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A NOTE ON THE ¢>-TERM OF THE EFFECTIVE
CONDUCTIVITY FOR RANDOM DISPERSIONS

KONSTANTIN MARKOV, KERANKA ILIEVA

Konemanmun Mapxoe, Kepanxa Hauvesa. SAMEYAHWE O CQ-L{JIEHE,} 3PPEKTUBHOMN
NPOBOIUMOCTU CJIYUAHUHONW NUCIIEPCUU COHEP

Pa6oTa nocpsuena uccnenoBannio addekTuBnoM TennonposoanocT X* cayuvaiinoi
pa3parkeHHoON cycnencum chep. CnenmanbHoe BHUMaHWE yJAeNeno c’-kooGGUUMEHTY az B
Pa3NioXKeHUHM PTOU NPOBOAHMOCTH 110 CTeneHAM ob6beMHol KoHueHTpauwu chep c. Ilonb-
3yACh MPOCTHIMU COOGPa'KeHUAMM MOKA3aHO, YTO a2 NPEACTABAAETCA CYMMONU MOCTOAHHK
M nuHeiHOro PYHKIMOHANA OT pajAManbHoi (YHKUMUM pacnpelenenus cdep. B paBEMuHOM
cnyvae (MaTepHasi apMHPOBAHHBLIA BOJIOKHAMM) Halijlen aHaAMTHYeCKUH BUA BTOTO AApa

¥ BbiBeAeHRE HEKOTOPHI€ NIIPOCThHIC OHCHKH.,CUI.ﬂ HETO.

Konstantin Markov, Keranka Ilieve. A NOTE ON THE C2-TERM OF THE EFFECTIVE
CONDUCTIVITY FOR RANDOM DISPERSIONS '

The paper is devoted to the study of the effective conductivity ¥* of a random dilute dis-
persion of spheres. A special attention is paid to the c?-coefficient a; in the expansion of ¥* in
powers of the volume fraction ¢ of the spheres. The functional dependence of ay upon the radial
distribution function is discussed and it is shown, using simple arguments, that a; is a sum of a
constant and a linear functional of the said function. The analytical form and certain estimates for
the kernel of this functional are obtained in the two-dimensional case (fiber-reinforced material).
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1. INTRODUCTION

Consider a random dispersion of spheres in the three-dimensional case (3D)
or cylinders in the two-dimensional (2D) case, i.e. an unbounded matrix of con-
ductivity x,,, containing an array of either spherical or parallel cylindrical inclu-
sions, each one of radius a and conductivity ;. The centers of the inclusions,
assumed nonoverlapping, are in the random points x;. The statistics of the disper-
sion is described by the multipoint distribution densities fp(y1,...,¥p) that give
the probability of finding a center of an inclusion per each of the infinitesimal vol-
umes y; < y <y; +dyi, i = 1,...,p. We assume, as usual, that the dispersion
is statistically homogeneous and isotropic and f, ~ n? in the dilute limit n — 0,
where n is the number density of the inclusions.  The classical problem consists in
evaluating the effective (or overall) conductivity »* of the dispersion, making use

~of the known conductivities %, and x»; of the constituents, and of the statistical
information represented by the functions f, (cf., e.g., [1-6]). The mathematical
formulation of the problem reads '

(ry V- {x(x)Vé(x)} =0, (V6(x)) =G,

where 6(x) is the random temperature field, »(x)—the given conductivity field
(%(x) = #; or x,, depending on whether x lies in an inclusion or in the matrix
respectively), G—the prescribed macroscopic gradient of the temperature, and {-)
denotes ensemble averaging. Upon solving the random problem (1.1), one calculates
the mean flux, which is proportional to the macrogradient G:

