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Correlated probit models (CPMs) are widely used for modeling of ordinal data or joint

analyses of ordinal and continuous data which are common outcomes in medical stud-
ies. When we have clustered or longitudinal data CPMs with random effects are used

to take into account the dependence between clustered measurements. When the di-

mension of the random effects is large, finding of the maximum likelihood estimates
(MLEs) of the model parameters via standard numerical approximations is computa-
tionally cumbersome or in some cases impossible. EM algorithms for CPM for one

ordinal longitudinal variable [13] and a joint CPM for one ordinal and one continuous
longitudinal variable [14] are recently developed. ECM algorithm for ML estimation of
the parameters of a joint CPM for two longitudinal ordinal variables will be presented.

The algorithm is applied to estimation of CPM for the longitudinal ordinal outcomes
self-rated health and categorized body mass index from the Health and Retirement

Study (http://hrsonline.isr.umich.edu/, HRS). Results from fitting the model to the
data and also results from some simulation studies will be reported.
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1. INTRODUCTION

Bliss [3, 4] and Gaduum [11] were the first to introduce the probit models
for binary data. These models are also suitable for ordinal data as Aitchison and
Silvey [1] proposed. The main characteristic of the probit models is the assumption
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of a latent normally distributed variable behind the observed ordinal outcome.
The density of the latent variable is divided into as many pieces as the number
of the levels of the ordinal response through thresholds. The area of each density
piece represents the probability of observing the corresponding level of the ordinal
outcome. The usefulness of the model is not affected when the existence of the
latent variable does not seem natural.

Ashford and Sowden [2] introduced a multivariate extension of the probit model
based on an underlying multivariate normal distribution. Ochi and Prentice [24]
first introduced a correlated probit model but only for exchangeable binary data.
Extensions of this model were proposed by Hedeker and Gibbons [12], Catalano
[6], Grilli and Rampichini [15], Gueorguieva and Sanacora [17] among others. Gue-
orguieva [16] has a detailed overview on correlated probit models. Correlated pro-
bit models are widely used for modelling of multiple categorical variables or clus-
tered/longitudinal ordinal outcomes for these models have two main advantages.
They are easy for interpretation and they allow rich correlation structure of the
latent variables via random effects and/or correlated errors. That allows to take
into account the natural dependence of the measurements on the same subject or
within cluster.

The correlated probit model does not have closed form expression for the like-
lihood function. Approximations need to be used in order to obtain estimates of
the unknown parameters. There are several methods of statistical inference based
on numerical, stochastic or analytical approximations. Most popular appear to be
extensions of numerical approximations such as Gauss-Hermite quadrature ([10] pp.
306-307) or adaptive Gaussian Quadrature [19]. Another approach is based on ana-
lytical approximations (Breslow and Clayton [5], Wolfinger and O’Connell [29]) but
it has been shown to produce bias in the parameter estimates especially for binary
data or ordinal data with few categories. A third approach is the Expectation-
Maximization (EM) algorithm [8]. An extension of the EM algorithm is the Ex-
pectation/Conditional Maximization (ECM) algorithm [23] which is used in cases
of complicated M-step.

Ruud [26] is the first to apply the EM algorithm for the estimation of the
parameters of probit models. Kawakatsu and Largey [18] extend Ruud’s work to a
joint model of a single ordinal and multivariate normal outcomes. Chan and Kuk
[7] consider a correlated model for a clustered binary variable and propose an ECM
algorithm for parameter estimation.

Our algorithm is a modification of the algorithm of Chan and Kuk [7] and
Grigorova and Gueorguieva [13] to estimation of a joint model for two longitudinal
ordinal outcomes by using the parameter transformation proposed by Ruud [26] for
estimation of the threshold parameters.

