TOAWIIHUK HA CO®PUMCKUA YHUBEPCUTET ,CB. KIMMEHT OXPUICKU*

PAKYIJITET IO MATEMATHUKA M1 NH®POPMATHUEKA
Kuura 1 — MaremaTHka
Tom 87, 1593

ANNUAIRE DE I’UNIVERSITE DE SOFIA || ST. KLIMENT OHRIDSKI*

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 1 — Mathématiques
Tome 87, 1993

ON THE DETECTION OF SOME LOOPS
IN RECURSIVE COMPUTATIONS®

DIMITER SKORDEV

Jumump Cxopdes. OB OBHAPYKEHWUU HEKOTOPBIX 3AUUKJIIMBAHUN B PE-
KYPCUBHBIX BEIUMMCIHEHNAX

B nacrosmeit pabore pekypCuBHEIE BLIUMCHAEHUA TPAKTYMOTCH KaK HEKOTODaA AeTep-
MUAMpOBaHHAA dopma mepepaboTku TepMoB. Tepmbl crpoaTca obuiunbiM cnocobom u3
ATOMOB TNPW NOMOMMK GYHKUMOHANLHLIX CMMBONOB. VIHTYUTHUBHO aTOMBI TPAKTYIOTCA Kak
xkoHCTaHTHI. [IpocToit HeaTOMapHBI# TepM — &TO TepM, nonydaroUMica, Korja HEKOTOPbIA
GYHKUMOHAABELIA CUMBOA cHabrkaeTca aprymesnrTamu, apiaslomumuca aromamu. [Ipen-
HONAraeTCH, YTO AAHO HEKOTODPOE NPABUAO PeKYpPCHn B Gopme oTobparKeHMA MHOMXECTBA
NPOCTHIX HEATOMAPHBIX TEPMOB B MHOMECTBO BCEX TEPMOB. PeKypPCUBHOE BBLIUYUCJIEHWE —
®TO NPOIEC KOHCTPYMPOBAHMA TEPMOB, HaUMHAA C HEKOTOPOro AAHHOIO TepMa M 3aMeHsAHd,
HOKa BO3MOMHO, CAMOE JIEBOE BXOMKJAEHME [IPOCTOrO HEATOMAPHOTO TEPMa B TEKYUWMMA Tepm
Ha TEePM, COOTBETCTBYIOMMHN COrNacHo naHHOMY npaBuny pexkypcuM. llpennaraercs meron
p crune Bpenra — Ban Uenbrepa ansa obnapyswenus cnyuasd, KOrjla HeKOTOPLIA npocroit
HEATOMAPHLIH TE€PM BOCHPOM3BOAMT ce6A CHOBA B CaMOM JI€BOM MOJOMEHUM NOCHE NOJOo-
HMUTENbHOIO YMCJI3 LIATOB B PEKYPCHUBHOM BBIUUCIIEHUM,

Dimiter Skordev. ON THE DETECTION OF SOME LOOPS IN RECURSIVE COMPUTA-
TIONS

In the present paper recursive computations are treated as a certain deterministic kind of
term processing. The terms are built up in the usual way from atoms by means of function
symbols. The atoms are intuitively viewed as constants. Simple non-atomic terms are those ones

* Research partially supported by the Ministry of Science and Higher Education, Contract
MM 43/91. '

203

constructed by supplying some function symbol with arguments which are atoms. A recursion rule
is supposed to be given, considered as a mapping of the set of the simple non-atomic terms into
the set of all terms. A recursive computation fs a process of constructing terms by starting with
some given term and, while possible, replacing the leftmost occurrence of a simple non-atomic
term in the current term by the corresponding term according to the given recursion rule. A
Brent—Van Gelder's style method is proposed for detection of the case when some simple non-
atomic term reproduces itself again in a leftmost position after a positive number of steps in a
recursive computation,

1. RECURSIVE COMPUTATIONS AND CYCLIC LOOPS IN THEM

We consider terms built up in the usual way from atoms by means of function
symbols. The atoms are intuitively viewed as constants. The set of the atoms will
be denoted by A, and the set of the function symbols will be denoted by F. Let U
(the computational universe) be the set of all terms. Let U; be the set of all terms
of the form f(a1,...,ay), where f is some n-ary symbol from ¥ and «;, ..., a, are
atoms. The elements of U; will be called simple non-atomic terms. Each mapping
of U; into U will be called a recursion rule. An example follows which illustrates
the intuition behind this convention.

Example 1. Let N be the set of all non-negative integers (to be called further
natural numbers). Consider the least defined two-argument partial function ¢ in N
satisfying the following conditions for all ¥ and z in N:

e(2z,y) = z+1, @(2z+1,y) = p(w(z,9),9(y,2))

We shall relate to this function definition a recursion rule in the introduced sense.
Let A consist of the usual decimal denotations of the individual natural numbers,
and F consist of a two-argument function symbol f. Identifying the decimal deno-
tations of the natural numbers with the numbers themselves, we define a mapping
D of U, into U in the following way!:

D(f(2z,y)) = z+1, D2z + 1,y)) = {(f(z,y),{(y, 2)).
For example, we shall have
D(1(6,5)) =4, D(f(13,11)) = {(£(6,11),f(11,6)).

Turning back to the general situation, we note that each element u of U\ A has
at least one subterm belonging to U;, and there is a uniquely determined leftmost
occurrence of a term from U, in u. Replacing this occurrence by any other term will
produce again an element of U. From now on, a recursion rule D will be supposed
to be given. We extend D to U\ A in the following way: if u is an arbitrary non-
atomic term, then we set D(u) to be the result of replacing the leftmost occurrence
of a term from U, in u by the corresponding image under the original mapping
D. If uis an arbitrary term, then there is a maximal sequence (finite or infinite)

! The equality sign here and in all further occasions, where terms are concerned, denotes

graphic equality of terms.

204

of the form u, D(u), D*(u), D*(u), ... This sequence will be called the recursive
computation of .

Example 2. In the situation from Example 1 the recursive computation of
the simple non-atomic term {(13, 11) looks as follows:

£(13,11), £(F(6,11),£(11,6)), £(4,£(11,6)), f(4,f(£(5,6),(6,5))),
£(4, S(L(0(2, 6), (6, 2)), (6, 5))), £(4, £(£(2, £(6, 2)), £(6, 5))),
£(4, f(£(2,4),1(6,5))), f(4,1(2,1(6,5))), f(4,£(2,4)), £(4,2), 3.

Again in this situation the first five members of the recursive computation of f(1,0)
are the following ones:

£(1,0), (£(0,0),£(0,0)), f(1,£0,0)), f(1,1), F(f(0,1),f(1,0)).