(1.2) (x(x)VO(x)) = x* G,

where »* is the effective conductivity of the medium. The difficulties in calculating
x* are well acknowledged in the literature: they stem from the need to’account
properly for the multiparticle interactions in the dispersions and for the slow decay
of the single-inclusion field [2,4,5]. A number of approximations for »* exist; one of
the first and most famous of them has been proposed by J. Maxwell [7). Though he
dealt with dispersions of spheres, we give the respective result in a bit more general
form in order to be able to cover both 30 (dispersion of spheres) and 2D-case
(dispersions of aligned cylinders, i.e. fiber-reinforced materials) simultaneously:

(1.33) -',-‘-—" == 1 + dﬁd prvesd 1 + dﬁdc+ dﬁdzcz + feey
X 1= Bac
where
L _ [+ _ .
(1.3b) ﬂd":xf-%-(d—l)xm’ Lft]—x; — ¥m;
hereafter d = 3 in 3D-case and d = 2 in 2D-case, ¢ is the volume fraction of the

inclusions, ¢ = nV;, Vo = $7a® in 3D-case, or ¢ = nS,, S, = wa? in 2D-case.

Let

L

(1.4) 2 =l4ac+agct+---

Hm
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be the so-called virial (or density) expansion of x* in powers of the volume fraction
c of the inclusions. As a matter of fact, the coefficient a; is the only thing rigorously
calculated by J. Maxwell (cf. [7]): a1 = dB4, while for the c2-coefficient his formula
yields only a certain approximation

(1.5) as = dBs’.

The rigorous evaluation of a; has attracted the attention of many authors because
this is the simplest case in which the multiparticle interaction shows up in a non-
trivial way (see, e.g., the papers [4-6], [10]), where a; has been expressed in a closed
form, making use of the zero-density limit go(r) of the so-called radial distribution
function for the spheres, and of the one- and two-inclusion fields for the conductiv-
ity problem under study. Let us point out also the paper [8], where certain bounds
on ap are derived in which the same function gg(r) appears; the counterpart- of
these bounds in 2D-case is given in [9)]. |

In this paper we shall first concentrate on the functional dependence of as upon
the above mentioned function go(r). We shall show in §2, using the bounds of [8,9],
that a, is a sum of a constant and a linear functional of go(») with a certain kernel
®,, and estimates on ®; will be then proposed (§3). In §4 we shall evaluate &,
analytically in the 2D-case, making use of a method originated by J. Peterson and
J. Hermans [10]. In this way we avoid twin expansion technique of D. Jeffrey [4]
and B. Felderhof et al. [5], needed in 3 D-case when solving the two-sphere problem,
and get the eventual 2D-case result for a; in an explicit integral form. Moreover,
for some simple but important particular cases the integration can be performed
analytically employing certain well-known higher transcendental functions. Finally
‘we consider some power series expansions for a; which allow us to calculate the
latter easnly (§5).

2. FUNCTIONAL DEPENDENCE OF @, UPON THE RADIAL
DISTRIBUTION FUNCTION

Due to the assumption f, ~ n?, the coefficient a; could depend on the two-
point distribution density f; only. As usual, we represent the latter as fo(y1,y2) =
- f2(r) = n%g(r) = n?go(r) +o(n?), where g(r) is the radial distribution function and
go(r) is its zero-density limit, r = |y; — y2|. Obviously, only go(r) could influence
as, so that

(21 | az = §[go(-)]-

The functional § is defined on the space C of all bounded, piece-wise continuous
functions on the interval [2, 00), go(Aa), A = r/a (due to the nonoverlapping as-
sumption) and go(r) — 1 at r — oo (no long-range order in the dispersion). The
continuity of this functional in the C-norm seems obvious so that, according to the
general representation theorem of V. Volterra [11], we can write down a3 in the
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form of a functional Volterra series:
o0

as = Py + P (/\)gg()«a) dA
2/ :
(2.2)

+//<1>2(/\1,1\2)90(1\10)90(»\20) dhidig+---,

where ®¢ = const and ®;(X), ®$2(A1, A2), etc., are certain kernels that vanish at
infinity. These kernels do not depend on the statistics of the dispersions but only
on the ratio & = x;/x,, of the constituent conductivities or, which is the same,
on the parameters 4, introduced i (1.3b); to emphasme this fact we shall use the
" notations ®1 = ®1(A; Ba), etc. '

Let us recall now the bounds on a,, derived in [8,9] in the 3D- and 2D-cases
~ respectively:

d d
30 s (14 p s ) S oo < 483 (14 {2ma).

