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PA3UAX

Ocnosnoit pesynprar: [lycth X — KOMDAKT, A -—— 3AMKHYTOE DOAMHOMCCTBO KOM-
oo
nakra X, u X \ A = U F;, rne F; — samkuyrete 8 X \ A mMuoskecTBa, TakKue 4TO

PE=N1

dim{F;NF;) £ n—1 ana ¢ # j. Torna ecrecrnennwiit romomopdusm H™(X, A; G} s npamyo

[a 9]
CyMMY H HT(AUF,, A; G) asnaetca monoMopduamom ana r 2 n+1. [Monydenu nexotopnte
1=l .
NPUMEHEHUA BTOTO pe3ysIbTaTa JANA CUJALHLIX KaHTOPOBBIX MHoroo6pa3uax (oTHOCHTENbHO
rpynost G).

N. Khadzhiivanov, E. Schepin. COHOMOLOGIES OF COUNTABLE UNIONS OF CLOSED
SETS WITH APPLICATIONS TO CANTOR MANIFOLDS

o0
The main result: Let X be a compact space, A be its closed subset, and X \ A = U F,
V =1

where F; are closed subsets of X \ A such that dim(F; N F,;) £ n — 1 fori # j. Then the natural

o0
homomorphism of /7(X, A; G) into the direct sum H H™(AUF;, A;G) is a monomorphism for
1=1
7 2 n+ 1. Some applications of this result to strong Cantor manifolds (with respect to a group
() are obtained.
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Let X be a compact topological space, let A be a closed subset of X and let
X\A= U F;, where F; are closed subsets of X \ A such that dim(F;NF;) £ n—1

i=1
for i # j. Then by the Meyer-Vietoris sequence we may conclude that for r 2 n+1

m
there exists a natural isomorphism of H"(X, A; G) into the direct sum [] H™(F; U
i=1
A, A;G). (Here we denote by H"(X, A; G) the r-th relative cohomology group in
the sense of Alexandroff-Cech with coefficients in G.) |
The same is true under the assumption that the cohomological dlmensmn of

F; N F; with respect to G is less or equal to n — 1: dimg(F; N Fj) € n~ 1.
e 9]
- In case X\ A is a countable union X\ A = (J £} such that dimg(F£;NF;) £ n—1
izl
for i # j, there is a natural homomorphism of H"(X, A;G) into the direct sum
00
[T H™(F; U A, A; G). Generally speaking, this homomorphism is not an isomor-
iz
phism, but it remains a monomorphism for » 2 n+ 1. The purpose of this paper
is to prove the last result.
In fact we shall prove the following result about extensions of continuous maps:

Theorem 1. Let X be a compact space, lel A be a closed subset of X, and
o
let X\ A= | F;, where F; are closed in X \ A. Let furthermore Y be an n-con-

i=1
nected CW-complex, i.c. all the homotopy groups of Y up to the n-th are trivial:
T (Y)=m(Y) = = m(Y) = 0. Suppose that the inequality dimg, (F;NF;) £ n

for i # j, where Gy = m(Y'), holds for any k 2 n+ 1. Then a continuous map
f+A—Y, which is extendable over AU Iy for any i, can be extended over X.

Let us show now that Theorem 1 implies the above result about cohomologies.
It follows from the characteristic property of the Eilenberg—McLane complex
K(G,r) that there is an one-to-one correspondence between the cohomology group
H™(X, A; G) and the homotopy classes of maps of X into K(G, r) which are constant

on A (cf. [1], p. 550). The natural homomorphism of H"(X, 4;G) into H H(F; U

A, A;G) is a monomorphism if (and only if) each map [ : (X, A) — (Ix (G ), Po)
with homotopically trivial restrictions on (F; U A, A) for any 7 is homotopically

trivial globally.
Let 7 = {0, 1}, and let set

Xi=XxI, A=(AxDUXx{0DU(X x{1}), F'=F x]I,

and define fi : Ay — K(G,r) by fi|xx{oy = f and fi|(xx{1})u(ax1) = po = const.
Then applying Theorem 1 to the case X;, Ay, F} and fi, we get the desired result.

Indeed, the condition dimg(F;NF;) £ n—1 implies dimg(FfﬂF;) < n. Then
dimg, (F{ N F{) £ n, where Gy = 7 [K(G, )], since

- & fork::r,
e [K (G, )] = {0 for k £ r
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by definition of the Eilenberg-McLane complexes. Thus we may refer to Theorem
1 and get the following

Theorem 1'. Let X be a compact space, let A be closed in X, and let X\A=
U Fi, where F; are closed subsets of X \ A such that dimg(F; N F;) £ n—1 for

i=1

i # 7. Then the natural homomorphism of H'(X, A; G) into [ H™(F; UA, A;G)
i=1

1s @ monomorphism forr 2 n+ 1.

