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In hm dmertatlon {1] Degtev has atudled the relatwnshlp between different
- ‘tabular degrees It is proved there that if K* = {tt 1,p,d,c,btt,bl,m}, r,R € K*,
‘r#Randris weaker than R, then every coinplete R-degree contains mﬁmtely
* many recursively enumerable (r.e.) r—degraes In connection with this he puts the
questions, whether there exist a nonrecursive r.e. bp-degree, containing infinitely
many bd-degrees, and a nonrecursive r.e. btt-degree, containing infinitely many -
r.e. bp-degrees. In [5] the first question is answered posxtxvely and in this paper

the second question is anawered positively too. Here, as in [5], somethmg more is
' shovm, namely, there exmta an r.e. btt-degree contmnmg an mﬁmte antl-cham of
r.e. p-degrees. .

In connection with Degtev s questions, mentloned a.bove, the followmg questxon
Azmses ~Let rand R be different tabular degrees such that R is not weaker than )
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Does there exist an r.e. R-degree contammg an infinite antz—cham of r-degrees. We
expect that the answer of this question is positive.
- In this paper we use N to denote the set of all natural nnmbers {0 1, 2 ..}
Let po < p1 < Ppa... be the sequence of all prime numbers and denote by M; the

set {z | Iy(z =pi.y)}, i €N..

If f'is a partial functlon, then by Dom(f) we shall denote the domain of
function f, and by Ran(f) the range of f. For any partial functions f and g by fg
we shall denote the composition of f and g, i.e. fg = Az.f(g(z)). If A is a finite
set, we shall use |A| to denote the cardinallity of the set A.

The sequence Ag, A1,... ({Ar}reN) of sets of natural numbers is said to be
recursive (r.e.) iff sois the set {(n,z) |z € A,.} The sequence o, @1, . .. ({¥r}reN)
.of unary functions is said to be total recursive (partial rec\}rewe) iff so is the binary
function Aitdz.pi(z). :

It would be useful to remind some definitions from [1, 5, 6] o

If 8 is a Godel function, then for natural numbers k,p,p1,...,px,§ We use the
followmg notations: |

{p1, ..., 28) = pplB(p,0) = k & B(p, 1) k.. &ﬂ(m k) = pil;
: - Th(p) = A(p,0); (p)i = B(p,i+ 1),
SeQCP) <> Vaz{z.<p = [Ih(z) #Ih(p) V 3i(i < Ih(p) & () # (P)i)]};
| Seqi(p) <= Seq(p)& Ih(p) =k. '

The set A is called positively reducible (p-reducible) to the set B (A <p B) iff
there exists a total recursive function f which satisfies the following condxtxons

®) Vz{Seq(f(z)) & Vk[k < Ib(f(2)) => Seq((f(z)))}}; '
Vz{z € A <= 3k[k < Ib(f(2)) & Vi(i <I{(f(z)) = (F()): € B)}.
" The set A is said to be truth table reducible (tt-reducible) to the set B iff there
,exms a total recurswe function f wlnch satisfies the followmg condxtmns : ,
o | Vz{z G A < 3kfk < lh(f(z))&ch(: < lh((f(z))x) =
o (st) WS =Dek)o € B &Seq(((F(=)a)i)] V
- | " [((f()e); ¢ B & not Seq(((f NN

Kre {p, tt}, then the set A is said to be br-reduct&le to the set B (A <b,. B)
iff there exists a natural number m and a total recumve functlon f wluch satlsfy
the condmona (r) and

Vr[IUU((f(z))x)d s ml.

