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TBEPUOM Tes€ C HENOABUMHOM TOUKCH B OTCYCTBHE BHEHIHKX CHJIL

+

Ognyan Christov. ON THE PERTURBATIONS OF A MECHANICAL SYSTEM FROM THE
RIGID BODY DYNAMICS

In this paper the KAM-theory conditions are checked for an integrable case of a mechanical
system describing the motion of a particle, oscillating in a rigid body with a fixed point without
external forces.

1. INTRODUCTION

The question of integrability of Hamiltonian systems is one of the oldest prob-
lems of classical mechanics [1, 2]. Classical results due to Poincare and Bruns show
that most of the Hamiltonian systems are not integrable. According to Poincare
the main problem of dynamics is the study Hamiltonian systems which are close to
integrable ones. The most powerful approach to such systems.is the KAM-theory
[3, 4, 5, 6]. Before giving a brief account of KAM—-theory we remind the structure
of the integrable Hamiltonian systems.

The phase space of the generic integrable Hamiltonian systems with n-degrees
of freedom is foliated into invariant manifolds, the typical fibre being an n-dimen-
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sional torus on which the motion is quasiperiodic. A natural question is whether
small perturbations destroy these tori. The KAM-theory gives conditions for the
integrable systems which guarantee the survival of most of the invariant tori. The
conditions are given in terms of the so-called action-angle variables J;, Jo, ...,
Ini p1, Y2, ..., pn. Without going into details we remind that the action-angle
variables can be introduced for any integrable system locally near a fixed torus, and
they have a property that J = (J1,J2,...,Js) maps a neighbourhood of a fixed
torus on an open subset of R". The functions 1, @9, ..., ©n are the co-ordinates on
any of the nearby tori. Moreover, the first integrals become functions of the action
variables .J1, Jq, ..., J,. At last, to any fixed torus there corresponds an invariant
torus on which the motlon is quasiperiodic with frequencies (wi(J),...,wna(J)) =
(BH[3J1,...,0H[8J,) (see [5] for details). _
One condition, stated by Kolmogorov (see [3, 4] and [5], app. 8] and the cited
literature) on the Hamiltonian of the integrable system that ensures the survival of
most of the invariant tori under small perturbations, is that the frequency map

I — (@i(J),wa(J), ..., wn(JT))

should be non-degenerated. Analytically this means that the Hesseian

: | O*H :
. —— , k=1, ...
(1 1) det(aJ}aJk)) D H y Ty

does not vanish. We should note that the measure of the surviving tori decreases
with the increase of both perturbation and measure of the set, where the above
Hesseian is too close to zero.

Another condition of this type, stated by V. Arnold and J. Moser (see 5,
app. 8], [6]), is that of an isoenergetical non-degeneracy, which can be exp}amed as
follows. Fix an energy level Hy = hg. If the Hamiltonian Hy is written in action
vamables then define the following map Fy, from the (n — 1) dimensional variety
Hy'(ho) into the projective space P~

Fr,: J — (wl(J) walJ) 1. wa ().

Then the system is 1soenerget1caliy non-degenerated if the map Fj, is a homeo-
morphism. Analytically, the 1soenerget1cal non-degeneracy 1s tantamount to non-
: vamshmg of the determinant )

>

8?Hy - 8Hq
aJ*  0J

(1.2) det 9H, .
oJ

The checking of the conditions (1.1) and (1.2) is a very difficult problern how-
ever, there exist several methods for solving such problems.

Knorrer [7] found a method for checking the Kolmogorov’s condition by reduc-
ing the number of degrees of freedom. Using this method he proved that for several
systems. including the geodesic flow on the ellipsoid and K. Neumann'’s system, the
Kolmogorov’s condition is fulfilled almost everywhere.
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In a recent paper Horozov Xl proved that for the system describing the spheri-
cal pendulum condition {1.1; i~ satisfied evervwhere out of the bifurcation diagram
of the eaergy-momenturm map. he crucial role in {81 is plaved by certain alge-
braic curves and Abelian integrals on them. The condition {1.2) for the spherical
pendulum is checked in (9.

