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Euguema. Vchkova ON THE COVERING RADIUS OF SOME BINARY CYCLIC CODES
The binary cyclic codés of léngth « = uv obtained by the factorization .x4%:— 1 ‘= {z = 1)

X (ﬁ::ll) (I;L, :11) fi(z), where u a.nd v are odd relatively prime numbers are’ considered:

For these codes we find the covenng rad.ms (for two codes only upper and lower bound on covenng
radms) ; C e
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In this paper we study the problem of finding the covering radius of some
binary cyclic codes.. Let C be an:[n, k] binary linear code and with F' denote the
field with two elements F'= GF(2). The covering radius R = R( ) of C is the
smallest integer, such that any vector of the space F” is within Hamming distance
R from some code word. The covering radius of cyclic codes of length up to 31 are
given in[1] and the covering radius of cyclic codes of length 33, 35 and 39, without 3
codes, are given in [2]. The codes, considered in this paper, are some bmary cyclic
codes of length whlch is a product of two relatively pnme odd numbers

*This paper was partially supported by the Bulganan Cormttee of Scxence under cqntract
37/1988.
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Let u and v be odd integers, such that ged(u, v) = 1 and u < v. We consider
the binary cyclic codes of length n = uv, obtained by the following factorization:

2% + 1= fo(z) - fu(2) - fu(2) - ful2),

where
foz) = =z+1,
M R _£u+1
fu(x) = Z + +m‘+1_—x+1)
S _z'+1
fo(z) = 27"+ +z+1—z+1,
zﬂf) + 1
g} = 3
1@ = 5@ h@ n@
Table 1
In c_)ther words we considel_' oqu the codes Code T ———
which generator pelynomial is a product _ -
of some fo(z), fi(z), fu(z), fu(z). For 2 91(z)=f1(2)fu(2)
ea::lh tw;_o 1?“?!3658 udaind ;1 the(rie a;e (1_;2 C2 92(2)= fo(2) f1(z) fu(z)
codes of this kind and let the codes be C; C = ’
and g;(z) be the generator polynomial of ’ % (z)__,fl )
code C;, as they are given in the Table 1 Ca 94(2)=fo(2) f1(2) ful(2)
and R; be the covering radius of code C;. Cs 95(z)= fo(z) fo(z)
, Som.e lof lt;}lised.cqges h’a‘.’: 1a.(pal'it:y Ce 96(z)=1u(2)
polynomial which divides z s=u =
or s = v) and these codes are composed % ‘q-’(x)_fo(m)f"(r)
of some repetitions of (in our case) F* Cs g8(z)=fulz)
or E, (E, is the [s, s — 1, 2] even weight Cs gs(z)=f1(z)
code). For such codes we can calculate Cio 910(z)= fo(z) f1(2)
their covering radius using [3]. In this i N *
way we obtain the covering radius of the Cll 911(2)=fo(z) fu(z) fo(z)
12

following codes:

912(z)= fulz) fo(z)

— g1(z) = fi(z)fu(z) and C is [uv, v, u] R, = ﬁa:ﬂ code and C; is u

repetitions of F",

— g2(2) = fo(z) fi(z) fu(z) and Cp is [uv, v—1,2u] Ry = 1+ _(Tl code and

Cs is u repetitions of E,,,

— ga(z) = fi(z)fu(z) and C5 is [uv, u,v] R3 = 3(22_—1) code and Cs is v

repetitions of F“,

= 94(‘3) fo(z)fi(z)fs(z) and Cy is [uv u—1, 20) Ry = 1+ 2%~

Cj is v repetitions of E,,.
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We will use the following-obvious proposition:

Proposition 1. Let Cbe an [n, k] binary linear code. If H = (h; ... hn)
is a parity check matnx of C, then R(C) is the smallest integer, such that every
nonzero vector of F™~* is a sum of at most R columns of the matrix H, i.e.

z=hi+---+h, t<R, VzeF*\{0}.

If H has repeated columns then only one of this columns can be taken for the
calculation. Therefore, usmg thls proposition we can calculate the covering radius
of the codes dual to Cj, .. C4 and namely the covering radius of the following
codes:

— gs5(z) = fi(z)fo(z) and Cs is [uv, wwv—v, 2] Rs = v code and C; is the dual
to :

1

— 96(z) = fo(z) and Cs is [uv, wv — v + 1, 2] R¢ = -—2-— code and Cs is he
dual to Cj, .