We apply the model to data on 12543 individuals from the Health and Retire-
ment Study (http://hrsonline.isr.umich.edu/, HRS). HRS is a longitudinal survey
among American citizens born between 1931 and 1941 and their spouses that as-
sesses changes in labor force participation and health status over the transition
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period from working to retirement and the years after. The launch of the study
was in 1992 and data were collected at intervals of two years. The study pro-
vides a wealth of information to address important questions about aging. In our
work the goal was to assess gender-related differences and the effects of smoking
on measures of physical health in this representative sample of individuals over 50
years of age. We considered two repeatedly measured dependent variables: cate-
gorized body mass index (CBMI) and self-rated health (SRH). CBMI was selected
because values different from normal weight might be predictive of a variety of
health problems. CBMI is also easy to measure and is objective. CBMI has four
levels: underweight (BMI<18.5, coded as 1), normal (18.5<BMI<25, coded as 2),
overweight (25<BMI<30, coded as 3), obese (BMI>30, coded as 4). SRH is an
ordinal measure that takes the following possible values: excellent (coded as 1),
very good (2), good (3), fair (4) and poor (5). This is a more direct measure of
health but is based on self-report and is more subjective. The two measures are
expected to be positively correlated and joint modeling would allow to estimate this
correlation cross-sectionally and over time and to test for overall effects of smoking
and gender on these measures over time.

The paper is organized as follows. Section 2 defines the correlated probit model
and outlines the estimation of the parameters and of their standard errors. Section
3 describes the simulation studies that were performed in order to examine the
performance of the proposed algorithm. An application of the model to the data
from the first seven waves of the HRS is included in Section 4. Section 5 contains
concluding remarks and discussion about possible extensions of the algorithm.

2. MODEL

From now on bold typeset is used for vectors and matrices.

Let y∗1ij is the measurement of the first ordinal variable with m1 levels on the
ith subject at time j and y∗2ij is the observation on second ordinal outcome with
m2 levels on the same subject at the same time, j = 1, . . . , ni, i = 1, . . . , n. We
assume that there are two latent normal variables y1ij and y2ij that generated the
observed ordinal variables. We consider the following random effects model:

y1ij = x′
1ijβ1 + z′

1ijb1i + ǫ1ij ,

y2ij = x′
2ijβ2 + z′

2ijb2i + ǫ2ij .
(2.1)

The relation between the observed ordinal variable and the latent normal vari-
able is the following:

y∗kij =







1, ykij ≤ αk,1;
l, αk,l−1 < ykij ≤ αk,l, l = 2, . . . ,mk − 1;
mk, ykij > αk,mk−1;

(2.2)

for some unknown thresholds αk,1, . . . , αk,mk−1, k = 1, 2.
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We assume a normal distribution of the q-dimensional vector of the random
effects bi = (b′

1i, b
′

2i)
′ ∼ N(0q,Σ). The covariance matrix Σ is a quadratic q × q

positive semi-definite matrix:

Σ = V ar

(

b1i
b2i

)

=

(

Σ11 Σ12
Σ21 Σ22

)

.

The error terms on the same subject at the same time are not necessarily
assumed independent (ǫ1ij , ǫ2ij)

′ ∼ N(02,Σǫ), where

Σǫ =

(

σ11 σ12

σ12 σ22

)

.

The error terms among individuals and different time points are assumed to
be independent. We also assume that the random effects and the error terms are
independent of each other.

The regression parameters for the fixed effects in model (2.1) are denoted by the
vectors βk, k = 1, 2. The vectors of predictors for the fixed effects are xkij , k = 1, 2
and the predictors for the random effects are zkij , k = 1, 2.

From the observed data it is not possible to uniquely estimate all of the
unknown parameters, so we pose the following restrictions: the first thresholds
αk,1, k = 1, 2 are set to zero, the variance of the first normal error term σ11 is set
to 1 and the variance of the second error term given the first error term is also 1,
i.e. σ2|1 = σ22 − σ2

12/σ11 = 1. Some other restrictions and reparameterisations are
possible.

2.1. EM ALGORITHM FOR MLE

We propose an EM algorithm [8] for estimation of the unknown model param-
eters in (2.1) and thresholds in (2.2).

The EM algorithm is an iterative procedure for obtaining maximum likelihood
estimates for models that depend on unobserved data. In our model the unob-
served data are the latent variables and the random effects. Each iteration of the
EM algorithm consists of two steps: E-step (Expectation step) and M-step (Max-
imisation step). Let us denote with X the observed data, with Z the unobserved
data and with Γ the vector of unknown parameters of the model. The two steps at
the (k + 1)-st iteration of the algorithm are:

• E-step: Q(Γ|Γ(k)) = EZ|X,Γ(k) [lnL(Γ;X,Z)], where the ‘complete data’ like-
lihood function is L(Γ;X,Z) = p(X,Z|Γ), where p(.) is a density function,

• M-step: Γ(k+1) = argmaxΓ Q(Γ|Γ(k)).
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The algorithm starts with initial values for the unknown parameters Γ(0), iterates
between the E-step and the M-step and stops when a converging criterion is met.
Our choice for converging criterion is when |Γ(k+1) − Γ(k)| < ǫ for each element of
the vector, where ǫ is a preselected small number.

