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Tinko Tinchev. A NOTE ON INTERSECTION OF MODALITIES

In this paper a variant of the tableaux method for a polymodal language is considered, where
some of the modalities are interpreted in the Kripke models as the set theoretic intersection of
the interpretations of some of the remaining ones. As a consequence the completeness theorem
with respect to the class of finite tree-like frames and decidability are obtained.

0. INTRODUCTION

. The development of modal logic applications in theoretical computer science
(viz. propositional dynamic logic) motivates many new directions of investiga-
tions in the (poly)modal logic. For example, raised in 1979 by Vakarelov, the
question of axiomatizing the logic of intersection of modalities has led to en-
riched modal languages with names and universal modality (c¢f. {3, 4]). The main
reason for this enrichement is to avoid the modal undefinability of intersection
known from Gargov (1984, unpublished) and Van der Hoek ([5]). More precisely,
there 1s no set I' of formulae from the propositional modal language with three

modalities (R;), (K2}, (R3) such that for each Kripke frame F = (W, Ry, Ra, R3),
JeETIff Rs = RN Ry. However, in the simplest case of tri-modal language one
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can axiomatize the logic of intersection — the set of modal formulae valid in all
Kripke frames F = (W, Ry, Rq, R3) with Ry = Ry N Ry — joining the axiom scheme
[Ry]e V [Ra]e = [Rale with the minimal normal tri-modal logic. This is shown
by Tinchev and Vakarelov in an unpublished manuscript (February 1986) and in
[1], where the Vakarelov’s copying method 1s used; another proof is contained in
[5]. All these proofs make use of the standard canonical construction followed by
some p-morphic pre-image.

Here we shall give an elementary proof - without using the axiom of choice —
of the above mentioned completeness theorem, finite model property and decidabil-
ity (the last two not mentioned, but also known). The semantic tablecaux method

- in some sense “reversed” version of that from [2, 6] -— is used. The “prix” is
completeness with respect to the smaller class of Kripke frames —— the so-called
tree-like frames — and an easily obtainable refutation system.

1. SYNTAX AND SEMANTICS

We shall consider the poly-modal language L with a denumerable set of propo-
sitional letters @ and a set O of unary modal operators. The set of well-formed
formulas over ® and O is build up using propositional letters p € ¢ and modal
operators O € O, as usual, according to the following inductive rules:

—- every propositional letter 1s a formula;
~— if ¢y and @y are fornulas, then so are = and (@ & ¢3);
-— if v is a formula and O 1s a modal operator, then [Olg is a formula.

We adopt the usual abbreviations: (¢ V %), (¢ = ¥), (¢ <= ¥) and (O)p
for =(~p & =), (e V), (¢ = ¥) & (¥ = p)) and ~[O]-p, respectively.

For the rest of this paper we assuine that the set of modal operators O s

‘structured ~— there exists a set. B containing at least two elements such that O
is a set of finite subsclts of B, & ¢ O and {a} € O for any a € B. If O =
{ai,.. . a,} is a modal operator, we shall write [ay,...,a,]p and {(a), ..., an)¢

instead of [{ay,...,a,}]e and {{a1,...,a,})p, respectively.
The modal depth of a formula ¢ — the number of nested modalities in ¢ —
we define, as usual, inductively:
depth(p) = 0 for any propositional letter p,
depth(—p) = depth(ep), depth(p & ¢2) = max(depth{p), depth(ps)),
depth([0]p) = depth(g) + 1. A
The semantics of the language L is based on the Kripke structures ¥ = (W, R),

where W £ @&, R: 0 — 2%>*W and R(O) = ) R({a}) for any O € O, which are
acC

called frames. A model M over a frame Fis a tuple (F, V), where V is an evaluation
assigning subsets of W to the propositional letters in &, 1e. V : ¢ — 2% The
truth conditions are '

M azEp iff z€V(p),

M, ek ff M zE e,

Mk &y iff MaeEpand M kY,
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M. ek [Olp iff Vy(aR(O)y — M, yE p).

One can mmunediately verify Mz £ ¢V it Mz & o or Mz E ¢, and
M,z k= (O)p iff y(xR(O)y and M,y & ¢).

