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I'poaso Cmanuace, Hpuna Hemposa. OBOBIIEHHBIY ONEPATOP AKOBU B 4¢-MEP-
HOW PUMAHOBOW rEOMETPUMU

PaccMoTpum pumaHoBoe MHoroobpasue (M, g) pPasMepHOCTH n C TEH30DOM KPHBU3HLI
R. B Touke p 6epeM 2—MepHOE KacaTelbHOE NOANPOCTPAHCTBO E? xacaTepbHOI'O NpPOCTPaH-
cTBo Mp, onpeneneHHoe OPTOHOPManbHON Napolt BEKTOPOB X, Y. Beenem B paccMOTpPEHUM
nuuelnsi onepatop Ax,y : Mp — Mp npu nomomu Ax,y(u) = R{u, X, X) + R(v,Y,Y). Bro
cummeTpudeckui oneparop. Ouens BaXHO TO, UTO BTOT ONEPATOP MHBAPUAHTHHIM OTHOCH-
TeNBbHO OPTOrOHANBHBIX Npeo6paszoBaHMi B MJIOCKOCTH E?2. Dro naeT HaM BO3MOXHOCTB Of-
peNeNUT ONepaTop OTHOCHTENbHO NI060H 2-MepHOM NIOCKOCTH E? B Touke p: Aga = Axy.
B o6mem cnyuae ero cobcTBeHHbBIE 3HAUEHNA 3aBUCAT OT TOUKMA P M OT NJIOCKOCTH E?. Mu
Wccnenyem Kinacc S-PUMaHOBEIX MHorooGpaswii pa3MepHOCTH 4, LA KOTOPHIX BHINOJHA-
ercs ycnosue: coGCTBEHHBIE 3HAUYEHMUA c;('p;EQ), t =1, 2, 3, 4, Bcex onepaTopoB Ap2 He
3aBHCAT oT naockocTu E? B Touke p. ‘

Grozio Stanilov, Irina Petrova. A GENERALIZED JACOBI OPERATOR IN THE 4-DIMEN-
SIONAL RIEMANNIAN GEOMETRY

We consider a Riemannian manifold (M, g) of dimension n with curvature tensor.R. At
a point p € M we take a 2-dimensional tangent plane E? of the tangent space Mp, spanned
by an orthonormal pair of vectors X, Y. We define the linear operator Ax,y : Mp — Mp by
Ax,y{v) = R(x,X,X)+ R{x,Y,Y). Itisa symmetric operator and a very important fact is
namely the assertion it is invariant operator under the orthogonal transformations in E?. This
gives us the possibility to define an operator in respect to any E? in Mp: Agz = Axy- In
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the general case its eigen values depend of p and of E? also. Then we investigate the class of
S-Riemannian manifolds of dimension 4 with the property the eigen values ¢;(p; E?), i =1, 2,
3, 4, of the operators Apz are independent of E?,

1. THE CLASS S-RIEMANNIAN MANIFOLDS

Let (M, g) be a Riemannian manifold of dimension n, R — its curvature tensor.
For p € M let X, Y be an orthonormal pair of vectors in M,. We define a linear
operator
by

;\X,y(x) = R(z,X, X) + R(&),Y, Y)..
It is a symmetrical operator. The following important proposition holds: the opera-
tor Ax y is invariant under the orthogonal transformations in the tangent subspace
E? = E*(p; X AY) spanned by X, Y. L |

Indeed, if we have another orthonormal pair of vectors X, Y € E?, then
Axy = AY,?"

We can define the operator

Ap2 : My, — M,
by
Apa = A XY -
We call it generalized Jacobi operator in respect to EZ.

Since Ag2 is a symmetric operator, it has a real eigen values ¢;(p, E?). Then
we consider the class of 4-dimensional Riemannian manifolds with the following
property:

(S) the operator Ag: has eigen values independent of E2:
cilp, E®) = ci(p), i=1,2,3, 4.

Any 4-dimensional Riemannian manifold with the property (S) we call S-Rieman-
nian manifold.

In this paper we investigate the class S-Riemannian manifolds.

