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PabGora nocssmena 3apade onpelenenus oddekTHBHOTO Koshduumenrta abcopb-
My cpen cayuvaitHolt cTpykTypei. Bapuanuounnie onenxu eToro KoedpuunenTa, HeAaBHO
OpeNioMEeHHBIE ABTOPAMM, BLIUMCACHRE ABHO A8 caydaliroil cycnescuut chep N0 HopaaKa
,KBaOgpaTa KOHHEHTpauuu” ¥ cpaBHeHHl ¢ oueHxamMu TanbBora n Yunnuca. Okxasnisaer-
CH, UTO OUEHKM ABTODOB ViKe, OAHAKO OHW, B OTHMYMM oT oueHok Tanbora m Ywmiuca,
NDPMMEeHNMEL JAXUIIL LA XOoHNeHTpanuu chep, He npesomwonsmux 0.10,

Mikhail Kolev, Konstantin Markov. ON THE ABSORPTION COEFFICIENT OF RANDOM
DISPERSIONS

The problem of predicting the effective absorption coefficient of random media is discussed.
The variational estimates on this coefficient, recently derived by the authors, are explicitly evaluat-
ed for random dispersion of spheres to the order “square of concentration”. A comparison with the
bounds of Talbot and Willis is performed as well. It appears that the proposed bounds are more
restrictive but, unlike those of Talbot and Willis, are only applicable for sphere concentrations
that do not exceed 0.10. "

1. INTRODUCTION

Consider the steady-state equation
(1.1) Ap(x) — kX (x)p(x) + K =0

that governs, at the expense of some simplifying assumptions, the concentration
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p(x) of a diffusing species (say, irradiation defects), generated at the constant
rate K, in a random absorbing (lossy) medium (see [1] for referencegs and more
details). The absorption coefficient k%(x) is a given random field, assumed positive,
statistically homogeneous and isotropic. The problem is to evaluate the random
field ¢(x), i.e. all its multipoint correlations, and, in particular, to find the mean
defect concentration {p(x)); the brackets (-} hereafter denote ensemble averaging.
The latter value allows to obtain the effective absorption coefficient (sink strength)
k*? of the medium, defined by the relation k*?(p(x)) = K.

‘Recently the authors have proposed variational estimates on the coefficient
k*?, using the technique of truncated functional series and a procedure of Beran’s
type [2]. We shall recall now these bounds-in the particular case of a two-phase
medium. Having in mind the application to particulate media and dispersions of
spheres in particular, we call one of the constituents, for definiteness sake, filler and
denote its absorption coefficient by kﬁ and its volume fraction — by ¢y = ¢; the
~ other constituent is called then matrix and its respective parameters are kZ and
¢m = 1 — ¢. Thus the random absorption field of the medium is
Fi(x) = { :,}, ?f x € matrix,

A k%, if ¥ € filler,
or ‘ '
(1.2) E(x) = K2, + [R5 (%) = (%) + T (),
where [k%] = k% — k2, I;(x) is the characteristic function of the region, occupied
by the filler, and I;(x) = I;(x) - c is its fluctuating part. '

The elementary (one-point) bounds on k£*? read
(1.3) ki £ k% <k,
where '

ky = (B*(x)) = ck? + (1 — c)k2,,
1
k% = ———o
T (o) |
here a®(x) = 1/k%(x) is the compliance field for the medium. - The bounds (1.3)
are the obvious counterparts of the well-known Voigt and Reuss estimates on the
~ effective conductivity or elastic moduli of a heterogeneous medium.
The bounds on k*2, announced in [3) and detailed in [4], are already three-point
and thus they are always tighter than the elementary ones (1.3). The bounds have
the form ‘ ' :

= (ca} + (1= e)ag,) ™

-1

o e(1-o)(Ig)

51— <{a'«’}2

R Ry
2 (a2> 3
(1.4)

(217 o1 - o)(ff)?
" 5y -{Lg-})-(l - 2c)I%

<k <kt |1-
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The following four statistical parameters enter the bounds:

