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Hpsna Hmpou. OJHO OBOBHIEHHE CBHSHOCTH JIEBPI«-‘-IHBHTA HA PUMA-
HOBEIX MHOI'OOBPA3UAX \

Ilyc'rs M pumasosoe unorooﬁpcsne € METPDHYHREIM umpou g Jln-eﬁnu CBASHOCTD
v s M, oSnazaioman caolicTeamu

kvaf"VYX—IX.Y]=0, 7 x&z (ng)(ﬁz)=0s

sasusaetrcn O6oSmennolt cmasuoctThio Jlepu-Uusnras Ans g. B craTse zans npumepu
Taxux ceasuocre. Ogua us Hux 7o (0)-cBasHocTs KapTama u Cxoyrena ma Jlu-rpyunne
Ans xaxnoft. nesounnapuanTHO# merpuxn. Oukcana cBaAsb OTHX cBA3RoCcTed ¢ MeTpHU-
HEMYU cBASEOCTAMM. JIOKASAHO, WTO HA KAXAOC PMMAHOBO? MROroo6paswe CymecTsyeT
- Obobmennan J’Ican-‘-luswu CBASHOCTE, KOTOPAR He ABARCTCA chu—‘lunnu CBABROCTBHIO.

L]

Irina Pefram. A GENERALIZATION OF THE LEVI—CIVITAE CON’NECTION ON RIEMAN
‘ NIAN MANE‘OLDS ' ‘ ;

Let M be stemmmmamfoldmthametnctemor,g A hnwconnecﬁon VonM vnth
the properties o _ .
va ' [x,Y]=0, <2 (V,(g) (v,2)=0 ‘
lscalledaGmmlisedLevs—C{wtaeconnectmforg Inthcpa.permgmenexampl«o{mmh .
connections. One of them is the (0)-connection of Cartan and Schouten on a Lie group for any left
invariant metric. A relation is described between these connections and the metric connections. It ;
Bprovedthﬁthmuaﬁmalm&hevx—cxﬂmeonmhonthunnot a Levi-Civitae connection -
on Riemannian m&nifold- -
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1. GENERALIZED LEVI-CIVITAE CONNECTIONS. EXAMPLES

Let M be a Riemannian manifold with a metric tensor g. That means M is
considered with the tensor field g of type (0, 2), which has the properties:
1) g is symmetric, i.e. g(X,Y) = g(¥, X) for X,Y € XM;
} 2) for a point p of M and for X € XM, such that X, # o, g(X, X)(p) > O_j |
holds.
"~ The metric tensor g is also called a (Rxema.nman) metric on M.
If M is a Riemannian manifold with a metric tensor g, there is an umque hnear B
connection V:
I)szsymmetnc,erxY WX [XY] OforXYG.‘fM
2) Vg =0.
V is called a Levx-—szxtae connectlon for g (see [1}) :
Notations. Let M bea Rlema.nman manifold with a metric tensor g, VvV -
~ the Levx—-Clwtae connection for g. If Visa hnea.r connection on M, the symbols
oV and ogV are used for a denoting

55 () ) ” P (e, 7).

. Iftisa tensor field of type (1 2), we denote by the symbols gt and agt the tensors
| 9(X,Y), Z) and x$ zy(t(X Y),2)

correspondmgly | o ‘ '
Definition. Let M be a Raemannmn mamfold with a metnc tensor g A hnear
_ conneetmn ¥ with the properties: - e | - . ‘
1) % is symmetric;
2) O'Vg 0, |
is called a Generahzed Levx-Cmtae connect:on for g . "
It is well-known that all linear connectxona on M are gwen by v +T where T'
is a tensor field of type 1,2. A

Propoutmn The connection V 2 + T isa geﬂemltzcd Lem—Cwsiae con-
| nectwu iff T is symmetric, frg;f 0. We have V=V iff T= .
' It can be proved by trivial calculations. ,
Remark Let 8 be a symmetnc tensor of type (1 2) It is easy to check that‘
the condxtmns
1) ogs = 0; .
2) g(s(X,X),X) = OXeiM .
are ‘equivalent. S L
" We propose two examples of Generalized Levi-Civitae connectmns '
. Example 1. Let M be a Riemannian manifold, with a metric tensor g, for
which exists. 5 € xM not identically equa.l to zero, globally deﬁned on M. Then '

