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Xpuemo Xpucmoe, Hean I{anxos. .‘-*II’ICJ'IEHHI)H;“I PACYET HECTAIIMOHAPHOTO
IIOTPAHUYHOI'O CJIOA OKOJIO KPYTOBOI'O UMJIMHIPA

B nocnennnie rofsl aKTMBHO oGéyxmaeTcx‘Boupoc-oﬁ CYLIECTBOBAKMY TJIaJKOro penie~
HUR ypaBHeHMH HeCTaMOHADHOIrO NOCPAHMUYHOTO CJIOfA. PacuéTBHIE PE3yNITATH, HOJYUYEH-
HHE KaK B JlarpaskeBoil HOCTAHOBKE 3alauM, TAK ¥ HEKOTOPHIMM HOJYAHAJIMTHUYECKHMH
METONAMH, YKA3LIBAIOT, UTO PelieHHe COAEPHHUT ocobeHHOCTh. PesynpTaTh, NONYyYeHHLIE
B Diineponoif MOCTaHOBKE 3aJa4M, HE COrAACYIOTCH C BTUM BHBOJAOM. B Hacroamei paGo-
Te HPOBOAMTCH aHANVU3 BTHX PEe3YALTATOB W NPENNaraeTci HOBAS pacyeTHad cXema, Ho-
CTPOECHRHAH HPY DOMOMM MeTola nepeMeHHnIx HanpaBieruit. Oua gsasercsa Besyciosuo
ycTOMUYMBOH, B TOM uMCie M B o6GIAacThb BO3PPATHHIX TOKOB. Monyuennme pPe3yAbTATH
OUeHb XOPOIIC TOTNACYIOTCA KOAMYECTBEHHO ¢ pedynbraTtamu B Jlarpamwepoit mocTanos-
K€ ¥ HeABYCMHBICNEHHO MOKA3LIBAIOT, YTO peuieHue HERCTBUTENBHO COHEPHUT OCOBEHHOCTH
Ang 12 3,0 B DeapasMEPHRIX HePEMEHHBIX,

Christo Christov, Ivan Tzankov. NUMERICAL INVESTIGATION OF THE BOUNDARY LAY-
ER FLOW AROUND IMPULSIVELY MOVED CYLINDER

In recent years the problem of existing of a smooth solution to the unsteady boundary layer
equations with unfavorable (adverse) pressure gradient is frequently discussed in the literature.
The numerical results for schemes with Lagrangian variables as well as some semi-analytical studies
strongly suggest that a singularity evolves after a finite time. The controversy, however, is fueled
by the maverick results, obtained by means of Eulerian difference schemes. In the present paper a
critical discussion on these approaches is given and for solving the problem a new Eulerian implicit
difference scheme of splitting type is developed, which is unconditionally stable in the whole region
of flow, including the zone of reversed flow. The results obtained here compare quantitatively very
well with the results of Lagrangian numerical schemes and unequivocally indicate that a singularity
evolves after a finite time {(approximately ¢ & 3.0 in dimensionless units).
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INTRODUCTION

After Prandtl has introduced it, the boundary layer approximation turns out
to be one of the most successful ideas of the modern fluid mechanics because of
its simplicity and practical significance. The main advanfage of the stationary
boundary layer equations is that they are of parabolic type with the longitudinal
coordinate playing role of a “temporal” coordinate. The latter allows one to employ
marching numerical procedures that are significantly less expensive in comparison
with the methods for solvmg elhptxc equations with equivalent number of spatial
coordinates.

, The very nature of this advantage, however, erects formidable obstac}e.s on

the way of applying the boundary layer approximation to steady separated flows,
since in them the longitudinal velocity component may become negative, rendering
thus the governing equations to anti-parabolic ones that are explosively unstable.
That is the reason why the separated boundary layers are not exha.ustwely studied
numerically.

Unfortunately, the change of type is not the only deficiency of the boundary
layer equations when modelling the separated flows. The occurrence of a singularity
of the solution at the position of separation was long ago pointed out by Goldstein
[1] and since that a unified point of view has not been reached on the question
whether the boundary layer equations are at all applicable to treating reversed or
separated flows with a prescribed potential flow. 7

It is important to remove the first cause for deficiency in order to concentrate
on the mechanism of developing the singularity. Guided by the notion that the
change of type of equations is not crucial when unsteady boundary layers are treated
numerically, we choose to investigate the unsteady separation of the boundary layer
at a circular cylinder started from a rest.

