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1. INTRODUCTION

In the book ”"Theory of K-Loops” by Hubert Kiechle we find the following
construction theorem for left-loops and loops (cf. [5] (2.7)):

Theorem 1. Let (G,-) be a group, 1 the neutral element, U a subgroup of G
and let L C G be a transversal of the pair (G,U), i.e.

(T1) Vxe G hxe Lwithz -U=z-U.

(T2) 1€ L.
Fort,se Llett®s:=1t-s. Then (L,®) is a left loop (called derived left-loop),
i.e.

1) VieL:1¢l=I1l®1=I.

2) Vs,t€ L,Jix € L withs®xz="t.

(L,®) is a loop (i.e. also the equation x & s =1t has an unique solution) if and

only if the set L satisfies the condition (T3) - stronger as (T1) - (then L is called
L-transversal).

(T3) Vz,yeG:|LNx-U-y|=1.
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The next theorem tells us that any left-loop can be obtained by the method of
Theorem 1 (cf. [5] (2.6), (2.7)):

Theorem 2. Let (L,+) be a left-loop, for a € L let a* : L — L ; x
a+x, LT :={a" | a € L}, let G :=< LT > be the group generated by the left-
translations a* and let U := {€ € G | £(0) = o}. Then LT is a transversal of
(G,U) and the derived left-loop is isomorphic to (L,+).

Under the notion "reflection geometry” or “Sperner plane” one finds all abso-
lute planes. To any reflection geometry (G,D,B) we associate firstly a so called
kinematic fibration § of the group ®? and then a kinematic space (D%, &,-). To
certain subgroups F' € § we find in form of a plane < £ > of the kinematic space
(D%,8,-) a transversal of ( F). With this method we can associate to each reflec-
tion geometry in a natural way loops (L, ®), which shall be studied in this paper.
Also in the paper [6] by S. Pasotti, S. Pianta and E. Zizioli we find constructions
of loops related to hyperbolic planes using transversals.

2. REFLECTION GROUPS , REFLECTION GEOMETRIES AND SPERNER
PLANES

We recall some notions and facts taken from [1], [3] and [4]. Let (G,-) be a
group, J :={y € G| v* =id # v} and ® C J such that <D >= G, i.e. Dis a
system of generators of G.

A subset b C © is called pencil if there are A, B € ©, A # B with

~ =
b=AB:={Xec®D|A-B-X e J}. Let B be the set of all pencils. A pencil b is
called proper or also projective if for all r € B, bNr # 0. Let B, be the set of all
proper pencils.

We claim ( Three reflection Axiom):

(S) If bis a pencil and A, B,C € b, then A- B-C € © and then if B, # 0,
we call the pair (G, D) reflection group.

Proposition 1. If (G, D) is a reflection group then
1. ®* =22 i. e. D2 is a subgroup of G.
2. For b € B the set b2 := {X-Y | X, Y € b} is a commutative subgroup of D?.
3. For by, by € B we have: b3 Nb3 = {1} <= by # bo.

4. For € € Gand b€ B we have £ -b- 71 € B.

To a reflection group (G,®) we associate the following geometric structure
(G,9,B) called reflection geometry: The elements of © are called lines, of B
points and of B, projective points. The incidence between a line L € ® and a point
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b € B is given by L € b. A reflection geometry (G,®,B) is called Sperner plane if
every line G € © is incident with in at least three distinct projective points.

If in a reflection geometry there exist more than one pencil then there exist

ABCeDwithA-B-C#AC-B-A.

~ =
Let A,B € ® with A # B and b := A, B. We call A and B orthogonal and
denote that by A L B if A- B € J and then b is called an orthogonal pencil.

A Sperner plane is called regular if for every A € ® | the set A+ := {X ¢
D | X L A} is a pencil and then A+ is called the pole of the line A.

Let B :=D%2NJ. If pePthenp:={X €D |p-X € J} is an orthogonal
pencil. Hence the set of all orthogonal pencils can be identified with the set 33 of
all involutions contained in the group D2.

Proposition 2. Let (G,9,B) be a Sperner plane and let a € G then
1. If (G,9,B) is regular then B, C P.
2. The map
a:G = G:§&6&— a-f-al
maps lines onto lines, points onto points, preserves incidence and orthogonal-

ity hence a is a motion of the Sperner plane.