This computation is ‘infinite, since its member f(1,0) turns out to be a subterm of
a further one.

Remark 1. It can be proved that an ordered pair (z,y) belongs to the domain
of the function ¢ from Example 1 iff the recursive computation of the simple non-
atomic term f(z,y) is finite, and in such a case the computation terminates with
the value of p(z,y) (hence (13, 11) is equal to 3, and ¢(1,0) is not defined).

It is natural to be interested in the problem how to decide whether the recursive
computation of a given term is finite. Unfortunately, this problem is algorithmically
unsolvable even in some relatively simple concrete cases. Therefore we shall consider
a certain speclal sort of infinite recursive computations, such that the infinity of
the computation can be effectively detected after making an appropriate finite
number of computational steps. We are going now to introduce some denotations
and notions which are useful for describing the mentioned sort of infinite recursive
computations. .

Whenever u is a non-atomic term, we shall denote by H(u) the leftmost oc-
curring term from U; in w; this term will be called the head of u.

Example 3. In the situation from Example 1 the equality

H(f(4, f(f(5, 6),1(6,5)))) = {(5,6)

holds.

The following fact seems to be intuitively obvious and we shall postpone its
proof (cf. Appendix 2):

Fact 1. For any term u and any natural number ¢, if H(D'(H(w))) makes
sense, then H(D*(u)) also makes sense and the equality

H(D'(H (1)) = H(D*(u))

holds.

If uis aterm, v 1s a simple non-atomic term, and ¢t is a natural number, then
u will be said to activate v after t steps if u belongs to the domain of D* and v is
the head of D*(u).

Example 4. In the situation from Example 1 f(1,0) activates f(0, 1) after 4
steps (cf. Example 2).

205

Remark 2. Another related notion also deserves attention. This is the fol-
lowing interrelation between a term u, a simple non-atomic term v and a natural
number ¢: the term u belongs to the domain of DY, and v is a subterm of D(w).
This requirement is weaker than the requirement u to activate v after ¢ steps (as
seen from Example 2, the above requirement is satisfied in the situation from Ex-
ample 1 for w=v = {(1,0), £ = 4, but f(1, 0) does not activate f(1,0) after 4 steps).
The described other notion can be used more or less instead of the notion of acti-
vation. However, we prefer to use the notion of activation for reasons of technical

convenience. |
Fact 1 can be reformulated as follows: for any term u and any natural number

~ tif H(u) makes sense and activates a certain simple non-atomic term w after ¢
steps, then u also activates w after ¢ steps.

Lemma 1. Let u be a term, v, w be simple non-atomic terms, s and t be
natural numbers, let W activate v after s steps, and v activale w aftert steps. Then
u activates w after s+t steps.

Proof. We have the equalities v = H(D*(u)), w = H(D'(v)). Applying Fact 1
with D*(u) in the role of u, we conclude that D°(1) belongs to the domain of D,
and the equality w = H(D*(D’(u))) holds, i.e. u belongs to the domain of D***
and the equality w = H(D**'(w)) holds. =

A simple non-atomic term v will be said to be self-reactivating iff there is a
positive integer r such that v activates v after r steps. The following lemma shows
a possibility to apply this notion for establishing the infinity of certain recursive
computations.

Lemma 2. Let a term u aclivale a self-reactivating simple non-atomic term
after some number of steps. Then the recursive computation of u s infinite.

Proof. Let u activate the self-reactivating simple non-atomic term v after s
steps, and let v activate v after r steps, where r > 0. Then, by Lemma 1, u
activates v after s + kr steps for all £ in N. Hence u belongs to the domain of
D' for all k in N, i.e. u belongs to the domain of D" for arbitrarily large values
of r. m

Example 5. In the situation from Example 1 the simple non-atomic term
f(1,0) is self-reactivating. Namely, it activates itself after 5 steps. Indeed, making
use of Example 2 we see that

DE(f(1,0)) = D(£(0, 1), (1, 0))) = (1, (1, 0)).

This fact, together with Lemma 2, yields another proof of the statement that the
recursive computation of f(1,0) is infinite.

Example 6. Again in the situation from Example 1 the first four members of
the recursive computation of f(1, 3) are:

(1,3), £60,3),03,0)), K(1,83,0)), (1, 8(E(1,0),K(0,1))).
Hence the term f(1, 3) activates the term f(1, 0) after 3 steps. Therefore, by Example

5 and Lemma 2, the recursive computation of f(1,3) is infinite. However, the

206

term f(1, 3) is not self-reactivating. Namely, one can easily show by induction that
no member of the recursive computation of f(1,3) except the first three ones can
contain atoms different from 0 and 1.

Example 7. Let us modify the definition of ¢ and the corresponding recursion
rule from Example 1 by writing “2 +9” instead of “2+ 1”. Then the recursion rule
will be

D(f(22,y)) = 2+9, D(f(2z +1,y)) = {({(z, y), f(y, 2)).

Under this recursion rule the term f(9, 17) is self-reactivating, but 1t activates itself
only after a relatively large number of steps. Namely, f(9, 17) activates itself after
126 steps and does not activate itself after a smaller positive number of steps.
This can be seen by application of a suitable computer program. For example,
making use of Turbo Pascal, Version 4.0 or later, we could apply the program from
Figure 12

{$5+}

var k,1l,m,t:word;

function f(x,y:word) :word;
var z:word;
begin
if (x=k) and (y=1) and (t>0) then
begin
writeln(’f(’,k,’,’,1,’) activates itself after ’,t,’ steps!’);
halt
end;
if t<65535 then t:=t+1 -
else begin writeln(’Too many steps!’);halt end;
z:=x div 2;if odd(x) then f:=f(f(z,y),f(y,z)) else f:=z+9
end; V

begin

t:=0;

readln(k,l) ;m:=f(k,1);writeln(’£f(’,k,’,’,1,’)=",m)
end. ‘

Figure 1. A program detecting self-reactivation (Example 7)

2 The program is obtained by adding appropriate side effects to an ordinary recursive Pascal
program for computing the value of . The side effects in question are carried out through
introducing the step counting variable t and through the operators containing it {the fact is used
that the compiler implements the recursion present in the program by means of steps corresponding
to applications of the mapping D). A more straight-forward approach would lead to explicitly
using dynamic data structures for modelling the recursive computation of the considered term.
The way of using side effects in the programs given in this paper is similar to a technique used
in 1992 by Igor Durdanovié¢ in Paderborn (he implemented then in Prolog certain loop detection

methods designed by the present author and concerning Prolog programs).