The purpose of this paper is to check the KAM -theory conditions (1.1} and
{1.2) for the following systern.

A particle, attached to a spring, is osciilating in a rigid body with a fixed point
O along a line that passes through the fixed point of the body. The motion of the
particle is smooth. Without a loss of generality we assume that the fixed point O
is an equilibrium position for the particle. We consider the particular case when
the particle is oscillating along a principal inertia axes for the body (let this be the
axes which inertia moment is denoted by C) and there are no external forces acting
on the system. Then the equations of motion around the fixed point written in the
body fixed co-ordinate system are (for the general case see [10])

Awi + (C — Blwswsy = —2mrrw; — mrty + mriwaws,
Buwsy + (A ~ Cloiwz = ~2mrrwy — mriwe — mriwiwa,

(,1'3} Cus + (B — Alwyws =0, |
§‘+r(a/mmwf—w§:0: (" = d/dt)

where w, w‘g, ws are the components of the angular velocity of the body, A, B,
{7 — the components of the inertia tensor, r is the distance between the particle
and the fixed point O, ¢ — the stiffness of the spring, and m — the mass of the
particle.

The system (1.3) possesses the integrals.

(1.4) H = {{Aw?+ Bui + Cuw3) + m[1? + r* (w} »§~.,u§)j +or*} /2= Hy,

(1.5) M2 = (A+mrt) i+ (B mr?) Wl 4 Chul = ME.

The system (1.3) is integrable when A = B, but we shall consider the simpler
case A= B =C.

The paper is organized as follows. In Section 2 the system (1.3) is brought
into more appropriate form. After that the action variables are introduced and the
main results are formulated. The proofs are left for Section 3.

2. ACTION VARIABLES AND MAIN RESULTS
First we shall bring the sytem (1.3) into a more appropriate form. In order to
do this we put ‘

2y =T, 2'2:?:',

2.1
2.1 My = (A+mzf)wy, My=(B+ mz¥) wy, Mz = Cws.



Then the system (1.3) reads
My = MaM3 (1/C — 1/ (B +m:i)),
My = M1 Ms (i/ (A—i— mzf) - 1/C) ,

02) M= MuMy(1/ (B+msd) — 1/ (4 +msd)),
21 = %2,

mzy = mz (Mf/ (A+ mz2)® + M}/ (B +ma?)? —o'/m) .

Nowlet A=B = C. If we consider the system (2.2) on the integral level M3 = M3y,
put
I=M}+M;, ¢=arctg(Ma/M:)/(2Ms0),

z=2, p;=mz,
and after rescaling time and variables, we have

I=-8H/dp =0,

$= OH/OI=(1/(1+2%)-1)/2,

i= OH/0p = ps, |

p, = —0H/0z = z(I/(1+2%)? ~5), s>0,

(23),

where ‘ ~
H=[p?+s2+I(1/(1 +2*)-1)] /2=h.
The first integrals of the system (2.3) are
F=I=],
H=p*+s22+ f(1/1 + 2%) = 1) = 2h.
The values of H and F, for which the real movement takes place, define the set
U=UMuu®,
UM = {(h, ), h 20, f 20},
UD = {(h,f), 20, h <0, bz Fs~s/2-f/2}.

In order to introduce the action-angle variables we need to exclude from U the
critical values of the energy-momentum map (H, F). It is easy to calculate that
these points are the boundaries of U, i.e. the points satisfying the equations

f=0 h=0 h=+fs—s/2-f/2.

