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A BORSUK-ULAM TYPE THEOREM FOR Z4-ACTIONS

SIMEON STEFANOV

Cumeon Cmepanoe. OHHA TEOPEMA THUITA TEOPEMBI BOPCYKA-YJIAMA J1J1A
Zu-AEACTBUHA
Mycte n = 2k + 1 u chepa S™ npencrabiieHa B Buae

S" = {z::(zl, ey 2pg1) € T (2] = 1}.

PaccMOTpuM KaHOHUUecKoe AeficTeue rpynnsl Zy = {1,i, -1, —i} p S™, oupelileneHHOE yMHO-
wenmeMm. OCHOBHBIM pe3ynbTaToM paboTh! ABNAETCA CleAylOWan TEOPEMA THNA TEOPEMbI
Bopcyka~Y nama:

Jlna xaxnoit HenpepuiBHoil ¢pyuxkumm f @ ST — R! paccMOTpPUM MHOMXKECTBO

A(f) ={z € S™| f(2) = f(iz) = f(-2) = f(~i2)}-

Torna dimA(f)2n ~ 3.
Ocuonnoe cnencreve: Jlns xaxnoi wenpepoisnoil ¢pyukumn [ : $3 = R! cymecrsyer
z € 5% raxoe, uTo

f(z) = fiz) = f(-2) = f~iz).

Simeon Stefanov. A BORSUK-ULAM TYPE THEOREM FOR Z4;-ACTIONS
Let n = 2k + 1 and the sphere S™ be represented as

st ={z=(n, ..., 7p) €CF |2l = 1}
Consider the canonical action of the group Zs = {1, ¢, —1, —i} in §" defined by multiplication.

The main result in the article is the following Borsuk-Ulam type theorem:
For any continuous function f : §™ — R! consider the set

A(f)={z € S™| f(2) = f(iz) = f(—2) = f(—1z)}.

Then dim A(f)2n - 3.
The main corollary: For any continuous function f : S3 — R! there exists z € S° such that

fz) = f(iz) = f(=2) = f{~iz).
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There exist various generalizations of the classical Borsuk-Ulam theorem, where
the antipodal map in the n-sphere S™ is replaced by a free Zy-action for p prime.
Then some coincidence point theorems are obtained ( [3-6, 10], etc.). The case of
a composite p is more complicated and no result of this kind is known to us. The
purpose of this note is to get some Borsuk-Ulam type result for free Z4-actions in
S™ (n i1s odd). More precisely, we consider the canonical Z4-action on S” defined
by z — iz and prove that for any continuous function f : S* — R! the covering
dimension of the set

A(f) ={z € 5" [ J(2) = f(iz) = f(=2) = f(~iz)}
is 2 n— 3. (The proof works for arbitrary Zs-actions). In particular, for any
f o 8% — R there exists zg € S® such that f(z0) = f(iz0) = f(—20) = f(~iz). It
is easy to see that the estimate dim A(f)>n — 3 cannot be strengthened in general,
since the set A(f) is defined by 3 equalities.

1. PRELIMINARIES

Recall first some basic definitions. Let G be a group. A G-action in X is a
continuous map g : G x X — X, pu(g, z) = gz such that: 1) lz = & and 1i)
g1(g2z) = (g192)z. Then X is called G-space. The subset A C X is invariant if
gA = Afor any g € G. The orbit of a point z € X is the set orbit ¢ = {gz | g € G}.
The orbit space is the factor X = X/ ~, where z ~ y iff z € orbit y.

A G-action is said to be freeif gr Zx forany g #1, 2 € X. Let X and Y
be G-spaces. A map ¢ : X — Y is equivariant if o(gz) = gp(z). The join of X
and Y is the factor X * Y = X x Y x [0, 1]/ ~, where (z, y, 0) ~ (2, ¥/, 0) and
(z,y, )~ (2',y, 1) forany z, 2’ € X, y, ¥ € Y. As usual, we write

XxY ={(tiz, t2y) |ti+ta=1; &, 220, z € X, ye Y}
Note that if X and Y are G-spaces, their join is also a G-space with respect

to the action
g(tizx, tay) = (tigz, ta2gy).

