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Anzea Junea. IPUMEPBI CTPYKTYP, HEJOIIYCKAIOMINX PEKYPCUBHBIX MO-
IEJEN

B craThe NOKa3aHO CYIIECTBOBaHUE KJiacca CTPYKTYP C oguo¥ ¢yKumelk u ¢ oquuM npe-
JAKATOM, KOTOpHE He JOoNycKaloT ofdekTHBHOA HYMepRUMM MW JJIA KOTOPHIX BCe
¥;-onpenennMele noaMmuoxkecrna N asnaloTcs }3? (t = 1,2) MHO¥ecTBAMU B apuPMeTH-
yeckoit nepapxun.

Angel Ditchev. EXAMPLES OF STRUCTURES WHICH DO NOT ADMIT RECURSIVE P-
RESENTATIONS

In the paper it is proved that there exists a class of structures with a unary function and a
unary predicate which do not admit an effective enumeration, but all ¥;-definable subsets of N
are £0 (i = 1,2) sets in the arithmetical hierarchy.

In the Recursive Model Theory there are a lot of attempts to characterize
structures with denumerable domains which admit recursive presentation. First,
there are some necessary and some sufficient conditions [1]. Second, in many of
them the considerations are restricted to a given class of structures, for example,
Boolean algebras, partially ordered sets and so on [1]. Further, there are given
definitions which restrict or extend the class of structures satisfying these definitions
and attempts to characterize the corresponding classes are made. One of these
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definitions is the well-known strong constructivization (recursive presentation) [1].
In [2] Soskova and Soskov have defined another notion of effective enumeration
(recursively enumerable (r.e.) presentation) of a partial structure. So they have
succeeded to characterize the structure satisfying their definition by means of REDS
[2] with finitely many constants. In connection with this and some other results [3,
4] 1. Soskov has stated a conjecture that if in a given partial structure every subset
of N, definable by means of SC [3] with finitely many constants, is r.e. then the
structure admits an effective enumeration.

In [5] a counter-example of Soskov’s conjecture is shown. A necessary and
sufficient condition of those structures with unary functions and predicates which
admit effective enumeration is obtained as well. |

 Keeping in mind [6] and the power of L., one could suppose that it will be
possible to characterize the structures which admit an effective enumeration in the
terms of L,,,. 1. Soskov has made a suggestion that if in a given total structure
every subset of N definable by means of SC with finitely many constants is r.e. and
every Tp-definable set (cf. the definitions below) is £J in the arithmetical hierarchy,
then the structure admits effective enumeration. It has been found that is not true.
In any case we could not omit a condition like (iii) of Corollary 2 [5]. We should
have an effective way for every termal predicate (conjunction of atomic predicate
formulae and their negamons) to find a type of an element which satisfies this termal
predicate.

In this paper counter-examples of this suggestion are shown. Namely, 1t 1s
proved that there exists a class of structures with a unary function and a unary
predicate which do not admit an effective enumeration, but all ¥;-definable subsets
of N are X7 sets in the arithmetical hierarchy, i = 1,2. And the first order theories
of these structures (without constants of the structures) are decidable. The idea of
these counter-examples comes from the papers {7, 8, 9]. The problem here (keeping
in mind [5]) is to find a propriate family of sets which has no universal r.e. set and
which coincides with the family of all types of some structure. And meanwhile such
kind of results are obtained.

Let us remember some definitions from [5! which we need.

N denote the set of all natural numbers.

Let U be a subset of N**! and ¥ be a family of subsets of N"”. The set
U is said to be universal for the family F iff for any a the set {z | (a,z) € U}
belongs to the family F and, conversely, for any A from F there exists such a, that
A={z|(a,z)€ U}

We suppose that Ey, £, ... be a canonical enumeration of all finite sets of
natural numbers.

Let D; and Dy be finite sets. Then we define the relations C, =, C, as follows

Dy C Dy iff JkVe(z € D1 < z+k € Ds);

Dik={z|zeD&c L k};

ler_‘Dg iff ak(Dgﬂc == Dl);

DiCD, iff ED'(DHfD! & D/ C Dg).