Hrisa reduclbxhty, the set A is said to. be r-equwalent to the set B (A = B)

lﬁ' A <rBand B<: A
| For any reduablhty r the famﬁy d,(A) {B | B =, A}‘ is called r-degree of
theset A.
. 'The idea of consttuctmg a btt-degree which contains mﬁmtely many mutually
mcomparable p-degrees is the same as in {5] and comes from the proof of Skordev s

J
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conjecture [cf. 2, 3, 4]. Roughly speaking, we find btt-schemes which are not
p-schemes. More precisely, we shall construct an r.e. sequence {Bj}ren of sets
* of natural numbers such that the set B; has the same btt-degree as the set B; for
' any natural numbers 1 and j. At the same time, if ¢ # j, then the sets B; and B;
wﬂl be p-incomparable. For this aim we shall prove the following
Theorem 1. There ezist recursive sequences {81,p}p5~, {Qg,p}peN of total
recursive funct:ons such that for all natural numbers i and z the equwalence.s

, (*) A TEM; & 91 gg(z) € My, &:33,25(2?) ¢ M;+1,
| 2 € Miya ¢=$ 3; 2i+1(z) € M; &033i41(2) ¢ M;

hold, and such that if § and j are distinct and (P15 @)y s (Phaatls - 1)
is on arbitrary sequence of finile sequences of id or compositions of 0y 9,62 0,011,
02,1, ..., then there exists an z € N such thai the equwalmce | :

(,.,*) zEM; <= (p1z)EM& ... Lo (z)EM; V..
(P-r41(z) € M, &. &,W*(,,) € M,) | »
does not hold. | -

Proof. The construction of the sequences of functions {01,,},€N, {ﬂg,p}pen we
~ shall perform by steps. At step s we shall construct finite approximations 0} o of

Okp, k =1,2; p €N, such that 8, C g+t and 03 p(2) is a primitive recursive
functlon (p r.f. ) of the variables s, p, z, i = 1,2. At the end, we shall define

We need some auxﬁla.ry deﬁmtxons and lemmas : :
Definition 1. Let fi 0, f2,0, f1,1, f2,1, . - be an infinite sequence of unary func-
tional symhbols. Terms are defined by means of the followmg mductwe clauses:
(a) Every symbol is a term; ~
(b) ¥ 1y and 7, are terms, then (1‘11'3) is a term.
We shall assume that there exist effective codings of all terms, of all finite
sequences of terms, and of all finite sequences of finite sequences of terms.
~ Definition 2. We define the length l('r) of the term 7 as follows:
(a)l(fb;)--l k=12,ieN;
© (b) f 7= (rym), then 1(?‘) =l(n)+ l(‘fh)
~ Type and anti-type of a term are deﬁned s:multaneously by means of the
following inductive definition: |
Definition 3. .
+ (a) 7= f1,2;, then 7 has type § — i+ 1; V
(b) f r = fi,2i41, then 7 has type i + 1 — i; ' .
(¢) H 7= f2,2, then 7 has anti-type i — i+ 1; S
(d) If T= Ja,2i41, then 7 has anti-type i +1 — i; ‘
(e) If T = (r1mp) and 7, has type i — I: and 7; has type (antl-type) k — J, |
then  has type (anti-type) i — j. |
We say that 7 has type (anti-type) iff 7 has type (antl-type) i—j for some
na.tural i J; otherwxse we say that 7 has not type (autz-type)



Deﬁmtmn 4. Let D, (N 91 0 93,0,01 1, 03,1, ) bea paxtml s#ructure The
valne 9 of the term 7 in the structure A we define as follows: | |
(@) Ifr=fa; then g =0, k=1, 2; ieN;
(b) If 7 = (rir?), then ry = rird. « |
Lemma 1. Let A = (N;6; 0,020,041, 1,02 1,...) be a parisal afractum such
~ that 6,4, 03, are ﬁn:i: functmm and for clf uatsral numbers § and z the followmg :
- conditions hold: , S
- (a)zeM nDom(01 %) => 0y, 2i(-¢') € M;—n, |
- (b) 2 € My N Dom(By,3i41) => 01,2i41(2) € Mi;
~ (¢) z € MiNDom(f3,2) => 032:(z) € Miy1; | |
(d) =z € M43 N Dom(f32i41) = 03,3041(2) & Miy1; .
() z € [Dom(fh,3) N Dom(03,2:)} \ M; = 01,26(z) & Miy1 V 92 24(2) € Mi+1,
fze [Dom(ﬂi,mx) ADom(fa241)]\ Mivs =
 ban(z) ¢ M;v 92,2i+1(3) € M;.
Then for every term T which lms type (anti-type) to — jo and for every mrtwl
structire % = (N,Qi 0,9; 0,9'1 1,0’2 13 ) QﬁCh ihat .