A formula ¢ is valid on DM, ME o, if Mz E @ forall z € W. A formula ¢ is
valid on a frame F, FE ¢, if ¢ is valid on any model over F. If ¢ is valid on every
rame, then it is called valid. A formula ¢ 1s refutable if = i1s not valid, i.e. if there
are a model M and a world 2z in M such that M,z &= -p. A formula ¢ is called
satisfiable il —p 18 refutable, 1.e. if there are a model 9 and a world z in 9M such
that 9,z £ .

The logic of intersection, K™ (Q), is the set of all valid formulas.

A frame T = (W, R) is called tree-like if (W, |J R(O)) is a tree, the root of
. 0e0 :
this tree 1s called the root of F.

[{aframe F = (W, R) is tree-like and R™T(0) = R(O)U{{z,z) | x € domR(O)U
rangeR(0)} for all O € O, then (W, R™) is called reflexive trec-like frame. A
frame (W, R'Y) is called transitive lree-like frame il there is a frame (W, R) such
that R'(O) is the transitive closure of R(O) for all O € O.

2. 'THE LOGIC OF INTERSECTION

[t is well-known that the logic of intersection K™(Q) is axiomatizible by the
following
Axioms: AxQ. All (or enough) boolean tautologies;

Axl. [O)(p == ) = ([Olp = [O]9);

Ax2. [O]e = [Ole, 01 C 0O, 0,0, € 0; and
Rules: (MP) If F ¢ and @ == 1, then F ¢;

(Nec) If F ¢, then F [O]e.

We say that a formula ¢ is in normal form if ¢ is a disjunction of besic con-
Junctions, 1.¢. conjunctions of the form

| Mpr & & A,
(+) (06L& .. & (O)ph, & (0)6E & .. & (O,
&0 & .. & [Ondyy,

where A; i1s = or the empty word, and Oy, ..., O, are different modal operators,
L2 k.

Proposition. For any formula ¢ one can effectively find a formula ¢ which
is in normal form, F ¢ <= ¢’ and depth(y) £ depth(y) for any basic conjunction
X from ¢’

Proof. The proof is carried out by an easy induction on the construction of .

Throughout we assume obvious conditions for effectiveness of O.

237



Theorem 1. There is an algorithm A such that for any formula ¢ after e
finite number of steps U gives a result (), which is a finite tree-like model such
that in its root @ is true or a proof of ~p in K" (0).

Proof. We construct 2 by induction on the modal depth of formulas. Let we
assume that 2 1s defined for any formula # with depth(f#) < depth(yp).

First of all we assume without a loss of generality that ¢ is in normal form. If
any basic conjunction from ¢ contains conjunctive terms A;p; and A;p; such that
one of them is the negation of the other, then we obtain a proof of —¢ by boolean
arguments. This proof is A(p). Therefore we can suppose that every disjunctive
term from ¢ has a satisfiable boolean part.

If there is a basic conjunction from ¢ which does not contain a term of the
formn (O}, then we set U(yp) to be the model M with W = {w}, R(O) = & and
V(p) = {w} iff the occurrance of p in this term is positive, and V(p) = @ otherwise.

Therefore we have to consider only the case when every basic conjunction from
@ contains a term of the form (0)8.

Let x be the basic conjunction (x) and define ny+- - -+ny formulas x;;, 1 £1 <k,
1 £j £n;, in the following way: If Oz, ..., Oy, are all modal operators among
Oy, ..., O, which are subscts of O;, then

Xij = goij &, & ... & Voo

From depth{x;;) < depth(x) £ depth(p) for1<i<kand 1 £ j £ n; we conclude
that the algorithm 2 is defined for them.

Let we consider the set {A(x;;) |12igk, 1 £ 7 £ n;}. If one of its elements
A(x:;) is a proof (of =y;;), then this proof can be extended to the proof of =y in
the following way:

H 7/4,;1 & ... & 1}»’1;0(:)
FOYs, & . &[Oi]Ye,,, = [Oi]-g;,, (by Ax0, (Nec), Axl, (MP), Ax0),
F [OeJte, = [Oi¥e,, -y F [On, ¥z, = (0¥, (by Ax2).

