ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА

Книга 1 — Математика Том 87, 1993

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE

Livre 1 — Mathématiques Tome 87, 1993

A BORSUK-ULAM TYPE THEOREM FOR Z₄-ACTIONS

SIMEON STEFANOV

 $Cumeon\ Cme \phi ano e.\ OДНА ТЕОРЕМА ТИПА ТЕОРЕМЫ БОРСУКА-УЛАМА ДЛЯ <math>\mathbb{Z}_4$ --ДЕЙСТВИЙ

Пусть n=2k+1 и сфера S^n представлена в виде

$$S^n = \left\{ z = (z_1, \ldots, z_{k+1}) \in \mathbb{C}^{k+1} | ||z|| = 1 \right\}.$$

Рассмотрим каноническое действие группы $\mathbb{Z}_4 = \{1, i, -1, -i\}$ в S^n , определенное умножением. Основным результатом работы является следующая теорема типа теоремы Борсука-Улама:

. Для каждой непрерывной функции $f:S^n o\mathbb{R}^1$ рассмотрим множество

$$A(f) = \{ z \in S^n \mid f(z) = f(iz) = f(-z) = f(-iz) \}.$$

Тогда $\dim A(f) \ge n-3$.

Основное следствие: Для каждой непрерывной функции $f:S^3 \to \mathbb{R}^1$ существует $z \in S^3$ такое, что

$$f(z) = f(iz) = f(-z) = f(-iz).$$

Simeon Stefanov. A BORSUK-ULAM TYPE THEOREM FOR \mathbb{Z}_4 -ACTIONS Let n=2k+1 and the sphere S^n be represented as

$$S^n = \{z = (z_1, \ldots, z_{k+1}) \in \mathbb{C}^{k+1} | ||z|| = 1\}.$$

Consider the canonical action of the group $\mathbb{Z}_4 = \{1, i, -1, -i\}$ in S^n defined by multiplication. The main result in the article is the following Borsuk-Ulam type theorem:

For any continuous function $f: S^n \to \mathbb{R}^1$ consider the set

$$A(f) = \{z \in S^n \mid f(z) = f(iz) = f(-z) = f(-iz)\}.$$

Then dim $A(f) \ge n - 3$.

The main corollary: For any continuous function $f: S^3 \to \mathbb{R}^1$ there exists $z \in S^3$ such that

$$f(z) = f(iz) = f(-z) = f(-iz).$$

There exist various generalizations of the classical Borsuk-Ulam theorem, where the antipodal map in the n-sphere S^n is replaced by a free \mathbb{Z}_p -action for p prime. Then some coincidence point theorems are obtained ([3-6, 10], etc.). The case of a composite p is more complicated and no result of this kind is known to us. The purpose of this note is to get some Borsuk-Ulam type result for free \mathbb{Z}_4 -actions in S^n (n is odd). More precisely, we consider the canonical \mathbb{Z}_4 -action on S^n defined by $z \to iz$ and prove that for any continuous function $f: S^n \to \mathbb{R}^1$ the covering dimension of the set

$$A(f) = \{ z \in S^n \mid f(z) = f(iz) = f(-z) = f(-iz) \}$$

is $\geq n-3$. (The proof works for arbitrary \mathbb{Z}_4 -actions). In particular, for any $f: S^3 \to \mathbb{R}^1$ there exists $z_0 \in S^3$ such that $f(z_0) = f(iz_0) = f(-iz_0) = f(-iz_0)$. It is easy to see that the estimate dim $A(f) \geq n-3$ cannot be strengthened in general, since the set A(f) is defined by 3 equalities.

1. PRELIMINARIES

Recall first some basic definitions. Let G be a group. A G-action in X is a continuous map $\mu: G \times X \to X$, $\mu(g, x) = gx$ such that: i) 1x = x and ii) $g_1(g_2x) = (g_1g_2)x$. Then X is called G-space. The subset $A \subset X$ is invariant if gA = A for any $g \in G$. The orbit of a point $x \in X$ is the set orbit $x = \{gx \mid g \in G\}$. The orbit space is the factor $\widetilde{X} = X/\sim$, where $x \sim y$ iff $x \in \text{orbit } y$.