The unsteady flow past an impulsively ‘moved cylinder is one of the classical
problems of dynamics of viscous fluids due to its practical importance, amenability
to accurate experimental studies combined with relative simplicity, allowing one to
employ various theoretical approaches, (e.g. numerical integration of Navier-Stokes -
equations; method of matching asymptotic expansions; power series expansions
with respect to time and/or harmonic series expansions). That is the reason why
the said flow serves as a test example for checking both the quality and performance
of numerical schemes and the correctness of the different-asymptotic approxima-
tions. For instance, Ta Phuoc Loc [2] and Ta Phuoc Loc & Bouard (3], in order
to check the accuracy of their schemes for the numerical solution of Navier-Stokes'
equations, have compared the results obtained with the experimental ones of
Bouard & Coutanceau [4]. In its turn the mentioned numerical results fueled the
prolonged discussion on the existence of a smooth solution to the boundary layer
equations with unfavorable pressure gradient for arbitrary times. As far as the
present paper deals with the last problem, we choose the same flow around impul-
sively moved cylinder. One is referred to Telionis [5], Elliott et al. [6] and Cousteix
[7] for comprehensive review on the subject.
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One of the first numerical results concerned with developing the boundary
layer around an impulsively moved cylinder is published by Collins & Dennis [8].-
They have succeeded to find a smooth solution up to dimensionless times as high
as t = 2.5 (the mentioned value is rendered in concord with the employed in the
present paper dimensionless variables). Telionis & Tsahalis [9], however, have found
a smooth solution only up to t = 1.3. According to them, downstream the point
with zero skin friction a singularity of the type of Goldstein [1] is present. However,
the more close look at the cited papers has allowed Riley [10] to conclude that the
question of how the singularity evolves remains unresolved. Later on Cebeci [11]
has proposed another numerical technique and has found a smooth solution for
times up to ¢ = 2.8. He stated that the thickening of the boundary layer decreases
the numerical efficiency of the difference schemes employed and that is the only
reason why higher times could not be reached and the singularity of Goldstein’s
type do not take place at all. On this base he has concluded that the solution exists
for each finite time interval. The latter contributed to continuing the controversy
over the existence of a singularity of solution of boundary layer equations.

The first accurate in numerical sense investigation on the existence of solution
of the boundary layer equations up to the time of the singularity is performed by
van Dommelen & Shen [12]. They use a Lagrangian scheme and — unlike all other
above cited works — verify it on a set of different grid sizes, suggesting that at a
certain moment of time a singularity is born that is not of the type of Goldstein.
For instance, the longitudinal distribution of a tangential stress is not singular.
The singular behaviour of the solution in their numerical experiments has shown
itself up through a sharp increase of the amplitude of the longitudinal derivative
of velocity and of displacement thickness when ¢ — 3.. The same authors (van
Dommelen & Shen [13]) propose also an asymptotic expansion for t — 3, which
compares very well with the numerical results. -

The results of van Dommelen and Shen are verified to a certain extent by other
authors also: Cebeci [14] repeats his computations and finds that the results are
in good comparison with those of van Dommelen & Shen [12] up to ¢t = 2.75. He
believes that the treatment of such thick boundary layers is almost at the limit of
the numerical capabilities. Although only qualitatively, the results of Wang [15]
support the notion of developing singularity. According to him the latter is born
at t = 2.8. Following the double-series—expansion approach of Collins & Dennis
[8], Cowley [16] and Ingham [17] verify unequivocally both the numerical and the
asymptotic results of van Dommelen & Shen for ¢t — 3.

The recent paper of Cebeci [18] has mana.ged to give support to the opposite
point of view, criticizing the previous works (including those of the same author)
in the sense that in them the Courant-Friedrichs-Lewy condition has nat proper-
ly been satisfied. Employing new numerical procedure that apparently encounter
for that condition, Cebeci [18] obtains a smooth solution up to ¢ = 3.1 and the
computations are interrupted because of the intolerable amount of the spent com-
putational time. ;

Because of their queer nature the conclusions of Cebeci {18] should have spurred
a wide discussion but in fact they have not. After Cebeci [18] the problem is treated
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by Henkes & Veldman [19] and Riley & Vasanta [20] but mainly from the point of
view of the viscous-inviscid interaction. Concerning the limiting case of noninter-
acting boundary layer, Henkes & Veldman [19] show that their numerical scheme
gives results close to those of van Dommelen & Shen [12]-but it becomes unstable
for £ ~ 2.8. In the sense of stability the forthcoming results of Riley & Vasanta [20]
are better. They employ stream function — vorticity formalism, but as it is stressed
out in their work, the scheme does require considerable amount of computation-
al time because the iterations (sometimes about 100) are introduced everywhere.
Although on the expense of computational efficiency they obtain reliable results
that are in very good agreement with those of van Dommelen & Shen [12] and
Cowley [16]. - '

So, by means of significantly different numerical methods (Lagrangian and
Fourier series) van Dommelen & Shen [12], Ingham [17] and Cowley [16] have
indicated the fact that a singularity develops with time for the solution of unsteady
boundary layer equations. On the other hand, the results of Telionis & Tsahalis
[9], Cebeci [11, 14, 18] and Wang [15], obtained by means of Eulerian difference
schemes, are not in concert neither among themselves nor with the results of the
previous group of works. They do not clearly answer the question of whether does
singularity exist or not.

In the present paper one more such scheme is proposed and the respective
numerical algorithm, implementing it, is develoned. 1t is an implicit splitting-type
scheme, which is unconditionally stable. All mandatory measures for securing a
good approximation are taken, e.g. non-uniform mesh spaciags in normal direction.
A number of calculations with different magnitude of tl.e longitudinal spacing are
conducted in order to reveal the performance of the schem.2 in the vicinity of the
separation point. The results obtained with the proposed robust Bulerian diTerence
scheme are in good quantitative comparison with those of the schemes of the first
group research works [12, 16, 17).