(2.3b) C ma=(d-1) / (A"d“ dgg(,\a)d)\ d=12,3.

As a ﬁrst consequence of (2 3) we shall show that the functional (2.1) has the

form
o0

(2.4) az = df3 +/‘I’1()\;;3d)90()*0) dA,
2

ie.

(2.4a) | & = dff]

and . '

(2.4b) ‘ Py=P3=...=0.

The proof is based on the fact that (2.3) holds for all admissible functions

9o(r) € C. Indeed, consider the class of functions g& € C such that gg‘(r) =0
at r < A and g4 (r) =1 at r > A, A > 2a. The statistical parameter in (2.3b)
depends then on A, my = m#, and it can be easily calculated in this case, but we
need here only the obvious fact that
(2.5) m$ -0 at A — oo.

On the other hand, ~

o0

oA f B1(\)g (Aa) dA — 0,
(2.6) 2

o000
- / /%(Al,xg)gg()\la)gg(,\za) dhdAg — 0,
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etc., at A — oo. We employ now (2.3a) for the function go(r) = g& (r):
dﬁd LRy ( dBa A)
dg? <® < dfl 1+ ———my ).
Letting A — 00 and recalhng (2.5) and 2.6), we get from the last 1nequalities
that ®; = dB? which proves (2.4a).
The proof of (2.4b) is very simple if the functional series (2.2) is finite, con-

tammg N terms, N > 2. Let N = 2 first. Consider the kernel ®; and suppose that
in the nelghbourhood
| A=A =, Al +6) x (A3 — €, A3 +€) |
of the point (A ) € R? we have, say, ®2(A1,A2) > 0. We consider the class of
step-constant functions go(r) € C, such that go(r) = pif r € (Al —¢, A} +&) U (A —
;A3 +¢€); go(r) = 1 at » > A and vanishes otherwise. In this case the parameter
3 18 a linear function of g. On the other hand, the two-tuple term in (2.2) is a
quadratic function of u with a positive multiplier of u2. If 4 and A are big enough,
the inequality (2.3a) will be violated, which proves that ®;, = 0. The proof in the
case when N > 2 but is finite, is fully similar.

We should finally show that the series (2.2) for a; is finite. To this end it
suffices to recall the definition (1.2) and the representations

(x) = () + 4 [ B =y (),

ﬂ(x) =G- x—i-[Tl(x —y'(y) d®y

+/ Ta(x — Y1,AX - yz)D£2>(y1,yz) d’y1 dy; + o(n?),
where w'(x) = w(x) — n,

w(x) = Z §(x — x;)
o

is the random density field for the dispersion and

Dc(ug)(}'b y2) = w(y)lw(yz) — 6(y1,2) — ﬂ.‘?ﬂ()’i,z){w'(w) +w'(y2)l - n290(¥1,2);
Y12 = ¥1 — ¥2. The kernels T3 and T3 have been specified in [6], but we need
here only the fact that the two- and three-point moments of w(x) depend linearly
on go(r), to the needed order n? [12], so that the series (2.2) should be finite and,
moreover, should indeed have the form (2.2), truncated after the one-tuple term.

3. BOUNDS ON THE KERNEL &,

Let us denote by a} the c*-deviation of a; from its Maxwell value (1.5), i.e.
ay, = a3 — dB%. From (2.3) and (2.4) we have

oG

(3.1) | & = ] $:1(%; A)go(Aa) d,

2
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2 33 233
d*p3 my < b < d By
1—(d=1)Bq T+6ad
Since the statistical parameter my is a linear functional of go(Aa) and (3.2)
should hold for all admissible functions go € C, we can conclude that

d2(d—1)f3  Ad-!