V V+T where T(X Y)= 2g(X Y)E g(X £)Y g(Y HX
» 'isa Geuerahzed Lev1-va1tae connectlon, which i m not Leverxt&e connectlon

i
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Tt is 80, because T is a symmetric tensor, 7 #0, o(T(X, 'X),X) =0. By (t'lké |
a.bove remark and the proposition it follows that Visa Generalized Levi-Civitae
connection, v # V, and V has the followmg properties: ‘

1) if X,Y € XM are such that X, Y, { form an o:thogonal tnple, then
TV =VgY;

~ 2) on the FM-»snbmodule of IM wluch is ort:hogonal to £, we have
Vg=Vg=0.

- Example 2. Let G be a Lxe group and 9 be the algebm of the leﬁ-mvmmt
vector fields on G. From the theory of the Lie groups is known that G is par-
allelizable and it has bases of left-invariant vector fields. Hence, we always can
construct a Riemannian metric tensor on G., Let we recall that a metric tensor g
is left-invariant iff it is invariant for the left translations. It is well-known that a
metnc gon G is left-invariant iff for an arbltra.ry chosen baae X1,...,Xn, Xi €65,

, ( Q(Xia Xi) = const. ‘
Let X;,‘. e Xn be abaseon G, X; € 9 ‘We conmder the linear connectxon
- VY = X(qag)X;, Y = go;Xg '

Thxs connection is mdependent on the choice of the base-of lefb-mvarmnt fields and
it is called a left-invariant connection. It is proved in [2] that ¥ is complete, i.e.
its geodesics can be continued, being defined for all real values of their pazameters.

" Let T be the tensor of torsion for V We cona;der the symmetmatxon of V

It is also complete because the geodeaxca for the both connectxons comcxde Vis -
introduced by Cartan and Schouten, and it is called (O}connectaon (see 1] or {6}) o
'Proposition. Let G be a Lie group

‘1. For each left-invariant metric g the mn‘!mn Vg =0 leda (: c. V is a
Generalized Levi-Civitae connection for any left-invariant mctm:) L

2. V is the unigue lincar symmetric connection on G with the pmpeftg 1.

3. For a lefi-invariant metric g the cemectsos V is the Levi~Civilae comuc-'
tion iff g is right-invariant.

Proof. 1. Let g be a lefi-invariant metm Smce a'Vg is a tensor ﬁeld to check
oVg=0itis enough to prove it for the elementsofabm on G. G admits a base
of left-invariant vector ﬁelds 8o it is enough to prove a@g =0 for left-mmxant |
vector fields. . . . , . o

Let X,Y,Z € 6. We have

VXY X(conat)Y 0, G '
(X, Y)= Vx)’ Vyx XY]::-—-[X Y],

Y =Ty - gAY =ik,

| (ng) (Y Z) Xog(Y Z) g (ny Z) (Y, exz) L



| HXYES,theng(X Y) const. Hence
- (= 2(9([3 X19) - o(X, YLZ))

Now it can be checked easy that ,
© xgs () D=0
which proves 1. . :
.2, Let ¥ be a linear symmetrlc connection on G such that for each leﬁ.-mvanant

‘»'metncg L ff 0 L .
o ag ~ .

M,Xx,, X,., X; € 9, be a base on G. Then
| | = r;,x,, T} e FM

 We shaﬂ prove that I‘" are deﬁnedvumquely and hence V = V. Let we conslder 4

only the left-invariant metncs, for which the base Xj, ..., X, is orthogonal i.e.
) Q(Xitx.f) 0 di#j | |
‘Let Qis the set formed by them From the identity oVg = 0 we obtam after some

tramfonnatxons ' x;
i,jk ijg(xhxi)— g g(ﬁ )?

foreachg@ﬂandeachs,;,kfromlton We.set

| | | (i,j,k) =9 g (Vx,;Xs) ﬂu = (tht)