B4 is an extension of 4, ~ ;

0; ‘ sa.txsﬁes the conditions (a)~(f) (when we replace O instead of 9;,,), |
» | ' , k=1,% ieNand

& € Mc, n Dom(rw)

it holds r (20) € Mj, (rw(z0) & Mj,). ~
Proof. By induction on the length l(r) of the term T. :
If 6,0, 83,0, 01,1, 03,1, ... are total functions, then the conditions (a)-{f) of

Lemma 1 ensure the eqmv&lences (*).to be true for all na.tural numbers & and z.
- Lemma 2. For every partial structure

A= (N 91 0:020:61 1192 1: )s .
for ““ naiurul “‘mhm ’19 ey B3 .71: ey JU By ey B YLy ey w: fOf wery»

S seqnencf: of terms 71, ..., 7 ascb that t&e followmg nine properties kold

‘1) 845, 03¢ are ﬁmte functwns, i€N;
*2) For all natural numbders i and = the siz cond:t:om (a)—(f) of Lemma 1‘ bold
" 8) If T* has typc:-—*;, thenis# jorj= ;g, o
4) If 1* has anti-type i — 5, then i # j orj# jp; .
S)Ifl<p,q<l r'r"-.'r’ z,,...z,, uadr’haatype:wj, tlmu;é;,, or
i= st -
6) Ifi1gpgsl = r' zp = z,, and b laaa an autz-type i — g then

i#dp orj £iv - | IR
7) 25 € M;, \ ( Y Dom(al,.)) (gﬂ Dom(6)) [, 2=1,.... 5 |
) 3 i L I N

IR
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9) Ifz, = z4 and P =1 then h= yg, ‘
 there ezists o partial structure A' = (N; 0] ,,0 0,0, 1,92 - ) such that AP
"~ a finile exlension of Oy ;, 04 satisfies the caud:twns (a)~(f), k= 1 2 i €- N
zp € Dom(7) and 1&;(3,,) =y, p=1,. RN |
Proof. By induction on max (I(1?),... I(r')) o -
First, let max (I(r1), .. I(r’ )) =L Then 7 has either a type or an antl-type
. If for example 1?7 = fy 3, then ip ;é i or jp = i+ 1, and if for example 77 = f3 2,41,
thens—f-l:;éz,a.ndjp;éa,p.,l A Wecanassumethatxfp#q,l<p,q<l
‘then 77 £ 7.
I fog = 1%, “then we define 0 g(x,) Yp and 0;,(:) 9;,,‘(.1:) forz # 25,
and if foi € {r%,..., 7"}, then 8} ; = Ori. It is easy to check that the structure
A = (N;0],0,05,0:01 1,021 - Y is the needed. |

Let us assume that Lemma 2 is true whenever max (I(r1), ..., (")) € n,.a.nd
AP be terms such that max (I(r!), ..., (")) = n+1. We consuler all thosep
euch that zp = z1 and P has the same last symbol as 1;. For the sake of simplicity -
we can assume that z; = 23 = --- = z; and 77 = 7P fy;3 for some term 77

o= fiap=1,...,1 Ifforsomep,1<p<l ™ = fzfg,thenwedeﬁnef»

8 2i(zp) = yp and 6 ,,(z) 01,3i(z) for z #.2p; 0} ; =635 for (k,§) # (1, 23). .
If r* = P f 3 for some term 1'”?, p=1, l then let z" be a natura.l
| number sa.tisfymg t.he condxtz 8t : :

= g g {a,.. ,z:,m, ’m} U ( U Do;n(@z,:e)) ( U Dom(ﬁz 3'))

- — if 21 € M;, then :B”E.Mg.n, o " e
— if 21 ¢ M;, then 2" ¢ M, for snch ag that r"" has the last symbol which
has the type or anti-type ¢ — r for some r.