Denote by U, the set of regular values of the energy-momentum map
| U, = UM UU®, (Fig. 1)
U = {(h, f), B >0, f >0},
UD ={(h,f), >0, h<0, h>+/fs—s/2~ f/2}.



s f
3 —

| 4h2+32+4hs-2fs+:‘1’—ghf~z{)

(2)
g

Fig. 1. The set of regular values of energy-moment mapping U,.
The set V (shaded region)

For the points (h, f) € U, the level surface, determined by the equations H = h,
F = f,is a torus Tj 5. Choose a basis 71, 2 of the homology group H;(T} 7, Z)
with the following representatives. For v; take the curve on T} ; defined by fixing
z, pz, I, and letting ¢ run through [0, 27]. For v fix ¢ and let z, p, make one circle
on the curve given by the equation

pE+s22 + f(1/(1+22)— 1) = 2A.

Now, following [5], we can define the action co-ordinates Jy, Jy by the formula

st/a, i=1,2,

k&
where ¢ is a canonical one-form o = I dp + p, dz. Trivial computations give

(2.4) Ji =2 f,

24
(2.5) Jo = /pz dz = 2] V2h — 522 + f22[(1 + 22) dz,
72 Pl
where 24 > z_ are the two roots of the equation
2h = s2% — f22 /(1 + 2%).

Remark. This is the construction for the action variable J, when we have
one torus. Actually, when (h, f) € U£2} for any fixed A, f there exist two tori. So,
we define the action variables Jél) ; .9) in a neighbourhood of these tori. Due to

the symmetry of the curve, Jél) = éz), therefore in the following we shall consider

anyone of them.



For later use it is convenient to make some changes of variables in ihe integral
Jo. First we make a change 27 = 2.

H}./\/Z1(1—f':§ {(2h — sz }(14—~}+fzjd
- {1+ 2)z
After that we put 1+ 2y = 1/29.
_.__/\/ <;+w(2h+s—§-fj ]d?
(1_32) 23 o

We write z and v again instead of z9 and v/, respectively, for simplicity. Denote
(2.6) y = (1= 2)z(2h + [ +5) — s — f27]
and by v — the oval of the curve

Thy={(v.2): ¥ =01 —~z>{ (2h+ f +s) — s — f2°]}.
Then we have ‘

ydz

> Bnd N det
(2.7) bih, f) & T = T
~

Denote by H (J1,J2) the Hamiltonian of the considered system in action-angle
co-ordinates. We state the theorems, which are the aim of this paper.

Theorem 1. (i) For (h, f) € Ut the following determinant does not vanish:

‘ 6 H
2.8 det . 1 k=12
( ) e (anaJk>¢0/ 3& 1! )

(11) For (h, f) € U the above determirant does not vanish almost everywhere.
Theorem 2. (i) For (h, f) € UM the following determinant does not vanish:
0°H  8°H 0H )
dJ? aJ,0Js  8J;
°H  8*H OH

4

2.9 ’ det 0;
(2.9) | “laian, a7 a5 |7
T
\ 3J1 6]2 7

(i) For (b, f) €V ={f >0, h<0, 4h2+ 52+ f2 + dhs— 2fs+99hf/12 > 0}

in Uy () the above determinant has at most two zeros.
- We shall give the conditions (2.8) and (2.9) an explicit form in terms of Abelian
integrals of the second kind. Using the expressions (2.4) and (2.7) for Ji and Jo,

we can determine F and H implicitly from the equations
Jy=2%F, Jy = o(F, H).
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Lemma 2.1 (Horozov [8]).

O°H 62 H 9y 8
8Jz  8J.0J, oh? 8RS

g 2( H 4 L x. o~ =
(27)2(8¢/Oh)* det o Juys o o
8J18J,  8J2 orof  0f?

Similarly, we have
Lemma 2.2.

( B2H 92H  OH
8JF  85,8]2 J,
o2 H 9?2H  OH

3 — o
@mjicet | 5557, a7 ah |
_ [ OJ1 aJs J
It is easy to be seen that
Yn = f j—; #0
oy

. dz . o . .
in U,, because z; > z_ > 0 and /—-—» # 0 since 1t is the period. So, instead of

Theorem 1 and Theorem 2 we shan prove their equivalent.
Theorem 3. For (h, f) € U, the following determinant does not vamsh

G2 a2y

_ Gh?  OROf
D = det P 024
ohof  df2

Theorem 4. (i) For (h, f) € 7<) the expression [y = ¢ does not vanish;

(ii) For (R, /e V ={f >0, h <0, 4h>+ 52+ f2 +4hs—2fs+99Rrf/12 > 0}
in Uy (2 the above expression [); = ¢y; has at most two zeros.