207

Remark 3. Let us call a simple non-atomic term v self-reproducing if there 1s
a positive integer 7 such that v belongs to the domain of D" and v is a subterm
of D" (v). In general, self-reproduction is a weaker property than self-reactivation,
but can be used in a similar way. For example, the assumption of Lemma 2 means
that the recursive computation of 1t contains some member whose head is a self-
reactivating simple non-atomic term, and this assumption can be weakened in the
following way: some member of the recursive computation of u has a subterm
which is a self-reproducing simple non-atomic term. We shall not make use of such
a strengthening of the lemma, since, for reasons of technical convenience, we prefer
to use the notion of self-reactivation. -

Let u be a term. We shall say that a cyclic loop ts present in the recursive
computatron of wiff u satisfies the assumption of Lemma 2, i.e. iff u activates some
self-reactivating simple non-atomic term after some number of steps.

Example 8. In the situation from Example 1 a cyclic loop is present in the
recursive computation of {(1,0), as well as in the recursive computation of f(1,3)
(cf. Examples 5 and 6).

Example 9. In the situation from Example 7 a cyclic loop is present in the
recursive computation of f(9,17). A cyclic loop is present also in the recursive
computation of f(1,3), since f(1,3) activates f(9,17) after 48 steps (this can be
shown by using a suitable modification of the program from Figure 1).

By Lemma 2 the presence of a cyclic loop in the recursive computation of a
given term implies the infinity of that computation. It is easy to see that the con-
verse is not true in the general case, i.e. the recursive computation of a term could
be infinite without the presence of a cyclic loop in that computation. Nevertheless,
the presence of a cyclic loop is a frequently encountered cause for infinity of the
recursive computation of a term (cf. for example Appendix 1 in this connection).
Therefore it could be useful to have some efficient method for the detection of this
kind of loops. Such a method will be presented in the next section. The method
will- combine some features of a loop detection method of R. P. Brent, described
in [1, p. 7, Exercise 7] and generalized in [2]°, and of another one proposed by
A. Van Gelder in [3, 4]* (both mentioned methods are intended for the examina-
tion of other kinds of computational processes).

2. THE LOOP DETECTION METHOD

We shall describe the method under the same assumptions as in the previous
section. In fact, there will be infinitely many variants of the method. Any concrete
variant is determined by the choice of a concrete infinite strictly increasing sequence
To,T1, T2, . .. of natural numbers such that there is no upper bound for the set of

3 No citation of related work of other authors is given in [2], due to the lack of information in
this respect at the moment of writing that paper.
* The presentation in [3] is not correct, as shown in [5], but {4] indicates a way for correcting

that presentation.

208

the differences 7,41 — 75, n = 0,1,2,... (such sequences are considered in [2];
concordance with the description of Brent’s method in [1] can be achieved by setting
, = 2" —1). To simplify the presentation of the method, we shall restrict ourselves
to the case when the equality 79 = 0 holds. From now on, a sequence 79,7y, 79, . ..
with the formulated properties i1s supposed to be given.

To be able to detect the presence of a cyclic loop in the recursive computation of
a given term, we add some loop detection activities to the process of constructing
consecutive members of the recursive computation of the term. We shall firstly
give a somewhat intuitive description of these additional activities and after that
we shall describe them in a more formal way.

Roughly speaking, the main additional activity consists in making a snapshot
of the head of the current term at certain moments of the computation, the moment
79 being the first of them, and comparing the heads of some of the further arising
terms with this snapshot. A detailed formulation (although not yet a thoroughly
formal one) concerning the comparison will look as follows.

Suppose we study the recursive computation of a given term u. Let a member
w = D'(u) of the computation be obtained from u by ¢ applications of D and

a snapshot of H(D'(u)) made after ¢ applications of D to u be available, where
t < t. We suppose that no snapshot is ma,de at moments between ¢ and t, and
H(D'(u)) belongs to the domain of D'~*. After w is obtained, one firstly checks
whether w belongs to the domain of D. If w does not belong to this domain (i.e.
if w is an atom), then the recursive computation of u is completed and nothing
more has to be done (of course, there is no cyclic loop in the computation in this
case). If w belongs to the domain of D, then certain loop detection activities must

be carried out. First of all, one checks whether D'~ (H(D*(u))) is an atom or not.
If it is an atom, then we shall say that the available snapshot becomes obsolete at
the moment t. In this case one replaces the snapshot of H(Df(w)) by a snapshot
of H(D'(u)) and then constructs the next member D “*1(u) of the computation.

Otherwise H(w) and H(D'(u)) are compared. If they turn out to be equal, then

a loop is detected in the computation at the moment ¢ and nothing more has to
be done. Otherwise again the next member D**'(u) of the computation must be
constructed. But before doing this one must check whether ¢ is a member of the
sequence T0,Ti, T2, ..., and if ¢ is such a member, to replace again the snapshot of
H(D'(u)) by a snapshot of H(D'(u)).

We hope the next two examples will make the above presentation of the method
more intelligible.

Example 10. Suppose we carry out the computation of {(13,11) in the situa-
tion from Example 1 (cf. Example 2). Let the sequence 7, 71, 74, ... be determined
by the equality 7, = 2" —1,n =0,1,2,... Then the computation process accompa-
nied with loop detection activities can be represented by Figure 2, where making a
snapshot is indicated by an asterisk, the corresponding head is printed bold-faced,
and the vertical and broken lines indicate the results of successive applications of
D to such a head (do not pay attention to the rightmost two columns of numbers
— they will not be used yet!). Note that snapshots at moments 2, 7, 8 and 9

209

Moment Term c cv

0 * £(13,11) | 1
1 x E(£(6,11),£(11,6)) 301
2 x F(4,£(11,6)) - o 1
3 * £(4,£(£(5,6),£(6,5))) 3001
4 f(él,f[(f(f(z,es},f(é,z))if(é,s})} 3 3
5 f(4,ff(f(2,f(6,z)),f(‘s,s)}) 2 2
6 f(4,fl(f{2,4),f(6,5))} 12

7 * £(4,f(2,£(6,5))) 0o 1
8 * £(4,£(2,4)) o 1
9 % £(4,2) ‘ 0 1

B ~
10 3 0

Figure 2. Computation with loop detection activities (Example 10)

are made because the available snapshot becomes obsolete at these moments, and
snapshots at moments 0, 1 and 3 are made because these moments are members
of the sequence 79,71, 72, ... At the moment 10 the computation 1s completed, thus
its finiteness is seen. Of course, this finiteness has been established much easier
in Example 2 without using the loop detection method. In the present example
we only observed that the application of the loop detection method to the same
computation did not change the final conclusion.