Besides we define a binary operation “#” between two finite sets of natural
numbers as follows:
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Let E,, and E,, be given and k; = max{z | z € E,;}, i = 1,2. Then
Ey - E‘Ul * E‘Uz iﬁ Ey [kl = Evl and

Ve(ki+1S 2= (z€E, < z-k1—1€E,)).

Let & = (B;01,...,0,; Fi1,..., Fr) be a structure, where B is an arbitrary
denumerable set, 8y, ..., 6, are functions of many arguments on B, and Fy, ...,
F; are predicates of many arguments on B. We shall consider in the paper that all
8; (1 £ i< n)andall Fj (1 £ j £ k) are totally defined, so we have in mind only
total structures.

Effective enumeration (or r.e. presentation) of the structure ®f is every ordered
pair {«, B), where B = (N;¢1,...,¢n; G1,...,Ge) is a structure of the same rela-
tional type as 2 and « is a surjective mapping of N onto B such that the following
conditions hold:

(i) ©1, ..., ¢n; G1, ..., Gi are partial recursive;

(1) a(pi(z1,...,2a4;)) = 8i{a(z1),...,a(z,,)) for all natural numbers z,, ...,
2a; (1 S 1 S n); ,

(iii) Gj(z1,...,2s;) = Fj(a(z1),...,a{zs;)) for all natural numbers z,, ...,

Th; (1 £J& k)

We say that the structure 2 admits an effective enumeration iff there exists an
effective enumeration of the structure 2.

We shall identify the predicates with the mappings which obtain values 0 or 1,
taking 0 for true and 1 for false.

" Let £ be the first order language corresponding to the structure 2, i.e. L
consists of n functional symbols f;, ..., f, and k predicate symbols T1, ..., T}.
We suppose that there is denumerable set of variables.

If 7 is a term or a formula in the language L, then we write (X3, ..., X,) (or
shortly 7(X)) to denote that all variables occuring in 7 are among X1, ..., X,. If
7(X1,...,Xa) is a term or a formula and s;, ..., s, (or shortly s) are arbitrary
elements of B then by mo(X1/s1,...,Xs/54) (or shortly 7o(X /8)), we denote the
value of 7 in 9 over s.

Termal predicates in the language L are all conjunctions of atomic predicates
or their negations. We assume fixed an effective coding of the atomic predicates,
the termal predicates and the disjunctions of termal predicates of the language L.

Let A be a subset of N. The set A is said to be X;-definable-in the structure
2 iff for some recursive sequence {II'#} of termal predicates with free variables
among X, Y; and for some fixed elements s of B the following equivalence is true:

i€ A <= there exist j and elements ¢; of B such that '/ (X /s, Y;/t;) = 0.

The subset A of N is said to be X,-definable in the structure 2 iff for some
recursive sequence {II*/*} of {)junctions of termal predicates with free variables
among X, Y;, Z; ; and for some fixed elements s of B the following equivalence
is true:

1t € A <= there exist j and elements ¢; of B such that for any &
and for any elements p; , of B, the equality

95X /5,Y ;/t;, Z;k/p;x) = 0 holds.



Here one can see that the values of ©;-formula and L,-formula are given in the
language L., over s in . But for our purpose it is not necessary to give these
definitions and we omit them.

Theorem 1. There exists such set V of natural numbers that the set V]={v]
Jw € V(E, E Ey)} is in the class £9 of the arithmetical hierarchy and for every
v € N there ezists such w € V C [V] that E,CE,, and the family {E, | v € [V]}
has not an universal r.e. set.

Proof. Let U be subset of N which is r.e. and universal for the r.e. subsets
of N? and U, » = {y | (n,z,y) € U}.

The set V' we construct by steps, so that on step s we construct V,, such that

VoCViC...CV,C...and at theend V = |J V,. Besides we construct the
seN

sequence Vo, Vi, ..., V,, ..., so that v € V, be a AJ set relatively v, s. Thus we
ensure V' (and [V] as well) to be a £ set.

