ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 1 — Математика Том 86, 1992

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE :
Livre 1' — Mathématiques
Tome 86, 1992

A GENERALIZATION OF THE LEVI-CIVITAE CONNECTION ON RIEMANNIAN MANIFOLDS*

IRINA PETROVA

Ирана Петрова. ОДНО ОБОБЩЕНИЕ СВЯЗНОСТИ ЛЕВИ-ЧИВИТА НА РИМА-НОВЫХ МНОГООБРАЗИЯХ

Пусть M римановое многообразие с метричным тензором g. Линейная связность $\widetilde{\nabla}$ на M, обладающая свойствами

$$\widetilde{\nabla}_{X}Y - \widetilde{\nabla}_{Y}X - [X, Y] = 0,$$
 $\sigma_{X,Y,Z}(\widetilde{\nabla}_{X}g)(Y, Z) = 0,$

называется Обобщенной связностью Леви-Чивита для g. В статье даны примеры таких связностей. Одна из них это (0)-связность Картана и Схоутена на Ли-группе для каждой левоинвариантной метрики. Описана связь этих связностей с метричными связностями. Доказано, что на каждое римановое многообразие существует Обобщенная Леви-Чивита связность, которая не является Леви-Чивита связностью.

Irina Petrova. A GENERALIZATION OF THE LEVI-CIVITAE CONNECTION ON RIEMAN-NIAN MANIFOLDS

Let M be a Riemannian manifold with a metric tensor g. A linear connection $\widetilde{\nabla}$ on M with the properties

 $\widetilde{\nabla}_{X}Y-\widetilde{\nabla}_{Y}X-\left[X,Y\right]=0,\qquad\underset{X,Y,Z}{\sigma}\left(\widetilde{\nabla}_{X}g\right)\left(Y,Z\right)=0$

is called a Generalized Levi-Civitae connection for g. In the paper are given examples of such connections. One of them is the (0)-connection of Cartan and Schouten on a Lie group for any left invariant metric. A relation is described between these connections and the metric connections. It is proved that there is a Generalized Levi-Civitae connection that is not a Levi-Civitae connection on Riemannian manifolds.

^{*} Research partially supported by the National Science Foundation at the Ministry of Education and Science in Bulgaria under contract No 18 MM/91.

1. GENERALIZED LEVI-CIVITAE CONNECTIONS. EXAMPLES

Let M be a Riemannian manifold with a metric tensor g. That means M is considered with the tensor field g of type (0,2), which has the properties:

1) g is symmetric, i. e. g(X,Y) = g(Y,X) for $X,Y \in \mathfrak{X}M$;

2) for a point p of M and for $X \in \mathfrak{X}M$, such that $X_p \neq 0$, g(X,X)(p) > 0 holds.

The metric tensor g is also called a (Riemannian) metric on M.

If M is a Riemannian manifold with a metric tensor g, there is an unique linear connection ∇ :

1) ∇ is symmetric, i. e. $\nabla_X Y - \nabla_Y X - [X, Y] = 0$ for $X, Y \in \mathfrak{X}M$;

 $2) \nabla g = 0.$

 ∇ is called a Levi-Civitae connection for g (see [1]).

Notations. Let M be a Riemannian manifold with a metric tensor g, ∇ —the Levi-Civitae connection for g. If $\widetilde{\nabla}$ is a linear connection on M, the symbols $\sigma\widetilde{\nabla}g$ and $\sigma g\widetilde{\nabla}$ are used for a denoting

$$\underset{X,Y,Z}{\sigma}\left(\widetilde{\nabla}_{\!X}g\right)(Y,Z)\quad\text{and}\quad\underset{X,Y,Z}{\sigma}g\left(\widetilde{\nabla}_{\!X}Y,Z\right).$$

If t is a tensor field of type (1,2), we denote by the symbols gt and σgt the tensors

$$g(t(X,Y),Z)$$
 and $\underset{X,Y,Z}{\sigma}g(t(X,Y),Z)$

correspondingly.

Definition. Let M be a Riemannian manifold with a metric tensor g. A linear connection $\tilde{\nabla}$ with the properties:

1) ∇ is symmetric;

 $2) \ \sigma \widetilde{\nabla} g = 0,$

is called a Generalized Levi-Civitae connection for g.

It is well-known that all linear connections on M are given by $\nabla + T$, where T is a tensor field of type (1,2).