; Y A " 1 o
(1.5)  IF = Y | Gviy)M(y) &y, .za.:_—--—_fac; (v ME(y; Py,
(1.5) 2 AM{;‘(O)/GV(};)} 2 (¥)d%y, I Mg‘{\()) GRiy )M, (}j« y
1§ = ,'!'/Gy{v; }(ﬂx’{"&’ﬁ)f\i’g{‘y;3\’2) dsv;d;‘v
Ms{(} dy R R T
(1.6)
"__-——-—-—-- Talyi) 5} M 2} Py dPya.
I3 = MI, 0) /-”—\( &y )AGR(y2 )M (y1, y2) Py,
Here Gyv({x) = :fhix} exp(—ky x|} is the Green functicn of the operator A~ k2
, ie.
(1.7) AGy(x) — k¥ Gy (x) + 86(x) =
aud similarly for Gr(x) with &y replaced by kg; )
(1.8 M3 (y) = (8k*(0)5k(y)), M5 (y1,y2) = (§£7(0)0r"(y )¢k *(y=})

are, respectively, the two- and three-point correlation functions tur tne fiel .i “ix).
The same functions for the compliance field a’(x) are dencted hy M»,; ? sined
Mg (y1,y2). Since the medium is two-phase, we have the well-kaown relations

1.9 M5(0) ac(lmmfk“ . OME(0,0) = ell — )1 - 201k,
31 ) 4 G

and similarly for M3 (0) and M{(0,0). Hereatter the tntegrals ave over the whole
space R3, if the integration domain is not explicitly indicated.

Note that in 4} it was shown, in particular, that the bouuds (1.4} arc third-
order in-the weakly-inhomogeneous case. Moreover, the explicit results, obtained
in {4] for Miller’s cellular media, indicate that the bounds remein useful even when
the absorption tapabilities of the constituents differ one hundreu tinges.

In this paper we shall consicer in detail the evaiuation of the staiistical paraia-
‘eters (1.5) and (1.6) for random dispersions of nenoverlapping shireres. ln Section
2 we briefly summarize the needed in the sequel statistical description of random
dispersions. In Section 3 we calculate the parameters I¥ and 75 for the dispersion,
given in (1.3), that depend on the two-point correlations. Suuilar calculations are
performed in Section 4 for the parameters I} and I3, see (1.6), but unlike the “two-
roint” pardmeters we are able to give analytical results correct to the asyptotic
order ¢? only In Section 5 we illustrate the performance of the bounds aml COlnpare
them with those of Talbot and Willis [1].

2. STATISTICAL DESCRIPTION OF RANDOM DISPERSIONS

We consider a random dispersion of spheres, i.e. an unbounded matiix, con-
taining an array of equal and nonoverlapping spherical inhomogeneities, each one of
radius a. The medium is thus completely deéscribed by the system of random points
{xa} — the centers of the spheres. The statistics of the system x, is conveniently

19



represented by the multipoint distribution densities f,(y1,...,¥p), or probability
density functions. They define the probability dP to simultaneously find a point
of the random set {x}, per each of the infinitesimal volumes y; < y <y, + dyi,
1=1,...,p, to be

(2.1) dP = fy(y1, .-, ¥p) &y1 ... dy,.

We assume that the system {x,} is statistically isotropic and homogeneous; then,
in particular, fi = n and f, = fi(y2,1,...,¥p,1), Where y; ; = y; —y; and n denotes
the number density, i.e. the mean number of points per unit volume.

Let us imagine now that by means of a certain manufacturing process we pro-
duce random point systems {x}, with different number densities n. The statistics
of the system {x}, will then depend on n as a parameter, ie. f; = f(Yy:n),
Y, = (y1,..-,¥p)- Weshall assume, as usual, that f, ~ n”, i.e. f, has the asymp-
totic order n? at n — 0, p = 1,2,... In particular, for the two-point distribution
density fo, which most frequently appears in models and theoretical studies, we
have .

22) faly1,v2) = na(r), g(r) = go(r) + O(n),

r = |y2 — yi|. (The point system {x}, hereafter will be assumed statistically
isotropic as well.) Thus go(r) is the zero-density limit of the radial distribution

function g(r) for the system {x},.
A convenient characteristics of the set of random points is the so»—calied random

density field
(2.3) Y(x) =Y 6(x —X,).