(3.2)

< By (A
d?(d 1),@3 Ad—l

. < , A€ [2,00).
(3-3) S 77 propE Y€
The proof employs the arbitrariness of go(Aa) in the space C and is fully similar to
that in §2. §

Note that the estimates (3.3) imply that ®; decays as A~ (4+1) 3t A — oo and
) )&d—

(3.4) ®1(X; Ba) = d*(d — 1)ﬁd(_’i'2—1)_d + o 83).

If x;/xm — 00, i.e. B4 — 1, the upper bound (3.3) degenerates; if x; /%, — 0,
ie. f3— —3z or B2 — —1, the Iower bound (3.3) degenerates (cf. Fig. 2 below).

4. EVALUATION OF THE KERNEL &, IN 2D-CASE

Let us recall first the formula for ), derived in [4,10], see also {6], which in the
2D-case reads ‘

(41)  aG= . Sz/d2 /gg (z) VxT@)(x z) — VT(l)(x)}

where Zp, = {z | |2] 22&}(:!%2, and
[#]
%f + K

(4,2)‘ T(l)(x) =—-AG-x at [x|<a; B=/fa=

is the solution of one-inclusion problem at |x| < a; the inclusion hereafter is the
disc $, = {x | [x| < a} of radius a, located at the origin. The field 7(*)(x; z)
is the solution of the two-inclusion problem which represents the disturbance to
the temperature field introduced by the pair of equal discs { and 2 centered at the
origin and at the point z, respectively, when the temperature gradient at infinity
equals G. The field T(?)(x; z) satisfies the equation

(43)  wnAT®(x;2) + [V - { [A(x) + h(x — 2)] [G + VT(z).(x; z)| } =

here z plays the role of a parameter and z € Z24, since the discs are not allowed to
overlap. The mtegral in (4 1) is condltlonally convergent and is understood in the
sense .

_ R
(4.4) / d’z = hm -d’z; f -d*z :]rdr/- ds2,
‘ 0

ZS& R ZQG,R 0
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where Zy, p = { z|2a<|2|<R } This means that in the integral over the region
Z2a,r we first integrate with respect to the angular coordinates, i.e. on the unit
circle @ = {z | {z| = 1}, and then with respect to the radial coordinate r = |z},
see [4,6].

We shall calculate here this integral by means of an obvious extension of the
arguments of J. Peterson and J. Hermans [10], who tacitly considered only the
well-stirred case go(r) = 1. ‘

Let us introduce the tilted coordinate system (z}, z4) as shown in Fig. 1, where
|0’'0O1| = |0'O2] = L, and the bipolar coordinate system (o, 7) for which

~ shr i
) =b——--—=1b (1 +2§:e',"” cospa) )

cht —coso

p=1
(4.5)
sin o s
gh=b——o-o-ooou-=2b E e~ P sin po.
: chr —coso =

The boundaries of the two discs I and 2 correspond to the coordinate lines
T = +7q, where ’ '
‘ b
(4.6) : a=

sh 7'0’

L =achr.

The solution of the problem (4.3), bounded at infinity can be obtained straight-
forwardly, making use of the bipolar coordinates (o, 1) (see, e.g., [10]). We shall
need in what follows only the values of the solution at the boundary 7 = 7 of the
disc I: :

(G x + T3)(x; z)>

T&=To
(4.7) . o . : o 0 )
—s (1 X, COS PO b % SiD po
1( +?§xfshpro+xmchpm _+ 2; ®; ch pry + s, sh prp’

where ] and GY are the projections of the temperature gradient at infinity G on

the axes z} and z?%, respectively.
As it follows from (4.2), .