Proposition 1. Let the (metric) G-space X be a sum of two closed invariant
subsets X = X1 U X5 and there exist equivariant maps ¢; © X; — K;, 1 =1, 2 into
some polyhedra K;. Then there exists an equivariant map ¢ @ X — K; % Ky,

Proof. Since K; are equivariant ANR’s, there exist equivariant extensions
o; + U; — K; for some invariant open neighbourhoods U; D X;. Take
dist(z, X \ U;)
dist(z, X \ Uy) + dist(z, X \ Us)

Aifz) =
Then p(z) = (A1(z) §1(z), Aa(z) @2(x)) is an equivariant map ¢ : X — K; * Kj..

We shall define and list some properties of the so-called “B-index” introduced
for a space with a fixed point free involution (free Za-action) by C. T. Yang [11].
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Definition. Let X be a compact space with a fixed point free involution
T : X — X. We say that the B-index of X (with respect to T} is not greater than
n if there exists a map ¢ © X — S™ such that

p(Tz) = —p(x)
for any © € X. Then we write B(X; T)<n. The equality B(X; T) = n means that
B(X; T)gn and B(X; Ty gn —1.
We shall make use only of the following properties of this index:
i) B(X;T)z1iff X contains an invariant (with respect to 7") continuum,
ii) B(S™;T) = n for any fixed point free involution T in §";
111) Let U be an open connected Tp-invariant subset of S”. Then

B(S"\U;Ty)sn — 2,

where To(z) = —2.

The properties 1) and 1i) (and many others) may be found for example in [8,
9, 11]; ili) follows from a theorem of J. W. Jaworowski [2].

We shall give now a definition, which is important for the following.

Definition. Let X be a (G-space. A closed invariant subset FF C X is said
to be cquivariant partition in X if for any @ € X, g # 1, the points z, gz lie in
different components of X \ F'.

It is easy to see that if A is an invariant closed subset of X, then every equiv-
ariant partition in A may be extended to an equivariant partition in X.

Proposition 2. Let X be a compact space with free Za-action and F be a
closed invariant subset with dim F<k. Then there exist equivariant partitions in X

@y, ., Pryy, such that
k+1
(m ‘I’i) NF=.

i=1

Proof. Apply an induction on k. For k£ = 0 take some sufficiently small (finite)
invariant covering w of X with open sets U such that F N FrU = &. Then
¢, = U{FrU|U € w} is an equivariant partition in X and ;N F = 3.

Suppose the proposition is valid for ¥ — 1 and dim F'£k. There exists in I an
equivariant partition Fy with dim Fy<k — 1, hence, there are equivariant partitions

k
Fy, ..., Fr in F such that (ﬂ If}) N Fy = . The partitions F; may be extended
i=1 .

to equivariant ones ﬁg in X. Wnte ¢; = ﬁ}, i=1, ...,k Pryr = ﬁg. Then
k41 k

(ﬂ @g)ﬂF: (ﬂ Fg) Nk =.
i1 i=1

2. Z4~ACTIONS IN S

Let n = 2k 4+ 1 and

S* ={z= (21, .-+, ze41 | ||2]| = 1}
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Then the group Z4 = {1, ¢, —1, —1} acts freely in S™ as usual:
1z = (2.21, vy *iz;;+1).
By 2S™ we denote the space S™ x {1, 1}, where Z4 acts as follows:
i(z x {e}) =iz x {—¢}.
Proposition 3. Let X be a compact Zs-space with equivariant paritlions

¢,

y .

n+1

oy ®ng1 (n = 2k+1) such that () ®; = D. Then there exists a Zs-equivariant
Jj=1

map ¢ : X — S™.

Proof. Apply an induction on n. Let » = 1 and O®; be open invariant

2
neighbourhoods of ®; such that [} O®; = @. Since ®; is an equivariant partition,
i=i

X\O®; = A; U (i A;) U(—A;) U(—iA;), where ¢ A; are non-intersecting closed
sets (&€ € Za ). Define p : X\ O® — S! by p(e A;) = €. Then ¢ may be extended
toamap ¢ : (X \OP)UA; — S! and finally to an equivariant ¢ : X — S! by
the formula @(ez) = € p(2).

Suppose the proposition is valid for n — 1 and consider &y, ..., ®,4; with

n+1 n+1 n-—1
®; = . Take as above O®; with [} 0®; =&. Put X; = |J X\0®;, X» =
=1 =1 .

j=1

J

n

OlX\Oéj, so X = X1 UX,. Then, evidently, the sets X;N®;, y=1,...,n—1,
j=n :
are equivariant partitions in X; with an empty intersection, as well as XoN®;, j =
n, n+ 1, are non-intersecting equivariant partitions in X3. Then by the induction
hypothesis we have equivariant maps 1 : X1 — S™72, ¢y : X — S! which
induce (by Proposition 1) an equivariant ¢ : X — S57=2 x S'. Note, finally, that
Sn=2 x Sl = S as Z4-spaces.