‘Example 11. Again in the situation from Example 1 let us examine the re-
cursive computation of the term f(1,3) using the same sequence 15,7, 72,... as
in the above example. Figure 3 represents what happens (the same conventions
hold as above). At the moments 2 and 8 snapshots are made because the avail-
able snapshots become obsolete at these moments, and at the moments 0, 1, 3
and 7 snapshots are made because these moments are members of the sequence
0,71, 72, - .. At the moment 13 a cyclic loop is detected in the computation. Note
that the loop would be detected earlier (namely, at the moment 8) if we had 73 > 8
instead of 3 = 7. '

The most troublesome thing in the method seems to be the necessity not only
to construct successive members of the examined recursive computation, but also
to consider results of successive applications of D to the snapped term heads (in
order to check whether the last of these results is an atom or not). In the above
two examples the results in question have been visualized by means of some lines.
A formal variant of this technique is surely possible, but fortunately there is an
way to perform the mentioned check without explicitly indicating the concerned
results. We shall explain now that easier way.

210

Monment Term c c¥

0 * £(1,3) | 1
1
1 * £(£(0,3),£(3,0)) 31
2 * f(l,f(a,a))1 | 0o 1
3 * f(lff(f(l,ﬁ)?f(ﬁ,l)); ’ 3 1
1
4 f(1,£(£f(£(0,0),£(0,0)),£(0,1))) a 3
5 £(1,£(£(1,£(0,0)),£(0,1))) > 2
6 . f(l,f(f(l,l)gf(o,l))) 1 1
}
7 ¥ £(1,£(£(£(0,1),£(1,0)),£(0,1))) 31
8 * f(l,f(f(lif{l,O){,f(O,l))) 0 1
1
g t(r,£(£(¢1,£(£(0,0),£(0,0))),£(0,1))) 3 3
10 f(l,f(f(i,f(l,f(0,0))),f(O,l))) | 2 2
11 f{l,f(f(l,f(l,l){:f(O,l))) 1 1
: 1
12 £(1,£(£(1,£(£(0,1),£(1,0))),£(0,1))) 303
13 £(1,E(£(1,£(1,£(1,0))),£(0,1))) 2

Figure 3. Computation with loop detection activities (Example 11)

For any term u let |u| denote the number of occurrences of symbols from F
in u; this number will be called the complezity of u. Clearly, the complexity of a
term is equal to 0 iff the term is an atom.
We shall make use of the following intuitively clear statement (cf. Appendix 2
for a proof): :
Fact 2. For any term u and any natural number ¢, if D*(3(u)) makes sense,
then D*(w) also makes sense and the equality |
D (w)] = ID*(FH(w)] = Jul - 1

holds.

The following statement is an immediate corollary of the particular case of
Fact 2 when t = 1:

Lemma 3.’ For any non-atomic term u the equality
ID(w)l — hu] = [DHW)] - 1
holds (consequently |D(u)| — u] 2 - 1).
We shall prove now a lemma which will give us the main tool for incorporating

the introduced complexity notion into the loop detection method.

211

Lemma 4. Let w be a term, t and t be natural numbers such that ¥ < t.
Suppose the lefi-hand side of the equality

DD (w))] = (D (HD (W) + [DEFH(D (W) - L
makes sense. Then the right-hand one also makes sense and the equality is true.

Proof. The first addend in the right-hand side of the equality obviously makes
sense. Let us apply Fact 2 twice with D*(u) in the role of u taking in the role of
t the number ¢ — ¢ the first time and the number ¢t — { 4+ 1 the second time. We
conclude that D'(u) and D' (u) make sense and the following equalities hold:

D' (w)] — D™ HH(D (W) = [D(w)] - 1,
|DH (W) = | DT (D (W) = D ()] - 1.
These two equalities imply that
1D (w)] — [DTHH(D (W)] = | D ()| — | D (H(D (u))]
and therefore
1D HH(D (W))] = [DTHHD W) + D (w)] ~ 1D (w)].
On the other hand, by Lemma 3 we have also the equality

D (w)] — DW= [DH(D* (w)| ~ 1. m

Suppose now we examine the recursive computation of a given term u by the
already described method. Suppose also the other things assumed in the description
of the method, namely: a member w = D*(u) of the computation is obtained from

u by t applications of D, and a snapshot of I}{(@{(u)) made after { applications of
D to u is available, where ¢ < t, no snapshot is made at moments between {and t,
and H(D'(u)) belongs to the domain of D*~'. In such a situation let us say that

H(D'(w)) is the available snapped head at the moment t and D'~ (H(D'(w))) is the
avatlable descendent term at the moment t. For the case when the next member
DM (u) of the computation must be constructed, it is convenient to introduce
also the notion of descendent term inherited from the moment t. If no change of
the snapshot 1s made at the moment £, then, by definition, this is the available
descendent term at the moment ¢. Otherwise the descendent term inherited from
the moment ¢ is H(D*(wu)), i.e. the new snapped head. We adopt also the convention
that the descendent term inherited from the moment 0 is H(u).

Let ¢ be the complexity of the available descendent term at the moment ¢.
Consider again what has to be done if w belongs to the domain of D. If ¢ = 0, then
the available snapshot becomes obsolete at the moment ¢ and must be replaced by
a snapshot of H(D*(u})), and then the next member D*** (1) of the computation

must be constructed. If ¢ > 0, then one must compare H(w) and G{(Q){(u)).
If they turn out to be equal, then a loop is detected in the computation at the

moment ¢. Otherwise, one has again to construct the next member D't'(u) of
£

the computation, possibly replacing the snapshot of 3{(D'(u)) by & snapshot of
H(D*(w)) (if t is a member of the sequence 79,7, 73,...). In any case when a

212

construction of ’Dgﬂ(u) has to be done, it makes sense to consider the available

snapped head at the moment t + 1 and the descendent term at the moment ¢ + 1.
If no change of the snapshot is done at the moment ¢, then they are H(D*(u)) and
DI FH(D (1)), respectively. Otherwise, they are H(D*(u)) and D(H(D'(w))).
Let ¢’ be the complexity of the available descendent term at the moment ¢ 4 1. If
no change of the snapshot is done at the moment ¢ + 1, then, applying Lemma 4,
we conclude that

¢ =c+ |D(H(D (w)| - L.
In the case when a change of the snapshot is done at the moment ¢ + 1, we, of
course, have

¢ = |D(H(D (w)}.