Proposition. The connection $\widetilde{\nabla} = \nabla + \widetilde{T}$ is a generalized Levi-Civitae connection iff \widetilde{T} is symmetric, $\sigma g \widetilde{T} = 0$. We have $\widetilde{\nabla} \equiv \nabla$ iff $\widetilde{T} = 0$.

It can be proved by trivial calculations.

Remark. Let s be a symmetric tensor of type (1,2). It is easy to check that the conditions:

1) $\sigma gs = 0$;

2) $g(s(X,X),X) = 0, X \in \mathfrak{X}M$, are equivalent.

We propose two examples of Generalized Levi-Civitae connections.

Example 1. Let M be a Riemannian manifold with a metric tensor g, for which exists $E \in \mathcal{X}M$, not identically equal to zero, globally defined on M. Then

$$\widetilde{\nabla} = \nabla + \widetilde{T}$$
, where $\widetilde{T}(X,Y) = 2g(X,Y)\xi - g(X,\xi)Y - g(Y,\xi)X$

is a Generalized Levi-Civitae connection, which is not Levi-Civitae connection.

It is so, because \widetilde{T} is a symmetric tensor, $\widetilde{T} \not\equiv 0$, $g(\widetilde{T}(X,X),X) = 0$. By the above remark and the proposition it follows that $\widetilde{\nabla}$ is a Generalized Levi-Civitae connection, $\widetilde{\nabla} \not\equiv \nabla$, and $\widetilde{\nabla}$ has the following properties:

1) if $X,Y \in \mathcal{X}M$ are such that X, Y, ξ form an orthogonal triple, then

 $\widetilde{\nabla}_{\mathbf{X}}Y = \nabla_{\mathbf{X}}Y;$

2) on the FM-submodule of $\mathfrak{X}M$, which is orthogonal to ξ , we have $\widetilde{\nabla} a = \nabla a = 0$.

Example 2. Let G be a Lie group and S be the algebra of the left-invariant vector fields on G. From the theory of the Lie groups is known that G is parallelizable and it has bases of left-invariant vector fields. Hence, we always can construct a Riemannian metric tensor on G. Let we recall that a metric tensor g is left-invariant iff it is invariant for the left translations. It is well-known that a metric g on G is left-invariant iff for an arbitrary chosen base $X_1, \ldots, X_n, X_i \in S$,

$$g(X_i, X_j) = \text{const.}$$

Let X_1, \ldots, X_n be a base on $G, X_i \in \mathcal{G}$. We consider the linear connection $\overline{\nabla}_X Y = X(\varphi_i)X_i, \quad Y = \varphi_i X_i.$

This connection is independent on the choice of the base of left-invariant fields and it is called a left-invariant connection. It is proved in [2] that ∇ is complete, i. e. its geodesics can be continued, being defined for all real values of their parameters.

Let $\overline{\tau}$ be the tensor of torsion for $\overline{\nabla}$. We consider the symmetrization of $\overline{\nabla}$:

$$\widetilde{\nabla} = \overline{\nabla} - \frac{1}{2}\,\overline{\tau}.$$

It is also complete, because the geodesics for the both connections coincide. ∇ is introduced by Cartan and Schouten, and it is called (0)-connection (see [1] or [6]).

Proposition. Let G be a Lie group:

- 1. For each left-invariant metric g the equation $\sigma \nabla g = 0$ holds (i. e. ∇ is a Generalized Levi-Civitae connection for any left-invariant metric).
 - 2. ∇ is the unique linear symmetric connection on G with the property 1.
- 3. For a left-invariant metric g the connection ∇ is the Levi-Civitae connection iff g is right-invariant.

Proof. 1. Let g be a left-invariant metric. Since $\sigma \nabla g$ is a tensor field, to check $\sigma \nabla g = 0$ it is enough to prove it for the elements of a base on G. G admits a base of left-invariant vector fields, so it is enough to prove $\sigma \nabla g = 0$ for left-invariant vector fields.