A G-action is said to be free if $gx \neq x$ for any $g \neq 1$, $x \in X$. Let X and Y be G-spaces. A map $\varphi : X \to Y$ is equivariant if $\varphi(gx) = g \varphi(x)$. The join of X and Y is the factor $X * Y = X \times Y \times [0, 1]/\sim$, where $(x, y, 0) \sim (x, y', 0)$ and $(x, y, 1) \sim (x', y, 1)$ for any $x, x' \in X$, $y, y' \in Y$. As usual, we write

$$X * Y = \{(t_1x, t_2y) | t_1 + t_2 = 1; t_1, t_2 \ge 0; x \in X, y \in Y\}.$$

Note that if X and Y are G-spaces, their join is also a G-space with respect to the action

$$g(t_1x, t_2y) = (t_1gx, t_2gy).$$

Proposition 1. Let the (metric) G-space X be a sum of two closed invariant subsets $X = X_1 \cup X_2$ and there exist equivariant maps $\varphi_i : X_i \to K_i$, i = 1, 2 into some polyhedra K_i . Then there exists an equivariant map $\varphi : X \to K_1 * K_2$.

Proof. Since K_i are equivariant ANR's, there exist equivariant extensions $\widetilde{\varphi}_i: U_i \to K_i$ for some invariant open neighbourhoods $U_i \supset X_i$. Take

$$\lambda_i(x) = \frac{\operatorname{dist}(x, X \setminus U_i)}{\operatorname{dist}(x, X \setminus U_1) + \operatorname{dist}(x, X \setminus U_2)}.$$

Then $\varphi(x) = (\lambda_1(x)\,\widetilde{\varphi}_1(x),\,\lambda_2(x)\,\widetilde{\varphi}_2(x))$ is an equivariant map $\varphi: X \to K_1 * K_2$. We shall define and list some properties of the so-called "B-index" introduced for a space with a fixed point free involution (free \mathbb{Z}_2 -action) by C. T. Yang [11].

Definition. Let X be a compact space with a fixed point free involution $T: X \to X$. We say that the B-index of X (with respect to T) is not greater than n if there exists a map $\varphi: X \to S^n$ such that

$$\varphi(Tx) = -\varphi(x)$$

for any $x \in X$. Then we write $B(X; T) \leq n$. The equality B(X; T) = n means that $B(X; T) \leq n$ and $B(X; T) \not\leq n - 1$.

We shall make use only of the following properties of this index:

- i) $B(X;T) \ge 1$ iff X contains an invariant (with respect to T) continuum;
- ii) $B(S^n; T) = n$ for any fixed point free involution T in S^n ;
- iii) Let U be an open connected T_0 -invariant subset of S^n . Then

$$B(S^n \setminus U; T_0) \leq n-2$$
,

where $T_0(x) = -x$.

The properties i) and ii) (and many others) may be found for example in [8, 9, 11]; iii) follows from a theorem of J. W. Jaworowski [2].

We shall give now a definition, which is important for the following.

Definition. Let X be a G-space. A closed invariant subset $F \subset X$ is said to be equivariant partition in X if for any $x \in X$, $g \neq 1$, the points x, gx lie in different components of $X \setminus F$.

It is easy to see that if A is an invariant closed subset of X, then every equivariant partition in A may be extended to an equivariant partition in X.

Proposition 2. Let X be a compact space with free \mathbb{Z}_4 -action and F be a closed invariant subset with dim $F \leq k$. Then there exist equivariant partitions in $X = \Phi_1, \ldots, \Phi_{k+1}$, such that

$$\left(\bigcap_{i=1}^{k+1} \Phi_i\right) \cap F = \varnothing.$$

Proof. Apply an induction on k. For k=0 take some sufficiently small (finite) invariant covering ω of X with open sets U such that $F \cap FrU = \emptyset$. Then $\Phi_1 = \bigcup \{FrU \mid U \in \omega\}$ is an equivariant partition in X and $\Phi_1 \cap F = \emptyset$.

Suppose the proposition is valid for k-1 and $\dim F \leq k$. There exists in F an equivariant partition F_0 with $\dim F_0 \leq k-1$, hence, there are equivariant partitions F_1, \ldots, F_k in F such that $\left(\bigcap_{i=1}^k F_i\right) \cap F_0 = \emptyset$. The partitions F_i may be extended to equivariant ones \widetilde{F}_i in X. Write $\Phi_i = \widetilde{F}_i$, $i = 1, \ldots, k$; $\Phi_{k+1} = \widetilde{F}_0$. Then $\left(\bigcap_{i=1}^{k+1} \Phi_i\right) \cap F = \left(\bigcap_{i=1}^k F_i\right) \cap F_0 = \emptyset$.