— g—,»(:c) = fo(z)fu(z) and C7 is [uv, uv — u, 2] R7 = u code a,nd C7 is the dual
to 3

— g8(z) = fu(z) and Cs is [uv, v —u+1,2] Rg = -"—;—1 code and Cj is the
* dual to Cy.

The minimum distance of each of the rest four codes is glven by the following
theorem:

Theoreml. i) If go(z) = fi(2) then Co is a [uv, u+v—1, u] code and Cy
has a'weight enumerator

t=0

i) If g1o(z) = fo(z)fi(z), then Cyg is the [uv, ,u + v — 2, 2u] code,

ii1) X g11(z) = fo(z)fu(z)fo(2), then Cy; is the [uv, ,uv — u — v+ 1, 4] code,

iv) If g12(2) = fu(z)fo(=), then Cy2 is the [uv, ,uv — u — v+ 2, 4] code.

Proof. i) The code Cs contains the code C; which is u times repeated.F”, as
well as the code C3 which is v times repeated F*. Cj3 is generated by the words
z;,i=1, ..., uwith support X; = {i, i+u, ..., i+(v—1)u} and C; is generated
by words y;, i =1, ..., v with support Y; = {7, j +v, ..., 7+ (u - 1)v}. We can

arrange the coordinates {1, 2, ..., n} in a u X v matrix
21 v Hu
- I
tul  oe- e
such-that ¢,; = i,,(modu) and i,; = iy(modv). Then the words 1:,-,' 2 P
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0 0 0 1 0
Wz=|1 - 1| — ithrow, gy = | ‘....... PO
0 0 0 o 1 4 0
© j—th
“column
The word, which is a sum of ¢ words of z;, ¢ = 1, ..., u and s words of y;,

j=1,..., v has a weight {(v — s) + s(u —t) and in this way we obtain

) %(u-—l) 2
A= Lm0 =3 () @y,
¢€Cy i=0

and the minimum distance of the Cy is equal to u.
ii) The code Cjo is the even weight subcode of Cs and the minimum even

distance in Cy is 2u. |

iii) The generator polynomial of code Cy; is g11(z) = (= +31)-£:c1 t 1) )
the word (z + 1)g11(z) = z%** + z¥ + z* + 1 belongs to the code Cy;. Therefore
dy1 £ 4 but C; is the even weight code and its dual code Cy is not a repetition
code, hence dy; = 4. We can compute the weight enumerator of Cy; using the
MacWilliams equations (see [4, p. 127]). The weight enumerator of Cy; is

B(z) = E 224

¢€Cyy
' du-1) '
i 21—u—v z ( ;1 )((1 _‘.Z)g—zs'(l I z)zi & (1 = 2)2‘.(1 + z)u—zi)v ’

iv) The code Cipis a self-complementary and its even weight subcode is C1;.
Hence the minimum distance of C;2 jis equal to min{4, uv—t},

where ¢ is the maximal weight of Cj;. But the weight enumerator B(z) of code
" Ch1 has degree less than uv — 3. Hence dy3 =

The bounds on the covering radius of the codes Cy and Cyq are gnen by the
following theorem:

Theorem?2. I)Letvl-—v [2"" J 2“ -1 (9 is the residual of v mod2¥~ 1

r :
and v; :;Z%(?)-f-t’ where 0 St < (r+1 ) Then the code Cy with a

generator polynomial go(z) = f1(z) has a covering radius Ry, where

Fu-1).

7= X (':)«wz':(":)u«rﬂ)gmg[2:_1 *%”(g),-J.

i=0 i=0 i=0
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ii) The code Cjo with a generator polynomial g19(z) = fo(z)fi(z) has a cov-
ering radius Ryo where Rg+ 1S Rjg £ Ry +u—2.

Proof. i) If we arrange the coordinates in a u x v matrix as in the proof of
Theorem 1 i), then the words z;, i = 1,...,u and y;, j = 1,..., v from (1)
generate the code Cy. Let I;, j = 1, ..., v be the block of coordinate places on
the j-th column in that matrix. Then the word with support I; belongs to Cs.
From each block I; we take away the element, which is on the.last row and from
the parity check matrix H of the code take away the columns with this numbers.

