T'OAUIUIHUK HA CO®UNCKUA YHUBEPCUTET “CB. KIMMEHT OXPUJICKU”
®AKYJTET 11O MATEMATHUKA U HHPOPMATHUKA

Kuura 1 — MaTemaTuka
Tom 82, 1988

ANNUAIRE DE L'UNIVERSITE DE SOFIA “ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 82, 1988

ON THE REDUCTION OF POLYADIC RECURSIVE PROGRAMS
TO MONADIC ONES~

DIMITER SKORDEV

Jusmump Cxopdes. O CBEIEHHUHU MOJIMAIUUYECKUX PEKYPCHUBHBIX IIPO-
IT'PAMM K MOHAINYECKHUM. B pabore paccMaTpuBaeTCa OAKWH METOM CBEAECHMA NO-
nua,,'z(nqecxnx PEeKYPCHBHHX NporpaMM K MOHAIHNYECKHUM. OH OCHOBaH Ha HMOesAX, UCNOJb-
sopansuix JI. MBanoBuM npu HEKOTOPHIX npuMeHEHMAX ero anrebpauueckolt Teopum pe-
Kypcuu. OBcy»gaeTca NPUMEHMMOCTD BTOMO METOAA IJIA PEaU3alMM NOAUAJUUECKUX De-
KYPCHBHEIX NPOrpPaMM B A3HIKaX NPOrpaMMHDOBAHMA, JONYCKAICIIMX TONLKO PEKYDCHUBHLIE
nponeny pul 6e3 napaMeTpos.

Dimiter Skordev. ON THE REDUCTION OF POLYADIC RECURSIVE PROGRAMS TO
MONADIC ONES. In the paper, a certain method is considered for the reduction of polyadic
recursive programs to monadic ones. The method is based on ideas used before by L. Ivanov in
some applications of his algebraic recursion theory. The applicability of this method is discussed
for the implementation of polyadic recursive programs in programming languages admitting only
recursive procedures without parameters.

The recursive programs considered in this paper are, roughly speaking, inter-
preted recursive program schemes (for the last notion, cf. e.g. [1, 2]). The monadic
recursive programs can be described as recursive programs which contain only unary
functional and predicate symbols and satisfy the condition that branching in them
is controlled only by primitive predicates (compare with [1] pp. 7-4, 8-1). The
polyadic recursive programs are those recursive programs which are not monadic.
Their reduction to monadic ones can be used for their implementation in program-
ming languages admitting only recursive procedures without parameters and hence

*An invited talk held at the Summer School and Conference on Mathematical Logic and its
Applications "Heyting '88" (Varna, September 13-23, 1988). Research partially supported by the
Ministry of Culture, Science and Education, Contract No. 247/1987. '

173

not permitting to implement polyadic recursive programs in a straightforward man-
ner (such languages are, for example, Basic and Forth, where in the case of the first
of them its GOSUB-feature can be used). In the present paper, a method of re-
duction will be exposed which is based on ideas used before by 1. Ivanov in some
applications of his algebraic recursion theory [3, 4]. In a slightly different form, and
without considerations about the practical implementation, this method has been
exposed in [5].

Let A = (A Fy, P ...; P, Py, . ..} be a (possibly partial) algebraic system.

Definition 1 (lnductlve deﬁmtlon of the notion of an A- quasz-termal
partial mapping of A™ into A™):

(1.1) Fy, F,, :.. and the projection fu'nctions-'grmd(al, ey Gi) = G,
m=1,2,..., j=1, ..., m, are A-quasi-termal.

(12) IfF: A"~ — A"and G: A'— — A™ are .A-quasn-termal then so is
FoG: A'— — A™ defined by

F o G(a) ~ F(G(&))l.

(13) U F: A" — — A" and G: A™ — — AP are .A-quas:-termal then so is
FxG: A™ — A™*? defined by

F x G(a) = F(a).G(a)
(the multiplication sign in the right-hand side denotes concatenation).

(14) If P is l-ary, and F : Am— Al G, H: A™— — A" are .A—quas:-termal
-then so is (P; o F = G, H) A™ — 5 A" defined by
G(a) if P;(F(a)) = true,

(P;oF =@, H)(a) ﬁ{ H(a) if P;(F(a)) = false.

Definition 1’ (inductive definition of the notion of an .A-quasi-termal
operator): a uniform relativized version of Definition 1.

In the case when Fy, F3, ..., P, P;, ... are unary, we adopt also

Definition 2 (mductlve definition of the notion of a monadic .A -quasi-
termal mapping of A into A):

(2.1) F1, Fy, ... and id4 = pr; ; are monadic A-quasi:termal mappings.
(2.2) If F and G are monadic A-quasi-termal mappings, then so is F o G.
(2.3) If G and H are monadic A-quasi-termal mappings, then so is '

(Fr=3>G, H}={Fjoidy =G, H).