On the other hand, on step s we need some elements which are canonical codes
of some finite sets not belonging to V. For this purpose we construct set C of
prohibited elements. Again we do that on steps sothat Co CC; C...CC, C.

and C = |J C,. The set C plays only an auxiliary role.
seN
When we want to add some elements to C, we have to know if some Usz is

finite. In this case we find v such that E, = U, ;. For this aim when on some step
we don’t know if U,  is finite we put (s, z) in the set I. The set I consists of these
(s, z) for which U, , is eventually infinite set. When on step s we understand that
some U, - is finite then we force (¢, z) out of I.

Construction. Step s=0. Fix Vo, =Co =1, = 2.

Step s+1. Let m, = max{z |z € E,;}, ksy1 = min{m, | Vw € V,(E, i Ey)}
and v ,41 be the least positive integer v such that m, = k,4; Yw € V, (EytEy).
We verify if there exists (t,z;) € I, such that Vy(y € kyp1 +85+3 V y ¢ Ut z,)-
If that is so let all of them be Uy, 4, , ..., Uty,ze,,. We find wy, ..., w; such that
Ew1 = Utlﬂ»‘tli ey Ew, = Utg,xq . We fix

Cs+1 = Cs U {wls . ..,HJ}}, I;-g.l = Is \{(tlyzh): vy (ta’:xt;)} .

Let
ro41 = min{m, | E,,, ,CE, &Yw € Cs11(E, T E,)}

and v,41 be the least positive integer v such that
my =1y & Eg 1 CEy &Vw € Cs 41 (Ew Z Ey).

We denote such v by v,4; and fix V, 41 = V,U{v,41}. At the end we verify whether
there exists z such that

VeV 1V S vIY(Yy EVsp1 &y + k€ By &|Usyr 0| 2 2).
If it 18 s0 let 2,41 be the least such z. In this case we fix
Ly = L1 U{(s +1,2,41)},

otherwise I,41 = I, ;. The construction is completed.
First, it is easy to check by induction on s that Vs(v € V, = |E,| 2 2).



One could see easily that for each s the sets V; and I; contain at most s
elements, as well.

Lemma. For every s > 0 and for every finite sets E, , ..., Ep,, each of them
containing at least 2 elements, there ezists such finite set Ey that

max{z |z € Ep} £ s5+1

and for all v, Ep, L Ey x Ep,i=1,.

The pmof of this lemma one couid easﬂy do by induction on s and it is more
or less combinatorial one.

Now we can see that there exists such v that

Ey_‘_ﬂ CE, &Vwe C,,.*.l(Ew z EU).
Indeed, according to the above lemma there exists such p that
VYw € Coy1(Ey L Ey,,, * Ep) and max{z |z € Ep} £ 5+2,

i.e. vy41 exists on every step s + 1 and max{z | ¢ € Ey,;,} £ ksy1 + 5+ 3.
Obviously, for all v there exists w € V/, such that E,CEy,.

Let us prove that Vv € VVw € C(E, L E,). For this purpose it is enough to
prove that VsVv € V, Vt, < ,(Ue, £ Ey).

It is obvious that Vv € Vu V¢, < o (Ut,e, L Ev)-

Let us assume that Yo € Vi Vt; < , (Ut,e, £ Ev). On step s+ 1 we have V1 =

VoU{vs11]}. Let us remember that we chose v, such that V¢, < (Utz, T Eg,“).
Besides, we chose (s + 1,z,41) such that o

Vv € V3+1 ka < Ey (y c Ux+1,m.+1 &y+ k ¢ E, & 1U8+1=$s+11 2 2

Therefore, Us1,0,41 L Ev,i.€. Vo € Va1 ¥, < o4y (Utz, £ E).

So it is proved that Vv € VVw € C (Ew Z Ey).

Let us note that the construction is AJ, since the conditions which we verify
are I1? or %Y. Note that we define w such that E, = U, z,, and that w is a function
of s. So V is £ set and since [V] is £ set, as well.