1. POSING THE PROBLEM

Consider the two dimensional viscovs incom nrescible flow around a circular
cylinder. Let U be the velocity of the flow at ivfinity, L — tl.e radius of the cylinder,
and v — the viscosity of the fluid. The natural way to render the velocities, spatial
coordinates and time dimensionless is to scale thexa by U, L and L/U, respectively. -
Here is to be mentioned, however, that another sot of scales, namely 2U, L, L/2U,
is also currently used [12, 16, 18]. For the sake ¢ unif.cat > of the 1otations the
last set shall be used in the present paper. For the rorm:l coordinate y and the
normal component of velocity v arc chosen the scals factors Lv/Re wird 20+ Re,
respectively. Here Re = 2U L/v is the Reynolds nuriber. Fin:lly, the governing
equations in terms of dimensionless variables take the form:

du Ov
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du Qu- Ou 08U, U, O%u
(2) o -E?-t-+u-6—x+v-§§—-3t—+Ue_3;+5y—2’
where u and U, are the longitudinal components of velocity in the boundary layer

and in the ideal flow, respectively.
Egs (1), (2) are coupled with the boundary and the initial conditions. The

boundary conditions at cylinder surface read:

(3) u=v=0 fory=0,
and at the outer edge of the boundary layer
(4) u— U(t,z) fory— oo.

The initial condition, corresponding to an imipulsively moved cylinder, is:
(5) . | u=0 fory=0, u=U, fory>0.

The equation of the unsteady boundary layer has two “marching” coordinates
— t and z, and requires therefore “initial” conditions :lso with respect to z. For
this reason alongside with (5) one needs also an “initial” (in fact a boundary)
condition with respect to . The zones of influence of tle initial conditions must
cover the entire region under consideration (see, e.g. [5]). When no any separation
or/and reversion is present, the problem is fully defined by the conditions at the
leading-end point. When the flow reverses at the rear-end point, one needs an
“initial” z-condition at that point. In the case under consideration the needed
condition is a corollary of the symmetry. In terms of the adopted notations it
reads: |

(6) u=0 forz=0,n7.

2. COORDINATE TRANSFORMATION

The most important from numerical point of view feature of tl.e problem under
consideration is the asymptotic boundary condition (4) beczuse for the transverse
coordinate y one must consider only a finite intervé! at x/hose right (upper) end not
only the condition (4) is satisfied, but also the der.vat ve of velocity has to vanish.
In fact the boundary layer problem is ar inverse ong, in wlich the thickness of
boundary layer is defined implicitly from the “additional” condition on derivative.
As a result the numerical investigation of boundary layer flow is susceptible to
the way in which the thickness is calculated. Additional difficulties are created
by the significantly non-uniform behaviour of the thickness as a function of the
longitudinal coordinate. For instance, in the vicinity of the leading-end point the
layer is thin enough, while around the rear-end point it changes sherply spatially
and grows continuously with time [21, 22].

In the earlier numerical works the solution to the bouadary layer equations is
sought in a prior chosen large enough region in the plane (z, y) and the calculations
are conducted only until the moment, in which the bou..dary layer grows beyond the
frame of that region [11]. In certain algorithms it is pozsible to enlarge deliberately
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the computational domain at a certain moment, adding new grid points [9], even
though the computations are limited in time.

The problem of adjusting the computational boundaries remains one of the
crucial ones in the numerical treatment of boundary layer flows. For this reason a
number of different ideas have been employed in the recent works. For instance,
Cebeci [18] introduces a scaled normal coordinate 7 = y/H, where the quantity H
is defined as follows: ,

() | £ <1, Ht2 t321, H~exp(t).

- The urge to transform the computational domain in such a manner as to force -
the region in consideration in terms of original coordinates to follow the growth
of the boundary layer thickness with time in the vicinity of the rear-end point, is
obvious. At that time, however, in the subregion, where no separation is present,
the thickness grows immeasurably slower. As a result the number of informative
grid points in normal direction, according to (7), decreases with time, which worsens
significantly the approximation. In order to overcome that difficulty the quantity
H has to be not only a function of the time, but also of the longitudinal coordinate,
i1.e. H must virtually be proportional to the boundary layer thickness.

As it has been mentioned above, the behaviour of the velocity in the boundary
layer is asymptotic and hence the thickness is an artificially introduced quantity,
needed only for the purposes of numerical treatment. For that reason it can be
~ defined quite arbitrarily. One of the ways to do that is to calculate it from the
inverse of the normal gradient of the longitudinal component at n = 1. Howev-
er, our experience in that direction turned out to be nerative and we were faced
with growing oscillations of the solution despite the tbsolutely stable fully implicit
scheme, employed for calculating the velocity corponent. ;This setback should not
- be surprising since the numerical differentiation is a notorious incorrect operation
which, as a rule, increases the truncdtion error in order of magnitude. Moreover, in
the boundary layer case the numerically evaluated derivative is very close to zero,
1.e. the errors, introduced by the numerical differentiation, are of couples of order of
magnitude greater than the sought value. Stability of algoritlim has been attained
only when the function. H(t, z) was set proportional to tle displacement thickness:

(8) 5(t,z) = 7 (1‘- -51) dy.
‘ 5 «

The typical values of the coefficient of proportionality :re from the interval [6, 8],
which secures the asymptotic behaviour at 7 — 1. Ilere is to be mentioned that in
the frame of the present numerical scheme it turns out to be fully erough for the
stability to take the magnitude of § from the previous time step.