We define 07 ,(2;) = 2", 2{ = -+ = zf = 2" and 9{’ ,,(z) = 61 z,(z) for
z # z1; 05 = by g for (%, 7) :,é (1, 21) 'I‘hen for the structure A" = (N; 9’{’0,9'2,0,
9;1,921, ), for the natural numbers §1, ..., @} J1, ...y J1} Tiy .e:, Ty

Yis .., 41, for the terms 7{', ..., 7{’ the condxt:ons of Lemma 2 are satlsﬁed and

. max (l(r”’*), (P §n. Then, according the assumption, there exists such a

structure A = (N; 6 4,65 D,B{ 1204 1,-..) which we need, and Lemma 2 is proved.

Let us return to the proof of the Theorem 1. |

At atep s we shall define & partml structure A* = (N 91 0»95 0 3{ 1,8, 1or ),
and at the end we shall deﬁne the structure %A = (N; 91 0:832,0, &1 1y 93 Lsees).

- By the even steps s = 2n we shall ensure that the functxon By is tota.l i: =1, 2

| zeN By the odd steps s-2n+1 ifn= (no,t hi#s and n, is a number of
the finite sequence (71,...,71), .. ('r"'--*‘H ) of finite seqhiences of terms, .
and ¢, is the value ofthe term 'rP, p=1,. I;,, we shall find an z such that the

“equivalence (#+) does not hold i e. for sorme z we shall satlsfy at Ieast one of the

.. following two conditions:

(1)z€Mi [(‘Px(ﬁ’)ﬁij .:’V «s"h(“)¢.Mi)&’*“&‘ T
o (ean@EM VLV @) €M),
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i)z ¢ Mi& [(m(s) €Mk .. Lou(s) €M) V.

. (I (x) € M; .- &y (3) € MJ)]
Let us describe the constructlon

Case L.s=2n. -
We define 6} ,(z) = 6} ,(z) for z ;6 n and: |
. k ; , 1f ne M ,

. . - , ‘ iy ianM 73
if n ¢ Dom(61 3i+1), then 61 2i41(n) = {:+1 otherwise;

if n ¢ Dom(8a.), then 63,(n) = {‘:‘.’H, € wf; |

ifng Dom(Bg,g,.H), then 02 2:+1(ﬂ) {i‘fh iﬁ;ﬁ?h
| Ca.se II s=2n+1. .
| If not Seq(n) or (n); = (n)g, then we do nothmg ie. 0y = 9""1 k=12

p € N. If n = (ng,i,j) and i # j, let ng be the number of the ﬁmte sequence
of finite sequences of terms (r*,...,7"), ... (r’**“’l ‘ 'r‘*) We consider two
aubcaaes ) ’

Subcase A. There exists a natural number m, 0Em< k such. th&t if

B +1 € 7,9 £ lm41 and 777 = 74, then for some term 7 has a type (anti-type)

k—lthenk#jorl=j(k#j orl;éJ) We can assume that m.= 0 and I, = 0.
~ Let ip be an integer such that ip # i and i # ¢/, and 7P has a type or antl-type
—-»J'foraomej ,18p < 11 Letma.ddmon

*

i == i, =do, i=-=j,=j o
Cm=es s:; = 20 € Miy\ [( U Domtoy3h)) u ( U Do_m(a' g;))]
. - ieN . T ieN : ,
€M\ [(g Dom(63))) U ( U mesgi))}.
It i 1s eaay to check that the stmcture A= (N Bio 050,011 05 | ), tl;e

natural numbers iy, ..., i3 51y - Jhas zl, ceny Ziy m, ieey Wy, the terms ...,
rh satlsfy the condltmns of Lemma 2. Therefore, there exists such a structure %°* =

(N 01 o 2 0s 31 150 2 13+ ) th&t 9{ satisfies the Condltlonﬁ (8)"({) (lfwe replace 0; P

instead of 9;,,,) k=1, 2 pEN and Hh8(zp) =4 € M,, =1,. - b It is.clear
that this structure can be defined effectively.

