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MIKHAIL KOLEV

Muzaus Koaes, OB ABCOPBUVOHHOM 3ALAUE ABYX COEP

Pabora noceamiena pewenuio aGcopbumonHOR 3ajauM Asyx cdep, Koropas coo-
TOWT B CHEAVIOWIEM., DB HeorpaHMueRHOM MaTpHie COAep:HATCA JBe Helepeceralowuecs
chepul OAMHAKOBOrO DPAJUYCa, B KOTCPHX ItHEPHDYIOTCA UEHEKTH ¢ NOCTOARAOR Cra-
poctbio., Jedertm mornowanTcA Marpuluel u cdepaym ¢ PRIIMUREIMHA KOBQQULMEH-
TaMm abcopbuny. Tpebyerca onpeaenuTb CTALMOHApPHOE pacnpelienenue aedenTon B
cpede. Dra 382a4a BO3HMKACT €CTECTBCHHBEIM O6GPA3OM LI BIUMCICHAM 3PHERTHUEHCIO
kosdounuenra abcopbunm cayualisoll cycnencun cpep. Ilpennomesnoe aHanUTHUIECKOL
PEWIEHME MCHOAL3YET T. HA3. MeToJ ABOHHHX Pa3okeHwni, xoTopni yaobeHd Ui UMCAEi-
HOM peanmsauum. '

Mikhail Kolev. ON THE TWO-SPHERE PROBLEM IN AN ABSORBING MEDIUM

The paper is devoted to the two-sphere absorption problem. Namely, let two identical spheres
be embedded into an unbounded matrix. Defects are created within the spheres at constant rate
and are absorbed, with different absorption coefficients, by the matrix and the spheres. The
steady-state defect distribution in the medium has to be found. This problem appears in a natural
way when evaluating the effective absorption coefficient of a random dispersion of spheres. The
herein proposed analytical solution employs the twin-expansions method and it is conveniens for
numerical implementation. ’ B
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1. INTRODUCTION

Corsider the equation
AH® (x;2) — {2 + [k} (h(x) + h{x - 2)) } H P (x; z)

(1) . .
— [k {ax)+ h(x-2)} = 0.

Here h(x) is the characteristic function of a sphere of radius a located at the origin,
(k?] = k% — kZ,; the differentiation everywhere is with respect to x, z plays the

role of a parameter, |z| > 2a. The solution H{%)(x;z), we are seeking, should be
bounded and continuous everywhere in R®, and its normal derivative should be
continuous on the surfaces |x| = a and |2 — x| = a. The interpretation of eqn (1)
is as follows. It describes the steady-state distribution H(®)(x;z) of a diffusing
- species (say, irradiation defects) generated within two non-overlapping spheres,
- embedded into an unbounded matrix, at the rate —[k?]. The spheres are of radius
a, located at the origin and at the point z. The species is then absorbed by the
spheres and by the matrix with different (and positive) absorption coefficients k3
and k7, respectively. Due to this interpretation, the problem (1) was called in
[1,2] the two-sphere absorption problem. Let us recall that this problem appeared
in a natural way in [1,2] when looking for the effective absorption coefficient of a
random dispersion of spheres to the order ¢?, where ¢ is the volume fraction of
the spheres. Hence, the solution of (1), especially in a form suitable for numierical
implementation, is needed when evaluating the statistical characteristics of the
diffusing species field in the random dispersion and, in particular, when calculating
‘the effective absorption coefficient of the latter. The aim of this paper to describe
such a solution of the problem (1), using the method of twin-expansions. It is to be
pointed out that a similar method has been successfully employed in the respective
two-spheres problems for heat conduction [3,4], elasticity [5], diffraction [6], etc.