Next we would like to show that the entries of D (and D;) can be represented

as elliptic integrals. If we differentiate (2.7) twice formally, we get the following
expressions: ’

Y [(z=1)dz

BhT v
%y __E/(l—z)zdz
(2.10) Bhf ~ 2 B
&_“}.‘/(1~z)3dz
af? =~ 4 '
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The differential forms containing y~3 have poles along 7. A standard way to
get rid of the poies on the integration path is to consider I'y ; as a complex curve.
Topologically, it is a torus from which one point is removed [11] If we deform the
cycle 7 into a cycle ¥/, homological to 4, on which the functions y and z(1—z*) have
neither poles nor zeros, then by the Cauchy’s theorem [11] the function #(h, f) can
be defined by the integral (2.7) on 4/ instead of 7. After these notes it is clear that
the derivatives (2.10) are well defined. We again denote ' by 7.

3. PROOFS
First we need the functions
: 2 dz
3.1 w-“:/ , 7=0,12,...
( ) ' 2 y3

e

The next lemma gives a répresentatian of D as a quadratic form in wq, w;.
Lemma 3.1. The determinant D has the representation

(3.2) D = —h(w; — wo)2/(2f) — [(w1 — wo)(f — 5 — h) — huwn]*/(957).
Proof. We have to express the derivatives (2.10) by the integrals wg, wi.
Obviously, we have ¢y = wi — wg. For ¥py and ¢y we have

Ynp = —(wo — 2wy + wa)/2,
Y = —(wo — 3w; + Jwy — wa)/4.

Now, we express integrals we and wa via wg and w; in the following way:

y 2dz ] [f2°]
2= =
3
. 3f

1 /d[y2+zz(2h-§—2f+s)—z(2h+23+3)+s]

T3 ¥
v
1 zdz dz
"3?{2;/ +2(2h+2f+s)/ (2h+28+f):¥/’y§}
= [2(2h + 25 + f}w1 - (2h + 25 + fwo] /(3F),
ie. .
wa = [2(2h + 25+ flwr — (2h + 25 + fwo] /(3f).
Similarly, ‘
ws = [(2h + 25 + flwy — 2swp]/f.

Consequently,

; ¥i; = —h{w1 — wo)/(2f)
and

Yuy = [(f — s = 2h)wi + (h + s — fHwo] /(3),
12



from where we obtain the representation (3.2). This completes the proof of
Lemma 3.1. '
Next we shall put the family of the elliptic curves I'y ; into the normal form

(3.3) I, = {(u,v) € C? v? = 2(x® - 3u +p)}
by the translation » = z 4+ §, where ’
(3.4) 6= (2h+2f + s)/(3f),

and the rescaling ¥ = av, £ = Ju, where

(3.5) B=VQ@h+2f+5s?-3f(2h+2s+ [)/(3f), o= f5°/2.
If we put

63 — (2h 4 62 6 —~
(3.6) p(h,f);f | ( 4—2f+s)2a:-(2h+23+f) 5

we get (3.3). It was proven in [12] that vy # 0 in U,. This allows us to introduce
the function '

o

(37) L= wl/wg.
Then in the variables u, v and p the integrals wy and w, become
p du _ B (Bu+ 6)du
wEE e mEE ) e
¥(p) ' ¥(p)

Here 7(p) is the cycle homological to the oval of the curve T, defined for p € (=2, 2)

and v # 0 on y(p).
Introduce the new functions

du udu
w = [ 5 nw= [ L2

) ¥(p)
and their ratio
p(p) = 61(p)/8s(p).

In these notations we have

(3‘8) o= fp+64.

The following result from [8] is crucial for the proof of the theorems.