By employing a scaled normal coordinate n/H eq. (2) is recast in the form:

du du 1 OH OH du 8U, 6Ue 1 8%u
) 7 tug ‘*‘if( *a"?"'g;;"“)%‘" 5 Uca HZ 37
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and after introducing a new dependent variable instead of the normal component
of velocity

| 1 OH  0H
(10) ‘”“Tf'(”"’ét""_%”“)’
it adopts its final form '
Ou du du o, oU, 1 8%u

(11) ?ﬁ+u6—x+w%=“g{“+(]eax+ﬂzay}2

In its turn the equation of continuity (1) transforms into an equation for the new
dependent variable

Oow - 1[0 O(Hu
(42 o= 7+
Boundary conditions (3), (4) take the form: |
(13) u=w=0 forp=0, u=U[tz) forn=1,
and the initial condition (5) recasts as follows:
(14) n=0,u=0; >0, u=U,; #H(t=0)= const.

The boundary conditions with respect to the longitudinal coordinate (6) are left in
their original form.

3. DIFFERENCE SCHEME

To device an unconditionally stable difference scheme for a numerical solving
of boundary layer equations when the sign of longitudinal component of velocity
is positive, is not a problem at all. A number of difference approximations to that
problem are known. As a rule they are descendants either of Crank-Nicolson scheme
or of Keller’s “box”-method [23, 24]. The both mentioned numerical approaches
are well documented in the literature (see, e.g. [6]). After a discretization with
respect to the temporal coordinate the equations are recast into a quasi-steady
form and then solved numerically, marching in longitudinal coordinate z.- The
absolute stability of the schemes is guaranteed by the fact that the longitudinal
component of velocity does not change its sign. -

The situation changes dramatically when a reversing zone is present, where
the disturbances are convected in the opposite to the main flow direction. Then, in
order to acknowledge correctly the convection in the difference scheme, one has to
consider also the value of velocity in the downstream vicinity of the point in which
the equations are approximated. Naturally, in the said case the marching methods
for the steady equations become highly unstable and only the unsteady equation
remains correct. One of the frequently used approxim:tions is the so-called “zig-
zag” scheme recently employed, among other authdrs‘ by Cebeci [14] and Wang
[15]. The difference approximation of the “zig—z2g” scl.eme on the regular mesh

20=0,z;=z;1+h (i=1,2,...,])
(15) =0 n=n-1+r (i=12,...,J)
=0,t"=t""14+7 (i=1,2,...,N)
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has the form

n-1 -1
3“ u _uz-1+u _uz 1

(16) ‘ 33: « 2h

It can be shown that the well known condition of Courant—Friedrichs—Lewy is not
automatically satisfied for the above approximation, especially in the case when
the characteristic direction s of the operator

8 0

coincides with the line s1, as shown in Fig. 1. In other words, the algorithm is stable
only when the computational region of dependence contains the actual region of
. dependence, which i 1mposes the following limitation on the time increment:

(18) 7 < —h/u for u < 0,

i.e. the scheme is conditionally stable.

¥

—

N~

i—1 i i+l

Fig. 1. The points taking part in zxg—za.g approxxmatxon — z, and the pcsmt.s included in
charactenstms schemc — 81, 82

A comprehensive survey on the currently used approximations in the reversing
zone is performed by Telionis [5]. As an alternative to the “zig-zag” scheme he
points out the scheme of Keller [25], originally implemented by Cebeci [18]. "Ac-
cording to it the derivatives with respect to ¢ and z are replaced by the single
Lagrangian derivative with respect to the characteristic direction s. Then

d a d

19 | =

(19) ‘ + Bx dt ls=const

and when s coincides with s; (Flg.}l) one has
n__,n-1

(20) R + WO umueT
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Unlike the “zig—zag” approximation the Courant-Friedrichs-Lewy condition is sat-
isfied here and the scheme is stable. As far as s, is a characteristic direction then
z; — £Q = Tu and therefore:

n__ ,n—1 n n—1 n-1_ ,n-1
WU _uwiow M g
T T T
(21) -1 n—1 n—1
ul —u “g —Ug
= ' “+ U
T i~ EQ

Eq. (21) shows that the approximation is rather close to the “zig-zag”™ one if the

latter is taken with a local longitudinal spacing, equal to (x; —mQ) To have, howev-

er, the same spatial approximation one needs |z; — zg| < h, i.e. the approximation

(20) is not to be taken along the characteristic direction s;, but rather along s,

(F ig. 1). The latter imposes the same limitations on the tlme 1ucrement as in the
“zig-zag” scheme.