Let us recall that dimz X = dim X for a finite-dimensional X. Then, by Hu’s
theorem for obstructions (cf. [2]), it is possible to deduce Theorem 1 from Theorem
1’ as well, in the situation G =7, dim X < oc.

Hereafter we shall obtain, by means of Theorem 1’, some results about strong
Cantor manifolds.

Let us recall the definition of a strong Cantor n-manifold (see [3]).

The space C is called a strong Cantor n-manifold if for an arbitrary repre-

oo

sentation C' = |} Fi, where F; are proper closed subsets of C', we have dim(F; N
1=l

F;) 2 n— 1 for some ¢ # j.

C is called a strong Cantor n-manifold with respect to a group G if for any of
the above mentioned representations we have dimg(F;NFj) 2 n—1 for some ¢ # j.

Clearly, if C' is a strong Cantor n-manifold with respect to GG, then 1t is a strong
Cantor n-manifold as well. The first author has achieved some development of the
theory of strong Cantor manifolds (cf. [4]).

Now we shall prove that Theorem 1’ implies the following results:

Theorem 2. Fach compact space X with dimg X = n contains a strong
Canior n-manifold (with respect to G).

Theorem 3. Let the k-dimensional cycle z¥ (mod G) be irreducibly linked with
the compact space X in some n-ball B"”. Then X is a strong Cantor (n — k — 1)-
manifold with respect to G.

Theorem 4. The ball B" is a strong Canlor n-manifold with respect to any
group G.

Theorem 5. Each absolute boundary in R™ is a strong Cantor (n—1)-manifold
with respect 1o any G. (Recall that C is an absolute boundary in R™ if it is a common
boundary of at least two open domains in R™.)

Proof of Theorem 2. The equality dimg X = n means that there is a closed
subset A C X such that H*(X, A; G) # 0, where n is the greatest number with this
property (cf. [5]). By Zorn’s lemma we may find a minimal closed subset ' C X
such that H"(F,ANF;G)# 0. |
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We shall show that F" is a strong Cantor n-manifold with respect to G. Suppose

o0
this is not true, 1.e. ¥ = {J Fi, where F; are proper closed subsets of I such that
=3

dimg(F; N Fy) £ n—2 for i # j. Then H"(F;, AN F;;G) = 0 by the minimal
property of F'. According to Theorem 1’ the natural homomorphism

o0
HYF,ANF;G) = [[H"(Fi, AN F;; G)
i=1
is a monomorphism, which is a contradiction. (llere we make use of the fact that

HY F,ANF,G)= H"(I''UA,A;G) for n > 0.)

Remark. Using the fact that the covering dimension “dim” equals “dimgz”
in the finite-dimensional case (cf. [5]), we obtain a result of the first author about
strong Cantor manifolds (cf. [3]).

Proof of Theorem 3. Recall that the k-cycle z*, lying in B*\ X, is irreducibly
linked with X in B" if z* is not homologous to zero in B™ \ X, but for any proper
closed subset X’ C X z* is homologous to zero in B™ \ X’.

Let p : B® — S™ be a map sending dB™ into a point py and the interior of B"
homeomorphically onto S™ \ {po}. Then it is easy to see that

Hk:@%in \X,@Bn \X) == H;C(Sn \p(X))

for £ > 0 and N
Ho(B™\ X, 0B" \ X) = Ho(S™ \ p(X)),

where I is the reduced homology group.
D0

Suppose the assertion of the theorem is not true, i.e. X = [J X;, where
i=1

dimg(X; N X;) € n—k—3 (for 1 # j). Then dimg(p(X;)Np(X;)) Sn—k—3as
well. Consider the commutative diagram

B\ X) — Hy(B"\ X, 08"\ X) = He(S"\ p(X)) — [] He(S"\ p(X:)

| -
Hnmkml(p(X)) 9., H;Hn“k;wl(p(Xz‘)),
i=1

where the vertical maps are the isomorphisms furnished by Alexander duality (cf.
[1], p. 381).

Then, analyzing the image of the element [z*] € H(B™ \ X) and taking into
account that q is a monomorphism by Theorem 1/, and having in view the minimal
property of X, we arrive to a contradiction as above. (If ¥ = 0, we have to consider

the reduced groups Ho(S™ \ p(X)) at the first row of the diagram.)

Theorems 4 and 5 follow immediately from Theorem 3.
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Let us note that Theorem 1 implies directly that B" is a strong Cantor
n-manifold. To prove this, one has to suppose the contrary and to apply Theo-
rem 1 to the sitvation X =B", A = 0B", f =id : 93" — 6B".

Further the paper is aimed at the proof of Theorem 1.

Lemma 1. lLet X be a compact space, A C X be a closed subset, and let
f: A=Y map A into the CW-complex Y. Suppose thal f is exiendable over
both AU Fy and AU Fy for some closed Fy, Fy. Then there exist a neighbourhood
N(A) of A and an extension [’ : N(A) — Y of f, which is still extendable over
N{AYUF and N(A) U Fy.