Both equalities may be unified as follows:

¢ = et + | D(H(D ()] - 1,

where ¢! is the complexity of the descendent term inherited from the moment ¢ (the
inherited complexity from the moment ¢, for short). The last equality obviously
holds also in the case of t = 0.

The above considerations suggest the following modification of the detection
method: instead of maintaining all the time the available descendent term, one
maintains only its complexity. Such a modification works thanks to the above
expression for the complexity of the available descendent term at the moment t + 1.
In fact, the expression shows how to calculate the complexity in question if we know
the head of the current term at the moment ¢ and the inherited complexity from the
moment £. On the other hand, the last complexity is equal to 1 if t = 0, otherwise it
depends in a very simple way on t and on the complexity of the available descendent
term at the moment ¢t (both complexities are equal except for the cases when the
complexity of the available descendant term at the moment ¢ is § or the moment ¢
is a member of the sequence 7y, 71, 79, . . . — in these cases the inherited complexity
from the moment f is equal to 1). Figures 2 and 3 illustrate also the application of
this modification of the method. Namely, one must pay no attention to the vertical
and broken lines used before, and must look at the two rightmost columns instead.

Example 12. The modified form of the loop detection method is convenient
for program implementation. Figure 4 shows a Pascal program which implements
the application of the method in the situation from Example 7 to recursive com-
putations with initial member in U, (the sequence 7o, 71, 73,... with 7, = 2" =1
is used). The program writes the arguments of the snapped head to the variables
a and b. Complexity of descendent terms is written to the variable ¢. Figure 5
displays the output from the application of the same program to the recursive com-
putation of f(1,3) mentioned in Example 9 (for the sake of saving space the output
is displayed in two columns).

The description of the proposed loop detection method can be given in a more
formal way, and this is especially advisable for a correctness and completeness proof.
Until this moment our presentation used some intuitive ideas without complete
definition of the terminology, and no correctness and completeness proof for the

213

{$s+}

var k,1,m,t,tau,a,b,c:word;

procedure snap(x,y:word);
begin

a:=x;b:=y;c:=1;

writeln(’Snapshot at moment ’,t,’: £(’,x,’,’,y,’)?)
end;

function f(x,y:word):word;

var z:word;

begin
if ¢=0 then snap(x,y)
else if (x=a) and (y=b) then
begin writeln(’'Loop detected at moment ’,t);halt end
else if t=tau then snap(x,y);
if t<65535 then begin if t=tau then tau:=2*taut+l;t:=t+1 end
else begin writeln(’Too many steps!’);halt end;

z:=x div 2;
if odd(x) then begin c:=c+2;f:=£(f(z,y),f(y,z)) end
else begin c:=c-1;f:=z+9 end

end;

begin

t:=0;tau:=0;c:=0;
readln(k,1});m:=£(k,1);writeln(’£(’ ,k,’,’,1,’)=",m)
end. ,

Figure 4. A loop detecting program (Example 12)

method has been given. Now we shall give a description of the method by means
of standard mathematical terminology. As to the proof, it will be given in the next
section. ' ' |
The process of application of the method (in its modified form) will be present-
ed in the form of constructing some elements of the Cartesian product NxUxU; xN
(i.e. of some quadruples {f,w,v,c), where w is a term, v is a simple non-atomic
term, ¢ and ¢ are natural numbers). An element (¢, w,v,¢) of N x U x U; x N will
be said to detect a loop iff the inequality ¢ > 0 and the equality H{w) = v hold
(clearly, w cannot be an atom in this case). A quadruple from N x U x U; x N will
be called terminal iff this quadruple detects a loop or the second component of the
quadruple is an atom. A non-terminal element (¢, w,v,¢) of Nx U x U; x N will
be said to invoke a snapshot iff the equality ¢ = 0 holds or ¢t = 7, for some n in
- N. The snapshot information inherited from a non-terminal element (¢, w,v,¢) of
N x U x U; x Nis, by definition, the pair (H(w), 1) if (¢,w,v, ¢) invokes a snap-
shot, and it is the pair (v, c) otherwise. To each non-terminal element ({,w,v, ¢) of
N x U x U; x N we make to correspond another quadruple called its successor. By
definition, this is the quadruple

(t+ 1, D(w), vt ¢t + | D(H(w))| - 1),

214

Snapshot at moment 0: £(1,3) Snapshot at moment 48: £(9,17)
Snapshot at moment 1: £(0,3) Snapshot at moment 63: f£(11,15)
Snapshot at moment 2: £(3,0) Snapshot at moment 127: £(4,16)
Snapshot at moment 3: £(1,0) Snapshot at moment 128: £(16,4)
Snapshot at moment 7: f(4,9) Snapshot at moment 129: £(11,17)
Snapshot at moment 8: £(9,4) Snapshot at moment 151: f(14,1)
Snapshot at moment 15: £(5,2) Snapshot at moment 152: f(16,16)
Snapshot at moment 19: £(2,5) Snapshot at moment 153: £(14,3)
Snapshot at moment 20: £(14,10) Snapshot at moment 154: £(17,16)
Snapshot at moment 21: £(10,16) Snapshot at moment 167: £(14,7)
Snapshot at moment 22: £(11,5) Snapshot at moment 168: £{(15,16)
Snapshot at moment 31: £(2,5) Snapshot at moment 255: £(11,17)
Snapshot at moment 32: £(5,2) Snapshot at moment 277: £(14,1)
Snapshot at moment 36: £(10,14) Snapshot at moment 278: f(16,16)
Snapshot at moment 37: £(14,14) Snapshot at moment 279: £(14,3)
Snapshot at moment 38: £(14,16) Snapshot at moment 280: f(17,16)
Snapshot at moment 39: f(11,16) Snapshot at moment 293: £(14,7)
Snapshot at moment 46: £(0,1) Snapshot at moment 294: £{(15,16)
Snapshot at moment 47: £(16,9) Loop detected at moment 420

Figure 5. Oufput from the loop detecting program {Example 12)

where (v!, ¢!) is the snapshot information inherited from the quadruple (¢, w,v,¢).