This field was systemat;ically used by Stratonovich [5] in the one-dimensional case
when the role of x is played by the time. The random function ¥(x) is uniquely
defined by the random set x,. The respective formulas [5] read:

(¥(¥)) = fily) =n,
(@y)¥(y2)) = fily1)d(y1,2) + fa(y1,¥2),
Wy )9y2)u(ya)) = f1(91)6(v1,2)6(y1,3)
+3{6(y12)f2(y18)}, + fa(¥1,¥2,¥3),

etc., where {-}, means symmetrization with respect to all different combinations of
indices in the braces.

The random absorption field (1.2) of the medium under study has a simple
integral representation by means of the field ¥(x), namely

(25) K2 (x) = (k) + [k7) ] h(x - y)¥'(y) &,

where ¢'(y) = %(y) — n is the fluctuating part of the field ¥(y), h(y) is the
characteristic function of a single sphere of radius g, located at the origin.

(2.4)
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3. EVALUATION OF THE PARAMETERS I5 AND I

According to (1.2), (2.4) and (2.5), the parameter I5 for the dispersion has the
form

K2
1 = [ [ [or et - s () ) Eyndss
k2 |
(3.1) = M//h(zl)xv(m)[né(zl — 79) — n’R(z; — 25)] d*z1d°z2
_ag— aic, 4 ‘
- 1 — ¢ H R(Z) - 1 g(ZL
with the coefficients
(3.2) ao = -}%,Ei ] h(z)xv (z) P,
k?
(3.3) ap = %ffh(zi)XV(zz)R(zz — 25) d°21d°23.
Here V, = %n‘aa and
(3.4) xv (z) = (h* Gv)(z)

is the Helmholtz potential for a single sphere of radius a, located at the origin.
Let us recall that it is the continuous and bounded everywhere solution of the
Helmholtz equation Axy — k% xv +h(z) =0. A simple calculation yields

ay sinh ry
’ 1 "r sinha +hor<a
v | AN ZefVTTV, T2,
74 -
1+4+ay _ . 1 .
(3.5b) A= —- e=% sinhay, A= —e % (av coshay —sinh av),
av , -oay ‘

where ay = aky and ry = rky are dimensionless, r = |z|.
Using (3.5), we find first the coefficient ao:

(3.6) ag = 1 — Falav),
where
(3.7 Fo(z) = 3},,.,t£e-$(33 cosh & — sinh z)

3

is the function that appeared when calculating the parameters Ik and I ¢ for cellular
media with spherical shape of the cells, see [3,4].
For the coefficient a; we get in turn:
A k:,)
(38) a; = ij%

a

h(z)P(z) d’z,
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where 2 denotes the convolution P(z) = (xv * R)(2}. Due to (1.7), the funiction P
solves the equation )
(3.9) - AP k3P +h+xR=0.

The assumption of vonoverlapping yields g{z) = 0 and thus R(z) = 1 —g(z) = 1 at,

2a. That is why (h« R)(z) = V, within the sphere {z| < a and the solution
of 2qn (3.9) within the same sphere has therefore the form

o V. _ay sinh ry
(3.10) P’z)_~~—- (I—j- V.o -~Y~), r=lzl < a

rv sinh ay

HA

The vaknews coastant B is found by means of the obvious relation

P(’O):;%(l%~3 av ) /M«(Z)R(zm‘*

i sinh ay
or ‘

: , _ sinhav [k / | 3 ]
Sy 1= Nz}l —glz))d’z —1;.
(311 = S [ eyt ata) s - ]

“m sple calciiations, using (3.5), yield eventually

4af eV
i 32 e e mF“s‘,a Il
(3.12) 1 A ravy 2t v)
liere
oc
(3.13) o I*/ ~2ave (b)dé s = r/?a
. ‘1 .

is the statistical parameter that appeared in Talbot and Willis’ bounds on the
«fective ahsorption coefficient k=% [11.

In the 7UT‘ plest two-point stahsncs — the so-called ‘*weli-stlrred” case — one
has g(s) = L at s 2 |, so that

(avay . 1+ Zay _.
3 L) J = va((h,) — MTTZ'Q z?av}
".tav
~and thus '
N I+ 2ay
(u i)} ‘al 31 mzpq(Iv)

Note that {albot and Willis were able also to evaluate the parameter I in the
ase when the fwo-point statistics of the dispersion is governed by the well-known
Pm:fa s-Yevick approximation: :

I'=IP(ay) = G(2ay),

70 y
12e[L(6) + S(5)ed]’ *J()—-—IQC{( 20)15“_*_26},

S{8) = (1 = )" + 6¢(1 — ¢)t? + 18¢%t — 12¢(1 + 2¢).