Remarks. 1. We suppose ¢;(p) £ e2(p) £ cs(p) £ calp).

2. If p is a fixed point we write ¢; instead of ¢;(p).

Proposition. Fvery 4-dimensional Riemannian manifold with constant sec-
tional curvature is an S-Riemannian menifold.

Proposition. Every S-Riemannian manifold is an Einsteinnian manifold.

Proof. Let X,Y is an orthonormal pair in M,. It is easy to get

4
Y cilp) = p(X, X) + p(Y,Y),

=1

where p is the Ricci tensor. Hence for each Z € M,, |Z] =1,

"4
o(2,2) = %Z e:(p).

i=1
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From the second proposition and the well-known Herglotzt theorem it follows that

4

E ci(p) = const.

i=1

9. MATRICES OF THE GENERALIZED JACOBI OPERATOR AND
A LEMMA FOR THE SPECIAL BASES IN 4-DIMENSIONAL MANIFOLD

Let (M, g) be a 4-dimensional Riemannian manifold. We fix p € M and let
z1, T2, T3, T4 be AN orthonormal base of My, and X,Y bean orthonormal pair in
M,. For the operator Axy and for a real ¢ we define the matrix C*¥ (c) in the
following way

XY — —
CXY (c) = (cik); k=1,23,4» Cik =9 (Axy(zi), zi) — bikc:
It is a symmetric matrix since Axy 18 & symmetric operator. If ¢ is a k—multiple

eigen value of Ax )y, we have the relation

rang CX Y (c) + k=4

i XitTh
Next we write CH¥(c) and Cidi+k(c) instead of C%%i(c) and Cx”—lw—(c),
respectively.
Lemma. Let (M, g) be a 4—dimensional manifold. For each p € M there
ezists an orthonormal base Ty, X2, ¥3, ¥4 of My, so that

R(zs,z1,%1,%3) =0, R{z2,21,21,24) = 0, R(z3,z1,%1,24) = 0.

The first vector Z3, |z1| = 1, can be chosen arbitrarily.

Proof. We take z1 € M, with jz1] = 1 and complete z; to 21, T2, T3, T4
— an orthonormal base of eigen vectors of the symmetrical Jacobi operator Ag,,
defined by Az, (¢) = R(z,z1,71):

The bases in the Lemma will be called special bases.

3. SOME NOTATIONS FOR S-RIEMANNIAN MANIFOLDS

Let (M, g) be an S-Riemannian manifold, p € M, z1, T3, £3, L4 be an
orthonormal base of M,. We set

Rijse = R(mi, %5, %, z;), rij = Ristj+ Ritsj
ffj = R(&?,‘,&?,,S,,Sj), kz‘j - R(mg,:c,',a:j,x,-) s
for all integers i, j, s, t from 1 to 4, different mutually. We have the following
Lemma. a) kij = kst;
b) Ifj + l}j = 0. .
Proof. a) It follows from the fact that (M, g) 1s an Finsteinnian mani-
fold [1]. '
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b) Since (M, g) is an Einsteinnian manifold, the Ricci tensor is proportional
to the metric tensor. Hence

0= p(2i,z;) = R(2i,24,2,,2;) + R (i, &0, 20, 25) = I + 1.
If z;, =9, x3, 4 is a special base of My, by lemma in section 2 we obtain
l%a = 1%4 = 11]?;4 =0.
For such a base the substantial components of R are R334, Rizaz, 135, 135, 134, k12,

k13, k14. In these notations and for such base we write the matrix Cl’z(c). From
section 2 we know