‘ ' | ruﬂn + r ;w‘ﬁ + P‘iifﬁ = F:(i.i k) - ‘ :

2 1 Leti=j=k We have 31‘%;9;; = Fyq, 6 ‘That means I‘ 4 are umquely *

defined. |
22. Let :#) #b;é:, Wecowder threeldt-mmant Q-metncsg 8%, 4°,

- for whxch | |
| G, ﬂn ﬂuoﬂﬁ ‘ 1 1 1 ‘ ; | L
“??“' n ;  , S g.* g“ g}’ - (1 2 1) . o -

Then we have
S +1P'k+1pii-F:*(ia,i)s |
o 1 1‘45 +2. I},, +1. I\{g = Fyi iy
; SR 1[‘3'*‘11‘,;4‘21“;-1"}:(‘;,;) | |

These relatlons can be considered like a system of linear equatzona a.bout I, T - |
ﬁg,mth determma.nt different fmm zero. Hence I}j, I},, I‘{‘ are uniquely defined.
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23. Let i = j # k. We have | : o P
R ¥ Qn+(r.s+l"ts)9ﬁ— 0G0 k)5 geﬂ | :

Analogously to 2.2 we can prove that T%, I ik + Ti; are umquely deﬁned But V is
symmetrical. Hence, for each g € Q:

(V Vi ) g([Xist} X3),

‘ o (,P:Ix - rki)gu = g([X;,X;},*X;). : ~
That means I';, —T}; are uniquely defined too. Hence I‘ﬁk, I‘;'”. are uniquely deﬁned; \
that proves 2. ‘ « '

3. Let g be a left-invariant metric, V — the Levi-Civitae connection for g.

- Since G has basea of left-invariant vector fields, the condition ‘7 ¥ is equivalent

to

o(VxY,Z)=g (vxy z) X,Y,Z€g.
’But from the proof of 1 we know that for each X Y,Z € 9
% (%v,z)=gx.12),
29(VxY 2)= 9([X Y], 2) - 9(IX, Z] Y) 9(IY, Z) X )
Hence g(VxY, Z) = =y (VXY z) s equivalent to .

—g(tx Z]:Y) 9([Y, 2], X) =0, g(lz X],Y)+g(X [Z YD 0

i.e. for each Z € 9 the operator B
| adz :§—§ |
, ‘X - [Z X1
is antisymmetric. - N o |

'So we have got that if g is left-lnva.nant then V=V 1ﬁ' adyz is antlsymmetnc |
for each’Z € G. But i in [3] is prcved if g is left-invariant then adz 18 antmymmetnc
foreach Z€Giffg is nght—mvarmnt That proves 3. ‘

From the proposition we receive the following

Corollary. Let G be a. Lie group that admits a bi-invariant metric: |

1. All bi-invariant metrics snduce the same Levi-Civitae comecizon (Lct we
call this common connection bi-invariant connection.) :

2. The symmetrization of the left-invariant connection, the 3ymmctnxatwn of N
the right-invariant connection and the bz—mtmma’nt cbuncctwn comc:dc

2. A RELATION BETWEEN THE METRIC CONNECTIONS
AND THE GENERALIZED LEVI-CIVITAE CONN ECTION S.
AN EXISTENCE THEOREM

Let M be a Rlemanman manifold with metnc tensor p We recall the followmg ,,
Definition. A hnea.r connection D on M is metric, lng, 0 Gr 3BY0Ig

e
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| Notations M is the set of the metric connections on M, My — the set
of the Generahzed Levi-Civitae connections on M, (D, ) — a metric connection
" D with tensor of torsmn 7, Mj = {(D,7) | 09T = 0}.