2. \mathbb{Z}_4 -ACTIONS IN S^n

Let n = 2k + 1 and

$$S^n = \{z = (z_1, \ldots, z_{k+1} | ||z|| = 1\}.$$

Then the group $\mathbb{Z}_4 = \{1, i, -1, -i\}$ acts freely in S^n as usual:

$$iz = (iz_1, \ldots, iz_{k+1}).$$

By $2S^n$ we denote the space $S^n \times \{-1, 1\}$, where \mathbb{Z}_4 acts as follows:

$$i(z \times \{\varepsilon\}) = iz \times \{-\varepsilon\}.$$

Proposition 3. Let X be a compact \mathbb{Z}_4 -space with equivariant partitions $\Phi_1, \ldots, \Phi_{n+1}$ (n=2k+1) such that $\bigcap_{j=1}^{n+1} \Phi_j = \emptyset$. Then there exists a \mathbb{Z}_4 -equivariant map $\varphi: X \to S^n$.

Proof. Apply an induction on n. Let n=1 and $O\Phi_j$ be open invariant neighbourhoods of Φ_j such that $\bigcap_{j=1}^2 \overline{O\Phi_j} = \emptyset$. Since Φ_j is an equivariant partition, $X \setminus O\Phi_j = A_j \cup (iA_j) \cup (-A_j) \cup (-iA_j)$, where εA_j are non-intersecting closed sets $(\varepsilon \in \mathbb{Z}_4)$. Define $\varphi: X \setminus O\Phi_1 \to S^1$ by $\varphi(\varepsilon A_1) = \varepsilon$. Then φ may be extended to a map $\varphi: (X \setminus O\Phi_1) \cup A_2 \to S^1$ and finally to an equivariant $\varphi: X \to S^1$ by the formula $\varphi(\varepsilon z) = \varepsilon \varphi(z)$.

Suppose the proposition is valid for n-1 and consider $\Phi_1, \ldots, \Phi_{n+1}$ with $\bigcap_{j=1}^{n+1} \Phi_j = \varnothing$. Take as above $O\Phi_j$ with $\bigcap_{j=1}^{n+1} O\Phi_j = \varnothing$. Put $X_1 = \bigcup_{j=1}^{n-1} X \setminus O\Phi_j$, $X_2 = \bigcup_{j=1}^{n+1} X \setminus O\Phi_j$, so $X = X_1 \cup X_2$. Then, evidently, the sets $X_1 \cap \Phi_j$, $j = 1, \ldots, n-1$, are equivariant partitions in X_1 with an empty intersection, as well as $X_2 \cap \Phi_j$, j = n, n+1, are non-intersecting equivariant partitions in X_2 . Then by the induction hypothesis we have equivariant maps $\varphi_1 : X_1 \to S^{n-2}$, $\varphi_2 : X_2 \to S^1$ which induce (by Proposition 1) an equivariant $\varphi : X \to S^{n-2} * S^1$. Note, finally, that $S^{n-2} * S^1 = S^n$ as \mathbb{Z}_4 -spaces.

Lemma. Let $f: S^n \to \mathbb{R}^1$ be a continuous map (n is odd). Consider the set $A(f) = \{z \in S^n \mid f(z) = f(iz) = f(-z) = f(-iz)\}$

and suppose that dim $A(f) \leq n-4$. Then there exists a \mathbb{Z}_4 -equivariant map $\psi: S^n \to 2 S^{n-2} * S^{n-2}$.

Proof. Since A(f) is a closed invariant set with $\dim A(f) \leq n-4$, by Proposition 2 we can find in S^n equivariant partitions $\Phi_1, \ldots, \Phi_{n-3}$ such that $\left(\bigcap_{i=1}^{n-3} \Phi_i\right) \cap$

 $A(f) = \emptyset$. Write $\Phi = \bigcap_{i=1}^{n-3} \Phi_i$, then for any $z \in \Phi$ $f(\text{orbit}z) \neq \text{const.}$ Consider the sets

$$M = \{ z \in \Phi \mid f(z) = f(-z) \text{ or } f(iz) = f(-iz) \},$$

$$N = \{ z \in \Phi \mid f(z) = f(-z) \text{ and } f(iz) = f(-iz) \}.$$

Evidently, these are closed invariant sets and $N \subset M$. Moreover, M is an equivariant partition in Φ , and N is an equivariant partition in M. Really, suppose, first, that M is not an equivariant partition in Φ . Then for some $z \in \Phi \setminus M$, $g \neq 1$, the points z, gz lie in the same component K of $\Phi \setminus M$. If g = i or g = -i, we have iK = K; if y = -1, then -K = K. In both cases -K = K, so we must have $f(z_0) = f(-z_0)$ for some $z_0 \in K \subset \Phi \setminus M$, which means $z_0 \in M$ — a contradiction.