Definition 2’ (inductive definition of the notion of a monadic A- quas:»
termal operator): a uniform relativized version of Definition 1’.

Remark 1. The assumption that Fy, F5, ..., P;, P, ... are unary does
not always assure that all A-quasi-termal mappings of A into A are monadic. Let

74 ' <

A = (N; predec; eqzero), where N = {0, 1, 2, ...}, predec(a) = a — 1, and
eqzero(a) is equivalent to (@ = 0). Then the mapping (eqzeroopredec — idn,

predec) is not monadic (only the mappings Aa. a — ¢, 1 =0, 1, 2, ..., are
monadic). :
We return again to the general case (i. e. Fy,Fy, ..., P, P3, ... are not

necessarily unary).

Definition 3. The set of all finite sequences of elements of A will be
denoted by A*.

Definition 4. Forany F: A™ — — A", we.define F*: A* — — A* as
follows:

vy B Vo MBaiins =i) i 8 200,

F.((_al, oy G}y 0 { F(ay, ..

otherwise

(this construction has been used in [6]).
Definition 5. For any partial m-ary predlcate P on A, we define a
partial unary predicate P° on A* as follows:

ey @) if 5 3 m,

Pan, ooy = { T

otherwise.

Definition 6. The partial mappings drop, dup, roll;, rolls, ...of
A* into A* are defined as follows:

(a2, ”_,as) lfS>0,
drop((al, ey) { X otherwise;
(ala @y, ...y aS) if s > 0,
dup((all abd § a’)) = { J_ OtherWise' ’
- (an+1, a, .. '.) An, An42, --- ’a") if s > L
rolla({as, .., a,))_{ | otherwise

(these denotations are borrowed, mutatis mutandis, from the programmmg lan-
guage Forth).
Definition 7. Let A’ be the unary partial structure defined by

A =A™ Fl', F;, ..., drop, dup, roll,, rollz, P;, Pz, "

Theorem 1. Whenever F is an .A-quasn—termal partlal mapping of A™
into A", then F”* is a monadic A’-quasi-termal partial mapping of A* into A*.

T h eorem 1. IfT is an A-quasi-termal operator then there is a monadic
A’-quasi-termal operator I'* having the same number of arguments and satisfying

the equality |
I'(Gy, ..., Gy) = (I(Gy, ..., Gp))’
for all sequences Gy, ..., G belonging to dom I'.

175

Proof (of both theorems). We use the equalities

(Prm,j)' = (dropo rolll)"‘-i o (drop)5‘1 ’
, (Pr1,1). = dropodup,
(FoG) = F'oG",

the fact that, whenever F: A™ = — A" and G: A™ — — A®, then

FoG"~ o if m=0,
Flo(rollpypn—a1)™ 0 G*q copy,, otherwise,

(FxQG) = {
where copy,, = (pickm)™ if m > 1, copy, = dup., copyo = id4., and pick; =
roll; o (roll,+1) o dup o roll;, as well as the fact that, whenever P; is [-ary, and
F: A™ - — A, : A™ — — A" then

(PioF =G, H) = (P’ => G"o(drop)/, H o (drop)’) o F' o copy,,.

If we modify the definition of A by adding suitable other primitive operations,
then the above proof may be replaced by a simpler one. For example, in the case
of Theorem 1’ we could add all monadic mappings quasi-termal with respect to
the original A" as additional operations, and we would have yet a non-tautological
result. When applying the construction from the proof to concrete operators, some-
times also the addition of certain predlcates of the form P;0® with monadic & could
happen to be convenient.

A certain kind of calculus can be developed for the construction of the op-
erators I'*. Let us adopt the convention that, when given an expression intended
to denote some element of some set A™, the same expression will denote also the
corresponding mapping of A° into A™. Then, given an .4-quasi-termal operatar
I’ having k arguments and producing m-ary functions, we form the corresponding
expression U*, where U is an expression for I'(¢1, ..., gx)(21, ..., Zm), assuming
g1, ---, gr to be variables for functions of the suitable types, and z;, ..., z,; to
be variables for elements of A. The next step is to transform U” into an expression
of the form V o -"’i > ...0z,,, where V does not contain zj, ..., z,,, and V is
obtained from gj, ..., gk, from denotations of monadic mappings and from pred-
icates P; o ® by means of composition and branching (this transformation can be
done by using equalities from the proof of Theorems 1, 1’ and some other equa.htles
e. g. dupo F*= F*o F*foreach F : A® -~ — A). Takmg the expression V and
replacing the occurrences of ¢i, ..., 9% in it by variables ya;, ..., 7a; for unary
operations in A*, we obtain an expressmn for I'(vay,. ..., 7ak)