Lemma 3.2 (Horozov, [8]). (i) The function p(p) is strictly monotonous de-
creasing in the interval (-2, 2]; '

(i) p(-2) =7/5, p(2)=1.

Proof of Theorem 3. It is seen from the representation (3.2) that if the entries

in D are not simultaneously zero, the determinant D is negative in ,gl} where
h > 0. We shall show that they cannot be simultaneously zero. Suppose that
w; — wg = 0. Then D takes the form

D = —(hwr)*/(9f%) = —(hwo)?/(9f*) # 0 in U,
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Now suppose that the second eniry tn D 1s zero, L.e.
(f—~s—2rjw +{(h+s— fluws = 0.
The both coefficients vanish siumultaneously on the boundary of U,

fw~

L) = - J.
2F(f — s - 2h)? 7

Let now th, f) € 2’;‘“}. Here A < C, f » s, so the expressions in {3.2) have
Aty J 7 3 : 4
differeut signs. It is easy to calculate that D is

(3.9) D= (awi + 2bwywe + cws) [/ (18f%) = wi (a0® + 2bo -+ ) / (18f7%),

whete @ = —OGhf - 2Af — s — 2h)*, b = Ohf + 2(f ~ s —~ 2h}(h + 5 - ]).
cz ~Yhf — Ah+s— f)2
Consider the point in L‘}i?); obtained when A = —s/2, f = 6s. Then the

expression ac? + 2bu + ¢ reads

T = s (4567 + 1866 + 67/2)
where the wave over wmebponuz g expressions ineans that they are evaluated i
the pont A = --5/2, f = 6s. But ¢ = Jp ~¢- 5 where 7 = {18)"Y2 § = 2/3, and
pE(L,7/5) since h = —s/2, f =6s 15 11 U4 Obviously 7 is transformed in

- N VI N T U
T = —s kopg + 82(2)H 25 + éaz}) /2.
Suppose that T (and therefore D} 1s zero in this point. It turns out, as 1t 1s easy
to calculate that the two roots of the equation T = U are negative and this is a
contradiction with the adinssible values for p. Therefore D = Djog; pmeyyr 8,
. o : . . - . A2 e
Le. 12 1s not wdentically zero. fience D is uot zerc almost everywhere in Uz ) This
completes the proof of the Theurem 3 aird fience Theorem 1.

Proof of Theorem 4. First we trausform Dy in the following vay
Dy = —hwg{wi/wy — 1)/{12f) = —hBe 3 p + ¢ ~ 1}/{12f0®)
a3t 16

S AN S
2fed N\ T

Denote

1-46
3.10 Z o= e
( ) , }8

First, we shall prove that Z < 1 when (h, f) € 4+ Let substitute in Z & and #
with their equals from (3.4) and (3.5). Then by direct computations it is seen that

the nequality Z < 1 is equivalent to A > 0, i.e. D; # 0 in UtY. This preves the
first part of Theorem 4.

By the same way 1t is shown that 7/5 > Z > 1 when (A, f) € VN T 7 where
by V the following domain is denoted:

V={(hF): Ff>0,h<0, 4h*+s* + f2 + 4hs — 2fs + 99hf/12 > 0}.
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,f 1 the e»quatmn f{p} - 1710 = U has esactly

Now let v = 1/2. i“or any fixed v € [{
one sulution plivj € (—2,2) as Lemnma 3

3.2 imples. This defines a funcnion v -= pr).
e e N - . . 4 g : 5 . P v Cy
oo 157701 which s stricily. increasing. Let wn ﬁ: BT L R e VNI und
L/ e K i M

Podes correspondent via the equation gip,y - /vy = U0 Then frow (370 1

3

7
is seel Lhat dhe prelnage of pg contains at 1uost 1we points, when /15 Oxed. and
fromi (3.8 - that the pretinage of pole;) contais atl inost sin points. 1t s clear

. PN P G2 L e - T
now that rerov of Oy v (VU7 cai be at mnost two, L s completes ihe proot of
1 neoreny < oand hence of Theorem 2.
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