‘ Subcase B. Assume that subcase A does not hold.

Then we do nothing, i.e. 8 ; = 67 k=1,2, peN

The construction is completed.

It is easy to check that the following lemmas are wrrect

Lemma 3. 0, is a tolal recursive function, k= 1,2, p €N.

Lemma 4. 0 , satisfies the equivalences (at), E=1,2,peN.



Lemma 5. Ifi # j and (p1,.., @1,), -y (Pluors1,-..,91,) i an arbitrary
scqucnce of finite sequences of id or compositions of the ﬁmctmns 010, 02 05 011,
02,1, ..., then there ezists an z such that (+) does not Izold

The proof of Theorem 1 is completed.
Let o i(2) = (i, k, z), k-l 2; i,z €N, and

No=N\ (( U Raa(pr) U ( U Ran(ﬂaz,z))

_$eN - ; ieN

Deﬁmtxon 5. Let { A,,} bEN be a sequence of dzsjomt subsets of No. We deﬁne

the sequence {[A]}, N of disjoint sets of natural numbers by the followmg rules:

(a) i p € A;, then p € [A;]; ‘

(b)E1<1<2ieN,pe[4:] and 01:(k) = n, then goz,,(p) e[ n)-

“Leramia 6. If {AkheN is a-recursive (r.c.) sequence of disjoint subsets of
No, then {[Ax]}reN 18 a recursive (r.e.) sequence of disjoint sets. :
- Lemma 7. For every nalural number z, either z € Ny or there ezists an
effective way to ﬂnd a function @ which is a composition of the functtons 901 0
$3,0, P1,1, 2,1, ..., and a yENg. such that p(y) ==

Proof. Using mduct;on on |z|, where |z| = 0 1f z€ No and ' |(k, e, =+ 1 |

one can easily verify that Lemma 7 is true.
Lemma 8. Let {A Yien be @ seguencc of disjoint subsets of Ny. Then

(a) For any function p, which is a composition of the functions @1 0, Y20, ¥1.1,
©2,1, - .-, and for any natural number i there exists such a k that p([Ai]) C [A:].

(b) For any function ¢, which is a composition of the funct:ons #1,0, 92,0, 1,1,

$2,1,.- .., and for all distinct naiuml wmbéra 5, J therc ezists an effective way to
verify whether or not p([As]) G [4;]. |

The proof is immediate. ~ ;
From now on if {A;}xeN i8 a sequence of disjoint subsets’of No, then we

denote by Bg the set U [Ai]. Ttis obvmus that 1f {Ak}keN is an r.e. sequence, o

SEM:.
then {Bk}beN is r.e. too. . '
. Lemma.9. If {Ak}keN w a sequcnce of d:sgomt ambseta of Ng, then the
foliomng equwalences hold for ang natural mcmbers i aud z .

z€ Bs’ = ¢ ‘2-'(23) € Bi+1 &902 m(&‘) ¢‘3i+1; |
z e B;+1 = p13i41(2) € B; &?2,314-1(3?) € B;.

Pmof ‘This lemma immediately follows from Theorem 1, Lemma. 8 a.nd the
deﬁmt.mns of Ax, By, k € N.

Corollary. If {As}ieN i a séqsence of dzs;omt subsets af No, t}aen tke set

.B; is btt-equivalent to B; for all natural numbers i and j.
Lemma 10. If {Air}ieN is o sequence of disjoint subsets of N, aad i ;é 7

'then Jor every sequence (Yu1,...,%1,), ..., .y (¥1,...,%,) of finite sequences of id or

67
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| composttwns of the ﬁmciwm qp; 0y 9?2,0, 1,1, P21, - ., there ezists an effective way

o ﬁmﬂ such ﬂmt for every z € A; the cquwaieuce

z € B; m(qb;(z)EB,& &,gb;,(z)eB,) V.