Let $X, Y, Z \in \mathcal{G}$. We have

$$\begin{split} & \overline{\nabla}_X Y = X(\text{const}).Y = 0, \\ & \overline{\tau}(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y] = -[X,Y], \\ & \widetilde{\nabla}_X Y = \overline{\nabla}_X Y - \frac{1}{2} \overline{\tau}(X,Y) = \frac{1}{2} [X,Y], \\ & \left(\widetilde{\nabla}_X g\right)(Y,Z) = X \circ g(Y,Z) - g\left(\widetilde{\nabla}_X Y,Z\right) - g\left(Y,\widetilde{\nabla}_X Z\right). \end{split}$$

If $X, Y \in \mathcal{G}$, then g(X, Y) = const. Hence

$$\left(\widetilde{\nabla}_{X}g\right)(Y,Z)=\frac{1}{2}\big(g([Z,X],Y)-g([X,Y],Z)\big).$$

Now it can be checked easy that

$$\underset{X,Y,Z}{\sigma}\left(\widetilde{\nabla}_{X}g\right)(Y,Z)=0,$$

which proves 1.

2. Let $\hat{\nabla}$ be a linear symmetric connection on G such that for each left-invariant metric g

 $\sigma \hat{\nabla} q = 0.$

Let $X_1, \ldots, X_n, X_i \in \mathcal{G}$, be a base on G. Then

$$\hat{\nabla}_{X_i}^{X_j} = \Gamma_{ij}^k X_k, \quad \Gamma_{ij}^k \in FM.$$

We shall prove that Γ_{ij}^k are defined uniquely and hence $\widetilde{\nabla} \equiv \widehat{\nabla}$. Let we consider only the left-invariant metrics, for which the base X_1, \ldots, X_n is orthogonal, i. e.

$$g(X_i,X_j)=0, \quad i\neq j.$$

Let Ω is the set, formed by them. From the identity $\sigma \hat{\nabla} g = 0$ we obtain after some transformations:

 $\sigma_{i,j,k} \Gamma_{ij}^k g(X_k, X_k) = \sigma_{i,j,k} g\left(\hat{\nabla}_{X_i}^{X_j}, X_k\right),$

for each $g \in \Omega$ and each i, j, k from 1 to n. We set

$$F_{g(i,j,k)} = \underset{i,j,k}{\sigma} g\left(\hat{\nabla}_{X_i}^{X_j}, X_k\right), \quad g_{kk} = g(X_k, X_k).$$

Then

$$\Gamma^k_{ij}g_{kk} + \Gamma^i_{jk}g_{ii} + \Gamma^j_{ki}g_{jj} = F_{g(i,j,k)}.$$

- 2.1. Let i = j = k. We have $3\Gamma_{ii}^i g_{ii} = F_{g(i,i,i)}$. That means Γ_{ii}^i are uniquely defined.
- 2.2. Let $i \neq j \neq k \neq i$. We consider three left-invariant Ω -metrics g^1 , g^2 , g^3 , for which

$$\begin{pmatrix} g_{kk}^1 & g_{ii}^1 \cdot g_{jj}^1 \\ g_{kk}^2 & g_{ii}^2 & g_{jj}^2 \\ g_{kk}^3 & g_{ii}^3 & g_{jj}^3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2 \end{pmatrix}.$$

Then we have

$$\begin{split} &1.\Gamma^{k}_{ij}+1.\Gamma^{i}_{jk}+1.\Gamma^{j}_{ki}=F_{g^{1}(i,j,k)},\\ &1.\Gamma^{k}_{ij}+2.\Gamma^{i}_{jk}+1.\Gamma^{j}_{ki}=F_{g^{2}(i,j,k)},\\ &1.\Gamma^{k}_{ij}+1.\Gamma^{i}_{jk}+2.\Gamma^{j}_{ki}=F_{g^{3}(i,j,k)}. \end{split}$$

These relations can be considered like a system of linear equations about Γ^k_{ij} , Γ^i_{jk} , Γ^j_{ki} with determinant different from zero. Hence Γ^k_{ij} , Γ^i_{jk} , Γ^j_{ki} are uniquely defined.

2.3. Let $i = j \neq k$. We have

$$\Gamma^k_{ii}g_{kk} + (\Gamma^i_{ik} + \Gamma^i_{ki})g_{ii} = F_{g(i,i,k)}, \quad g \in \Omega.$$

Analogously to 2.2 we can prove that Γ_{ii}^k , $\Gamma_{ik}^i + \Gamma_{ki}^i$ are uniquely defined. But $\hat{\nabla}$ is symmetrical. Hence, for each $g \in \Omega$:

$$g\left(\hat{\nabla}_{X_i}^{X_k} - \hat{\nabla}_{X_k}^{X_i}, X_i\right) = g([X_i, X_k], X_i),$$
$$(\Gamma_{ik}^i - \Gamma_{ki}^i)g_{ii} = g([X_i, X_k], X_i).$$

That means $\Gamma^i_{ik} - \Gamma^i_{ki}$ are uniquely defined too. Hence Γ^i_{ik} , Γ^i_{ki} are uniquely defined; that proves 2.