At the end let us assume that the famﬂy {E, | v € [V]} has an universal r.e.
set. Let it be A. Denote by 4, = {y | (z,y) € A} and U, = {(z,y) | (5,2, ¥) € U}.
Then A = U, for some s.

Let us consider step s + 1. It is clear that

JzVv e Vi ka < ay(y € Us+1,x &y+ k ¢ E & lUs—H,x‘ 2 2) .
Then
Ust120p: = Azpyy € {Eu | v €[V]} and Usti,0,4, = Eyw for some w,

i.e. there exist w € C and v € [V] such that E,, C E,, which is a contradiction.
So, the family {E, | v € [V]} has not a universal r.e. set and Theorem 1 is
proved.
One can prove in the same way the following relativized version of Theorem 1.

Theorem 1'. For any set of natural numbers A there ezxists such subset V 4 of
N that the set [V 4] = {v | 3w € V4[E, C Ey]} is in the class £3[A] and for every
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v there ezists such w € V4 C [V 4] that E,CE, and the family {E, | v € V 4}
has not a universal r.c. in A sel.

Now we can prove the following

Theorem 2. There exists a structure U = (B;0; F) with unary 8, F, which
does not admit an effective enumeration but oll £,-definable in A subsets of N are
r.e. and all $o-definable in U subsets of N are X sets in the arithmetical hierarchy.

Proof. Let V be such a set which exists according to Theorem 1 and
V = {vo,v1,...}. Let in addition B be the set {bx | k,n € N}, where all bg n are
distinct, k,n € N. We define # and F as follows:

g(b};’n) == bk)n.*.l and F(bk,n) - 0 S ne E‘l}k k,n € N.

It would be useful to give some intuitive explanations about the above struc-
ture. For each fixed k we can consider the set {b; , | n € N} as a copy of the set of
natural numbers and the function F over this set as the succesor function.

If s is an arbitrary element of B then we use [s] to denote the type {k |
F(6%(s)) = 0} of the element s. Thus v € [V] <= E, is a type of some element
of B. So for any element s there exist finitely many k such that F(#*(s)) = 0 and
infinitely many k such that F(6%(s)) = 1.

In the case which we consider the language is with a single unary functional

symbol f and a single unary predicate symbol 7. We use f*(X) to denote the term
~ f(...(f(X))...), where the symbol f occurs k times in the term. If Y is a variable
and Il is a termal predicate, then we denote by [Y;II] the set

{k | T(f*(Y)) join in II as a conjuctive member }
and by —[Y’; ] the set
{k | =T(f¥(Y)) join in I as a conjuctive member }.

It is obvious that for any fixed element s € B, any variable Y and any termal
predicate II there exists effective way to verify whether [Y;II] C [s] or not and
whether =[Y; I} N [s] = @ or not. :

First, we prove that every closed consistent existential formula in this language
is true in 2. |

It is obvious, that is enough to show that every formula of the kind 3X II(X)
1s true in 2, where II(X) is a termal predicate on the form

T (/X)) & ... &T (f5(X)) &=T (X)) & ... &~T (f*(X))

a.nd{kl,...,k,}ﬂ{h,...,k}:@. *

We can consider that k, = max{ky,...,k,,{;,...,1} and let v be such that
Ey = {ky,...,k,}. We find v such that Ey CE,,. This means that for some £,
E,CE'C E,,,ie E, = E'lk; andVz(z € B/ < z+m¢€ E,, ) for some m.
Now it is easy to check that II(X/6™(bi o)) = 0, i.e. 3X II(X) is true in 2.

It is obvious now that every closed universal formula VXTI(X), where I(X)
is a termal predicate, is not true in .

Second, we show that every Tj-definable subset of N in 2 is r.e.



Indeed, let A be L;-definable subset of N in the structure U, 1. e. there exists
a recursive sequence {II*?} of termal predicates with free variables among X, Y ;
and for some fixed elements s of B the following equivalence is true:

i€ A <= there exist j and elements ¢; of B such that '/ (X /s,Y;/t;) = 0.