The conclusion of the above review on the numerical schemes for solving the
unsteady boundary layer equations is that for the separated boundary layer flows
an absolutely stable fully implicit difference scheme has not yet been used {cf. also"
reviews [5, 7]). Perhaps this has happened because of the natural tendency to use
numerical procedures for the unsteady problems that are straightforward general-
izations of the respective ones for the steady problem. In our opinion, however,
the two problems are rather unlike and the possibility to solve them with similar
numerical schemes is to be viewed as an exception, not as a rule.

In the present work we make use of the method of fractional steps, namely
the scheme of Douglas & Rachford [26] (cf. also [27]). Of course, one can use
also the ADI (alternating directions implicit) scheme, which is of second order of
approximation with respect to time, but we prefer the former scheme because of
its flexibility: one can have either a fully implicit scheme though of first order of
approximation but with a certain margin of stability or a schemre of second order of
approximation which is rigorously stable only in the linearized case (see, e.g. [28]).
In the present paper, however, only the first order scheme with respect to time is
used.

Let us denote

- d Y, 1 8% 6’0} U,
9 — S - — . .
(22) A Yoz’ B wan H? on2’ f= +U Oz

Consider the following difference scheme of splitting type:

= a1
(23) 4 :_" = AT+ Byl 4 f7,
u -1
(24) Z8 B -,

where A and B stand for the difference approximations of the operators A and B,
respectively.
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The approxirnatioﬁ of the scheme with respect to time can be assessed exclud-
ing the half-time-step variable % (cf. [27]), namely

(25) (E—~T1ANE~-71B)Wu" = (E+ 1B —(E—1A)rBu™" ' + 7,

which follows from:
un-l

(26) (BE—rA)E —B) =% _ (A+ Bju"-1.

It is easily seen now that the scheme possesses the so-called “full approximation”
[27], i.e. when u"™~! — u", it gives to the steady equation of boundary layer an
approximation that is independent of the magnitude 7 of time increment. The
latter is of crucial importance for an application to the stationary boundary layer
flows. Here is to be mentioned that not every scheme of splitting type possesses
‘the last property [27]. The scheme is implicit and unconditionally stable if the
coeflicients in the operators A and B are “frozen” and do not depend on the sought
functions. The differential operator A is oblique and B — negatively definite (see
the definitions in (22)), i.e.:

(27) (9, Ap) =0, (#.Bp) s —1llell.
Then one has ||[E ~ 7A|| = 1, ||E — 7BJ| 2 1, and therefore

|(B-raxE-B)]7| <1,

which for the differential form of the splitting type scheme is a sufficient condition
for stability. The said property is retained also for the difference form provided
that after a proper linearization a conservative differencing for the set functions,
that secures the properties (27), is employed. All this means that the scheme is
stable. The simplest way for linearization of A and B is chosen: thinking of the
longitudinal component of velocity as a known from the previous time step quantity.
Then the first half-time step (the eq. (23)) adopts the form:

n 1

‘ U s — 5
(28) 1] - )3 + uﬁ"l u

J 62: 4,1

“where ®; ; is a known set function and §u/éz stands fo: fLe dilference approxima-
tion of the first derivative. Here is to be poited out thz* for eq. (28) a fully implicit
approximation can be devised that is independent of tle sign of the longitudinal -
component of velocity. Hence, the dependence region is liraited orly by the region
of flow. So that if the boundary layer incorporates a reversing zone, the latter is to
be entirely imbedded into the computational domain. ‘

It is well-known now that for equations of the type of (28) unconditionally"
stable difference schemes can be constructed either with first or with second order
of approximation, provided that the respective conservative differencing is applied
for §/6x (see for instance [28}, p. 128-129, [29]). The first order schemes employ,
as a rule, upwind differences and exhibit considerable scheme viscosity (artificial
diffusiveness). The latter is not necessarily undesirable property of a scheme be-
cause it helps to damp also non-physical oscillations that could be amplified by
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the nonlinear nature of the problem under consideration. So that it is preferable
to start calculations (as it is done in the paper of Tzankov & Christov [30]) with
a first order scheme and only after the limitations of the numerical algorithm are
revealed and the regions for parameters, in which stable calculations are possible,
are found, one should repeat the computations with the second order scheme.

Following this general notion in the present paper, two different schemes are
proposed and the following difference approximations are employed for the first
order scheme — the upwind differences

uir.?. - ui"'lxj un-l > O
éu h L
(29) — =4 _ —
62 ui‘f'l;.f - ui)j n—1 0
' h y Uiy <

and for the second order — the central differences:

0U _ Uigr,; — Ui
(30) b 2h '
Concerning the three-point second order scheme (30) for the first denvatxve the
following features should be mentioned: »

1. A Gaussian elimination with pivoting is to be applied when solving the
resulting .three-diagonal algebraic system, since the main diagonal is dominating
only if the spacing and the time increment are related i in a manner as to satisfy the
condition 7|u|/h < 1.

2. The three-point approxxmatlon requires two boundary conditions. In the
case of flow around blunt bodies (including the case of cylinder moved from a rest)
the second condition stems from the symmetry condition at the rear end stagnation
point. In those cases when a second boundary conditio: can not be deduced from
physical considerations (e.g. for bodies with sharp recr er.ds) one has to employ the
two-point difference approximation in the last point in longitudinal direction.