3. Let g be a left-invariant metric, ∇ — the Levi-Civitae connection for g. Since G has bases of left-invariant vector fields, the condition $\nabla \equiv \widetilde{\nabla}$ is equivalent to

 $g(\nabla_X Y, Z) = g(\widetilde{\nabla}_X Y, Z), \quad X, Y, Z \in \mathfrak{G}.$

But from the proof of 1 we know that for each $X, Y, Z \in \mathcal{G}$

$$2g\left(\widetilde{\nabla}_{X}Y,Z\right)=g([X,Y],Z),$$

$$2g(\widetilde{\nabla}_{X}Y,Z)=g([X,Y],Z)-g([X,Z],Y)-g([Y,Z],X).$$

Hence $g(\nabla_{X}Y, Z) = g(\widetilde{\nabla}_{X}Y, Z)$ is equivalent to

$$-g([X,Z],Y)-g([Y,Z],X)=0, \quad g([Z,X],Y)+g(X,[Z,Y])=0,$$

i. e. for each $Z \in \mathcal{G}$ the operator

$$\operatorname{ad}_Z: \mathfrak{G} \to \mathfrak{G}$$

$$X \to [Z, X]$$

is antisymmetric.

So we have got that if g is left-invariant then $\nabla \equiv \widetilde{\nabla}$ iff ad_Z is antisymmetric for each $Z \in \mathcal{G}$. But in [3] is proved if g is left-invariant then ad_Z is antisymmetric for each $Z \in \mathcal{G}$ iff g is right-invariant. That proves 3.

From the proposition we receive the following

Corollary. Let G be a Lie group that admits a bi-invariant metric:

- 1. All bi-invariant metrics induce the same Levi-Civitae connection. (Let we call this common connection bi-invariant connection.)
- 2. The symmetrization of the left-invariant connection, the symmetrization of the right-invariant connection and the bi-invariant connection coincide.

2. A RELATION BETWEEN THE METRIC CONNECTIONS AND THE GENERALIZED LEVI-CIVITAE CONNECTIONS. AN EXISTENCE THEOREM

Let M be a Riemannian manifold with metric tensor g. We recall the following Definition. A linear connection D on M is metric, if Dg = 0.

Notations. M_1 is the set of the metric connections on M, M_2 — the set of the Generalized Levi-Civitae connections on M, (D, τ) — a metric connection D with tensor of torsion τ , $M'_1 = \{(D, \tau) \mid \sigma g \tau = 0\}$.

Proposition 1. Let $D \in M_1$, τ is the torsion for D. Then $\tilde{\nabla} = D - \frac{1}{2}\tau \in M_2$,

 $\widetilde{\nabla}$ and D have the same geodesics.

The proposition can be proved by trivial calculations.

Remark 1. Let G be a Lie group, $\overline{\nabla}$ is the left-invariant connection on G. It is easy to see that $\overline{\nabla}$ is a metric connection for any left-invariant metric g, i. e. Proposition 1 is a generalization of Example 2 from Section 1.

Remark 2. Let $D \in M_1$, τ is the torsion of D. Let T be the tensor, $D = \nabla + T$, aT is the antisymmetric part of T, \widetilde{T} — the symmetric part of T. Then

$$aT = \frac{1}{2}\tau, \quad \widetilde{\nabla} = D - \frac{1}{2}\tau = \nabla + \widetilde{T}.$$

Proposition 2. Let $D \in M_1$, τ is the torsion of D, $\widetilde{\nabla} = D - \frac{1}{2}\tau$. Then $\nabla \equiv \widetilde{\nabla}$ iff $g\tau$ is antisymmetric.

It is easy to check the assertion of the proposition.

Remark 3. Let T be a tensor of type (1,2), $D = \nabla + T$. Then D is metric iff g(T(X,Y),Z) + g(T(X,Z),Y) = 0.

Proposition 3. The correspondence

$$M_1' \to M_2,$$

$$(D, \tau) \to \widetilde{\nabla} = D - \frac{1}{2} \tau$$

is bijective. By it ∇ (considered as a generalized Levi-Civitae connection) is generated by itself (considered as a metric connection).