(313} Gt =

N
83



A simple check shows that
' IP¥(ay) = I’ (ay) + O(c),
as it should be. |

Thus the needed statistical parameter I¥ for the dispersion is
ag — a¢

1 e N

where ag, a; are explicitly given in (3.6), (3.12) respectively. Hence ¢, is a known
function of the dimensionless parameter ay, depending on the radial distribution
function g(r) for the dispersion through the statistical parameter I.

The evaluation of the second statistical parameter I§', as given in (1.5), is now
straightforward. Keeping in mind (1.7), we get immediately

(3.17) - I= = pa(av),

a 1 o 3
Iy = MgQ(O)/AGR(Y)MQ (y)dy
— o 3
=1- Ma(o /GR(y)‘M2 (y)d Yy,
so that
(3.18) - I =1 - ¢pa(ar),

where @2(ag)} is the function, defined in (3.17), in which ay should be replaced
everywhere by ag.

4. EVALUATION OF THE PARAMETERS I§ AND Ig

Unlike I¥ and I, we are able to evaluate the three-point parameters I§ and
I$ tot' order ¢? only. The reason is that the three-point probability density fs
will enter the needed moments, so that the only way to obtain analytical results
1= 0 veglect it, assuming fz ~ c3, see Section 2. Thus all formulae hereafter are
correct to the order O{c?) only. ‘

According to (1.9), (2.4) and (2.5), the parameter I%¥ for the dispersion has the

form
.= / [ [vantn -y

X [ j Gv(y2)h(yz — 22) da}’z] h(zs){¥' (21)¥' (22)¥' (23)) d°21d°22d%23

(4.) ...c(l_c) — ] [ [ty uahias)

X [né(zl‘g)é(zz,g) - n23{6 zl,g)Ro(z;g)}s] d321d322d333

ba —616

- od-2d

Ro(z) =1- g{)(Z),
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with the coefficients

ke
(42) bo = 52 [ha)x (a) s,
a

(4.3) by = 2J1 + Jo,

ky 3 3
(4.4) Ji = —ﬁf h(z1)xv(z1)xv(z2)Rolz1 — 22) d°z,d° 2.,

v k4

(4.5) Ja = “‘V“g'/ h(z1)x7 (22) Ro(21 — 22) d°21d%2,,

9{3(2) is the zero-density limit of the radial distribution function g(z) for the dis-

persion, see (2.2).
Using (3.5), we find first the coefficient bg:

(4.5) bp =1 —2F{av)+ Fg(av),
where
2
(4.7) F3(z) = §L}C~_~§Q~ ~?*(sinhzcoshz — )

is the function that appeared when evaluating the three-point statistical parameters
If and I for a cellular medium, see [3,4], and Fu(z) is defined in (3.7).

Let us evaluate next the coefficient ; in (4.3). To this end we first recast the
integral Jy as

(4.8) Ji= ‘g,- [h@xv@rse s,

where Po(z) = (xv * Ro)(z) is the convolution, similar to that used in Section 3.
Keeping in mind (3.5), (3.10) and (3.11), we find straightforwardly that

3 ay coshay — sinhay pov
4 av(l + av)

where [ is the statistical parameter of Talbot and Willis, see (3.13), corresponding

to the zero-density limit go(z) of the radial distribution function.
In the particular case of a well-stirred dispersion we have, due to (3.14),

%{%%%Fz(av}[f’a(at’) - Fy(av)].

The evaluation of the second integral Jy, entering the expression for the coef-
ficient by, is more complicated. We first recast its definition (4.4) as

4
VQ

V (4.9) | J1 =1~ Fy(av)+ {F (av) - Fg(av)}

(410) J1 = 1—Fg(av)+

(4.11) T2 = 35 [ Xb (@) Folz) &,

‘where

412)  Fylz) = / h(z — y)Roly) d®y = V, — / h(z - ¥)g0(y) Py.
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Let ha(y) be the characteristic function of a sphere of radius A located at the
origin. Following [6], we denote

daha(y) = hasaa(y) — haly) = {

It is easily seen that

1, if A<yl < A+dA,
0, otherwise.

oQ

0o3) = [ so(A)dalaly)

2a
which is inserted into (4.12):

[e o)

Fo(z) = f go(A) [ / h(z — hAMA();)A ha(y) g3 }

2a

(4.13)

o0

=V, - /gg(ﬁ)[ FA =z )]dA, FA(z) = (h* ha)(2).