: (* * *) (V’l;-;-}-l(@) € Bf & & Yin (z) € B:) :

dm uoi hold o
~ Proof. This lemma follows again unmedxa.teiy from Theorem 1 Lemma 8 and |
the definitions of Ay, By, keN. ‘

Let No = N; U Nz, where N; and N, are infinite dls,lomt recursive sets and |

 Pisa monotomcally increasing functxon such that Ran(r' ) N; and r(n) =

e

rin(n+1)/2+n].
| Addmonally, let @ be a pa.rtxal recursive functzon (p T f ) whxch is universal
for all unary p r.f. Let <I>. = 4\::: Q(e, z) a.nd Q, , be a ﬁmte p .I. approx:lmatlon of
fl‘,, i.e. :
e Q,(t) Cf z€ Dom(Q,)&Q.(z) is computa.ble |
Q,’.(z) { ' : in Ieus than s steps, o
undeﬁned othervme

. Theorem 2 There c:mta an r.e. btt»degm wh:clx contama an mﬁnﬁc anti-
" chain of r.c. p-degrees. =~ - B
" Proof. In order to construct a btt-degree contammg mﬁnxtefy many mutually
incomparable p-degrees, we shall construct an r.e. sequence {Ax}yeN of disjoint
subsets of Np such that if i ¥ j, then B; and B; are p-incomparable. Then it will
follow from Corollary to Lemma 9 that the set B; has the same bttvdegree as the
set Bj ‘Therefore, the proof will be completed.

o We construct the sets {Ar}seN by steps, fbmldmg a finite apprommatlon A,,.

arfA,, i € N, on step's. (We shall denote the set LL A;,,,] by Bi,.)

. At step s, if (8) = (e, i,j) and i # j, our aim is to satwfy the condxtaon that
the function @, does not p-reduce B; to Bj, i.e. bo‘ﬁnd such an 2 € Dom(%®,) that

" Seq(®.(z)), Vk{k < lh(@.(z)) = Seq((@,(z))g)] and a.t least one of the follomng -

~ two conditions is satisfied:
(i) = & B; & 3k{k < Ih(®(2)) &VIll < lh((@,(a:)):,) = ((Qe(z));)z €Bll.
(i) z € Bi & Vk{k < In(®e(2)) => [ < Ih((Pe(2))s) &((Pe(2))i)r € Bjl}-
- For this purpose, on step s, if 'we find such an'z, which satisfies (i), then we
would like to put it outmde B,, and if we ﬁnd an z which aatlsﬁes (ii), then we
weuldhketoputitm& ‘
- . Katsteps zis placed in nome set A; in order to satwfy exther (1) or (u), then
~ we create an (s)o~mqu:mmcnt z. In this case, if satisfies (ii), then we shall need
also some elements y1, ..., yp Which do not belong to any set [A:]. So we create
a negatm (a)g-reqmmmeui {1s--.,4p}. To guarantee that, for any e, such that
'®, is total and satisfies the conditions W{Seq(@,(z))] and Vk[k < 1h(®.(z)) =
Seq((®+(2))s)], and for every §, 7, such that i # j, there exists an 2 satisfying
~ either (i) or (n), we ahnll use 8 pnonty a.rgument 80 tha.t the smaller (8)0 wﬂl have
priority. SR S ‘



- Ifzis an (8)o-requirement and {y;, . .., yp } is a negative (8)o-requirement creat-
ed at step s, and till step ¢ the condition (ii) which is satisfied at step s is not injured,
~ then we shall say that the (s)g-requuement and the negative (s)o~requ1rement are
aclive at step t.

If an (s)o-requirement z satisfies (i), then we call it active at every step t>s.