Cch?= (Cst)s,tzzx,z,s,z; )
Cst = ¢ (Az;,xg(ms):mt) — b0,
¢st = R(zs, 21,21, %1) + R(2s, 22, 22, T1) — b5zc.
Hence,
i1 = R($1,£1,$1, 331) + R(ml,xg, 2)2,:6'1) e 5116 o klg - C,
c12 = R(z1,21,21,29) + R(21, 22,22, 22) — 6126 = 0,
c13 = R(z1, 21,21, 23) + R(z1, 22, 22, 23) — 613¢ = I3,
c1a = R(21,21,21,24) + R(21, 23, T2, 24) — b14¢ = 17,
cz2 = R(23, 21,21, 22) + R(x2, 22,22, 23) — b2z¢ = k12 — ¢,
Co3 = R(xg,xl,xl,xs) -+ R(&’g, ZTy,T9, x3) —dyzc = 1%3 = 0,
c24 = R(%2, 21,21, 24) + R{22, 22,22, 24) — baac = I}, = 0,
cas = R(z3,21,%1,23) + R(z3, 22, 29,23) — 03¢ = k1g + kog — ¢ = k13 + k14 — ¢,
c3q4 = R(23,71,21,24) + R(%3, 23, 2,24) — S3ac = 13, + 12, = 0, .
Caa = R(z4,21,21,24) + R(24,22,29,24) — bsac = k1a+ koa —c = krg + k13 — c.

Then C1*(c) is a symmetrical matrix of the form

klg i 4 0 I%a I§4
0 kig—c 0 0
G (e) = 12, 12() kiz+kig—c 0
A 0 0 ki3 + kg4 —c
In the same way we find the matrices
km - C 1?2 0 “"'Iii
CY3(c) = &, kia + kia — 0 0
0 0 k13 - 0 ’
—i, 0 0 kiz+ k1g —c
kig ¢ ~I3 ~1t3 0
01’4(6’) _ --122 kis+kiz—c 0 0
—li3 0 kiz+kiz—c 0 ’
0 0 0 km - C
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CL2+3(c)

k12 + ki3 — 2¢ 13, - 135 - (1?2 - 1%3) T14
_1 B3, — 3 k19 + k14 — 2¢ —ki14 0 ’
21 - (B, - i2,) ~k14 ki3 + k1a — 2¢ 0
T14 0 0 kig + k13 + 2k14 — 2¢
01,24—'4(6)
kg4 kia—2 — (¥ ) 13 B, +1,
_ L (B4, 2kthis— 20 0 ~k13 ’
2 T13 0 k1o + ki3 + k1a — 2¢ 0
1?2 + 1%4 —ki3 -0 ki3 + 2k14 — 2¢
CL3+4(c)
k13 + k1a — 2¢ r12 — (123~ 134) i3, -1,
1 r12 2k1q + k13 + k1a — 2¢ 0 0
9 — (1%3 - f%4) 0 k2 + 2k13 — 2¢ ~k12
1%8 - I¥4 0 -kn km + 21614 - 2c

4. THEOREM FOR THE LOCAL POSSIBILITIES. A CON SEQUENCE

Theorem. Let (M, g) be an S-Riemannian manifold. Then for everyp € M
one of the following possibilities holds:

a)0=c =c2=¢3 <eq or € S cp=ca=cs4=0;

b) ¢y = cg < €3 = C4- ‘
If 2, T2, £3, 24 15 a0 orthonormal base of My, so that

i3 = lys = l3s =0,

then a) implies k12 = k13 = kis = 0, and b) implies k12 + ki3 + ks = €1 + €3,
(k1z — €1) (k12 — ca) = 0, (k13— ¢1) (kya — ca) = 0, (k1 — 1) (F1a = e3) = 0.

Proof Forc (i =1,234) we have the following logical possibilities:

P;. There are at least three equal among them;

P,. They are two by two equal;

P5. There are at least three different among them.

We prove that Py implies a), P2 implies b) and Pj 18 impossible.

4.1. The case P;. We have
¢1=C3=1¢C3 § c4 or 1 S.._ ¢y = €3 = C4.

Hence ¢ is at least 3-multiple eigen value. Let z1, 22, £3, 4 be an orthonormal
base of My, so that I}3 = 34 = i}, = 0. Then rang Cli(es) ¢ 1 (i =2, 34). All
minors of order 2 of these matrices are 0 and then k12 = ki3 = kig =co=0.
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4.2. The case P,. We have ¢; = ¢35 < ¢3 = ¢4. Let z;, 29, 23, 4 be an
orthonormal base of M,, so that I35 = I}, = II; = 0. We have rang C1*(c) = 2 for
¢ € {c1,c3}. It follows that (k13 — ¢} (kya+ k1a—¢) =0, c€ {c1,c3}. Then

(k12 — c1) (k13 + k14 — 1) = (k12 — c3) (k13 + k14 — c3) .
The developing of this identity gives k12 + k13 + k14 = ¢; + ¢3. Then follows
(k12 —¢1) (k12 — c3) = 0.