Suppose now a term u is given. The process of construction of consecutive
members of the recursive computation of u with the addition of loop detection
activities looks as follows. We start with the quadruple (0,u,vy,0), where v is
an arbitrarily chosen simple non-atomic term (the concrete choice of vy will be
unessential). If this quadruple is non-terminal, then we go to its successor, and
if this successor is also non-terminal, we do the same with it, and so on until
eventually a terminal quadruple is obtained. If such a quadruple is obtained in the
course of the process and this quadruple detects a loop, then a cyclic loop 1s present
in the recursive computation of u. Conversely, if a cyclic loop is present in the
recursive computation of 1, then some quadruple detecting a loop will be obtained
in the course of the process. The first of these two statements (with a supplement
concerning the other kind of terminal quadruples) is the correctness theorem for
the presented method, and the second of them (with a similar supplement) is the
completeness theorem for this method. Clearly, any of these two theorems needs a
proof. Such proofs will be given in the next section. |

3. CORRECTNESS AND COMPLETENESS THEOREMS

The correctness of the method means that in all cases of terminating appli-
cation of the method the conclusion given by it corresponds to the actual state of
affairs. To formulate this more precisely, we define a mapping D, of the set of the
non-terminal elements of N x U x U; x N into the whole N x U x U; x N by the con-
vention that D, transforms all element of its domain into their successors. We shall

215

write simply D% instead of (D;)'. The images of a given element of N x U x U; x N
under the mappings Dt ¢t =0,1,2,..., will be called accessible from this element.
The following statement can be established by means of a trivial induction:

Lemma 5. Let w be an element of U, and vy be an element of U,. For any
natural number ¢ such that (0,u,vy,,0) belongs to the domain of DL, the first and
the second component of the quadruple D%(0,u,vy,0) are t and D*(w), respectively.

The correctness theorem reads as follows.

Theorem 1. Let u be an element of U, vo be an element of Uy, and a ter-
manal element of N x U x Uy x N be accessible from the quadruple (0,u,vp,0). If
this terminal element detecis a loop, then a cyclic loop is present in the recursive
computation of u, otherwise the computation is finite.

Proof. 1f the mentioned terminal element does not detect a loop, i.e. if the
second component of this element 1s an atom, then, by Lemma 5, Q)t(u) will be an
atom for some ¢ and consequently the recursive computation of u will be finite.

Consider now the case when the terminal element in question detects a loop.
We must show that a cyclic loop is present in the recursive computation of u in
this case.

We shall firstly prove that any quadruple (t,w, v, ¢) accessible from (0, u, vg, 0)
satisfies the following condition: 4 = 0 or there is some natural number ¢ such that
{ < t, the term v belongs to the domain of D*~, and the equalities

(1) v=H(D(w), c¢=|D" V)

hold. The proof will be done by induction on ¢t. If ¢ = 0, then the condition is
satisfied. Assume now that the statement 1s true for a certain natural number t, and
suppose that a quadruple of the form (t+1,w', V', ¢’) is accessible from (0, u, vg, 0).
This quadruple is the successor of some quadruple (¢, w, v, ¢), also accessible from
(0,u,vp,0). By the induction hypothesis and the definition of successor the above
condition is satisfied for (t,w, v, c), and we have the equalities

vVi=vh =+ [D(H(Ww))| -1,

where (v', ¢') is the snapshot information inherited from the quadruple (¢, w, v, ¢).
By Lemma 5, also the equality w = Df(u) holds. Let us consider firstly the case
when (¢, w, v, ¢) invokes a snapshot. Then v = H(w), ¢! = 1, hence v/ = H(w),
¢ = |D(H(w))], and therefore the equalities

Vi =H(D'(w), ¢ =[DV)

hold. Thus the condition in question will be satisfied if we take v/, ¢/, t + 1, ¢ in
the roles of v, ¢, 1, t, respectively. Suppose now that (f,w,v,c) does not invoke
a snapshot. Then v! = v, ¢! = ¢, hence V' = v, ¢/ = ¢+ |D(H(w))| — 1. Since
certainly ¢ > 0 in this case, we may find a natural number { such that { < ¢, the
term v belongs to the domain of D'~!, and the equalities (1) hold. Then we shall
have the inequality ¢ < ¢ + 1 and the equalities

V= H(D (W), ¢ = |DHHDI (W) + IDHD (w))] - L.

216

By Lemma 4 the second of these equalities can be represented in the form
¢ = |[D7THH(DYHw)))| (the application of the lemma is allowed, since

(D HH(D (W) = ¢ > 0). Hence

C! — 1®i+l—t(vf)]=
therefore the condition in question will be satisfied with the same ¢ if we take V/,
¢’, t + 1 in the roles of v, ¢, ¢, respectively. This completes the induction step of
the proof.

Let us take now the mentioned terminal element of Nx U xU; x N as (t,w, v, ¢).
Since this element detects a loop, the inequality ¢ > 0 and the equality H{w) = v
hold. By the above considerations we may find a natural number ¢ such that ¢ < £,
the term v belongs to the domain of D' ™', and the equalities (1) hold. The first of
these equalities shows that u activates v after { steps. On the other hand, an appli-
cation of Fact 1 with D(u) and ¢ — { in the roles of u and ¢, respectively, together
with the same equality and the equality w = D*(w), shows that H(D'~*(v)) = H(w)
(the application of Fact 1 is allowed, since |D'~*(H(D'(u)))| = ¢ > 0). Taking into
account also the equality H(w) = v, we see that v activates itself after ¢ — ¢ steps,
and hence v is a self-reactivating term. Thus u activates a self-reactivating term
after 1 steps. m

For the proof of the completeness theorem two lemnmas more will be needed.

Lemma 6. Let w be @ term, and let uw activale a self-recactivating simple non-
atomic term v after s steps. Let v activate itself after v steps, where r > 0, and let
t be an arbitrary integer salisfying the inequalityt 2 s. Then

(2) HD™ () = H(D'(w), D" (w) 2 1D(w)).

Proof. The above statements make sense, since, by Lemma 2, the recursive
computation of u is infinite. By Lemmma 1 u activates v also after s + r steps, i.c.

H(D*(u)) = H(D*"(w)) = v.
Setd=t—s. Thent=s+d,t+r=s+r+d, hence
H(D'(w)) = H(DUD* (W), HD™ (w) = HDY (D (w)).
From here, making use of Fact 1 with d in the role of ¢ and D°(u), D*T"(wu) in the
role of u, we get
H(D (W) = H(D(v)), H(D'""(w) =HD W),
thus the equality in (2) is established. For the proof of the inequality we apply Fact
2 in the same way. The result of its application looks as follows:

D' (w)| = [DYW)] = D (w)] - 1,
D' (w)] — | DHW)| = D (w)| ~ 1.

One more application of Fact 2, this time with r in the role of ¢ and D’(u) in the
role of u, shows that

DT (W)~ D" (V)] = ID* (w)] - 1.

217

From the last three equalities we get
D (W) = DX ()] = DT (W) = [D*(w)] = [D"W)] - 1,
and the validity of the inequality is clear, since |D"(v)] 2 1.