If € ® resp. a € P then «a is called line-refiection resp. point-reflection. If
to a,b € B there is a m € P with m(a) = b then m is called midpoint of a and b. A
regular Sperner plane with 28, = B is called midpoint plane if for any two distinct
points there exists exactly one midpoint.

Proposition 3. Let (G,D,B) be a midpoint plane, let o € P be fixed and
for € B let 2’ be the midpoint of 0 and z and let 2% := 2/ 0 0. If for a,b € P

a®b:=at(b)

then (B3, ®) is a loop, even a K-loop.

3. THE KINEMATIC SPACE OF A SPERNER PLANE

Now we associate to a reflection group (G, D) a spatial structure. By 3. and 4.
of Proposition 1 the set § := {b? |b € B} forms a kinematic fibration of the group
D2 ie.

1) Ug=9o2

2) YU VeF, UnV={1l}orU=V.

3) Ifée®D?andU € Fthené&-U-£71e3.
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Therefore if we call the elements of ©? points and of & := {y- F | vy € D2 F € §}
lines then (D2, &) is an incidence space and the triple (D2, &, ) is called kinematic
space (cf. [2]).

A subset A C ©? is called subspace if for all a, 8 € A with o # S the line o, 8
joining the points o and S is contained in A.

If « € D2\ {1} let [a] denote the unique fiber of F with a € [a].
By Proposition 8. of [4] we have

Proposition 4. «,3,v € ©®? are collinear if and only if
/6,0571,7:7,0471,5_

Let §, := {b? | b € B,} the subset of fibers coming from proper pencils. The
elements of the subset &, := {£-U [£ € D2, U € §,} are called projective lines.

Foree D let <e>={(eD?|e-£€cD}=c"1.D.
By Proposition 10 of [4] we have

Proposition 5. Let ¢ € D3 , F € §, a projective fiber, £ € D2, G :=¢ - F
hence G € &, then

1. <e>NF #0.

2. <e> NG#N0.

3. If FC<e>and G# Fthen|<e> NG|=1.
4. < e > is a plane.

5. If G is contained in the plane < € > then G meets any line A € & which is
contained in the plane < e >.

4. PARALLELISMS IN A KINEMATIC SPACE

Let (D2, &, ) be the kinematic space belonging to the kinematic fibration § :=

{62 |b € B} of the group D2. Then for G € &, G~! - G € § and therefore we can
define a left and a right parallelism. For A, B € & let

AljBe= A1 A=B"1'B, A|,B< A-A"'=B-B "

If A€ & and 3 € D? then there is exactly one line B := (8 ||; A) with B ||; A and
B € B ,namely B:= (B, A)=8-A"1- A,

By the last remarks of [4] we have:

Theorem 3. Let ¢ € D3 and let G € &, a projective line. Then:
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1. IfHeE® and H ||; G or H ||, G then H € &,,.

2. There is exactly one projective line denoted by (¢ ||; G) resp. (¢ || G)
contained in < € > such that (¢ ||; G) |1 G resp. (¢ ||» G) ||» G.

3. If Le & with L ||; G and L # (¢ |; G) or with L ||, G and L # (¢ ||, G)
then |[LN < e > | =1.

Theorem 4. Let (G,9,B) be a Sperner plane, let b € B, be a proper pencil,
let F:=1b% let AcbandletT := (< A>\F)U{l}. Then

1. F is a commutative subgroup of D2 and a projective line of the corresponding
kinematic space (D%,8,-),

2. < A > is a plane of (D%,8,-) with F C< A >.
3. Yo, € D2, a- F - is a projective line and o - F - N < A ># .

4. For each a € D%\ F the line (o || F) = o - F meets the plane < A > in
exactly one point & and we have & = a < a € A. For a € F let a:= 1.

5. T is a transversal of (D2, F) hence (T, ®) witha® B :=a- B fora,B €T is
a left loop.

6. T is a L-transversal of (D% F) hence (T,®) is a loop and 1 is the neutral
element of (T, ®).

5. PROPERTIES OF THE LOOP OF A SPERNER PLANE

Let (T, ®) be the loop corresponding to a Sperner plane according to Theorem
4. Then if o, € T and if - € T we obtain a® = a - 5. Now let a € T'\ {1}
and [a] = 1,. Then [a] is a subgroup of ®? and [a] C T. Hence on [a] coincide
the operations - and @ and we have:

Theorem 5. (T, ®) is a fibered loop with the fibration §' := §\ {F'} and each
fiber X € §' is a commutative subgroup of the loop (T, ®).
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