2. TWIN-EXPANSION SOLUTICN OF THE PROBLEM (1)

Let us introduce two Cartesian systems and two systems of spherical co-
ordinates as shown in Fig. 1. Both spheres are of radius a, the origins of the
systems are at the centres of the spheres, the y-co-ordinate is common for them,
and the distance between the centres, |0;04], is denoted by R, so that

21 =Ty, =Y, 21 =22+ AR
Then, obviously,
zy =risinfycosx, o =rysinfycosy,
y1 =rmsinfysiny, yg = rosinfysiny,

z1 = rycos by, z9 = —719 €08 By,
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Fig. 1

where 0 € 71,72 < 0, 0 < 8y,00 £, 0< x<2nm.

We need, first of all, a convenient form of the relation between the spherical
wave functions given in the two spherical co-ordinate systems. We start with the
identity {6]:

o0
(2) Z) (ke r2) Pn(cos g,) = (-1)" Z Qosonlkm R, 7)js(kmr1)Ps(cos 61),

s=0 V
where
T

L (1) _ (1) : e T
(3)  ZDEare) = || g Hagy(bra)y Jelbnr) = sp ey lEmT)

are the spherical Bessel functions,
HD(2) = Jm(2) + iNm(2)

denotes as usual the Hankel function of fshe first kind,

81
1

s+n
2
4 oson ka = =7 vab(aona)z(l) ka o o8 =™ A L1
()QO( 37{) No,s Zzo‘ o( )P(l):N 28-‘}—1)

o={s—nl
P,(z) are the Legendre polynomials, and

/(m + my)Yn2 + ma){n —my + mo)!

p(riminama) = (—1)72
n (?’l1 —_ mﬂ‘.(ng - ?‘RQ)‘(R +my — mg)’

X (nlngoolno)(nmzml, —~ma|n, M1 — M2),

where {ninzmim: ln,my + mg) are the Clebsh-Gordan coefficients.
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According to the fact that Py(—1) = (=1)7, we have from (2):

S x’
T g g 8= (- T,
Jﬁanr‘? 'Hn+%(kmr2)Pn(COt’§2) - ( 1) v gkm?,l v kaR :‘S:,:g JS'%'%‘\"%mrl}

(5)

. 2 R : 1)
% Py(cos6y) . ZJ (-g)obgsena)gigé(kﬁég),
‘ c=l{s—n|

Using the well-known relations between the Bessel functions:
tw]

| vt b BT PRI
(6) Is~§—-%(x) =1 ( +;>"3+%(3’3})s f{3+%\2) = -é.z< ?2;H§+%{3‘E):
we find from (5) the formula
| 1 27 1
e 1 (R P 8s) = (=1
T nai(kmr2) P (cos8;) = (—1) Y
{7:} e (*1)3 8471 ‘
., ...};vj" 3.{-%{’%??1?1}})5 (C{}S 01) { Z {ml)ob(&ssna}f{'a+%(km R)}
EESY ¢ o=xfs—nl ’

between the spherical wave functions in the two co-ordinate systems (Fig. 1), which
is just the form suitable for our purposes.

We look for the solution H w{x;z) of the eqn (1), that is independent of the
co-ordinate i, in the following form:

-— inside the sphere “” as

. 00

a. wr(2) _ UG‘)'} - a \ . - 5.
(8\:1) j‘{(i} == *—“E};* + 7&43 ;I?3+%(ka§)Pn(CuSQg)j 1=z 1, &
— outside the spheres as

- ,

2) 2 )
H({;;g}‘ = }::{Cél)‘ / ;;-Iin+%(kmrg)f)n {cos6y)

(Sb) . on=0 | '

+ Céz)\ﬁ,%f(n+§ (km72)Pa(cos é?g)}

Due to the cbvious symmetry of the problem under study we have Cp = C}gl}
::C,gg),n:(),l,...Thus ‘

2 a .
H&}ﬁ): E C, {”;;Kn_i,%(mmrl)}}ﬂ(cosﬁl}
n=0

[a
+ ;;lfﬂ,},%(km o) Pp(cos 92)} .