J

Lemma. Let f : S® — R! be a continuous map (n is odd). Consider the set

A(f) ={z € S*| f(2) = f(iz) = f(=2) = f(—iz)}
and suppose that dim A(f)<n — 4. Then there exists a Za4-equivariant map

w . g _ﬁzsn—Q * Sn—2.
Proof. Since A(f) is a closed invariant set with dim A(f)<n — 4, by Proposi-

n-3
tion 2 we can find in S™ equivariant partitions @y, ..., ®,_3 such that ( N @5) N
A i=x]
n—3
(1 ®;, then for any z € ® f(orbitz) # const. Consider the
=1

A(f) = 2. Write @ =

sets ’
M ={z € ®| f(z) = f(—2) or f(iz) = f(—iz)},
N ={2€ ®|f(z) = f(—2) and f(iz) = f(—iz)}.
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Evidently, these are closed invariant sets and N C M. Moreover, M is an
equivariant partition in @, and N is an equivariant partition in M. Really, suppose,
first, that M is not an equivariant partition in ®. Then for some z € ®\ M, g # 1,
the points z, gz lie in the same component K of @\ M. If g = i or g = —i, we
have t K = K; if y = —1, then —K = K. In both cases —~K = K, so we must have
f(z0) = f(—20) for some 2o € K C ®\ M, which means zy € M — a contradiction.

Suppose now N is not an equivariant partition in M. Proceeding as above, we
find a component K of M \ N such that —K = K. Set

Ky ={z€e K| f(z) = f(-2)},
K_={z€ K| f(iz) = f(—i2)}.

Then K = Ky UK_ and Ky NK_ =&, since KNN =. Hence K = K, (par
example). Considering f on iK, we get some 29 € i K such that f(z9) = f(—z0).
On the other hand, izg, —izp € K; therefore f(izo) = f(—i20), which means that
29 € N — a contradiction. ,

Let ®,,_2, ®,-1 be equivariant partitions in 5™ such that ®,_, N® = M,
$,.1 MM = N. Then we have

Put Ny = {z € N| f(z) < f(iz)}; N =iNy. Then N =N, UN_, NyNN_ =Q
and =Ny = Ny, —N_ = N_. Consider the set N, together with the antipodal
involution Ty(2) = —z. For its B-index we must have

- B(Ny: To)$n—2.

Indeed, if B(Ny; To)2n—1, then B(Ny; Tp)21; it means (see 1)) that N, contains
a To-invariant continuum and hence by iii) B(N_; Tp)Sn — 2, which contradicts
B(N_; To) = B(N4; Tp)2n ~ 1. Therefore, by the definition of B-index we have

a Tp-equivariant map ¢y : Ny — S™ 2 Define p_ : N_ — S""2 by ¢_(iz) =
ip4(z). Then we get a Zg-equivariant map ¢ : N — 2.5"~? defined by

_Jes(2) x {1}, ze€ N4,
plz) = {goi(z)x {—-1}, Azef}p_.

Extend ¢ to some closed invariant neighbourhood ¢ : ON — 25™2. The
n~1 ‘
sets ®; \ ON are equivariant partitions in S” \ ON with [ &\ ON = &. Then

izl
by Propasition 3 there exists an equivariant map of S™ \ ON into S™"~2. Therefore,
by Proposition 1 we get some equivariant

Y S — 2872 4 SN2
The lemma is proved.
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3. INFORMATION ABOUT THE COHOMOLOGIES OF THE LENS SPACES

Let n be an odd number. The lens space L7 1s the orbit space of the Z4-

space S (with the canonical Zgs-action z — iz), so we write L] = S™. The
oG

space L3 = |J L7 is the classifying space for all principal Zs-bundles. For their

n=l
cohomology rings with coefficients modulo 2 we have (see for example [1])

H*(LS; Zy) = Alu] @ Za[v],
where degu = 1, degv = 2,
H* (L35 Za) = Auo] @ Za[v] / (vg*' = 0),

where deguo = 1, degvp =2 and n =2k + 1.
The natural inclusion ¢ : L} — L$° mmduces an eplmorphlsm t* 1n the coho-
mologies, such that i*(u) = ug, *(v) = vg.