- If an (8)o-requirement (a negative (s)g-requlrement) created at step 8 is active -
at every step ¢ > s, then we say that it is constant. ‘

Now we can describe the construction of the sequence {At}reN-

Step s=0. Let N3 = {ao, a1, .. .}, where ag < a1 <: ..; we take 4; o = {a;}.

" Thus it is ensured that A; is nonefnpty.

Step s> 0. If not Seq((s)o) or [Seq((s)g) #nd ((8)0)1 = ((8)0)2], then we do

o nothing, i. e. we take Aiy = A,,...;, t € N, and do not create any reqmrements

If Seq((s)o) and (.s)o = (e, i,J), where i # j, we verify whether an active
(8)o-requirement exists. If there exists such a requirement, then we do nothing.,

If such a requirement does not exlst then we venfy whether there exists an
z € N, such that : |

z> r((s)é), z€ Dom(@, .), Séq(ég(z)),

Vb{k < lh(‘be(z)) => Seq((@a(z))b) z g U Ai,a-l: |
,; : i€eN :
and z does not belong to any active negatwe requirement, created at astep t < 6
such that (¢)o < (8)o. If such an & does not exist, then we do nothing. ,

Otherwise we denote by z, the least such z and create the (8)o—reqmrement :
Let : . , | .

P(z,) = ((zls :zlx) ey (Bt #15 0 - rzh-»: 'I’P(”P) = zp’

‘ whene either ¢, is a composition. of the functions $1,0, ¥3,0) P1,1; P21y ++., OF

Y =id, 1 £ p £ Ik, and y,..., 41, € No. We verify, whether there exist natural

numbers z;,, ..., z, such that %, € Bjs-1, Ip...l +1g4 8 Ip and z, 9é Y, p=1,
., k. If yes, then :

Apﬂ-‘ — AP”;_]_ U {2,} Al s - A] ._1 fOI I # p‘, IE N

and 1f {y,,, ,y..}\ ( [%‘Az,,..ix U .{z,}) is nonempty, we treate a negative

(s)n-reqmrement |

{yim ’yﬁ}\ ( U AI -1 U {3.})
: ieN

Otherwise we cons1der aﬂ those p, 1 £ p £ k, such that there does not exist an tp
such that z;,  Bj,-1, lp-1 +1 i, § I,, and s # %, Let us assume in this
- case that all.these p are 1, ..., ¢ and fg41, ~.., $ are such that z;, ¢ Bj,_1,
Cbha+18i 5k, #z.,p.—.q-}-l , k. Foranyp, 1spsyq weconmder
all those § such that b1 +1518], and Y% = z,. We assumne that for any p,
l1sps q,.a.llthoaet such thatlp_1+1 <ig l and y; = z,, are l,,..1+1 b bp.
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A’"Acoordmg to Lemma 10 there exmta an | such that if p € Az, then the equxvalence '
(» = *) does not hold if we replace k by ¢. We define

Aie = Ape-1 U {2,} and Ap: = Apu-1 . for p 9‘“ PE N,

and we crea.te a negatwe (3)g-requ1rement ‘.

| ‘ ‘ - , {yiﬁ-u ayiu}\ (U As-a U {zl})

teN

o R

B if'{mﬂ.u ayi).}\ ( U A!,t—l U {38}) 18 nonempty

, Fmally, we ta.ke A‘ = |J Ais.
2eN

Obvlously, thm construction is effective, hence the sequence {Ak}keN is r.e.
Moreover, {Ai}ieN i isa sequence of dm;omt anbaets of No, since one element may
be placed in only one A;.
+In order to show that this constructmn works we need some lemmas Let

A= {J A. : ‘
ieN )

" Lemma 11. Tbc set Ny \A is mﬁmtc |

Proof. Let (N1)a = {zlzeN1 &z < /(n)}. We prove that the set (Ny)r(n) N

(N1 4) contains at least n elements or, equivalently, [(N1)rny) N A} £ n.(n +1)/2
~Indeed, for every (e,i,j), i :# j, we have no more than (e,i,5) + 1 (e,i,j)-

reqmrements and each of them is greater than r((e,f,j)) and belongs to some

AC A. Therefore, in (N1)r(n).N A there are only m-requirements for m <, i.e.