Let us represent the formula IT"/(X,Y;) in the form P*W(X)& Q% (Y;),
where some of them could be empty. There is an effective way to find P*¥(X)
and Q7 (Y ;) from I*/(X,Y ;). Then keeping in mind that every closed consis-
tent existential formula is true in 2, we obtain

i€ A <= there exists j such that PH(X/s) =0

& cotradictory conjunctive members do not join in @',

i.e.
i€ A < 3([X1; PY)C [s1]&~[X1; PPN [s1] = D& ...
& [Xa; P C [5a] & ~[Xa; PPN [s0) = @
& contradictory members do not join in Q7).

Therefore the set A is r.e. (57 set).

If I is a disjunction of termal predicates with free-variables among Xj, ...,
X (X), Y1, ..,V (Y),21,...,2:(Z),and s1, ..., 5, (8) are elements of B and
E,,, ..., Ey, are finite sets, then by {H;.s; Ev“--«>5vb} we denote the formula
with free variables among Z, obtained from II as follows:

a) If I ia a termal predicate and II = P(X,Y) & Q(Z), then
{1;8; Eyy,..., Bu,} = Q'(2), if

(X1 Cls]&—{X;MN[s1) =D& ... &[Xo; ) C [s5] &—[Xo; M N ss] =D

& (Y1) € Eoy &Y IO By, = @& .. &V T € By, &Y TN By, = O

and {II;8; Ey,,..., By} = T(Z1)&-T(Z1), otherwise. Here Q'(Z) = Q(Z) if
Q(Z) is nonempty, and Q'(Z) = T(Z:) V ~T(Z;), otherwise.
b) If I = (II* v II?), then

(I8, Euyy. o By} = {185 By oo Eoy ) V{585 By, By )

There is an effective way to find {H;s; Ey,,.. .,E,,b} from II, s and £y, ...,
E,,.

Now let us note that if we have a disjunction of termal predicates II with free
variables among X, Z, then the formula VZ(II{(X, Z)) is true in A over s iff the
formula {II; s} (here b = 0) is a tautology in propositional logic, taking the atomic
predicates as atoms. Here one has to keep in mind that for every atomic predicate
there is an element which it is true in 2 for and there is an element which it is
not true in 2 for. Besides there is an effective way to verify if given disjunction of
conjunctions of atoms and their negations is a tautology or not.

Now let A be Yy-definable subset of N in the structure 2, i.e. there exists a
recursive sequence {Hi’j ’k} of disjunctions of termal predicates with free variables

9



among X, Y;, Z;  and for some fixed elements s of B the following equivalence is
true: '
i € A <= there exist j and elements #; of B such that for any &

and for any elements p; ; of B, the equation
9% X /s, Y [t;, Z;«/p; 1) =0 holds.
Hence,
i € A <= 3j 3 finite sequence vy, ...,v;}.(vl EV]&... &, €[V]
&Ve({I*. 8, E, ..., Ey}isa tautology)).

Now it is obvious that A is £J set.

At the end let us assume that the structure 2 admits an effective enumeration.
Then the partial structure oA = (B;8, F), where ¢ is the same as in 2 and F is
the restriction of F over those elements which obtain value 0, admits an effective
enumeration too. Let us note again that v € [V] <= E, is a type of some
element of B in the structure 2. According to the main theorem in [5], the family
{Ey | v € [V]} has a universal r.e. set, which contradict to Theorem 1. So, % does
not admit effective enumerations.

Theorem 2'. For any A C N there exists a structure Ay = (B;6; F) with
unary 0, F, which does not admit an effective enumeration (even effective in A)
but all X1-definable in A4 subsets of N are r.e. in A and all To-definable in Ay
subsets of N are L[A] sets in the arithmetical hierarchy.

Let us note that in fact we obtain also the following

Theorem 3. There ezxists an infinite class of structures

{4 [ACN&AU, = (B;6; F)}

with unary 8, F, and decidable first order theory (without constants of the struc-
ture) such that for any A, Uy does not admit an effective (even effective in A)
enumeration.

So, the problem of characterization of those structures which admit an effective
enumeration is still open.
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