The first difficulty in applying the EM algorithm to our model is the in-
troduction of the thresholds in the complete data likelihood. We adopt the ap-
proach by Kawakatsu and Largey [18] who extend Ruud’s work [26]. According to
their method, we define the differences between consecutive thresholds with δk,i =
αk,i − αk,i−1, i = 2, . . . ,mk − 1, k = 1, 2 (we define additionally δk,1 = δk,mk

= 1).

It follows the connection αk,i =
∑i

j=2 δk,j , k = 1, 2, i = 2, . . . ,mk − 1. Then we
consider new variables, which are a linear transformation of the latent variables.
The new variables are denoted by ykijnew

= (ykij−αk,y∗

kij
−1)/δk,y∗

kij
, k = 1, 2, where

αk,0 = 0, k = 1, 2 and ykinew
= (yki1new

, yki2new
, . . . , ykininew

)′.

Since the new variables are a linear transformation of the latent variables, they
are also normally distributed. But given the observed ordinal variables, the trans-
formed variables have truncated multivariate normal distribution with boundaries
of truncation independent of the unknown threshold parameters. For example, if
we observe the first level of y∗1ij , the new variable y1ijnew

is truncated at (−∞, 0],
if y∗1ij is between the first and the last level, the new variable is truncated at (0, 1],
and if we observe the last level of y∗1ij , the new variable is truncated at (0,∞).

We use the approach by Chan and Kuk [7] in order to find closed form ex-
pressions for the unknown parameters Γ = (β′

1
, β′

2
, δ′
1
, δ′
2
, vect(Σ)′, λ)′, where

δk = (δk,2, . . . , δk,mk−1), k = 1, 2, vect(Σ) is the vector of unique elements in the
covariance matrix Σ and λ = σ12.

2.1.1. COMPLETE DATA LOG-LIKELIHOOD

Complete data log-likelihood is the joint density of the transformed latent
variables and the random effects. It has the following form:

lnL = ln f(b, y1new
, y2new

) =
n
∑

i=1

ln f(bi)f(y1inew
|bi)f(y2inew

|bi, y1inew
)

=
n
∑

i=1

ln[f(bi)

ni
∏

j=1

f(y1ijnew
|bi)f(y2ijnew

|bi, y1ijnew
)],

where f(.) denotes a normal density function.

From the model definition and the assumption for the distribution of the ran-
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dom effects it follows that apart from the constants the log-likelihood is:

lnL =− 0.5
n
∑

i=1

ln |Σ| − 0.5
n
∑

i=1

b′iΣ
−1bi − 0.5

n
∑

i=1

ni
∑

j=1

lnσ11 +
n
∑

i=1

ni
∑

j=1

ln δ1,y∗

1ij

−
1

2σ11

n
∑

i=1

ni
∑

j=1

(δ1,y∗

1ij
y1ijnew

−µ1ijnew
)2 − 0.5

n
∑

i=1

ni
∑

j=1

lnσ2|1 +
n
∑

i=1

ni
∑

j=1

ln δ2,y∗

2ij

−
1

2σ2|1

n
∑

i=1

ni
∑

j=1

[δ2,y∗

2ij
y2ijnew

− µ2ijnew
− λ(δ1,y∗

1ij
y1ijnew

− µ1ijnew
)]2,

where

µ1ijnew
= x′

1ijβ1 + z′
1ijb1i − α1,y∗

1ij−1,

µ2ijnew
= x′

2ijβ2 + z′
2ijb2i − α2,y∗

2ij−1.

2.1.2. CLOSED FORM EXPRESSIONS FOR THE ESTIMATORS

We obtain closed form expressions for the estimators of the unknown parame-
ters by setting the first derivatives of the complete data log-likelihood to zero.

The estimator for the covariance matrix Σ of the random effects is:

Σ̂ =
1

n

n
∑

i=0

bib
′

i.