Considering the matrices C13(c) and C1%(c) we get the last two relations in the
theorem.

4.3. The case P3. Let Q = {c1, c2, ¢3, c4}. Because of P3 ( has at least 3
different elements. Let again z;, z2, 3, 4 be an orthonormal base of M,, so that
Ba=1,=08,=0 Weset Ay =13,, As = %, A3 = ,. Since det C}3+%(c) = 0
(e € ©2), we have

Fle) = (A2 =23)’g(c) =0 (ceQ),
where
g(c) = (kia + k1s — 2¢) (2k12 + k13 + k1a — 2¢),

F(¢) = (2 (k13 — ¢) (k1a — ¢) + k1a (k13 + k14 — 2¢)) (g(c) — ria) .

Taking the base z1, T2, z3, £4 of M, we get

fle) =2+ 23)°glc) =0 (ceq).

Then
4Xo)ag(c) =0 (c€ Q).
The polynomial g{c) is of degree 2. It has no more than two different roots. But
§2 has at least three different elements. Hence AyAs = 0. C12+3(¢) and C12+4(c)
provide analogously A\;A; = 0, A;A3 = 0. Hence at least two among the Aj, Ao, A3
are 0. Supposing that Ay = A3 = 0, from the equality det C*?(c) = 0 for ¢ €  we
get
(ki —c)(kiz+kia—c)=0,ce.

It is impossible because 2 has at least three different elements.

4.4. A consequence. Let M, be S-Riemannian manifold, p € M, so that
¢1 = ¢3 < ¢3 = c4. Let z1, 22, 23, T4 be an orthonormal base of M, with
3a=13,=101,=0. Then

1) If ¢; = 0 then {k9, k13, kis} = {0, 0, 03};

2) If e3 = 0 then {klz, ki3, k14} = {0, 0, (:1};

- 3)Ifes # 0, c3 # 0 then [c1] # |cal and k1 = ki3 = kg = x, where
_ {cl, if je1] < |es),
= .
es, if fea| < Jel.

Remark. {ki2, k13, k14} = {0, 0, c3} means that among the numbers ko,
k13, k14 two of them are 0 and the third is ca.

The proof uses only the curvature relations in the theorem in this section.
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5. THE CLASS F-RIEMANNIAN MANIFOLDS

Let (M, g) be & 4-dimensional Riemannian manifold, p € M, X € M,
|X| = 1. The well-known Jacobi operator is defined in the following way:

Ax(z) = R(z, X, X).

It is a symmetrical operator and its eigen values are real numbers depending of p
and X. We consider the class of the 4-dimensional Riemannian manifolds with the
property

For each p € M and for every (unit) X € M, the Jacobi

(F) operator Ax has eigen values di(p, X) independent of X,
i.e. di(p,X) = di{p), 1=12,3, 4.

Any 4-dimensional Riemannian manifold with this property will be called F-
Riemannian manifold. This class is investigated in (2], [3], [4]. It is well-known
that every 4-dimensional Riemannian manifold of constant sectional curvature is
F~Riemannian manifold and every F-Riemannian manifold is Einsteinnian manit-
fold. For such a manifold we have the relations kij = kse, 1§ + 1 = 0.

To every operator Ax we can associate the matrices DX (d) in a way like that
in section 2:

D* (d) = (dst)sgtzl,g,gﬂa det =9 (Ax (xl)s z¢e) — bsed.
If d is k-multiple eigen value of Ax, then rang DX(d) + k = 4. Instead of D* {(d)
z,+x; :
and D™ V% (d) we shall write D*(d) and D+ (d) respectively.