(4.8) T(x) = ~BG - x = —B(G 2} + G42%) + const,
so that the field W(x;z) = T®)(x; z) — T(Y)(x), needed in (4.1), has the form
W(x;z) = GiW] + GyW,,

oG oo
(4.9) | Wi = Z Wpicospo, W= Z W, . sin po,
p=0 p=1
v 2% fbe 2P0 ' 'meﬁbe”zpfo
pl %s shpro + #m ch pro’ p2 %¢ ch pry + #y, shprg
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Let us change now the order of integration in (4.1) and then apply the Gauss
theorem

(4.10) ayG = —};1--1- go(2) d°z / nW(x; z) ds;
| Z3a |zl=a .

here n is the unit outward normal to the disk I and ds is its element of length

- do b
(4.11) | ds=—, h= .
' » h chmg —coso
29 |
n i
) 31
——
'l
1 A 144
Zy G €2 , d’
»” - 1
’,' f ' 1 - ot
Xz
) rd \‘ 01 el 1
f Ay
Gg \‘
Y
]
e Gh
2 ell
o'

Fig. 1. Coordinate systems in the two-inclusion problem (2D-case).

Since the integral with respect to z is to be understood in the sense (4.4)
and go(z) = gol]z|), we carry out the integration consecutively: first, at fixed
|a| = 2L = 2ach T, i.e. at fixed 79, we integrate with respect to all orientations
of the dumb-bell shaped figure (see Fig. 1), described by the angle ¥. Next we
integrate with respect to all |z|, 1.e. to all 75. This procedure is equivalent to a
transition to the polar coordinates (p, @) in the plane (z,, z;) with a center at the
point 01, so that p = |z| = 2L, after which the integration is performed first with
respect to « and then with respect to p (cf. Fig. 1).
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Consider first the integration with respect to p. Due to (4.9); and (4.11), we
have

K(L) = / da / W (x;a) ds
2 |zi=a

(412
f do / n(G{ W] + Gy ;) ds = [ da / (W!ne,, + Wine,)ds - G
lz]=a “x Joi=a

In this expression we should once integrate over the orientations of the pair of unit
vectors e, e and once over the orientations of the normal n. Instead, we first fix
the angle ¢ between n and e):

(4.13) n-ej =cosy, mn-e,H=siny,

and rotate rigidly the triad ei, e}, n. The dyadics nej, nej, after such an inte-
gration become proportional to the unit second-rank tensor I, so that, in virtue of
(4.11) and (4.13), the integral in (4.12) becomes

(4.14) K(L) = 7G / (G, W + GyW) ih‘f-.

It remains to integrate with respect to the angle ¥ only.
Let us recall now the formulas

cos Y chrpcoso—1 ke
= p o 0COST T 0 ~pTo
h (ch7g — coso)? 2 p;l pe T cospa,
(4.15) | |
' sin ¥ sh rgsineo - _ )
=b = PTo
h (ch 79 — cos )2 26 ZP R

p=1

which, when substituted into (4.14), together with (4.9) yield

. o0 ’
K(L) =G ) _pe P (W, + Wyy)

p=1
(4.16)
x —6pTy
= 167222 — " L .
' b xm+fo§1_ﬂ2e-4pm

Since the radius a of the discs is fixed, the integration with respect to p =
2ach 1p 1s an integration over 15 € (0, 00) and

pdp = 4a’ ch o sh 1o d7g.
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1.0

0.5 f

0

b)

Fig. 2. Plots of the kernel ®; (continuous line) and the bounds @f' and @7 (dashed lines)
(2D-case); a) 3 =0.5; ) B =0.9

; Making use of (4.7) and (4.1€), we thus get

ayG Z%E}E f K(L)go(p)pdp = 48°M (8)G,
g 2a

(4.17)
oo % 3
M chrgsh™ny  _
(B) =16 E 1 p]gg(% ch 70) - ;%*4;0 e6P70 dr,
p=i g

Upon inserting (4.17) into (4.1) we easily obtain the eventual ¢?>-formula for
the effective transverse conductivity »* of a fiber-reinforced material:

x*

(4.18) =142+ 282 (1+ 28M(B))c” + o),

™

with the function M(f) defined in (4.17). This function is obviously even, which
implies the relation