Example 1. Let A be the same as in Remark 1. Let U be the expression

g(g(predec(y), £), g(predec(:i:), z)),

where g is a variable for functions of type N> — — N, and z, y, z are variables for
elements of N. Then

U = g o(g(predec(y), z)) o (g(predec(z), z))°
= ¢ og o(predec(y)) oz o(g(predec(z), z))

176

= g og'oroll;' o(g(predec(z), z)) o (predec(y)) oz
= g'og'oroll; oy o(predec(z)) oz o (predec(y)) oz’
= g'og'orollz'lég’oF'oz'oy'o.z', '

where roll; ! is the inverse mapping of roll,, and the mapping F of type N® —-
N* is defined by

F(z, y, z) = (predec(z), z, predec(y), z).
Hence, taking v to be a variable for unary operations in A*, we may set
I"(y) =voyoroll;loyo F .

Definition 8. A recursive program over A is a system of equations of
the form ~
gl':rai(gli "'1gk)1 1"—_-1, ey kv
where I'a;, ..., I'ap are A-quasi-termal operators. The above program is called
monadic if ¢, ..., gi are variables for unary functions, .and the operators
Fay, ..., Lag-are monadic. The functions computed by the program are the com-
ponents of the least solution of the system.

Remark 2. Some authors use the term “monadic program” in a sense
which is not the same as in the above definition. Cf., for example, {7, p. 544].

Definition 9. Given a recursive program over A having the form
from Definition 8, the monadic transform of this program is the monadic recursive
program ‘

7ai=ra;(7ali $ &3y 7“&)) i=1: 4 & o E;

over A°, where va;, ..., ya; are variables for unary operationsrin A*.
Using the continuity of the .A-quasi-termal operators and of the operation
AF, F* one easily proves.

Theorem 2. If Gy, ..., Gr are the functions computed by a given
recursive program over A, then Gj, ..., G} are the functions computed by its
monadic transform. '

Since

Gi(as, ---, am;) = G;({a, ..., am,)),

where m; is the arity of G;, Theorem 2 shows a way for the reduction of recursive
programs over A to monadic recursive programs over A°’.
Example 2. Let A= (N; predec, C, L, R; eqzero), where

Oz, 4) = 3 +9)E+y+1) +e,
LC(z, y) =2, R(C(z, y)=y

for all z, y in N. Consider the two-argument partial recursive functlon w defined
recurswely by . ~

C(z, z) T =0
.w(C(z, Y), z2) =< y—1 , if:- y>0,- #=80,
w(w(y -1, 2), w(z—1, z)) otherwise

177

(according to [8], w is an universal function for the unary partial recursive func-
tlons) The above recursive definition of w can be represented by a recursive pro-
gram in the sense of Definition 8 such that w will be the function ¢computed by that
recursive program. We could, for example, take the recursive program g = A(g)oG,

where g is a variable for two-argument partial functions in N, the operator A trans-
forms such functions into three-argument partial functions in N, G is a mappmg of
N? into N®, and the following defining equalities hold:

Cl(z, 2) it =8,

A(g)(z, y, 2) > y-1 if y>0, z=0,
- a(9(y — 1, 2), g(z -1, 2)) otherwise,

G(t, z) = (L(t), R(t), 2).

Since (A(g) 0 G)* = (A(g)) 0 G* = A'(g") 0 G’, the monadic transform of the above
recursive program can be written as y = (7) o G". For constructing an expl1c1t
expression for A’(y); we consider the expression U where U is the expressmn
A(9)(z, y, z). We have the equahty

U* = (eqzero* oy = (C(=, 2))%, (eqz.ero o z* = (predec(y))",
| (Ss(predects,) ogrodectz), 1Y)
Making use of Example 1, we get |

U = (eqzero oy*=> C’oz’ 0z, (eqzero o z*—> predec’oy’,
g"og’oroll;loy oF‘oa: oy’ oz"))
= (eqzero'o drop 25 (0 drop o roll;, eqzero’ —3 predec’o drop,
gog "o rollylog o FY)) oz’ oy 02"

Hence
A’(Y) = (eqzerc'o d:i:'ép = ("o drop o roll;, (eqzero” =>
predec’ o drop,yo0 7o 1'0112'1 oyo F)).

So we have found the explicit form of the monadic transform of the original recursive
program computmg w. According to Theorem 2, this monadic transform computes
the function «*, and therefore could be used for computing values of w.