6. COMPARISON OF BOTH CLASSES

Theorem. If (M, g) is an S-Riemannian manifold, then it 1s also an F-
Riemannian manifold. The converse is not irue.

Proof. 1) Let (M, g) be an S-Riemannian manifold, p € M. We take
X € M, with |X|=1. Let di(p), i =1, 2, 3, 4, are the eigen values of Ax. We set

¥(p, X) = {di(p, X)|i=1,2,3, 4}.

Then we consider the orthonormal base X = z1, &2, T3, T4 of eigen vectors of Ax
in M,. Hence l}3 = 1, = I3 = 0. Let di(p, X) corresponds to zi, i = 1, 2, 3, 4.
Then

di(p, X) =0, do(p,X)=k1z, ds(p, X)=kiz, da(p, X) = k14,
Hence
¥(p, X) = {0, k12, k13, kia}.
From the theorem for the local possibilities in p one of the following cases holds:
a)0=ci=cp=c3$Cs OF C1 S ca=cz=cs=0;
b) 0=c; =c3 < C3 = C4
c) e =¢cy < cz3=cq4=70;
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d)0#ci=cy<ez=cy #0.
Using this theorem and the consequence of it we obtain for the cases a), b), ¢) and
d) correspondingly:

a’) ¥(p, X) = {0,0,0,0},

b') ¥(p, X) = {0,0,0, c3},

¢y ¥(p,X) = {0,0,0,¢1},

d’) ¥(p, X) = {0, %, x, x},
where x is the smaller by module number between ¢; and c3. It means that the
elements of ¥(p, X) are independent of X and hence (M, g¢) is an F-Riemannian

manifold.
2) The 4-dimensional Kaehlerian manifolds with constant non-zero holomor-

phic sectional curvature are F-Riemannian manifolds, but they are not S-Rieman-
nian manifolds.

7. LEMMA FOR THE SPECIAL BASES IN AN S-RIEMANNIAN MANIFOLD

From the theorem in section 6 we get the following

Consequence. If (M, g) is an S-Riemannian manifold and in pE M holds:

a)0=ci=cy=cg<cq or ¢; < Cz=c3=cq =0,
then every Ax has {-multiple eigen value 0;

b)0=ci=cy3<c3=cy4 or c1=¢y S c3=c4 =0,
then every Ax has §-multiple eigen value 0.

Using it, we can prove the following

Lemma. Let (M, g) be an S-Riemannian manifold, pE€ M, and in p holds a)
or b) of the above consequence.

Then there is an orthonormal base of M,, so that li; = 0 for all integers i, j,
s from 1 to 4, unequal mutually. The first vector z1 can be chosen arbitrarily.

Proof. Letzy, @3, 23, 24 be an orthonormal base so that I = i, = I, = 0.
If in p a) holds, we have

rang D?*(0) = rang D*(0) = 0,
and if in p b) holds, we have
rang D*(0) = rang D*(0) = 1.

In both cases we obtain by considering suitable minors that 13, = 2, = {2, = 0.

8. A MORE PRECISE VARIANT OF THE THEOREM
FOR THE LOCAL POSSIBILITIES

Theorem. Let (M, g) be an S-Riemannian manifold, p € M. For p holds one
of the following possibilities:

a) c1 5832632-64:‘-‘0.
In such case the sectional curvature of M in pisQ;

b)0261262<63=2¢4. '
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In this case there is an orthonormal base z1, T2, T3, T4 of Mp, so that the only
substantial components of R are

C3
Ris34 = Ri3aa = 3 k14 = c3;

C) C1:CQ<C‘3:C4=0.
In this case there is an orthonormal base x4, T9, T3, T4 of Mp, so that the subsiantial
components of R are

€1
Ri934 = Riza2 = 3 kia = c1;

d)0<eci=ca<ez=cs, ¢€3=2¢1.

In this case the sectional curvature of M in p 1s cy;
8)01=C2<C3=C4<0, ¢y = 2¢3.
In this case the sectional curvature of M 1n p 1s c3.