- (4.19) a3(B) + aa(—P) = 45
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for the coeflicient ay, considered as a function of the parameter 8. It is to be noted
that (4.19) is a simple consequence of the Keller interchange formula [13], which
reads

5 (s, % ) 6" (34m, 25 ) = 5 %m;
here x*(x;, x,,,) denotes the effective transverse conductivity of the fiber material
under study and x*(xm, #7) is the conductivity of the same material, but when the
fibers are made of the matrix material and the matrix—of fiber’s.
The comparison of (3.1) and (4.17) yields the analytical form of the kernel ®;:

(4.20) (X 8) = 43NN - 4)21 pgjifip

here A=e™™ = %(A-— VAZ—4) A >2.

By means of (2.4) and (4.20) we can evaluate numerically the coefficient a,
for an arbitrary sphere statistics, represented here by the function go(r). Thus in
2D-case under study we avoid twin expansion technique of D. Jeffrey [4] and B.
Felderhof et al. [5], needed in 3D-case when solving the two-sphere problem, and
get the eventual result for a; as an explicit integral. Moreover, for some simple but
important particular cases the integration can be performed analytically employing
certain well-known higher transcendental functions, as we shall see in the next
Section.

The bounds (3.3) in 2D-case under study have the form

LN B) < ®1(A; 8) < ¥V (X; ),

(4.21) B A
v TocR R Y [ 1

The exact values of the kernel ®; together with the bounds ®f and &Y as
functions of A are shown in Fig. 2 in two cases: § = 0.5 and 8= 0.9.

L _
oL =

5. SOME FORMULAS CONCERNING @ 5 IN 2D-CASE

In order to make easier the numerical evaluation of a, for the ﬁber-reipforced
materials let us expand the function M () in (4.17) in powers of the parameter 3:

[«

5.1 M M %, B =
6.1 (9) = 5_:0 e
(5.2) =16 Z 3/95(2& ch ) ch rsh3re=Z(G+20)7 g
i=1
The estimates (3.2) for a; now imply
26 28
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so that

o0
, \
(5.4) M(} = Mmy =/Mgo(¢\0) d)&,
2
(5.5) M(B) = mz + O(f), ie az= 28%(1 + 2B8m3) + o(5%).
The formula (5.2) can be recast as
| T ch rsh®r -
M, = 2ach
£T 0/""’( e T) h2(3+2k)»r

Having used the known formula for sh nr and making the substitution A = 2¢chr,
we get eventually

‘ ~1
3 k+1 :
(5.6) M = / Ago(Aa) {Z(-I)Jcé+2k—j A2(2k-;+1)} A,
‘ 2 j=0 .
The formula (5.4) coincides with (5.6) at k = 0. At k = 1 we have
o
_ Ago(Aa)
(5.7) | M, = / OT— 1) d,
2

and this integral, as well as the integral in (5.4), can be easily evaluated in the most
frequently used well-stirred approximation for which g(r) = go(r) = go(Aa) =1 at
A > 2, yielding

1 1L, V5, 3-v5

-~ = In

g Mi=MT =ty i

~ However, the analytical evaluation of M} by means of (5.6) at k¥ > 2 is not

easy even in the well-stirred case. In the latter case we employ (5.2) which leads,
after simple manipulations, to the following result:

(5.9a) MY? =¢f {21{)(1 +cx) = 2¢0(1 + 2ci) + — o ( rer 1)} ,

sin 27mcg

(5.8) My = MY =

where .
1 F g (3:)
.9b : =

so that ¥(z) is the logarithmic derivative of the Euler Gamma-function which is
investigated in detail and tabulated [14,15]. As a matter of fact, the formula (5.9)
is given in [10]. Note that since the arguments 1 + c; and 1+ 2c; are rational, we
can employ the formula for ¥(p/q), cf. [15, p.722], which allows us to represent
M;’* by means of elementary functions, namely

| k41
: 1 . o "y
~ (5.10) MY =¢2 {%; +8 E 3m(j7rck)31;1(331rck)In‘sm(ﬁrck)} :
| et
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Fig. 3. The c?-coefficient a3 in the well-stirred 2D-case as a function of Jéi