Proposx.tmn 1 Let DeM, 1is tbe torsion for D, Then V D- 3 TE Mz,

V and D Imve the same’ geodesics. , ’ ,
The proposition can be proved by tnvml calculatxons
| Remark 1. Let G be a Lie group, ¥V is the left-invariant connection on G.
It is easy to see that V is a metric connection for any left-invariant metric g, i.e.
Proposition 1 is a generalization of Example 2 from Section 1. . i
Remark 2. Let D € M, 7 is the torsion of D. Let T be the tenaor, D=V4T,
aT is the antmymmetnc part of T, T — the symmetmc pm of T. Then '

1 1 ‘
aT’—-z-r, V—D*§T~V+T AN

Proposxtmn 2 Lci D 3 Mi, T i8 tke torswn of D, V D - %r “Then

V= v iff gr is antnymmetnc o
It is easy to check the assertion of the proposxtmn
Remark 3. Let T be atensor o‘ftype (1 2), '-'“‘V+T Then Dmmetncxﬁ';
HT(X,Y),2)+9(T(X,2),Y)=0. ,
Proposxtmn 3. Tbc correspondence o
M' - ME: o
@) ~F=D- 5T
. £ - ) ‘ ' ;
is bijective. By it V (cons:demd as @ geneml:zed Lcm—deae coanect:on) is gen-
erated by itself (comsdsmd as a melric connection). - ‘
~* _Proof. Let 5 =V +T be a: Generalmed hvz-&vxtu connectmn We aearch |
for the metnc connectlons D mth tomon r, such that N
| (We show below thete is an umque connectmn D thh the property (a) ) It wl
| enoughtoﬁndalltemm 7.of type (1, 2): ( |

N | T is antisymmetric,
(#) a(T(X Y),Z)w(r(x Z)m a where T‘z
‘ o'g'r 0 o ‘ :

o

T™+T,

eI

Then D = V+ T T = %r-%- T, wxll gzve all the metrxc mnnectxons mth the
pm,perty (8) oo e

;
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It is easy to see the cond1t1ons (s’) are eqmvalent to

| HX,Y) = -, X),

@) | X Y), 2 +o(r(X, Z)f Y) 29(1'0’ Z) x),
’ o crg*r 0, .

and (s”) a.re eqmvalent to
| (sm) ~ f : (.,( X y), z) = -(g(T(Y Z),X) w(T(Z, x), Y).., "

Hence there is an’ umque tensor T, for whmh holds (s)
That Proves the proposition. |
Remark 4. If 7 is an antasymmetnc tenaor of type (l 2), there 1: a (umque)

metric connection D with tensor of torsion 7 (see Bp.. <
From this remark and Propoextxon 3 we receive

Corollary. Let Mbea Riemannian mamfold with metric tenaor g Then the
Jfollowing conditions are equivalent: '

1 On M there :s a symmeirsc tensor T ;é 0 af type (1 2), for wbtch holds

ogT=0. = : ,
2. On M there zs an anizsymmetnc iensor T 35 0 of type (1 2),for whtclz bofds‘
ogr = 0. .
Theorem Let M be a R:emanman mamfold wdk mctrzc tensor g. Then:
1. On M there is a Gmemlzzcd Lcm-C‘mtac co:mcctwn that is not a Lem- B
Cwstae one. ‘ | - : EE 3

2. 0n M there is a metric connectwn ihat s not a Lem-—-Cmiae one. |

IfMisa Hausdmﬁ space, for each p € M can be fmmd a Generalized Lcm-' o

Civilae connection and a metric connectaon, htch coincide w:th the Lcmv-sztae
connection Iocally around p. : S

Pmof In[1,4]is proved the f?llowmg S T S

Lemma. Let M be a mamfold p is an arbitrary choaea point of M Uisa
co-ordinate nesgbbourhood of 2 Tkem i a fuactton f e FM, such tlmt f(p) =1,
f(M\U)=0. A

From the proof of the lemma in {4] is clear that we can choose f -,é const even
on M. ¥ f is such a function, then w(X) =Xo f is a dxﬁ‘erentlal 1-fo:m, not |
identically equal to zero We set ‘ 5

~

- ‘r(X Y) «-w(X )Y w(Y)X

Obnously, risan antxsymmetnc tensor of type (1,2) that is riot xdentxcaliy equal‘ |
to zero. It i is easy to chéck ogT = O ﬁ'om the Iast corollary we receive the theorem
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