Suppose now N is not an equivariant partition in M. Proceeding as above, we find a component K of $M \setminus N$ such that -K = K. Set

$$K_{+} = \{ z \in K \mid f(z) = f(-z) \},$$

$$K_{-} = \{ z \in K \mid f(iz) = f(-iz) \}.$$

Then $K = K_+ \cup K_-$ and $K_+ \cap K_- = \emptyset$, since $K \cap N = \emptyset$. Hence $K \equiv K_+$ (par example). Considering f on iK, we get some $z_0 \in iK$ such that $f(z_0) = f(-z_0)$. On the other hand, iz_0 , $-iz_0 \in K$; therefore $f(iz_0) = f(-iz_0)$, which means that $z_0 \in N$ — a contradiction.

Let Φ_{n-2} , Φ_{n-1} be equivariant partitions in S^n such that $\Phi_{n-2} \cap \Phi = M$, $\Phi_{n-1} \cap M = N$. Then we have

$$\bigcap_{i=1}^{n-1} \Phi_i = N.$$

Put $N_+ = \{z \in N \mid f(z) < f(iz)\}; \ N_- = iN_+$. Then $N = N_+ \cup N_-$, $N_+ \cap N_- = \emptyset$ and $-N_+ = N_+$, $-N_- = N_-$. Consider the set N_+ together with the antipodal involution $T_0(z) = -z$. For its B-index we must have

$$B(N_+; T_0) \leq n - 2.$$

Indeed, if $B(N_+; T_0) \ge n-1$, then $B(N_+; T_0) \ge 1$; it means (see i)) that N_+ contains a T_0 -invariant continuum and hence by iii) $B(N_-; T_0) \le n-2$, which contradicts $B(N_-; T_0) = B(N_+; T_0) \ge n-1$. Therefore, by the definition of B-index we have a T_0 -equivariant map $\varphi_+: N_+ \to S^{n-2}$. Define $\varphi_-: N_- \to S^{n-2}$ by $\varphi_-(iz) = i \varphi_+(z)$. Then we get a \mathbb{Z}_4 -equivariant map $\varphi: N \to 2 S^{n-2}$ defined by

$$\varphi(z) = \begin{cases} \varphi_+(z) \times \{1\}, & z \in N_+, \\ \varphi_-(z) \times \{-1\}, & z \in N_-. \end{cases}$$

Extend φ to some closed invariant neighbourhood $\varphi: \overline{ON} \to 2S^{n-2}$. The sets $\Phi_i \setminus ON$ are equivariant partitions in $S^n \setminus ON$ with $\bigcap_{i=1}^{n-1} \Phi_i \setminus ON = \emptyset$. Then by Proposition 3 there exists an equivariant map of $S^n \setminus ON$ into S^{n-2} . Therefore, by Proposition 1 we get some equivariant

$$\psi : S^n \to 2 S^{n-2} * S^{n-2}.$$

The lemma is proved.

3. INFORMATION ABOUT THE COHOMOLOGIES OF THE LENS SPACES

Let n be an odd number. The lens space L_4^n is the orbit space of the \mathbb{Z}_{4} space S^n (with the canonical \mathbb{Z}_4 -action $z \to iz$), so we write $L_4^n = \widetilde{S}^n$. The space $L_4^{\infty} = \bigcup_{n=1}^{\infty} L_4^n$ is the classifying space for all principal \mathbb{Z}_4 -bundles. For their cohomology rings with coefficients modulo 2 we have (see for example [1])

$$H^*(L_4^\infty; \mathbb{Z}_2) = \Lambda[u] \otimes \mathbb{Z}_2[v],$$

where $\deg u = 1$, $\deg v = 2$,

$$H^*(L_4^n; \mathbb{Z}_2) = \Lambda[u_0] \otimes \mathbb{Z}_2[v_0] / (v_0^{k+1} = 0),$$

where deg $u_0 = 1$, deg $v_0 = 2$ and n = 2k + 1.

The natural inclusion $i:L_4^n\to L_4^\infty$ induces an epimorphism i^* in the cohomologies, such that $i^*(u) = u_0$, $i^*(v) = v_0$.