\ in (N;),.(,,) N A there are no more than 1 4+2+.--4+n=mn. (n+ 1)/2 elements '
Lemma llxaproved . « R ;
Lemma 12. TkesctN;\Aaummme . - -
~ Proof. Let us assume that there exists qset C C N1 \A w}uc.h is mﬁmtge and

re a.udzoeNz Obﬂously, R ‘

T - f(.e)‘ {un:eﬁned otherwwe 2

| ‘lsa.prf Letebeanaturalnumbersuchthatf @e, andletzel)om(f) such o

"+ that z > r({e,0, %)) and s is the least & which satisfies the equality ®. ,(z) = f(z).

- Themzmustbean(eﬂ1}-mquuementmatedatsomesbeps>sgsuchthat :
(8)o = (e,0,1),i.e. C N A is nonempty Thls contradicts the mumptmn There- ,

fore, Ni\ A is immune. . |
Lemma 13. For tmy naitml uumber e aucb tfmt N1 (- Dom(@,_) cmd

Vz{z ENy = Sf"q(‘lla(m))&""”*"c [k < I(®4(2)) = Seq((®.(2))a)]},

md for all distinct § i, j, there ezists a consiant (e, i, )-«mqmmmgti R B
Proof. Assume t;hat thae 1: ‘no constant (c, i ;}-reqmrement where . ;é ;, |
N; C Dom(@,) a.nd R

o ‘ Vz{z eN; = Seq(@a(x))&Vk[b < m(«m(z)) » Seq((*l’e(a:))g)]}

v
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fWe ﬁnd an sp such that if s 2 so- and (31,31,13) < (e, z,J) then every (el,zl,}l)-
* requirement is already created. Moreover, let z € Ny \ 4, z > #({e, 1, 7)) and s be
such that s 2 sp, ®, ,(z) P.(z) and (8)9 = (e, 113) Then on step 5 a constant
(e, 1, 5)- requuement z is created.
Lemma 13 is proved. ‘
Now we shall prove Theorem 2. Let us assume that B; < B; and § ;é Jj-
Therefore, there exists a total recursive function f such thet.

Vz{Seq(f(2)) & VE[k < Ih(f(2)) = Sea((f(z)u)]},
and R SRR
Vz{z € B; = 3k[k < Ih(f(2)) & VIl < I((f(=))e) = ((f(z)e) € By)]}-

Let ¢ be an index such that ®. = f. It follows from Lemma 13 that there exists a "
constant (e, , j)-requirement z, created at step 5. Then z, € Ny,

‘(23) 3,((31‘;-..,3“)‘5... (23,,__1.{..1,... 21,.)), ‘ t[)p(yp) = 2p,

where 9, is either a composltwn of the functlons ©1,00 $2,00 P1,1; P2,15 vy OF
Yp=id,p=1,..., 4 and p, ..., %, € No. ‘We assume that there exist natura.l
m;mbers Bigy «on z.,, such that z., € Bj,-1, b1 +12 14, £ lp and z, # yi,, J
p=1, ...,k Thls contradicis the fact that the function f p-reduces B; to B;.

Therefore, there exists a p, 1 ¥ p £ k, such that there does not exist ip such that
%, & Bjs-1, b1 +18 ip % I;, and , # pi,. Let all those pbe 1, ..., ¢ and
zi, € Bjs-1, lp-1+1 £ < ip S < I , and z, # Yiyr P = q+1 k. For the sake of
simplicity we shall assume that m =g, = Z,. Then m 15 easy to check that
z, does not satisfy the condition (p) if we replace z with z,, A with B;, add B

with B;, which contradicts the fact that f p-reduces B; to B;. |

Theorem 2. has been proved
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