Lemma 7. Let u be a term, vy be an element of Uy. Let t and t be natural
numbers such that t < t, no member of the sequence 19,7, 72,... is strictly be-

tween t and 1, the quadruple (0,1, vy, 0) belongs to the domain of@f;, the quadruple
DE(0,u,vo, 0) invokes a snapshot, and |D'(W)| 2 |D*(u)| holds, whenevert <t < {.
Then
D7 (0,1, v0,0) = (£, D' (uw), H(D'(w)), 1 + [D"(w)] — | D (w))).
Proof Induction on {7 is used with the case of i: = f;}— 1 as induction basis. To
settle that case and to do the induction step from ¢ to ¢ + 1, one applies Lemma 3

with D'(u) and with fD{{u) in the role of u, respectively. =
Now we shall formulate and prove the completeness theorem.

Theorem 2. For any term u and any vo from U, the following two statements
hold:

(i) If a cyclic loop is present in the recursive computation of u, then some
element of N x U x Uy x N accessible from (0,u,vq,0) detects a loop.

(i) If the recursive computation of w is finile, then some element of N x A x
Uy x N s accessible from (0, u,vg, 0).

Proof. The proof of (ii) is quite easy. In fact, suppose that the recursive
computation of u is finite and consider a natural number s such that D°(u) is an
atom. Making use of Lemma 5 we conclude that (0,u,vg,0) does not belong to
the domain of Di“. Therefore some terminal quadruple (with first component not
greater than s} is accessible from (0, u,vo,0). It is not possible that this terminal
quadruple detects a loop, since, by Theorem 1, then a cyclic loop would be present
in the recursive computation of u. Hence the terminal quadruple in question has
an atomic second component (the first component of the quadruple will be s, as it
is easy to see).

Consider now the case when a cyclic loop is present in the recursive compu-
tation of u (hence this computation is infinite). Let u activate a self-reactivating
simple non-atomic term v after s steps, and let v activate itself after r steps, where
r > 0. Making use of the properties of the sequence 7y, 71, 72,... we find a natural
number n such that ,

Tn 2 8, Tn4l— Tn 2 2r— 1.
We shall prove that some quadruple accessible from (0, u,vg,0) and having first
component less than 7, + 2r detects a loop. ‘

Let w = D" (u). Of course, w belongs to the domain of D* for any natural
number 7. Let e be the minimal one among the complexities of the terms D*(w),
i=0,1,2,...,7r— 1. It is easily seen that a finite sequence of natural numbers iy <
iy < -+ < ip can be found with the following three properties: (a) ip = 0; (b) for
any natural number j less than p, ¢; 41 is the least one among the natural numbers

218

i satisfying the inequalities i; < i < r — 1, |D'(wW)| < [D¥(w); (c) |Di*(w)] = e
(in case of |[w| = e we have p = 0 and the properties (b) and (c) become trivial).
Clearly, i, £ r—1.

Weset T =7, +ip+ 7. Then 7, <T £ 7, +2r — 1 £ 7,41. If the quadruple
(0,1, Vg, 0) does not belong to the domain of DT, then some terminal quadruple
with first component smaller than T will be accessible from (0,u,v,0). This
quadruple must detect a loop, since otherwise the recursive computation of u would
be finite according to Theorem 1. Thus it remains to study only the case when
(0, u,vg,0) belongs to the domain of Df. Then we consider firstly the quadruple
DI*(0,u,vg,0). It is non-terminal and its first component is 7,. Therefore this
quadruple invokes a snapshot.

We shall show by induction that for j = 0, 1, ..., p the quadruple
DI+ (0, u, vp,0) invokes a snapshot. For j = 0 the statement has been already
established. Suppose now this statement is true for a certain natural number j
less than p and apply Lemma 7 with 7, + i; and 7, + ¢;41 in the roles of ¢ and ¢,
respectively. We get the equality
DI +H+1(0,1,v0,0) = (T + G541, DT (W), H(DY (W), 1+ | D+ (w)] — | D (W))).
Thus the non-terminal quadruple D7"%*+1(0,u, vp,0) has a last component less
than 1, hence equal to 0, and therefore the quadruple invokes a snapshot. ‘

By applying the proved statement with j = p we conclude that the quadruple
@;“M”(O,u,m,(}) invokes a snapshot. Let w' be the second component of this
quadruple, i.e. W = D'?(w). We shall show that]th(w’)] > w|forh=1,2,...,r
In fact, D*(w') = D (w) and 0 < ip +h < 2r — 1 for the specified values of h.
Since |[W'| = e, the inequality in question is obviously satisfied when i, +h < 7 —1.
On the other hand, if i, + B > r — 1, then i, + A = ¢ 4+ r for some i among
0,1,...,r—1, hence |D"(W')] = |D**"(w)| 2 |D'(w)] by the inequality in (2) with
T + 1 in the role of 1. Thus |D*(w’)| 2 [w/| holds again.

Now let us apply Lemma 7 with 7, +1, and T in the roles of ¢ and ¢, respectively.
We get the equality

93”(0’ u’ vO? 0) = (T3 j)r(w")"j{(w!)5] + !‘:Dr (W,)l - {WW)
We note that H(D"(w')) = H(W'), as seen from the equality in (2) with 7, + i, in
the role of t. Taking into account also the inequality |D"(w’)| > |w'|, we conclude
that in(O, u, Vg, 0) detects a loop. =

APPENDIX 1. ON INFINITE RECURSIVE COMPUTATIONS
WITH FINITELY MANY ATOMS AND FUNCTION SYMBOLS

We add one lemma and one theorem more to the results proved in the preceding
sections.

Lemma 8. Let w be a term such that the recursive computation of w 1is
infintte and no member of this computation has a smaller complexity than w. Then
the recursive computation of the head of w is also infinite.

219

Proof. We shall show by induction that H(w) belongs to the domain of D* for
any natural number t. The statement is trivial for t = 0. Suppose D'(H(w)) makes
sense for a certain natural number . Then |D*(H(w))| = [D*(wW)| — |w|+1 = 1 by
Fact 2 and the assumption of the lemma. Hence Dt (H(w)) also makes sense. =

Theorem 3. Let u be a term such that the recursive computation of u is
infinite, but there are only finitely many atoms and function symbols which occur in
the members of this computation. Then a cyclic loop ts present in the computation.