Let X be a compact (free) \mathbb{Z}_4 -space with an orbit space \widetilde{X} . Consider the principal \mathbb{Z}_4 -bundle $\xi = (X, \tilde{X}, p)$. Let $f : \tilde{X} \to L_4^{\infty}$ be a classifying map for ξ . Then $f^*(u)$ and $f^*(v)$ are some characteristic classes in $H^*(\widetilde{X}; \mathbb{Z}_2)$ that we shall denote by $u(\widetilde{X})$ and $v(\widetilde{X})$, respectively. (So we have $u_0 = u(L_4^n)$, $v_0 = v(L_4^n)$.) Note, that every \mathbb{Z}_4 -equivariant map $\varphi:X\to Y$ induces a map $\widetilde{\varphi}:\widetilde{X}\to\widetilde{Y}$ and if $f: \widetilde{Y} \to L_4^{\infty}$ is a classifying map for $\eta = (Y, \widetilde{Y}, \pi)$, then $f \widetilde{\varphi}$ is a classifying map for $\xi = (X, \widetilde{X}, p)$, therefore $u(\widetilde{X}) = \widetilde{\varphi}^* u(\widetilde{Y})$ and $v(\widetilde{X}) = \widetilde{\varphi}^* v(\widetilde{Y})$.

4. THE MAIN RESULT

Theorem. Let n=2k+1 and $f:S^n\to\mathbb{R}^1$ be a continuous map. Consider the set

$$A(f) = \{ z \in S^n \mid f(z) = f(iz) = f(-z) = f(-iz) \}.$$

Then dim $A(f) \ge n - 3$.

Proof. Suppose the contrary. Then by the lemma we have some \mathbb{Z}_4 -equivariant $\psi: S^n \to 2S^{n-2} * S^{n-2}$. We shall show that such a map does not exist.

The orbit space of S^n is L_4^n ; denote by M the orbit space of $2S^{n-2} * S^{n-2}$. Let $u_1 = u(M)$, $v_1 = v(M)$. It is enough to prove that

$$u_1 v_1^k = 0$$

in $H^n(M; \mathbb{Z}_2)$. Really, then $u_0 = u(L_4^n) = \widetilde{\psi}^*(u_1), \ v_0 = v(L_4^n) = \widetilde{\psi}^*(v_1),$ hence $u_0v_0^k = \widetilde{\psi}^*(u_1v_1^k) = 0$ in $H^n(L_4^n; \mathbb{Z}_2)$, which is a contradiction. Decompose $2S^{n-2} * S^{n-2} = A_1 \cup A_2$, where

$$A_1 = \{(t_1x, t_2y) \mid t_1 \ge \frac{1}{2}\}, \quad A_2 = \{(t_1x, t_2y) \mid t_1 \le \frac{1}{2}\}.$$

Let $M_1 = \widetilde{A}_1$, $M_2 = \widetilde{A}_2$ be the corresponding orbit spaces. $M_1 \cup M_2$. Define the homotopy equivalences $r_1: A_1 \to 2 \, S^{n-2}, \ r_2: A_2 \to S^{n-2}$ by $r_1(t_1x, t_2y) = x$, $r_2(t_1x, t_2y) = y$. Since r_i are equivariant, they induce maps between the orbit spaces, which are also homotopy equivalences. Hence

$$H^*(M_1) = H^*(\widetilde{2S}^{n-2}), \quad H^*(M_2) = H^*(\widetilde{S}^{n-2}) = H^*(L_4^{n-2}).$$

(All cohomologies are taken with \mathbb{Z}_2 -coefficients.)

Consider the Meyer-Vietoris sequence

$$\longrightarrow H^{n-2}(M_1 \cap M_2) \stackrel{\delta}{\longrightarrow} H^{n-1}(M) \stackrel{(i_1^*, i_2^*)}{\longrightarrow} H^{n-1}(M_1) \oplus H^{n-1}(M_2) \longrightarrow .$$