The regression parameters for the fixed effects for the first variable β1 satisfy
the following system of equations:

(1 + λ
2)

n∑

i=1

ni∑

j=1

x1ijx
′

1ijβ1 =(1 + λ
2)

n∑

i=1

ni∑

j=1

(δ1,y∗

1ij
y1ijnew− z′

1ijb1i + α1,y∗

1ij−1)x1ij

−λ

n∑

i=1

ni∑

j=1

[δ2,y∗

2ij
y2ijnew−(x′

2ijβ2+z′

2ijb2i−α2,y∗

2ij−1)]x1ij .

The regression parameters for the fixed effects for the second variable β2 satisfy
the following system of equations:

n∑

i=1

ni∑

j=1

x2ijx
′

2ijβ2=
n∑

i=1

ni∑

j=1

[δ2,y∗

2ij
y2ijnew−z

′

2ijb2i+α2,y∗

2ij−1−λ(δ1,y∗

1ij
y1ijnew−µ1ijnew )]x2ij .

It follows that the regression parameters β2 are a least square solution of the
regression of ỹ2ij on x2ij , where

ỹ2ij = δ2,y∗

2ij
y2ijnew

− z′
2ijb2i + α2,y∗

2ij−1 − λ(δ1,y∗

1ij
y1ijnew

− µ1ijnew
).
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The equation for λ is:

λ
n
∑

i=1

ni
∑

j=1

(δ1,y∗

1ij
y1ijnew

− µ1ijnew
)2

=
n
∑

i=1

ni
∑

j=1

(δ2,y∗

2ij
y2ijnew

− µ2ijnew
)(δ1,y∗

1ij
y1ijnew

− µ1ijnew
).

The equations for δ1,l, l = 2, . . . ,m1 − 1, are quadratic equations of the form:
a1δ

2
1,l + b1δ1,l + c1 = 0, which always have real roots and the bigger root is always

positive. The constants a1, b1, c1 are given as follows:

a1 =(1 + λ2)
∑

i,j

∑

y∗

1ij=l

(y21ijnew
) + (1 + λ2)(n1,l+1 + n1,l+2 + . . .+ n1,m1

),

b1 =−
∑

i,j

∑

y∗

1ij=l

y1ijnew
[µ1ijnew

+ λ(δ2,y∗

2ij
y2ijnew

− µ2ijnew
+ λµ1ijnew

)]

+
∑

i,j

∑

y∗

1ij>l

[δ1,y∗

1ij
y1ijnew

− (x′
1ijβ1 + z′

1ijb1i − α1,y∗

1ij−1,−l)]

−
∑

i,j

∑

y∗

1ij>l

{λ[δ2,y∗

2ij
y2ijnew

− µ2ijnew
− λ(x′

1ijβ1 + z′
1ijb1i − α1,y∗

1ij−1,−l)]},

c1 =− n1,l,

where n1,l is the number of the observations of the categorical variable y∗1 at l-th
level and α1,y∗

1ij−1,−l = δ1,1 + · · ·+ δ1,l−1 + δ1,l+1 + · · ·+ δ1,y∗

1ij−1.

Analogously, the equations for δ2,l, l = 2, . . . ,m2 − 1, are quadratic equations
of the form: a2δ

2
2,l + b2δ2,l + c2 = 0, which always have real roots and the bigger

root is always positive. The constants a2, b2, c2 are given as follows:

a2 =
∑

i,j

∑

y∗

2ij=l

(y22ijnew
) + n2,l+1 + n2,l+2 + . . .+ n2,m2

,

b2 =−
∑

i,j

∑

y∗

2ij=l

y2ijnew
[µ2ijnew

+ λ(δ1,y∗

1ij
y1ijnew

− µ1ijnew
)]

+
∑

i,j

∑

y∗

2ij>l

[δ2,y∗

2ij
y2ijnew

− (x′
2ijβ2 + z′

2ijb2i − α2,y∗

2ij−1,−l)

− λ(δ1,y∗

1ij
y1ijnew

− µ1ijnew
)],

c2 =− n2,l,

where n2,l is the number of the observations of the categorical variable y∗2 at l-th
level and α2,y∗

2ij−1,−l = δ2,1 + · · ·+ δ2,l−1 + δ2,l+1 + · · ·+ δ2,y∗

2ij−1.