We introduce, in turn, (4. 13) into (4.11) and integrate by parts:

Jy = i:; {V /x%(z) dz ~7gg(ﬂ) [M/x%r(z)FA(z) d?’z} dA}

2a

(4.14)
kY 7 1
=5 { [at0) [ 0P @) sl + a2 [ )P0 d%} }
2a
having used the facts that Foo{2z) = Vo and go{oo) = 1.
Let
ki A
(4.15) p(d,av) = W xv(z)F)‘“(z) Bz, A==22.

Simple algebra, based on the analytical form (3.5) of the Heimholtz potential xv(z),
yields
(4.16) /i(A, av) =1- Qngav) + Fs(av) + F4(av, A) -+ Fs(av, )\),
where
(z cosh z — sinh z)? (6*32 _ 8,.2@_1}3)
z3 ’

3
F.»;,(-x"!,y) = §

3 {xcoshz —sinhz
FB(mzy)z ( - 2

5 = )2 {[(1%'3 +y? - y) +52)e
(#.17) — 6(y + 1)%2% + 6(y — e + 3Je7>W71*

~ 12y - Dy + 1)’ - 6y — 1’2" + 6(y + Dz + 3|e 2yt
+ 24(y - 12y + 1) [Ei(~2y ~ Da) - Bi(~2y +1)2)] |
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and £y and Fj are the functions defined in (3.7) and (4.7}, respectively. As usual

denotes the integral exponcnt.
Thus

Do

(4.18) Jo=a /Q‘oi}hf A ar ) dA 4 go(2a)(2. av ).

L)
Lo

In the particular case of a weli-stirred 4 dispersion

: . 2
ay cosh ay — sivhay
{

al /

B
Y

Jz = by +

s

Pl

1550
145

1 frymn 3 n g 2 C 9, =28y _ fop.d -6ay
(4.19) X*{L [172ay, — bdai + 66y — 3¢ v~ 138ay — Gav + 18ay + ?]e v
+218a} [ Ei(=2ay ) — Ei{—6ay )] b
: F218ay  Ei(-2ay ) — Eil— G;x,}) ,
Eveatually, the needed pararmeter [} is |

; 5(§ -—~é16
4.20) Iy = = ps(ay
(4.20) Ao =2g ~ welv),

where ag, a; are explicitly given ia (4. 6), (4. 3) ete., respectively. Hence o3 is a
known function of the dimensionless parameter ay, u’.ap@numv on the zero-density
hmit g5(r) of the radial distribution function for the dispersion through the integrals
I'and Jp, see (3.13) and (4.18) respectively. «

The evaluation of the statistical param-ter % 1s already easy From its defini-
tion (1.6}2 and eqn (1.7) {(with k% replaced by k%) we have

; _ 2k%
| {g =] - _wg-(—g G /(7};(}’3 “&"(\0 y;J
(4.21)
bt {J F il Yo fi 'IS
-3 10 5 /[ r(Y)Gry2) My ye Py.d
But
M${0.y) = [a (f”’g{) G y)) = (1= 2¢)] uﬁ“z’ (C)i(y)) = (1~ 200l My,
since [}’ {\0) = (0] =) = (1~ 2¢; ';((’3}«%4 - (Note that [}(x) = Iy(x).) Hence
)y = 12 )y = o
— ey {Z i
{00 Yoty A,,{um)/a;,y y = 2(ar},

see {3.1?}, so that
(4.22) I =1- 2¢2(ar) + ¢a(ag),
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he last term i the r-h. side of {4.21) is unmediately recognized as the
function g from (4.20) in which ¢y is 10 be replaced everywhere by ag.

5. COMPARISON WITH THE BOUNDS OF TALBOT AND WILLIS

The results of Sections 3 and 4 allow as to evaluate the bounds (1.4) for the
cispersion to the order ¢?. Indeed the relaiions (3.17) and (3.18) give us the values
I the two-point statistical parameters I§ and £§ {or an arbitrary radiai distribution
function g(r). In varn, eqns (4.20) and {4.22) provide the values of the three-point
statistical parameiers 1§ aud I§ . again for an arbitrary radial distribution function
¢{r). but to the order ¢? only.