It is clear that $i_1^*(v_1^k) = i_2^*(v_1^k) = 0$, since $H^{n-1}(M_1) = H^{n-1}(M_2) = \{0\}$. Therefore $v_1^k = \delta \omega$ for some $\omega \in H^{n-2}(M_1 \cap M_2)$. Then $u_1v_1^k = u_1 \delta \omega = \delta(i^*(u_1)\omega)$, where $i: M_1 \cap M_2 \to M$ is the inclusion map (see for example [7]). To prove $u_1v_1^k = 0$ it is enough to show that $i^*(u_1) = 0$. Since $i = i_1j_1$, where $j_1: M_1 \cap M_2 \to M_1$, $i_1: M_1 \to M$ are the inclusions, we have $i^*(u_1) = j_1^*i_1^*(u_1) = j_1^*(u(M_1))$. We shall prove that $u(M_1) = 0$. Note that $2S^{n-2}$ is a deformation retract of M_1 , therefore $u(M_1) = u(2S^{n-2})$. We have to show that

$$u(\widetilde{2S}^{n-2}) = 0.$$

Suppose, first, n > 3. Clearly, $\widetilde{2S}^{n-2} = \mathbb{R} P^{n-2}$. Let $f : \mathbb{R} P^{n-2} \to L_4^{\infty}$ be a classifying map for $\xi = (2 S^{n-2}, \mathbb{R} P^{n-2}, p)$, then $u(\widetilde{2S}^{n-2}) = f^*(u)$. Suppose that $f^*(u) \neq 0$. Then in the cohomology ring of $\mathbb{R} P^{n-2}$ we have $[f^*(u)]^2 \neq 0$ (see [7]). On the other hand, $[f^*(u)]^2 = f^*(u^2) = f^*(0) = 0$, which is a contradiction.

Let now n=3. Then we directly see that a classifying map for the \mathbb{Z}_4 -bundle $\xi=(2S^1,\widetilde{2S}^1,p)$ is the map $f:\widetilde{2S}^1\to L_4^1\subset L_4^\infty$ which is a double covering (both $\widetilde{2S}^1$ and L_4^1 are homeomorphic to S^1). Therefore $u(\widetilde{2S}^1)=f^*(u)=0$.

The theorem is proved.

Corollary 1. For any continuous function $f: S^3 \to \mathbb{R}^1$ there exists $z \in S^3$ such that

$$f(z) = f(iz) = f(-z) = f(-iz).$$

Corollary 2. Let S^3 be a sum of two closed (non-invariant) subsets $S^3 = A \cup B$. Then some of them contains a whole orbit $z = \{z, iz, -z, -iz\}$.

Proof. Take f(z) = dist(z, A) in Corollary 1.

The 3-sphere is a group with respect to the multiplication induced by the quaternion structure in \mathbb{C}^2 .

Corollary 3. Let F and A be closed subsets of S^3 . Then there exists $z \in S^3$ such that

$$vol(F \cap zA) = vol(F \cap izA) = vol(F \cap -zA) = vol(F \cap -izA),$$

where "vol" is the 3-volume in S^3 .

REFERENCES

- 1. Dubrovin, B. A., S. P. Novikov, A. T. Fomenko. Modern geometry (homological methods). M., 1984 (in Russian).
- 2. Jaworowski, J. W. On antipodal sets on the sphere and on continuous involutions. Fund. Math., 43, 1956, 241-257.
- 3. Munkholm, H. J. Borsuk-Ulam type theorem for proper \mathbb{Z}_p -actions on (mod p homology) n-spheres. Math. Scand., 24, 1969, 167–185.
- 4. Nakaoka, O. Generalization of the Borsuk-Ulam theorem. Osaka J. Math., 7, 1970, 423-441.
- 5. Necochea, A. Borsuk-Ulam theorems for prime periodic transformation groups. Contemp. Math., 36, 1985, 135-143.
- 6. Schwartz, A. S. The genus of a fiber bundle. Trud. Mosc. Mat. Obcht., 10, 1961, 217-272; 11, 1962, 99-126 (in Russian).
- 7. Spanier, E. H. Algebraic topology. N. Y., McCraw-Hill B. C., 1966.
- 8. Stefanov, S. T. Some properties of compacta with a fixed point free involution. Serdica, 5, 1979, 344-350 (in Russian).
- 9. Stefanov, S. T. Mapping theorems for compacta with an arbitrary involution. Fund. Math., 123, 1984, 169-185.
- 10. Stefanov, S. T. Mapping theorems for \mathbb{Z}_{p} -actions with fixed points. Serdica, 16, 1990, 87-93.
- 11. Y a n g, C. T. On theorems of Borsuk-Ulam, Kakutani-Yamabe-Yujobô and Dyson. Ann. Math., 60, 1954, 262-282; 62, 1955, 271-283.

Received on 21.09.1994