The coefficients A,, and C, are to be found from the above mentioned boundary
conditions, namely, the continuity of the field H(?)(x; z) and its normal derivative

(9)
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}acrass each spherical interface (with respect to x; recall that z plays the role of a
| parameter).
According to (7), we recast the solution (8b) of eqn (1) outside the spheres as

o0 ;
2y _ /_‘}__ ' 2r 1
H(aut) “\r ;Pn(cos 91){CnKn+%(kmr1) + ——ka N.. In+3§(km?’1)

(10)
oo a+n ‘
« S HCL S (DB Ky (k)]
s=0 o={s—n|

Making use of the above mentioned boundary conditions, the orthogonality of
the Legendre polynomials and the fact that 54999 =1, s = 0,1,..., see [6], we
find the following relations between the unknown coefficients

(k2] ) o1 I | o
(118) A()I%(af)*;?—':CQK%(am)T F"I%(am) m ;}C,Ks+%(ka) s

co

1 I

s=0 a:]a-——nl

(11b) - stn
% {Z C, ( E (_1)n+a+ab§;ono)K0+%(ka))] , n=12,...,

Aol2ag T} (ag) — I3(ap)] = Co [2am K} (am) ~ K3 (am)]

12 |
(122) L1 [T
VooV kR

R2am T} (am) — I3 (am)] 3 CsKiry (kmR),

=0

Aﬂ[ﬁaf1;+%(af) - In-;-%(“,f)} =C, {QGmK;_‘_%(am) - Kn+%(am)1

1 27 -
~{12b) +-1;§\/ R [2am1:3+%(am) - In+«§(am)]

i

s+4n
% {ica( E (~1)n+s+obgsono)Ka+%(ka))1, n=12...
s=0 o=|s=n|

Simple manipulations, employing the well-known properties
1 1
I(z) = 5lL4a(2) + Le-a(2)ls Ky(z) = —5[Kei(2) + K,-1(2)]
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ne.

oa‘f the modified Bessel functions, allow to exclude A, from eqns (11), so that (12)
yields the needed equations for the coefficients C,:

o0 T2
Colls + Vo ZCJI{S+%(ka) = -«-‘2%?%{1;1%(af):
2=0 !
(13)
o0 34n
CallatVn Y C, Y (=prretoplena g +3kmR)| =0,
8=0 o=|s~nj
n=12 ..., where
Up = GfKn—f%(am)Un-%(af) + In+%(af)}
(14a)
+amIn+%(af){Kn_%(am)+an..g.(am}},
Vo= ) oL ag s () ey ag) + Loy a)]
(14b) "= oV g\ neglom)nog(ag) + 1y 5 ag

= anlyy1(ap)|Lo-y(am) + Lpy 3 (am)] }

and ay = aky, am, = ak,, are dimensionless parameters.
For the coefficients A, we get in turn:

1 (kY 1 2T o ., o,
1 = 2 AT
(152) 4, 1%(6;,){ g+ Cokylom) + I emh/ g 8§:OZG,R8+%(ka)},

1 ) 1 | 2n
An = m{cnf{n_f_%(am) + mfn+%(am} m
(155) o0 s4n
» [ch.( Z (__I)n-fa%-obgsoﬂ‘?)]{o_!_%(,’cm}g))}}1 n=12...
8=0 o=ls—n|

In this way the two-sphere problem (1) is reduced to the solution of the infinite
system of linear equations (13) for any given separation distance R between the
spheres, :

‘The natural numerical procedure to solve the problem (1) is the method of
truncation. Namely, assuming C, = 0 at n > N in (13), we get a linear system of
N +1 equations for the first N + 1 coefficients Cy,, n = 0, 1,... Solving the latter,
we find the approximate values C'f;N) of these coefficients. Then, at N — oo, the

approxi: mations C5 will converge to the exact values C,,, as we shall argue in the

Xt sec tion.
Due to the exponential decay of the modified Bessel functions Ko y1(2),
N1, ... the series solution developed in the present section converges very

n ﬁ.d‘{- %, hen the spheres are well apart. For instance, to obtain the values of the
rapldy
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coefficients An, Cn and the field HP(x;2z) with three decimal digits, it suffices
to take N = 10 if R/a 2 3. However, as the spheres approach each other, more
equations should be kept in the truncated system, e.g. at 2.1 <a /R < 3 we should
take N = 20 in order to have the same three decimal digits correct.