Of course, a recursive program in Pascal for computing valies of w can be
written in a stra.lghtforward manner. But the monadic transform constructed above
gives us the posslbﬂlty to construct relatively simple programs computing values
of w in programming languages holdmg out much more restricted possibilities for a
stralghtforwa,rd recursive programming. To demonstrate this, we wrote a program
in Applesoft.Basic for the some purpose, using the obtained monadic transform

and the GOSUB-feature of Basic. The length of the program is less than 1000
bytes. Sequences from N* are represented on a stack principle, the members of
the sequence following each other in direction from top to bottom. The stack is
realized by means of an array A’'supplied with a counter D, and the dimension of A
is chosen in concordance with the restriction in Applesoft.Basic about the number
of the nested subroutine calls. The flow diagram of the program and the way of

178

f

DIM A(55)

\ INPUT "FIRST ARGUMENT =" ;A(1) J

\ INPUT “SECOND ARGUMENT = ";A(0D) /

D:=1

/ {computation }‘ \

\ PRINT “FUNCTION VALUE ="; A{0) /

END

Fig. 1. Flow diagram of the program in Basic for computing w

top
A(Dl =ay
A(D'l)=az

A(D-2)=q,

A(') 303_1

Al0) =ag

bottom
Fig. 2. The stack representation of the sequence (e1,...as)

using the array A for the stack representation of elements of N* are shown on
Fig. 1, 2. An essential part of the program is a subroutine called “computation”
which contains three calls of itself. The flow diagram of this subroutine is shown
on Fig. 3. As to the efficiency of the considered program, the situation is not
so bad as somebody could suspect. Namely, some experiments were made by the
author on a “Pravetz-8M” microcomputer, and they showed the compiled variant
of the program running faster then the directly written recursive Pascal program
processed in the Apple UCSD Pascal system. For obtaining more information
about the efficiency of using monadic transforms, the author wrote also a monadic
recursive and a non-recursive program in Apple Pascal for computing values of w

179

[T,Z::A(D},A(D-H]

i

X,Y:=L(T),R(T) :l

A(D-1):=CIX.Z)]._—I D:=D-1
A!D-H::VLI-————-FD::D-1 RETURN

A(D+2), A0+1), A(D):=X=1,Z,Y~1]

D:=D+2

{computation}

l A(D),A(D-1),A(D-2):= A(D-1), Al D-2),A(D) J

{computation }

(comput ation}

i
RETURN

Fig. 3. Flow diagram of the subroutine “computation”

using again the monadic transform of the original recursive program. The table
below contains some average ratios of run-times (the timing-experiments were based

on computing w(4, 0), w(11, 1), w(11, 3), w(41, 50), w(60, 61) and w(312, 3):

Applesoft.Basic Apple UCSD Pascal
interpreted - compiled polyadic monadic non-
recursive recursive recursive
1.94 0.86 1 1.06 1.10

Acknowledgments. I am grateful to the organizers of ” Heyting "88“ for giv-
ing me the opportunity to deliver this talk. Thanks are due to my son Gencho who
instructed me in the programming for ”Pravetz-8M“, as well as to my colleagues
Ivan Soskov and Tinko Tinchev who helped me in preparing and carrying out a
demonstration on an IBM PC computer. I thank also Professor V.A. Nepomni-
aschy for some useful discussions (in particular, for attracting my attention to the
paper [7] and to other papers by the same author).

180

BIBLIOGRAPHY

1. Greibach,S. A. Theory of Program Structures: Schemes, Semantics, Verification. —
Lecture Notes in Computer Science, 36, Berlin—Heidelberg—New York, 1975.

2. KoTos, B. E. Beenenue s Teopuio cxem nporpamm. HoBocubupck, 1978,

3. Usanos,JI. JI. ArepaTunun oneparopuu npocrpauctea.C., 1980 (xann. auceprta-
uma). ;

4. Ivanov,L L. Algebraic Recursion Theory. Chichester, 1986.

. Skordev, D. G.. A reduction of polyadic recursive programs to monadic ones. —; In:

Symposium on Math. Foundations of Computer Science (Diedrichshagen, December
6-11, 1982), Seminarbericht Nr. 52, Sektion Math. der Humboldt—Univ. zu Berlin,
Berlin, 1983, 124-132.

6. Cxopaes, II.I'. O6 oanom norpy>kenuu utepatusanx anre6p Ilocta B nonyrpynnst.
— Anre6pa u normka, 21, Ne 2, 1982, 228-241.

7. Langmaack, H On a theory of decision problems in programming languages. — In:
‘Mathematical Studies in Information Processing (edited by E.K. Blum, M. Paul and S.
Takasu). — Lecture Notes in Computer Science, 75, Berlin—Heidelberg—New York,
1979, 538-558.

8. Ckopaes, I.'. Hexoropuie npocThie NpUMeEDPH YHUBEPCAALHMWX ¢ynkuuii. — JAH
CCCP, 190, Ne 1, 1970, 45-46.

Received 14.1V.1989

181