In order to update the new estimates of the parameters, we need to express the
conditional expectations in the closed form expressions for the estimators. We will

Ann. Sofia Univ., Fac. Math and Inf., 104, 2017, 217–232. 223



show that all of the conditional expectations depend only on the first two moments
of truncated multivariate normal distribution.

Let us introduce the following notation:

Xki =











x′ki1
x′ki2
...

x′kini











, Zki =











z′ki1
z′ki2
...

z′kini











, βk =











βk1

βk2

...
βkpk











, k = 1, 2,

αk,i =











αk,y∗

ki1−1

αk,y∗

ki2−1

...
αk,y∗

kini
−1











, δ
−1

k,i =











1/δk,y∗

ki1

1/δk,y∗

ki2

...
1/δk,y∗

kini











, k = 1, 2,

δ
−1

i =

(

δ
−1

1,i

δ
−1

2,i

)

, αi =

(

α1,i
α2,i

)

, β =

(

β1
β2

)

,

yinew
=

(

y1inew

y2inew

)

, Zi =

(

Z1i 0
0 Z2i

)

, Xi =

(

X1i 0
0 X2i

)

.

Then the joint distribution of y1inew
, y2inew

and bi is multivariate normal:





y1inew

y2inew

bi



 ∼ N









(X1iβ1 − α1,i) ◦ δ
−1

1,i

(X2iβ2 − α2,i) ◦ δ
−1

2,i

0



 ,





A B C

B′ D E

C ′ E′ Σ







 ,

where ◦ is the Hadamard (element-wise) product, the elements of the covariance
matrix are:

A = (Z1iΣ11Z
′

1i + σ11Ini
) ◦ δ−1

1,i δ
−1

′

1,i ,

B = (Z1iΣ12Z
′

2i + σ12Ini
) ◦ δ−1

1,i δ
−1

′

2,i ,

C = Z1i(Σ11Σ12) ◦ Jni×qδ
−1

1,i ,

D = (Z2iΣ22Z
′

2i + σ22Ini
) ◦ δ−1

2,i δ
−1

′

2,i ,

E = Z2i(Σ21Σ22) ◦ Jni×qδ
−1

2,i ,

Jni×qδ
−1

k,i is ni × q matrix with columns δ
−1

k,i , k = 1, 2, and Ini
is the ni × ni

identity matrix.

Let us denote

Mi =

[

y1inew
− (X1iβ1 − α1,i) ◦ δ

−1

1,i

y2inew
− (X2iβ2 − α2,i) ◦ δ

−1

2,i

]

= yinew
− (Xiβ − αi) ◦ δ

−1

i
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and

ΣBi
=
(

C′ E′
)

(

A B

B′ D

)−1

.

Then the conditional distribution of bi given y1inew
and y2inew

is again nor-
mal:

bi|y1inew
, y2inew

∼ N [ΣBi
Mi,Σ− ΣBi

(

C

E

)

] .

In the expressions for the estimators we have to calculate the following condi-
tional expectations: E(bi|y

∗

i ), E(bib
′

i|y
∗

i ), E(biy
′

inew
|y∗i ). We will show that they

depend only on the first two moments of the distribution of the transformed latent
variables given the observed variables, i.e. they depend on the first two moments
of yinew

|y∗i , which distribution is truncated multivariate normal.

The expectation of the random effects given the observed variables is:

E(bi|y
∗

i ) = E[E(bi|yinew
)|y∗i ]

= E[ΣBi
(yinew

− (Xiβ − αi) ◦ δ
−1

i )|y∗i ]

= ΣBi
[E(yinew

|y∗i )− (Xiβ − αi) ◦ δ
−1

i ].

The expectation of the second moment of the random effects given the observed
variables is:

E(bib
′

i|y
∗

i ) = E[E(bib
′

i|yinew
)|y∗i ]

= E[V ar(bi|yinew
) + E(bi|yinew

)E(b′i|yinew
)|y∗i ].

The last expectation that we need is:

E(biy
′

inew
|y∗i ) = E[E(biy

′

inew
|yinew

)|y∗i ]

= E{ΣBi
[yinew

− (Xiβ − αi) ◦ δ
−1

i ]y′inew
|y∗i }

= ΣBi
[E(yinew

y′inew
|y∗i )− (Xiβ − αi) ◦ δ

−1

i E(y′inew
|y∗i )].