3. JUSTIFICATION OF THE TRUNCATION METHOD

To justify the above used truncation method a bit more detailed investigation
of the infinite system (13) is needed. With this aim in view we recast it in the form
Ug {kg] as I% (af)

o0
Co+ 7 D CeEurylbnP) = ~257 =7

s=0

V o™ 41
Cn+ n ch z (_1)n+s+ab(osona)1{a+%(kmf{} =0,

" 5=0 o=|s—n| :

n = 1,2,... In turn, using the relations (6) and the definition (4) of Qoson, W€
rewrite egn (16) as

00
(17) Co+ S denCs = fo, =010
3=9
where
. ) — T 3s4n+2 h~ Wn .
(18&} d;n = —1 Qaﬂos (2ka, W)F; 3, n= 0, 1, P
2 Un

2laslsla
{ 2{&} 1 1s( f)’ P

(18b) fo={ "k Uo
0, otherwise,
50 W =1
Let us replace in the system (17) the unknowns Cr by Xn:
(19) Cn = n+%(am)Xﬂ .

The infinite set of equations (17), when written with respect to the new un-
knowns Xy, becomes -

(26) Xﬂ+ZDSﬂXs = gn, n="01,...
3=0
where
. I, (0 ’
(21) Dun = din +(om) fa

Y T L AR
In+§(am)- ? Inf%(am)
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The asymptotical behaviour of the coefficients Dyp, for large values of s, n,
can be easily deduced by means of the Debay formulae {7, p. 25]:

T 722\ A 1 72X\ -A
(22) Kk(x)ﬂ/.ﬁ(&_), h(z)ﬁ,m(gg) for A > .

Introducing (22) into the definitions (14a) and (18c) of the coefficients U, and
Wn we find, after simple algebra, that

Wn €y 2n+1 _
(23) - I-—U-;§<c1(2n+3)(2n+l , n=0,1,...

with a certain constant ¢;. ,
For bounding the function Qonos we use the result of Ivanov [6]:

c25(2s + 2n + 1)+
(ka):i/Z(ekm R)n—f-a.;.% )

(24) | Qonps ’ <

where ¢y is another constant,
We next introduce (22), (23) and (24) into (21) and take into account (18a):

5§ (2n+4+2541\P/2n+4 25+ 1\3 /g \n+s+l
@ el () (Fa) (37
s,n=0,1,...
Since R > 2a (the spheres are nonoverlapping), a/R < -;— and thus
o0
(26a) Y IDinl? < .
s, n=0
Let us note that obviously
(26b) | Y onl? < .
n=0

Hence the system (20) can be recast as
(27) X+D-X=gG,

where X = {X,.}, G = {9} and D = {Dsn}, s,n =0,1,..., Due to (26), eqn
(27) is an equation in the Hilbert space £ with a compact operator D, so that the
Fredholm alternative holds [8, Ch. 13). Therefore, in particular, the system (27)
will have a unique solution for any G € £2 if the homogeneous system (27) possesses
a unique (trivial) solution. But the latter is obviously the case for our problem,
since G = 0 corresponds to [k?] = 0, i.e. to a homogeneous equation (1). (The ho-
‘mogeneous equation (1) has a trivial solution only, since the absorption coeffigients
k% and k2, are positive.) The uniqueness and existence theorem for infinite system
(13) is thus proved. Its obvious corollary is then the needed justification of the

truncation method of Section 2: due to (26a), the solutions C$™ of the truncated
sygtems (13) will indeed converge in £2 to the solution of (13) at N — 0.
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4. CONCLUDING REMARKS

In this note we have presented and justified a method of effective numerical
solution of the two-sphere problem (1}. When combined with the general results
of [2]. concerning diffusion of defects in a random dispersicn, it allows to obtain,
_in particular, the effective absorption coefficient k™2 of the dispersion.and the two-
point correlation function of the defect fields to the order ¢?. More details and the
respective numerical results are given in [2].
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