Proof. In p holds one of the following possibilities:

a)O:cl-‘:Cz:Cg é Cq4 OT Cy é 6236336420,

b) 0 =c1 = c2 < €3 = ¢4,

C)Cl=62<63=(§4:0,

d)0¢cl={32<63264-‘,ﬁ0.

1) Let in p holds a). We shall prove that if three of the numbers ¢, ¢, c3, ¢4
are 0, then the forth is also 0. Let suppose 0 = ¢; = ¢z = ¢3 £ Ca- By the lemma
in section 7 we take an orthonormal base z1, 3, 3, €4 of Mp such that Ifj = 0 for
i, j, s from 1 to 4, unequal mutually. From the theorem for the local possibilities
we have ki = kiz = k14 = 0. The eigen value c4 is at least 1-multiple. Hence
det C1%(cs) # 0 and then ¢4 = 0. Then ¢y =ca=c3 =4 = 0.

Let E? be any 2-dimensional tangent subspace in M, and X, Y be an
orthonormal base of M,. We set z; = X and complete z; to z1, T3, T3, T4 —
an orthonormal base of M, with the property li; = I3, = I3, = 0. From the
theorem for the local possibilities we have k12 = ki3 = k14 = 0. Using Y = ot

4
Z(ai)z = 1, one can check easily that K(E?) =0.
i=2
2) Let in p holds b), i. e.
0=cy =cp<c3=c¢y.

We use again an orthonormal base z1, 22,23, 24 of My, s0 that If; = Oforalli j, s
from 1 to 4 different mutually. From the consequence in section 4 {k12, k13, ki4} =
{0,0,cs}. If it is necessary we can renumber the vectors =1, z2, z3, T4 to get
ki3 = ki3 = 0, k14 = c3. From the consequence in section 7 we know that every
operator Ay has 3-multiple eigen value 0. Then rang D'+2(0) = rang DF(0) =1
This implies

rig=-—cg or rig=cs ria=0
If it is necessary we can change z; with —z; to get r12 = c3. Using the first Bianki
s , c
identity we obtain Rjz34 = Ri3s2 = -3;-3-
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8). Let in p holds d), i.e.
0?‘-‘6::02<03=-"04;£0.

We take the orthonormal base 2y, 3, z3, z4 of M, such that ljs = I}, = 1, = 0.
From the consequence in section 4 kyg = kyg = k14 = %, where

= {01, if ey} < Jes|
o cg, 1if }Cs[ < fclj.

In p we have ¥ = ¢; or x = cs.

Let in p holds x = ¢;. Then k13 = ki3 = k4 = ¢;. From the theorem of the
local possibilities we have k13 + ki3 + kg = ¢1 + c3. Hence ¢35 = 2¢;. But ¢; < ¢3.
Hence ¢1 > 0. Then 0 < ¢y =¢3 < ¢3 = ¢4, ¢35 = 2¢;. It is easy to check that for
every E? in M,

K(Ez) - C1.

Consequence 1. Let (M, g) be an S-Riemannian manifold. If one of ¢i(p),

i1=1, 2,3, 4, is a global constant the others are also global constants.

4
Proof. We have ) ¢;(p) = const (from the consequence in section 1) and
=1

1=
c1(p) = ca(p), ca(p) = ca(p) (from the above theorem).

Consequence 2. Let (M, g) be an S-Riemannian manifold and for every
point p € M holds ¢ = c5. Then M is flat.

Proof. At every point p € M holds a) from the above theorem.

Consequence 3. Let (M, g) be an S-Riemannian manifold and let for every
PEMbholdsc; #0,i=1,2,3 4. Then M is non-flat with constant sectional
curvature.

Proof. In every point p € M holds e) or d) from the above theorem. Then
we apply the well-known Schur’s theorem.

Consequence 4. Let (M, g) be an S-Riemannian manifold with sectional
curvature K(p, E?) and let K(p, E?) # 0 for every point p and for every E? in M,.
Then M is non-flat with constant sectional curvature.

Proof. Inevery point p € M holds e) or d) from the above theorem because
in the cases a), b), c) there are planes E? with sectional curvature 0.
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