Proof. Let $\tilde{\nabla} = \nabla + \tilde{T}$ be a Generalized Levi-Civitae connection. We search for the metric connections D with torsion τ , such that

(a)
$$D - \frac{1}{2}\tau = \widetilde{\nabla},$$

$$\sigma g \tau = 0.$$

(We show below there is an unique connection D with the property (s).) It is enough to find all tensors τ of type (1,2):

(s')
$$\begin{array}{c|c} \tau & \text{is antisymmetric,} \\ g(T(X,Y),Z)+g(T(X,Z),Y)=0, & \text{where } T=\frac{1}{2}\,\tau+\widetilde{T}, \\ \sigma g\tau=0. \end{array}$$

Then $D = \nabla + T$, $T = \frac{1}{2}\tau + \tilde{T}$, will give all the metric connections with the property (s).

It is easy to see the conditions (s') are equivalent to

$$(s'') \qquad \begin{aligned} \tau(X,Y) &= -\tau(Y,X), \\ g(\tau(X,Y),Z) + g(\tau(X,Z),Y) &= 2g(\widetilde{T}(Y,Z),X), \\ \sigma g \tau &= 0, \end{aligned}$$

and (s'') are equivalent to

$$(s''') g(\tau(X,Y),Z) = \frac{2}{3}(g(\widetilde{T}(Y,Z),X) - g(\widetilde{T}(Z,X),Y).$$

Hence there is an unique tensor τ , for which holds (s).

That proves the proposition.

Remark 4. If τ is an antisymmetric tensor of type (1,2), there is a (unique) metric connection D with tensor of torsion τ (see [5]).

From this remark and Proposition 3 we receive

Corollary. Let M be a Riemannian manifold with metric tensor g. Then the following conditions are equivalent:

- 1. On M there is a symmetric tensor $\widetilde{T} \neq 0$ of type (1,2), for which holds $\sigma g \widetilde{T} = 0$.
- 2. On M there is an antisymmetric tensor $\tau \neq 0$ of type (1,2), for which holds $\sigma g \tau = 0$.

Theorem. Let M be a Riemannian manifold with metric tensor g. Then:

- 1. On M there is a Generalized Levi-Civitae connection that is not a Levi-Civitae one.
 - 2. On M there is a metric connection that is not a Levi-Civitae one.

If M is a Hausdorff space, for each $p \in M$ can be found a Generalized Levi-Civitae connection and a metric connection, which coincide with the Levi-Civitae connection locally around p.

Proof. In [1, 4] is proved the following

Lemma. Let M be a manifold, p is an arbitrary chosen point of M, U is a co-ordinate neighbourhood of p. There is a function $f \in FM$, such that f(p) = 1, $f(M \setminus U) = 0$.

From the proof of the lemma in [4] is clear that we can choose $f \neq \text{const}$ even on M. If f is such a function, then $\omega(X) = X$ o f is a differential 1-form, not identically equal to zero. We set

$$\tau(X,Y)=\omega(X)Y-\omega(Y)X.$$

Obviously, τ is an antisymmetric tensor of type (1,2) that is not identically equal to zero. It is easy to check $\sigma g\tau = 0$. From the last corollary we receive the theorem.

ACKNOWLEDGEMENTS. The author expresses her gratitude to Prof. Gr. Stanilov, who has given the idea for the generalization of the Levi-Civitae connection in the described above way, and to Dr. S. Ivanov for the discussions on the theme that have arisen some ideas, developped in the paper.

REFERENCES

- 1. K o b a y a s h i, S h., K. N o m i z u. Foundations of differential geometry, vol. 1. Interscience publishers, New York—London, 1963.
- Gromoll, G., W. Klingenberg, W. Meyer. Riemannsche geometrie im großen. Springer-Verlag, Berlin — Heidelberg — New York, 1968.
- 3. Milnor, Jh. Curvature on left-invariant metrics on Lie groups. Advances in mathematics, 1976.
- 4. Hicks, N. J. Notes on differential geometry. D. Van Nostrand Company Inc., Princeton, New Jersey Toronto London Melbourne, 1965.
- 5. Schouten, J. A. Ricci calculus. Sec. ed., Springer-Verlag, 1954.
- 6. Cartan, E., J. A. Schouten. On the geometry of the group manifold of simple and semi-simple groups. Proc. Amsterdam, 1926.

Received 23.02.1993