This technical lemma is quite elementary and follows immediately from Bor-
suk’s lemma about extensions of homotopies (cf. [6], p. 231). It remains valid for
any Y which 1s ANE (Absolute Neighbourhood Extensor in the class of normal
spaces).

Lemma 2. Let X be a compact space and let A C X be a closed subset
m ’
such that X \ A = |J Fi, where F; are closed in X \ A. Let furthermore Y be an

i=1
n-connected CW-complex and suppose that dimg, (FiNF;) £ n, where G = m(Y)
forany k 2 n+ 1. Then a map f : A — Y, which 1s extendable over AU I for

any 1, can be extended over X.

Proof. The first obstruction for extending the map f lies in H* (X, A; 7, 41(Y))
(cf. {1}, p. 574). The image of this first obstruction in H™*2(F; U 4, A;m,,41(Y))
is the first obstruction for extending f over F; U A, which is trivial, since f can be
cxtended over F; U A by hypothesis. But, as we have already noticed, the group

H" (X, A; 11 (Y)), in virtue of the Meyer-Vietoris sequence, is naturally iso-
m

morphic to [ H"t2(F;UA, A; m,41(Y)). Hence, this first obstruction is trivial. We
1=1

have the same situation for the second, third and higher obstructions. Therefore,

there 1s no obstruction to the extension of f over X.

To go further, we need the following construction.
Let X be a locally compact space and let o = {F;}$2, be a covering of X by
closed sets. For any A C X let us'set

o2
A(e) = A\ | Inta(Fy N A),
i=1
It follows from Baire’s theorem that A # A(c) for any non-empty closed set 4. We
may define by transfinite induction a decreasing transfinite sequence of closed sets
B, as follows:
B, =X, By = By (o) for a non-limit ordinal a,
Be = () Bg for a limit ordinal o.
B<a
We call the family {By} filtration of X generated by o. Furthermore we shall
have to manage with the following situation: X is a compact space, A is its closed
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subset, and o = {F;}22, is a covering of X \ A by closed in X \ A sets F;. The
main property of the filtration of X \ A generated by ¢ is the following:

(P) For any neighbourhood N of AU Bs4; in X there exists such an m that
AU By, is contained 1n the union N U F U ... U F,.

Indeed, B, \ N is a compact space covered by the interiors of F; with respect
to By, so we may choose a finite subcover and take m greater than the maximal
index of elements of this subcover.

Lemma 3. Let X\ A= U Fi;, where A is closed in X and F; are closed in

X\ A, and let dimg, (F; N F;) £ < nfori#j, k2n+1, where Gy = mp(Y) for a
gtven n-connected CW-compler Y. Suppose that “the map f: A — Y 1s extendable

over both AU Fy and [A Uy Fi}. Then f 1s extendable over X.
1=2

Proof. Let {B.} be the filtration of X \ A generated by {F;}{2,. Let a be
the smallest ordinal such that it is still possible to construct a continuous map

fo 1 AU B, — Y which is extendable over both F; and [U F,} . It follows
1=2

from the compactness of X and from Lemma 1 that o cannot be a limit ordinal.
~ Hence there exists o — 1, or @ = 1. The second case concludes the proof. It is
sufficient now to lead the first case to a contradiction. Lemma 1 provides us with
an extension f, : N(A U Bg) — Y over some neighbourhood of A U B,, which is

jo.v]
“still extendable over both Fy and [ U Fg]. By property (P) of the filtration we
i=2

m
have Bo_1 C N(AU By)U |J F; for some m.
, =2
To obtain the needed contradiction, it suffices to prove that f! is extendable

m

over |J F;. According to Lemma 2 it is sufficient to prove that f) is extendable
1=1

over F; for any 7. But this is true by the hypothesis.

Proof of Theorem 1. Let X\ A = U F; and { By} be the filtration generated

=1

by {F;}2,. Suppose that o is the smallest ordlnal such that the extension of f on
AU B, is possible. 1t is possible to extend f on some neighbourhood N{AU B,).

If we assume that « is a limit ordinal, then B, = (| Bg and in virtue of the
B<a

compactness of X one may conclude that for some 8 < a we have AU Bg C

N{AU B,) in contradiction with the minimal property of a. If « = 1, the theorem

is proved.. Suppose that o # 1. Then o — 1 exists and we have some extension

f': N(AUB,) — Y. For any i we may extend f over F; by hypothesis. According

to Lemma 3 we may extend f over F; U B,, and by Lemma 2 we may extend f
™m

over |J F;U B, for any m. Therefore by the property (P) of the filtration we may
i=1

extend f over AU By_1 in contradiction with the minimal property of a.
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