2.1.3. (K + 1)-ST ITERATION OF THE EM ALGORITHM

We use an extension of the EM algorithm called Expectation/Conditional Max-
imization (ECM) algorithm [23]. The E-step at the (k + 1)-st iteration of the pro-
posed algorithm consists of finding of the following expectations: E(bi|y

∗

i ; Γ
k),

E(bib
′

i|y
∗

i ; Γ
k), E(biy

′

inew
|y∗i ; Γ

k), where Γk are the k-th estimates of the un-
known parameters Γ. The M-step consists of several computationally simpler
CM-steps. In each CM-step we maximise the expectation of the complete data
log-likelihood function in respect to some parameters while the other parameters
are held fixed. The algorithm starts with initial values for the uknown parameters
Γ0, iterates between the E-step and M-step and stops when |Γk+1 − Γk| < ǫ for
each element of the vector, where ǫ is a preselected small number (for example
ǫ = 0.0001).
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2.2. STANDARD ERROR ESTIMATION

We use the bootstrap method for standard errors approximation described in
[22, pp. 130–131]. The steps are as follows:

1. We fit model (2.1) to the observed data set consisting of n individuals using
the proposed ECM algorithm and obtain the estimates of the unknown pa-
rameters Γ̂ = (β̂′

1
, β̂′

2
, δ̂′
1
, δ̂′
2
, vect(Σ̂)′, λ̂)′. To generate a bootstrap sample

first we generate n random effects bbi from N(0, Σ̂), i = 1, . . . , n. Next we sim-
ulate normal values yb

1i and yb
2i of dimension ni according to the fitted model

for every random effect bbi . We use the estimated via δ̂1 and δ̂2 thresholds to
determine in which interval the normal data yb

1i and yb
2i fall and determine

the levels of the bootstrap categorical variables yb∗
1i and yb∗

2i . The bootstrap
sample consists of the categorical variables yb∗

1i and yb∗
2i , i = 1, . . . , n.

2. We apply the ECM algorithm to the bootstrap data yb∗
1i and yb∗

2i , i = 1, . . . , n
to obtain estimates for the generated bootstrap data set Γb.

3. We use Monte Carlo method to approximate the bootstrap covariance matrix.
That means that we repeat step 1 and step 2 B times and calculate the
covariance matrix of the B estimated parameters Γb, b = 1, . . . , B:

Cov(Γ̂) ≈
B
∑

b=1

(Γb − Γ̄)(Γb − Γ̄)′

B − 1
,

where Γ̄ =
∑B

b=1 Γ
b/B.

3. SIMULATIONS

We simulated values from the following random intercept model:

y1ij = β10 + β11tij + b1i + ǫ1ij , j = 1, . . . , 6,

y2ij = β20 + β21tij + b2i + ǫ2ij , j = 1, . . . , 6, (3.1)

where β10 = −0.5, β11 = 1, β20 = 1, β21 = −0.5, α1,1 = 0, α1,2 = 1.2, α1,3 = 3,
α2,1 = 0, α2,2 = 2, λ = 0.8. The covariance matrices of errors Σǫ and of the
random effects Σ are:

Σǫ =

(

σ11 σ12
σ12 σ22

)

=

(

1 0.8
0.8 1.64

)

,

Σ = V ar

(

b1i
b2i

)

=

(

σb
11

σb
12

σb
21

σb
22

)

=

(

1 -0.8
-0.8 1

)

.
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Table 1: Estimates and standard errors in the simulation model 3.1

parameter β10 β11 β20 β21 δ1,2 δ1,3 δ2,2 λ σb
11

σb
12

σb
22

Sample size 1500
true value -0.5 1 1 -0.5 1.2 1.8 2 0.8 1 -0.8 1
mean est. -0.51 1 0.99 -0.50 1.20 1.80 1.99 0.79 1.00 -0.79 0.99
stand.dev. 0.041 0.010 0.047 0.012 0.018 0.024 0.039 0.026 0.047 0.039 0.055
of estim.
mean of 0.038 0.010 0.046 0.012 0.020 0.023 0.040 0.026 0.049 0.042 0.058

boot.st.er.
Sample size 3000

mean est. -0.51 1.00 1.01 -0.50 1.20 1.80 2.00 0.79 1.00 -0.79 0.98
stand.dev. 0.025 0.006 0.036 0.009 0.011 0.019 0.029 0.023 0.033 0.027 0.041
of estim.
mean of 0.027 0.007 0.032 0.008 0.013 0.016 0.028 0.019 0.034 0.029 0.040
boot.st.er.

