.

58 Ann. Sofia Univ., Fac. Math and Inf., 103, 2016, 53–60.



We are in the assumptions of Corollary 1, with (M, ·) =
(

M2(R), ·
)

and

q1 = 3, q2 = 5, q3 = 11,

p11 = 2, p22 = p33 = 1, p12 = p21 = 3, p13 = p31 = 7, p23 = p32 = 2,

r : N→ N
∗, r(j) = j + 1, ∀j ∈ N.

According to Corollary 1, for any (t1, t2, t3) ∈ N3 \ {(0, 0, 0)}, we have

X(t1, t2, t3) = A3
t1 · 5t

2

· 11t
3

· 2
t1(t1−1)

2 · 3t
1t2 · 7t

1t3 · 2t
2t3 · (t1 + t2 + t3)!,

X(t1, t2, t3) = A2
t1(t1−1)

2 +t2t3 · 3t
1(t2+1) · 5t

2

· 7t
1t3 · 11t

3

· (t1 + t2 + t3)!,

relation which is also true for (t1, t2, t3) = (0, 0, 0).

By induction one shows that

An =

(

2 · 3n − 5n 3n − 5n

2(5n − 3n) 2 · 5n − 3n

)

, ∀n ∈ N,

An = 3n
(

2 1
−2 −1

)

+ 5n
(

−1 −1
2 2

)

, ∀n ∈ N.

It follows that, for any (t1, t2, t3) ∈ N3, the general term is

X(t1, t2, t3) = 32
t1(t1−1)

2
+t2t3 ·3t

1(t2+1)·5t
2
·7t

1t3 ·11t
3
·(t1+t2+t3)! ·

(

2 1
−2 −1

)

+ 52
t1(t1−1)

2
+t2t3 ·3t

1(t2+1)·5t
2
·7t

1t3 ·11t
3
·(t1+t2+t3)! ·

(

−1 −1
2 2

)

.
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