From here we obtain - —x by boolean arguments.

)
:>—-1(pnj>

Case 1. Let for every disjunctive term x of ¢ the corresponding set {A(x;;) |
1<i<k, 1 £ £ n;} contain a proof. Then we have a proof of —x by the above
considerations. Then one can easily obtain a proof of —p and it is %(p).

Case 2. Let there exist a disjunctive term x of ¢ such that the corresponding
set {U(x;;) | 1Sisk, 1 £j £ n;}doesnot contain a proof. Then A(x;;) is a finite
tree-like model 9M;;, in which root w;; the formula x;; is true. Let 9; = (Fy;, Vi),
where F;; = (Wi, Rij), and w;; be the root of M;;. Without a loss of generality
we can suppose that the sets W;; are disjoint. We are ready to define a finite
tree-like model 9 with a root w such that M, w E ¢, and we set A(p) = M. Let
W = J{Wi; |18igk, 1 5SS}, wg W and W = W U {w}. We set

R({a}) = f{Ry{a}) 112igk 1 2j S ni}U{{w,wi;) [a €0} forae B,
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R(O)= (] R({a}) for O €0,

acQ

Vip) = J{Vis(p) 11gis k. 1 £ <},
and

V(p) = V'{(p) if p has not a positive occurrance in.the boolean part of ¥,
Pr= V(p)u{w} otherwise.

One can immediately verify I, w k£ .
Thus A(p) is defined and has the desired properties.
Theorem 1 is proven.

Corollary 1. The logic of intersection is decidable and complele with respect
to the finite tree-like frames.

3. SOME SIMPLE EXTENSIONS OF THE LOGIC OF INTERSECTION

If we put some additional axioms to the considered in the previous section
formal system, we obtain the so-called simple extensions of K"(0). For the sake
of notational simplicity let assume that O = {{a},{b},{a,6}}. In many cases
adding axiom schemes only for the modalities [a] and [b], which have corresponding
first order conditions, leads to the obvious modification of the tableaux used in
the proof of Theorem 1. For example, we shall mention only the seriality axiom

- {a)true, (b}true, {a,b)true. We can add an arbitrary subset of these axioms
and find an appropriate modification of the construction to obtain decidability and
completeness with respect to the class of finite frames much like to the tree-like
frames (some leafs must be reflexive).

A bit more complicated case is when we add axioms that guarantee the reflex-

ivity:

(Ref?) [a]e = ¢,
(Ref?) | [ble = ¢,
(Ref®?) [a, bl = o.

If we add only (Ref®) and (Ref'), the obtained system is incomplete as one can
easily see. The reason is that the reflexivity of R(a) and R(b) implies the reflexivity
of R(a) N R(b) = R({a,b}). Let T™(O) be the logic K™(O) + (Ref*?!).

Theorem 2. There s an algorithm U such that for any formula ¢ after a
finite number of steps U gives a result (), which is a finite reflexive tree-like
model such that in ils rool ¢ is true or a proof of —p in T7(0).

Proof. It is enough to make small modifications in the proof of Theorem 1.
When the case x does not contain a term of the form (0)8 is considered, we take
the formula which 1s the conjunction of the boolean part of x and the formulas
after [0]. And when y;; is formed, we have to consider a formula obtained as just
we mentioned, write 1t in a normal form and so on.
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Let

More complicated case is when we add axioms for transitivity:
[Olp = [O}[0]¢ for any O € 0.

denote this simple extension by K4™(Q).

Theorem 3. There ts an algorithm 4 such thal for any formula ¢ after a

fintte number of steps U gives a resull U(p), which s a transitive tree-like model
such that in its rool ¢ is lrue or a proof of —p 1n K47(0),

Skelch of a proof. It is enough to destroy a formula in a systermatic way guar-

anteing transitivity. The condition for finishing and starting the construction of the
model is sonie periodicity of the considered finite number of potential conjunctive
terms.

et we mention that we can produce finite models in the last theorem, but we

lose 1ts property to be a trec.

f¥al
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