We simulated 100 samples with two different sample sizes (n = 1500 and
n = 3000). For each approximation of the standard errors we used 50 bootstrap
samples which is within the recommended range of 50 to 100 bootstrap replications
(Efron and Tibshirani [9]). The results are presented in Table 1.

Note that due to the re-parametrization we estimate the differences in the
thresholds rather than the thresholds themselves, but they coincide in the case of
only three levels of the categorical variables. In both simulation studies most of
the averages of the estimated parameters are equal to the parameter values from
which the samples were generated and where they differ the difference is smaller
than 0.02.

As expected the standard errors get smaller when we increase the sample size.
All of the estimates are statistically significantly different from zero.

The approximate equality of the standard deviations of the estimates and the
means of the bootstrap standard errors confirms that the algorithm is converging
as expected. However, larger simulation study that varies the parameter settings
is necessary to confirm the above observations.

3.1. IMPLEMENTATION OF THE ALGORITHM

For the implementation of the algorithm we used the free software environment
for statistical computing and graphics R [25]. The R code for fitting the presented
models is available from the author.

We want to point out several things regarding the implementation of the pro-
posed ECM algorithm. In the package tmvtnorm [28] there are functions for
analytical finding of the first two moments of multivariate truncated normal distri-
bution based on the work by Manjunath and Wilhelm [21]. There are also functions
for generating random numbers using Gibbs sampling [27] which allows stochastic
approximation of the first two moments of the truncated normal distribution. But
for these models we recommend stochastic approximation because the analytical
calculation could be very slow when we have many observations per subject.
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A good choice for starting points for the regression parameters in model (2.1)
and thresholds in (2.2) for the proposed ECM algorithm are estimates from model
without random effects. Selecting large values as starting points for the variances of
the random effects should be avoided. Problems with performance of the algorithm
may occur with starting points corresponding to a multivariate truncated normal
distribution for which the truncation area is close to 0. In such cases finding
analytical solutions for the moments of the truncated normal distribution may fail.
Generating random numbers via Gibbs sampling may also fail.

4. APPLICATION OF THE MODEL

We analyzed the first seven waves of HRS data with 12,543 individuals. We
fitted the following correlated probit model to the data:

y1ij =β10 + β11tij + β12I(smoker) + β13I(female)

+ β14tijI(smoker) + β15tijI(female)

+ β16I(smoker)I(female) + β17tijI(smoker)I(female)

+ b1i1 + b1i2tij + ǫ1ij,

y2ij =β20 + β21tij + β22I(smoker) + β23I(female)

+ β24tijI(smoker) + β25tijI(female)

+ β26I(smoker)I(female) + β27tijI(smoker)I(female)

+ b2i1 + b2i2tij + ǫ2ij,

y∗kij =







1, ykij ≤ αk,1 = 0,
l, αk,l−1 < ykij ≤ αk,l, l = 2, . . . ,mk − 1
mk, ykij > αk,mk−1

,

(4.1)

where k = 1, 2,m1 = 5,m2 = 4 and where the covariance matrix of the errors

is: Σǫ =

(

σ11 σ12
σ21 σ22

)

and the covariance matrix of the random effects is:

Σ = V ar









b1i1
b1i2
b2i1
b2i2









=









σb
11

σb
12

σb
13

σb
14

σb
21

σb
22

σb
23

σb
24

σb
31

σb
32

σb
33

σb
34

σb
41

σb
42

σb
43

σb
44









.

The estimates of the parameters, their standard errors and z-scores are pre-
sented in Table 2 and Table 3. Z-scores are computed before rounding off the
estimates and their standard errors, and then rounded to the second decimal point
in Table 2 and third decimal point in Table 3.