In approximating the operators from the second half-time step one can employ
either the “box”-method [24] or the central difference scheme. The crucial differ-
ences between them become transparent when a ,no*x-umform mesh is employed,

namely

(31) =0,m=n_1+7r (G=,2...,J).

- In this case the “box”-method yields a scheme of second order of approximation
— 0 [max (rz)] At the time same the dlfference scheme results into a vector

hree-dla.gonaI system. f
In the present paper a central dxfference scheme is used and the derivatives are

approximated as follows:

Su  ujp -y

32 =

(32) b ri+ri-i

(33) 521; _ 1 [u,-.*.l —-‘t,(j Yy --u_,-_l} '
on ri+rio1 ”; ri-1

113



In this case the order of the approximation is O [max(rj.rj_1,7; —rj_1)]. It is
obvious that the variation of spacing r of mesh (31) is not to be very strong. That
is a limitation, of course, but it is paid off by the fact that one is faced now with a
plain three-diagonal system for an unknown scalar.

For the continuity equation (12) we employ the following two-point in normal
direction and three-point in longitudinal direction scheme with second order of
approximation with respect to both spatial variables:

w;; 1 {H? — Hp! + Ul i1 Hi e — v j i HiYy

(34) “"?,54-1"’ J
T T HP T ‘ © 4h

$

7 n ﬂ
4 Uia,5 Hi+1 ul g
4h ~

4. GRID PATTERN

The adequate non-uniform distribution of the grid points in normal direction
is of crucial importance for the performance of the numerical algorithm. The grid
pattern is to be consistent with the intrinsic features of the problem, such as the
presence of non-uniform gradients of the sought variables. The best way for that
is to devise a rule for governing adaptively the mesh gradientwise (see for instance
[31]) during the calculations (for comprehensive survey see [32, 33]). On this stage,
however, we are not prepared for such a general approach to the mesh problem.
Hence we rely on a particular analytical law for the grid distribution in normal
direction, which is selected on the base of general considerations on the behaviour
of variables in an order of a,pproxnnatlon in longitudinal direction according to
formula (30). Using this approach, the calculations remain uneqmvocaﬂy stable
and monotonic. »

The second group of our numerical experiments has been aimed at assessing
the influence of the normalwise grid distribution. In them, in order to minimize
the computational time, a rougher spacing in longltudmal direction with 73 points

(h = 271'
72

normal direction we took consecutively 26, 51 and 101 mesh points and sct the
grid parameter w to 100. The comparisons, cited below in Table 1, arc for the
displacement thickness which is one of the most snoiled quaptities for the problem
under consideration, especially in the interval {100" < z < 125°), where for larger
times a non-monotonic behaviour develops. It is seen that the results, obtained
with 51 and 101 points in normal direction, differ less then by 0.5%. This accuracy
is acceptable and hence the chief portion of the calcvlations to be mentioned bellow
are conducted with 51 points. For the sake of comparison it has to be mentioned
that Cebeci {11, 18] employs meshes with 301 and 161 points, respectively. The
attained in the present work good accuracy on rougler meshes we attribute to the
adequate choice of the non-uniform grid pattern.

= 2.5°) and relatively large time increment (r = 0.04) were used. In

114



Table 1
Displacement thickness — t = 2.8, r =0.04, I = 73

0(deg) 105 110 115 120 125 130 135

J=101 2.075 3.001 7.204 9.547 9.094 9.198 9.374
J= 51 2.077 3.012 7.237 9590 9.133 9.238 9.412
J= 26 2.087 3.055 7.575 9.752 9.378 9.443 9.547

The third main set of experiments are those that help to reveal the dependence
of the results on the particular values of the mesh parameters 7 and h (the influence
of the normal grid pattern has already been clarified in the above).

An interesting observation is that the flow in the immediate vicinity of the
wall depends insignificantly on the said parameters of the difference scheme. This
conclusion has been supported by the obtained with different mesh size results for
the skin friction coefficient, presented in Table 2 for the critical moment of time
t = 2.8. It is well seen that those results differ less than by 0.5%. The latter allows
us to present separated boundary layer. .

Table 2
Friction coeflicient — t = 2.8, J = 51

8(deg) 30 60 90 120 150
T =004, ] =289 0.5779 0.7966 0.4783 ~0.5070 =0.4871
7=002I= 73 0.5778 0.7964 0.4776 —0.5087 ~—0.4891

In a separated boundary layer two regions are formed {21, 34]. The first one is
adjacent to the rigid wall and evolves slow in time. L1 that region the longitudinal
component of velocity sharply falls from zero to its minimal (the largest negative)
value and the velocity gradient is considerable tl.ere. The thickening of the bound-
ary layer, however, is due chiefly to the development of the second (outer) region,
in which the longitudinal component raises to its asymptotic value, defined from
the ideal flow. The gradient there adopts low and moderate magnitudes. So the
transverse distribution of the gradients in the separated laminar boundary layer
resembles, in a sense, the structure in a turbulent bou. adary layer with the first
region playing the role of a viscous sublayer