Let us recall that in [1] Tallor and Willis derived bounds on the effective
«bsorption coefficient k=% for a dispersion of spheres, using an origina! variarional

vrinciple of Hashin -Shtrikman’s type. Their bounds have the form

o ﬁ:’Q'W L ALy
N i&} —--l-j« Rendil m..:.:‘:,-_‘:;m
with the coefficients
¥ : K 1.5
o= Je(ay coshar —sinhay) 3 - {22115'_(&:2}
= ; 3 c = s !
‘ K £ b «
Cak ko . . .3&13? ~ k5)(ay coshay —sinhay)p
v =e¢ 0 (coshar + —sinhary— — e + 6
' Tk . kic3(l — ) ’
S A i}

12??

b} = {1+ akg)em P — m??o(aicg cosh ake — sinh akyg),
| . e
EQ(EF r . . ;i‘f"i . "
= - cosh ahssinh gk — ~—sinhaky coshalcg],
atks * ' ,(f ~ .
o : 2 14 2 ;
k2 . o 3e(kf —ki)(as coshay — sinhay)
b= F?T'(Gf =y A= (1 N2 g3 ’
= f{%’;\a; — (aky )t + (= clle;, - {ake)®), ay = aky, am = aky.
J: B

“Qur notations differ a bit from the vriginal ones used in [1}.)

Upon inserting %g = 1uin(ky,. k) in {5.1) one obtains a lower bound on k"2
ad, sirnilacly, inserting &y = max{kp..k¢) — an upper one. In (5.1b) I is the
~atistical parameter, defined i (3.13), which carries information about the two-
coint statistics of the dispersion. In this sense the bounds (5.1) are two-point
anid therefore should be expecied to be less restrictive than ours (1.4) which are
’}}J“i%ef?—p oint. .

{t is to be pointed out, however, that Talbot and Willis’ bounds (5.1) are
useful for all values ¢ € (0,1) of the sphere volume fraction while the bounds (1.4)
have been calculated in the foregoing analysis only for dilute fractions -— to the
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order ¢ — and thus may be expected to provide useful results for values of ¢ not
exceeding 0.10 — 0.15. The numerical calculations confirm these expectations. The
c?-bounds (1.4) are closer to the exact values of k*2 and more restrictive than the
Talbot and Willis estimates (5.1) only at sphere fractions ¢ not exceeding 0.1. This
is illustrated in Tables 1 and 2 for a well-stirred dispersion of spheres in the two
cases k7 /kZ = 10 and k'jﬁ/kg,; = 0.1 respectively (at an = 1). The exact values
are found by means of the numerical procedure, developed in [7] which employs
the techniques of the factorial functional series [8] and allows to obtain explicitly
the full statistical solution of eqn (1.1) to the order ¢? for the dispersion and, in
particular, the effective absorption coefficient &*2 to the same order. The results
for other values of a,, (a,, = 10 and a,, = 0.1) are similar and therefore they are
not shown here.

Acknowledgement. The support of this work by the Bulgarian Ministry of Sci-
ence, Education and Culture under Grant No MM26-91 is gratefully acknowledged.

Table 1
¢ TW-lower KM-lower exact KM-upper TW-upper

0.0 1 1 1 1 1

0.02 1.071 1.071 1.671 1.072 1.089
0.04 1.147 1.147 1.147 1.147 1.183
0.06 1.229 1.230 1.230 1.231 1.281
0.08 1.317 1.318 1.318 1.319 1.384
.10 1.413 1.414 1.415 1.417 1.492

Estimates on the effective absorption coefficient £*2 for a well-
stirred dispersion at a;; == 1, k? /k2, = 10: KM — the bounds

(1.4); TW — the bounds {5.1) of Talbot and Willis

Table 2
c TW-lower KM-lower exact KM-upper TW-upper

0.0 1 1 1 1 1

0.02 0.977 0.978 0.979 0.979 0.979
0.04 0.955 0.957 0.958 0.958 0.958
0.06 0.934 0.937 0.937 0.937 0.937
0.08 0.914 0.917 0.917 0.917 0.917
0.10 0.894 0.896  0.896  0.897 0.897
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The same as in Table 1 at k% /&7, = 0.1
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