The results show that all of the parameters in the model are statistically sig-
nificantly different from zero, except the regression parameters for the three-way
interactions between time, smoking and gender in both sub-models (β17 and β27),
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Table 2: Table of estimates, standard errors and z-scores of the regression parameters

and threshold differences in model 4.1 fitted to the first seven waves of HRS data

Regression parameters for latent self-rated health

parameter β10 β11 β12 β13 β14 β15 β16 β17

estimate 1.37 0.13 0.64 0.06 0.03 -0.03 -0.26 0.01

stand. error 0.019 0.004 0.039 0.025 0.009 0.006 0.053 0.012

z-score 71.11 30.61 16.46 2.44 2.81 -4.73 -4.91 1.09

Regression parameters for latent categorized body mass index

parameter β20 β21 β22 β23 β24 β25 β26 β27

estimate 6.00 0.05 -0.88 -0.28 -0.01 0.05 -0.09 0.01

stand. error 0.053 0.006 0.038 0.030 0.010 0.007 0.061 0.015

z-score 113.4 8.94 -23.17 -9.36 -0.77 6.89 -1.53 0.53

Threshold parameters for both latent variables

parameter δ1,2 δ1,3 δ1,4 δ2,2 δ2,3

estimate 1.64 1.56 1.45 4.97 3.31

stand. error 0.010 0.010 0.012 0.145 0.074

z-score 172.18 164.15 120.11 34.28 44.91

Table 3: Table of estimates, standard errors and z-scores of the covariance parameters in

model 4.1 fitted to the first seven waves of HRS data

parameter σb
11 σb

22 σb
33 σb

44 σb
12 σb

13 σb
14

estimate 3.541 0.038 8.185 0.082 -0.194 1.308 -0.074

stand. error 0.065 0.001 0.311 0.005 0.006 0.071 0.007

z-score 54.872 47.948 26.294 17.507 -30.277 18.345 -10.151

parameter σb
23 σb

24 σb
34 λ

estimate -0.020 0.002 -0.160 -0.002

stand. error 0.008 0.001 0.020 0.007

z-score -2.619 2.638 -8.122 -0.267

the regression parameter β24 for the two-way interaction between time and smok-
ing and the regression parameter β26 for the two-way interaction between smoking
and gender in the sub-model for the latent CBMI.

The correlation between the random intercept and random slope for the latent
self-rated health is estimated to −0.53 and for the BMI is estimated to −0.20.
The estimate for the correlation between the random intercepts is 0.24.

The trajectories of the latent variables for SRH and CBMI over time for four
individuals with zero random effects are presented in Figure 1. They reflect the
progress of the variables on average over time for each group of people: smoker
male, smoker female, non-smoker male and non-smoker female. As expected, for
the four groups of people on average the self-evaluation of health is worsening over
time and people are gaining weight with time. The group with the most gentle slope
for the self-rated health is the group of non-smoker female and with the steepest
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slope - smoker male, which means that, according to their own opinion on their
own health, smoker males are worsening most quickly, while non-smoker females are
worsening most slowly on average. For the BMI, smoker males are gaining weight
most slowly and non-smoker females are gaining weight most quickly on average
over time.

Figure 1: Latent SRH and latent CBMI over time for four individuals with zero random

effects

5. DISCUSSION

In this paper we considered a correlated probit model for a joint analysis of
two longitudinal ordinal outcomes. We proposed an extension of the EM algorithm
of Chan and Kuk [7] and the ECM algorithm of Grigorova and Gueorguieva [13]
for obtaining maximum likelihood estimates. The algorithm is implemented in the
free software environment for statistical computing and graphics R [25]. We stud-
ied its performance via simulations. We illustrated the approach on the data from
the Health and Retirement Study. Our approach has advantages over alternative
estimation methods in that it can handle a large dimension of the multivariate
outcome, it can be easily extended to any combination of binary, ordinal and con-
tinuous outcomes and it provides asymptotically unbiased estimates. It is also
easily implemented in the free open-source software environment R.

We used bootstrap method for standard error estimation which is computa-
tionally very intensive. While the bootstrap algorithm can always be applied, it is
not efficient. Other approaches may be possible. For example, one might consider
the Louis’s approximation method [20].
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Further research is needed to extend the algorithm to the estimation of a joint
model for time to drop-out and combinations of ordinal and continuous longitudinal
outcomes. Model selection and model diagnostics are also open areas of research.
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