Note also the asymptotic formula
(5.11) MY*® =6((3)c; + 30¢(5)c + o(c}),

where ((3) = 1.2021 and ¢(5) = 1.0369 are the respective values of the Riman (-
function. The formula (5.11) glves four correct decimal numbers for M{** at k > 4
and six at k > 6. |

The formulas (5.10) and (5 11) make possible to evaluate as in the well-stirred
‘case, having truncated the series (5.1) and replacing the remammg coefficients M}"*
with their asymptotic values (5.11). In this way one easily finds, e.g.,

5 =27450 at B=1, ie x5/%y = o0,
(5.12) ay’® = 1.2550 at 8= -1, ie. x;/uy =0.

The dependence a; = ay(p) is shown in Fig. 3 together with the bounds (2.3a),
- which in the well-stirred 2D-case }mder study read

BN g e B
2 (14 i) <o <2014 )

It is instructive to consider as well the more general radial distribution function

(5.13)  ge(r) =1+ Al-'-i-, r> 2a,

where A, is a certain scalar parameter such that 4; > —2 (in order to have go(r) >
0). The coefficients My, corresponding to the distribution function (5.13) can be
easily evaluated by means of (5.2) and the final result i is

(5 14) ' My = Mk + A1 Ng,
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Fig. 4. The c*-coefficient ay in the well-stirred 2D-case as a functlon of 3 for the dxstnbutlon
function go(r) given in (5.13); :
I — Ay =-2; 2 — Ay = 0 (well-stirred); 3 — A; = 5

| 3 1 -3 mcos(mer/2) 2

1 Ny = zcii2 ~ex) - = -
(5.15) B ¢ ‘2%{ v(i+ 2%) v+ 26’%) + sin(3wex/2) ek )’
k=0,1,..., where c; are defined in (5. 9b) and M Ys are the respective coefficients
in (5.1) in the well-stirred case, cf. (5.10). Havmg applied the above mentxoned

formula for 9(p/q) from [15, p. 722], we get

; 3 9 2(k+1) jme
_ 93 k
(5.16) Ny = 3%\ 300 +4 Z sm(ﬁrc;;}sm@yrck)ln sin 2 7 ("
sothat Ny >0,k=0,1,....
In particular,
11 9\/‘ L3 \/‘
N"“‘ﬁ‘l’il“?’ Nl"% 00 * 3
The asymptotic formula for N; reads '
= 3¢(3)ct + o(c}).

It gives four correct decimal digits at k > 2 and six at & > 8.
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Since A, should only exceed —2'and thus it can take arbitrarily big values,
equation (5.14) suggests that the statistics of the dispersion affects very strongly
the c?-coefficient in the virial expansion (1.4) of the effective conductivity. This is
illustrated in Fig. 4 for the radial distribution function (5.13) in the cases A; = —2,
Ay = 0 (well-stirred) and A; = 5.

Let us note finally that M(8) > 0 at § € (—1,1), cf. (4.17), and it could take
arbitrarily big values, e.g. for the distribution function (5.13). Then (4.19) implies
the following sharp estimates for the coefficient az in 2D-case: -

202 <ay <oo, if >0, ie. X > K,
(6.17) -
—oo<az <26, if <1, Le. x¢ < 3y,

having taken sup a; and infa; with respect to all admissible radial distribution
functions go(r) (so that varying, in particular the parameter A; in (5.13) from —2
to infinity). We can thus conclude that there is no finite interval, independent of
the statistics of the fibres, within which the c?-coefficient ay is to be always found.
Note that similar to (5.17) estimates are to be expected to hold in the 3D-case,
1.e. for dispersions of spheres, with the only difference that the factor 2 should
be replaced by 3, and again there will be no finite interval for the coefficient az,
independent of the statistics of the dispersion. :
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