In this way we obtain new blocks f, and matrix H. The code C with the parity
check matrix H is [uv — v, u — 1] code and it is generated by the words

0 0
gresinat : -

Then we can apply the upper bound on the covering radius of self-complementary

$(u-1)
code from [3] and obtain that Ry £ lF 3 ( ; ) if.

i=0
The lower bound on Ry is constructive. Let us consider the word a € F“¥. We
take l2—,}’-_1-J copies of each column of length u and weight no exceeding %= L and

the other v; = v— I_ J -2¥=1 columns are distinct and have the minimum poss1ble

]
; $(u-1)
weight. The word a has a weight w = [2J’_ J > ( ) +Z ( . ) i+t(r+1)

£
and it is a leader_of the coset a + Cy. Hence R; 2 w.
ii) The code Cm is the even weight subcode of Cg and then Rjp 2 Ry + 1 (see

[5]). Let z be a leader of coset of Cy and

and let 2 # 0. The the words (2!, ..., 2%, ..., %) and (2!, ..., ¥, ..., z") belong
to the distinct cosets to Cyg and they have welght iy = wt(z) and wy S < w—1+u—1=
w+u-—2. Thetefore, RioS Ry+u-—2.

Corollaryl. When u = 3 then Ry = I.%J and Rijp=1+ HEJ

This corollary follows from the fact that the upper and lower bounds on Ry
and R, from Theorem 2 are equal.

Theorem3 The code Ci; with generator polynomial gu(z) =
fo(x)fu(t)fu () has a-covering radius Ry; = v.

Proof. The coefficients of the generator polynomial of this code are g;:

11...10...01...1 and then R;; £ R* = v, where R’ is the covering radius of

v—u

[u + v, 1] code generated by the ke 911 (see [3]) a Cy, is a subcode of code Cj

123



with Rs = v. Then from the Supercode Lemma [5] follows that R;; 2 v. Hence
R1 1=, ;

The covering radius of the code Cj2 is obtained using the Proposition 1, as it
is given. in the following theorem:

Theorem4. The code Cu with a length n = uv, u < v generator polynomlal
912(z) = fu(z)fu(z) has a covering radius

Rip = jv=1) if uwu=Zi(v-1),
u if Z(v-1)<u<w.

Proof. This code is dual to code C1o. The code C1g contains the code C5 which
is u repetitions of E, and code C4 which is v repetitions of E,. Therefore a parity
check matrix of code Cy3 is equivalent to

(1.-.1 0---0 0---0 1..-1\
ool [ oo Co1-e1
= : e Jlwef : “ \h{hY.---hii] ~ \H
: : el
L ERY 6  T , B P, |
AR W A T R R R A

Let y = ( z; ) be an arbitrary syhdrqm of the code Ci2 and 1 e, F-l oy €

Fu=1 Let t; and ¢, be the smallest numbers such that y;, i = 1, 2 is the sum of ¢;
columns of H. Then y; can be represented as a sum of ¢; + 2m columns of H; if
we add m pairs of equal columns of H;. There are two cases:

a) t; = t3(mod2) and let t = max{t,, t3}. Then y; and y, can be represented
as a sum of ¢ columns of Hy or H respectively: y3 = Al + .-+ h} and y» =
hj, +oee h}, and we obtain that:

(3)- () ().

and ( z; ) is a sum of ¢ columns of H and ¢ gy_-?-_l’

b) t; # t2(mod2). Then t} = u—t and if yg = h} +-- +h” then y, is equal to
the sum of the other t5 columns of L, because E ki = 0. Therefore t§ = t1(m0d2)

i=1
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and (as in the case a)) we can obtain that ( g; ) is the sum of t = max{t;, t5}

columns of H. We have ¢; < "—'2“—1 and t5 < u, hence t £ max{——2— u}.
In this way we obtain that Ry, < ma.x{T u} On the other hand, Ry 2
9—2—— because the covering radius of the code with parity check matrix H, is equal

to Y —2— and Ry, 2 u because the vector y = ( g; ) with y; = (1,0, ..., 0)T and

y2 = (0, ..., 0)T is the sum of u and no less than u columns of H. Therefore, we
obtain that R;, = max{E—E—l, u} which is equal to

Ruz{ Mwv—-1) if  uwZi(w-1),

u if f(v-1)<u<o.

This paper was presented in part at the International Workshop on Alubra.lc
and Combinatorial Coding Theory, Varna, Bulgaria '88 — [6]
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