Being guided by the above analogy, we take the following law for the distribu-
tion of mesh in normal direction:

1 (j-1 Cfi-1. w+14
(35) r)ng(J_1+04)[exp’(J“11n 1.4) 1},

.where w 1s a parameter responsible for the deviation of grid pattern from the u-
niform shape. Here is to be reminded the requiremest for second order approx-
imation of derivatives on non-uniform mesh stemming from thc formula for the
accuracy O [max(rj.rj—1,7; — rj—~1)]. ‘A uniform approximation will be present if
max (r; — rj_1) does not exceed 1115}»1{(*:'J rj-1). Values of w, for which max (r, Ti-1)
~ max (rj — rj-1), are enclosed in the interval [50, 100].
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5. NUMERICAL TESTS AND VERIFICATIONS

7 In order to assess the approximation of the scheme proposed and the per-
formance of the algorithm as well, a number of numerical experiments have been
conducted. We began with the upwind differences in longitudinal direction accord-
ing to formula (29). The time evolution of the computed quantities was stable and
no oscillations were present. That encouraged us to increase the further results for
the local skin friction coefficient without mentioning explicitly the particular size
of the mesh on which those results are obtained.

Unlike the delighting results for the skin friction coefficient, the dependence of
the displacement thickness and displacement velocity (ve = 8(6*U.)/dz) on the
mesh parameters has turned out to be significant. A quantitative feeling for the
dependence gives Fig. 2a, b, where the mentioned functions of longitudinal coor-
dinate are plotted in the most volatile interval [110° £ z £ 135°], for sufficiently

12 ‘1‘ 5*
. 1007
80
601
4 + 40
20 4
0..
110 120 130 110 120 130
< z (deg) z (deg)

Va) | b)

Fig. 2. Susceptibility to the spec1ﬁc values of longitudinal spacing and time increment of the
computed characteristics:
I — h=25° 1 =004
2 — h =1.25° 7= 0.04;
3 — h=25°r=0.02.
a) d1sp1acement thickness of boundary layer;
" b) displacement velocity :

large time ¢ = 2.8. It is seen that the values in the immediate vicinity of the
detachment point are especially susceptible to the mesh parameters at the time
when the rest of the values are virtually not affected from the change of the mesh
parameters. The value of time increment 7 affects only the longitudinal localiza-
tion of the displacement thickness maximum (cf. lines I and 3) without influencing
the gradient of that quantity. Respectively, refining the longitudinal resolution (cf.
curves 2 and 3) results into an increase of the thickness gradient. The magnitude

of max §* is predicted reasonably well in all cases and the curves for displacement
j
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_ max Vinf
300 T

200 1

100 +

0.4 0.3 0.2 0.1
Fig. 3. Evolution of the displacement velocity when t — 3: ‘
———— — expected behaviour of the exact solution according to In Vj5y = —1.7414In(3 —
t) 4+ 1.9597; ~
1 —h=08625%2—h=1.25°3—h=25"°

thickness are close enough, which allows us to conclude that the proposed scheme
is accurate enough. It is well seen that the present results are smooth, which is not
the case with the results of Henkes & Veldman [19] for ¢t = 2.85.

Similar conclusion about the correctness of the results obtained can be drawn
from the calculated displacement velocity vo,. One should be reminded here that
the said velocity is obtained by differentiation of the displacement thickness and
hence the eventual differences are amplified.

Here are to be mentioned the measures taken for securing a good approximation
of the displacement velocity. As far as the approximation with respect to the
longitudinal coordinate z is of second order or even in some cases — of first order,
the straightforward numerical differentiation of the displacement thickness with
respect to z will result into decreasing the approximation to first or even zeroth
order. In order not to lower the accuracy we use a third order spline interpolation
for displacement thickness, which gives a second order approximation for the first
derivative. Results, depicted in Fig. 24, are obtained by means of the said spline
interpolation. ' ‘ ‘
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1.0 7 -
t=0.5; 1.0; 1.5;
2.0; 2.5; 3.0
Cy
0.5 1
180

—0.5 4

Fig. 4. Evolution of the local friction coefficient with time:
x-%% — asymptotic results of Bar-Lev & Yang (1975};
~— — present numerical results

-

6. RESULTS AND COMPARISONS -

After the difference scheme and the algorithm has been properly verified we
turn to investigating the separation itself. Our results show (cf. Fig. 2 a) that for
t > 2.5 the displacement thickness §* grows fast and for approximately ¢ =~ 2.8 a
distinct local maximum is formed. These findings are in good agreement with the
predicted by van Dommelen & Shen [13] behaviour of the solution. |