Let X be a compact (free) Z4-space with an orbit space X. Consider the
principal Zs-bundle € = (X, X, p). Let f : X — L3 be a classifying map for £.
Then f*(u) aund f*(v) are some characteristic classes in H*(X; Z3) that we shall
denote by u(X) and v()?); respectively. (So we have ug = u(L}), vo = v(L}).)
Note, that every Zg-equivariant map ¢ : X — Y induces a map Qo X — Y and
if f:Y — LY is a classifying map for n = (Y, Y, 7), then f§5 is a classifying map
for € = (X, X, p), therefore u(X) = &* w(Y) and v(X) = (Y)

4. THE MAIN RESULT

Theorem. Letn=2k+1 and f : S — R be a continuous map. Consider
the set
A(f) ={z € S" | f(2) = [(iz) = f(—z) = f(—iz)}.
Then dim A(f)2n — 3.
Proof. Suppose the contrary. Then by the lemma we have some Z4-equivariant
Yo St — 2877 x 5772 We shall show that such a map does not exist.

The orbit space of S”’ is L7; denote by M the orbit space of 25772 & S"~2,
Let uy = u(M), vy = v(M). It is enough to prove that ’

wy v¥ =0
in H*(M; Z3). Really, then uo = u(L}) = ¥*(u1), vo = v(L}) = %*(v1), hence
ugvf = ¥ (uivf) =0 in H™(L}; Zy), which is a contradiction.
Decompose 25""2 x S"~% = A; U Ay, where

Iz

Let M; = El, My, = Ag be the corresponding orbit spaces. Then M =
M U M,. Define the homotopy equivalences vy : A; — 25772, ry 1 Ay — §"72

Ay = A{(hz, tay) |t } Ay = {(tiz, t2y) |11 £

B
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by ri(tiz, ty) = x, ra(tiz, {2y) = y. Since r; are equivariant, they induce maps
between the orbit spaces, which are also homotopy equivalences. Hence

H*(My) = H*(25"7%), H"(My) = H™($"7?) = H*(L]7%).

(All cohomologies are taken with Zy-coefficients.)
Consider the Meyer--Vietoris sequence

6 ‘ s i)
— H"HMy O M) —— H"“l(M) S HY M) @ H N (M) ——

IL is clear that ¢} (v¥) = 3(vF) = 0, since H*~1(M,) = H"~'(M;) = {0}. Therefore

= bw for some w € H""?(M; N Ms). Then urvf = uy bw = (4" (uy)w), where
é . My N My — M is the inclusion map (see for example {7]). To prove u;vf = 0 it
is cnough to show that *(wu1) = 0. Since 7 = 4171, where ji : M N My — My, i :
My — M are the inclusions, we have *(uy) = 777 (uy) = j7(w(My)). We shall

prove that u(M,) = 0. Note that 25"=2 is a deformation retract of M, therefore
u(Mp) = u(‘gg’““z). We have to show that

u(25"7%) = 0.

Suppose, first, n > 3. Clearly, 25"~2 = R P"~2. Let f : R P*~2 — L be a

classifying map for € = (2572, R P"~2 p), then u(? S"=2) = f*(u). Suppose that

() # 0. Then in the cohomelogy ring of R P2 we have [f*(u)]? # 0 (see [7]).
On the other hand, [f*(uw)]? = f*(u?) = f*(0) = 0, which is a contradiction.

Let now n = 3. Then we dlrectly see that a classifying map for the Z4-bundle

¢ = (25", 251, p) is the map f 254 — L, C LY which is a double covering (both

25" and L} are homeomorphic to §1). Therefore u(25') = f*(u) = 0.
'The theorem 1s proved.

Corollary 1. For any continuous function f : S® — R! therc exists z € §°
such that

f(z) = f(iz) = f(=2) = f(—i2).
Corollary 2. Let S® be a sum of two closed (non-invariant) subsets S® =

AU B. Then some of them conlains a whole orbit z = {z, iz, —z, —iz}.

Proof. Take f(z) = dist(z, A) in Corollary 1.
The 3-sphere is a group with respect to the multiplication induced by the
quaternion structure in C?.

Corollary 3. Let F' and A be closed subsets of S3. Then there exists z € S
such thal

vol(FNzA) = vol(FNizA) = vol(FN~zA) = vol(F N—izA),

where “vol” is the 3-volume in S3.
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