Proof. Let us call a natural number { remarkable if for any greater natural
number s the inequality |D*(u)| 2 |D*(u)| holds. 1t is easy to prove (by reductio ad
absurdum) the existence of infinitely many remarkable numbers. On the other hand,
the set of the terms of the form H(D*(u)) is finite due to the made assumption.
Hence, there are remarkable numbers ¢ and t' such that ¢t < ¢ and H(D'(w)) =

%(@zi(u)). By Lemma 8 the recursive computation of the head of D’(u) is infinite.

Then, by Fact 1, also the equality (D' (1)) = H(D' ~H(H(D*(w)))) holds and
therefore H(D'(w)) is a self-reactivating term. m

Theorem 3 shows that there are many cases when the proposed loop detection
method completely solves the problem whether the recursive computation of an
arbitrarily chosen term is finite or infinite.

Example 13. Let A and F be the same as in Example 1, and let d be some
given natural number. Consider the recursion rule

D(f(22,y)) = 2 +d, D2z +1,9)) = f(E(z,). [y, 2))

(it covers the rules from Example 1 and Example 7). Suppose some term u is
given. Denote by h some natural number which is not less than 2d — 1 and than the
value of any of the atoms occurring in u. An easy induction shows that no atom
occurring in some member of the recursive computation of u has a value greater
than h. Thus only finitely many atoms and only one function symbol may occur
in the members of the computation. By Theorem 3, if this computation is infinite,
then a cyclic loop will be present 1n 1t.

APPENDIX 2. PROOFS OF FACT 1 AND FACT 2

Let us define a mapping P of U\ (U; UA) into U\ A as follows: whenever
u = f(uy,...,U,), where f is some n-ary function symbol, u;,..., u, are terms,
and at least one among these terms is non-atomic, then P(1t) is the first non-atomic
member of the sequence Uy, ..., Uy,.

Clearly, |P(u)] < |u| for any term u from the domain of P. For any such term
the equality H(u) = H(P(w)) holds. Of course, H(u) = u for any term in U;.
Consequently, the head of any non-atomic term u is equal to P"(u), where n is the
greatest natural number i such that u belongs to the domain of P*.

We note that the domain and the range of P are contained in the domain of D
and that the following interrelations between the two mappings are easily verifiable:

220

Fact A. Whenever u belongs to the domain of P and the inequality
ID(P(u))| > 0 holds, then P(D(u)) makes sense and the equality D(P(w)) =
P(D(u)) holds.

Fact B. For any u in the domain of P the equality
(3) D) = [D(P(w)] = |u] = [P(w)]
holds.
Now we shall prove some generalizations of Fact A and Fact B.

Lemma A. Whenever n and t are nalural numbers, u is a term such that
D'(P™(u)) makes sense and the inequality |D'(P"(w))| > 0 holds, then P*(D'(w))

also makes sense and the equalily
(4) DHP(w) = P (D' (w))
holds.
Proof. One firstly considers the case of f = 1 and proceeds by induction on n in

this case. The general case can be obtained from this particular one by induction
oni. =

Lemma B. Whenever n and { are natural numbers and w 1s a term such that
DHP"(w)) makes sense, then D*(u) also makes sense and the equality

1D (w)| — [D(P" (W) = [u] = [P"(w)]
holds.

Proof. We firstly consider the case of ¢ = 1 and proceed by the following
induction on n in this case. For n = 0 the statement is trivial. Suppose the validity
of the statement for a certain natural number n and let u be such a term that
D(P**1(u)) makes sense. Then an application of the induction hypothesis with
P(u) in the role of u yields the equality

I D(P(W))] — [DEP™F (W)l = 1P(w)] = 1P (w)].
This equality together with (3) implies the needed equality
D(w)] = D" (w)] = [u] = [P (W)

To obtain the general case from the particular one of ¢ = 1, we proceed by induction
on t. For ¢t = 0 the general statement is trivial. Suppose the validity of the general
statement for a certain natural number {, and let the term u and the natural
number n be such that D*T'(P™(u)) makes sense. Then D'(P"(u)) also makes
sense and the inequality |D(P"(u))| > 0 holds. Making use of Lemma A we
conclude that P*(D*(u)) also makes sense and the equality (4) holds. From here,
applying consecutively the particular case of n = 1 with D'(w) in the role of u and
the induction hypothesis, we get | ‘

[DH)] = [DFHEP(W)] = (D (w)] = [DEPH(D (W) = D' (W) - [P*(D(w))|

= D' (W) = [DH(P" (W) = [uf - [P"(w)]. m

221

We shall present proofs of Fact 1 and Fact 2 using Lemma A and Lemma B,
respectively.

Proof of Fact 1. Suppose that u is a term and ¢ is a natural number such that
H(D(H(w))) makes sense. Let n be a natural number such that H(u) = P*(u).
Then the expression H(D'(P"(u))) will make sense and therefore the premise of
Lemma A will be satisfied. Hence, the conclusion of the lemma will be also satisfied.
Thus P"(D*(u)) will also make sense and the equality

DH(3H(u)) = P"(D'(w))

will hold. Now it is clear that the terms D'(H(u)) and D'(u) are non-atomic, and
the term obtained by applicating P the maximal possible number of times will be
one and the same if we start from either of these two terms.

Proof of Fact 2. Suppose that uis a term and ¢ i1s a natural number such that
PD'(H(u)) makes sense. Let n be a natural number such that H(u) = P"(u). Then
the expression D(P"(u)) will make sense and therefore the premise of Lemma B
will be satisfied. Hence, the conclusion of the lemma will be also satisfied. Thus
D'(u) also makes sense and the equality

D' (W) = D (FH(wW)] = ul = |H(w)|

holds. It remains only to take into account that {H(u)|=1. =

Added in proof: When writing the present paper, the author did not know
about the paper of F. E. Fich “Lower bounds for the cycle detection problem”,
J. of Computer and System Sciences, 26, 1983, 392-409. Thanks are due to Pro-
fessor Donald Knuth who called the author’s attention to that paper, essentially
containing the results of [2] (as well as other ones).

REFERENCES

1. Knuth, D. E . The Art of Computer Programming. Vol. 2: Seminumerical Algorithms.
Second Edition, Reading, Mass., 1981.

2. Skordev, D. An extremal problem concerning the detection of cyclie loops. — C. R. Acad.
Bulgare Sci., 40, no. 10, 1987, 5-8.

3. Van Gelder, A. Efficient loop detection in Prolog using the tortoise-and-hare technique.
— J. Logic Programming, 4, 1987, 23-31. .

4. Van Gelder, A. Van Gelder’s response. — J. Logic Programming, 14, 1992, 185.

5. Skordev, D. On Van Gelder's loop detection algorithm. — J. Logic Programming, 14,
1992, 181-183.

Received om 12.05.19584

222