As it has been already mentioned, the displacement velocity is more suited
for quantitative assessment of the separation as it is more sensitive. According to
van Dommelen & Shen [12, 13] for ¢ — 3, max(—0u/0z) — oo proportionally to
(3 — )~1". It can be shown that the displacement velocity is a proper indica-
tor for that type of behaviour (cf. [16]), since it grows as ve ~ (3 — )17, On
the other hand, it is well-known that the value of vy, is a measure for the influ-
ence of the boundary layer on the outer potential flow. In the classical theory of
boundary layers when no separation is expected, the displacement velocity behaves
as Ve ~ O(Re~!/2). Therefore the above suggested behaviour of v, speaks of
singularity, whose occurrence dismantles the classical theory. For this reason the
displacement velocity vy, turns out to be one of the most important characteristics
~ of the boundary layer to be monitored. Fig. 2 b hints that in order to prove that
Voo — 00 for ¢ — i, one needs a very fine longitudinal resolution of the mesh
(very small ). It is instructive, therefore, to trace the variation of solution with
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30 ¥
2.5 4
20 T
1.5 4
1.0 1+
0.644
15 1;1(} 160 180
z (deg)

Fig. 5. Trajectory of the point of zero skin friction:
3% — asymptotic results of Bar-Lev & Yang (1975);
e — present numerical resulis

decreasing the spacing h. In Fig. 3 the results are compiled for the maximal value
of the displacement velocity, obtained on three different meshes with number of
points in longitudinal direction 73 (h = 2.5°%), 145 (h = 1.25°), 289 (h = 0.625°),
respectively. In the adopted in Fig. 3 logarithmic scales it is easily seen that the
computed curve tends to approach a line when A — 0. Our result for the value of
the line’s slope is 1.7414. The respective value of van Dommelen & Shen [13] is
1.75. Very close to it are also the results of Cowley [16] and Ingham [17].

Another important characteristic of the boundary layer flow, whose behaviour
in the separation zone is.instructive, is the local skin friction coefficient. Van
Dommelen & Shen [13] state that this quantity exhibits regular behaviour when
t — 1, and hence it can not be used as an indicator of occurrence of unsteady
singularity. It is important to compare it to the results of other authors in order to
have an additional verification of the performance of the algorithm. This is done
in Fig. 4, where also the analytic results of Bar-Lev & Yang [35] are plotted. Like
the numencal results of Van Dommelen & Shen [12], our results compare well with
the analytical ones.

Following Blasius, most of the authors report data concerning the position of
a point with zero skin friction on the wall as a function of time which characterizes
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Fig. 6. The skin-friction coefficient rendered in terms of local similar variables:
sx%-% — asymptotic results of Bar-Lev & Yang (1975);
-+ — numerical results of van Dommelen & Shen (1985);

— present numerical results

a) leadingend point; 5) rearend point rendered

adequately the evolution of the separation zone. It is believed now that the point
of zero skin friction occurs initially for ¢ &~ 0.644 ([8, 12, 16 etc.]). The present
results (Fig. 5) are not only in very good agreement with that value but also with
the asymptotic formula of Bar-Lev & Yang [35] for the entire time interval. Some
- slight deviations (less than 1°) are observed only for ¢ &~ 3, where the conditions
are very harsh for conducting numerical investigation. Here is to be mentioned
that the same good agreement is reported by van Dommelen & Shen [12] for the
computations with Lagrangian scheme.

In certain numerical schemes for investigating the boundary layer flow around
blunt bodies the same similar variables and coordinates as in the asymptotic solu-
tions are employed [11, 12, 14], which allows to use the similar solutions as initial or
boundary conditions for the numerical scheme. In the present paper such an eclec-
tic approach is avoilded and this gives one more opportunity to check the accuracy
of computations through comparing to the mentioned similar solutions. In Fig. 6
a, b are plotted the rendered in terms of the usual similar variables values of skin
friction in the leading and rear end regions, respectively. In both cases the obtained
here results are in good comparisons with those in [11, 12, 35]. In Fig. 6 b with -
, special symbols are presented the numerical results of Cowley [16], Hommel [36]
and van Dommelen & Shen [22] in a generalized form. The agreement is excellent,
‘which once more supports the main notion of the present work that the difference
schemes in Eulerian variables can bring the same results as those in Lagrangian
variables, provided the scheme is devised properlly.

Another important feature of the unsteady separation, observed by van Dom-
melen & Shen [13] and Ingham [17], is that the point of singularity of solution
moves alongside the wall in the opposite direction of the main flow with a constant
velocity. Our results are plotted in Fig. 7 and they lie virtually on a straight line,
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Fig. 7. Trajectory of the point of maximum displacement velocity:
e the inear approximation r = 145.06-11.135¢;
-6-o-¢- — present numerical results -

which fort = 3 gives # ~ 111.6°. Let us note here that van qumelen & Shen [13].
report for the same ¢ the value § & 111°.

CONCLUDING REMARKS

In the present paper a fully implicit unconditionally stable Eulerian difference
scheme for numerical investigation of unsteady boundary layers is developed, which
performs equally well when a separation occurs. A number of numerical tests
and verifications are conducted in order to outline the limits of application of the
algorithm. Comparison with the other numerical results in Lagrangian variables
and with asymptotic analytical solution is conducted. The agreement is good and
the conclusion is that the observed until now discrepancy between the Lagrangian
and the Eulerian schemes is not principal and the predictions of the latter can be
brought closer to the former if implicit differencing is employed.

The results’ obtained support the findings of the authors, using Lagrangian
schemes, that a singularity develops for finite times ¢, ~ 3.

Different calculations of physical significance are presented graphically.
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