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Ab haedis segregare oves
St. Matthew’s Gospel XXV, 32

Pymana Cmosnoaa, Hean Yobanos. CUJIBl B HLIOTOHOBCKOU IUHAMWKE U
CUJIbl B ®IJIEPOBCKOW IVUHAMUKE

CymecTBeHHOE OTNHUME MEXAY HBIOTOHOBCKOM AMHAMMKM MaCCOBLIX TOUEK M diJe-
POBCKOH AMHAMUWKM TBEDABLIX Te€Jl COCTOACH B TOM, UTO NMOKa NepBaA OCHOBLIBaeTCA Ha OJ-
HOM ToNbKo pyHIAaMeHTaNbHON AnHamMmnueckoil akcuomsl (Ax N uan sakon HrioTona o ko-
AVYECTBE ABMIKEHUA MAcCCOBOI TOWKM), TO BTOPaf OCHOBHIBAETCA HA JBYX HE3aBUCHMMBIX
aunamudeckux akcuomax (Ax 1E m Ax 2E uam sakonsl Diinepa o xonmuecTBe nuykeHnA
K O KMHETMUECKOM MOMeHTe TBepioro Tena). Ha »Tolf ocnose B paboTe nmpenmaraercs
aHaIU3 NOHATHA CHUJBI B ®TUX ABYX TJaBHBIX BeTBeil aHaJIMTHU4YecKOM MexaHurm. B To
BDEMf, KaK pealibHble CTAHAAPTHbIe BEKTODbI ABJIAIOTCA AfCKBATHLIM OPYAMEM HJIA MaTe-
MaTHUUECKOro MPeACTABJIEHUA CUJI B AUHAMMKE MACCOBLIX TOUEK, B AMHAMUKE TBEDALIX TeJ
OHM ANA 2TOM Uenu HedoCTaTOoUHbl. HeoBXOAUMBIM M JOCTATOUHLIM UHCTPYMEHTOM AJIH
aJIeKBATHONO MATEMAaTUUECKOro NPeJCTaBJEHUA CUJl B AMHAMUKE TBEPAOro Tejla ABAAIOTCH
cTpesnbl (MHBIMHU CJIOBAMM, YyNOPAAOUYEHHbIE MaPhl B3aUMHO NepreHAMKY TADHBIX BEKTOPOB).
PaccMoTpenus mpoBeleHb Ha MCTOPHMUECKOM (OHEe KPUTHUECKUX MOMEHTOB B Pa3BUTUM
AMHAMMKM MaCCOBLIX TOUEK M TBEPJBIX TEJ ¥ MOCHeACTBUA AUHaMUueckol Tpamnuun Ja-
nambGepa—Jlarpanxa.

Rumyana Stoyanova, Ivan Tchobanov. FORCES IN NEWTONIAN DYNAMICS AND FORCES
IN EULERIAN DYNAMICS

The essential distinction between the Newtonian mass-point dynamics and the Eulerian rigid

body dynamics consists in the fact that while the former is based upon, and is developed from, a
single fundamental dynamical axiom (Ax N or Newton's law of momentum of a mass point), the
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latter is based upon, and is developed from, two independent dynamical axioms (Ax 1E and A
2E or Euler’s laws of momentum and of moment of momentum of a rigid body). On this basy
in the present paper an analysis of the notion of force in these two main branches of analyticeg
mechanics is proposed. While the forces in mass-point dynamics are represented mathematical
by real standard vectors, these vectors are found to be insufficient for the adequate mathematic.]
representation of the forces in rigid body dynamics, for which the arrows (scilicet ordered Pairg
of normal real standard vectors) prove to be the necessary and sufficient mathematical tool. Thy
considerations are implemented upon the historical background of the crucial moments in thg
developments of mass-point and rigid body dynamics and of the after-effects of D’Alembert.,
Lagrangean dynamical tradition.

This paper proposes, among other things, a short excursion in the not tog
distant past of that part of rational mechanics to which traditionally the adjectivg
analytical is ascribed. Let us therefore first see how the land stands. In othep
words, let us clarify the meanings of the terms Newtonian dynamics and Eulerian
dynamics.

Making a long story short, we may at once say that the questions “What does;
Newtonian dynamics mean?” and “What does Eulerian dynamics mean?” are;
answered quite simply if they are answered at all. Newtonian dynamics meang
mass-point dynamics and Eulerian dynamics means rigid body dynamics.

In such a manner one would know what does Newtonian dynamics mean if one
knew what does mass-point dynamics mean, and to such a degree one would know
what does Eulerian dynamics mean if one knew what does rigid body dynamics
mean. Does one, however, really know the meanings of these two last terms, or
are those answers only qui pro quo, alias transfer of the points of application of
perplexities from one locus into another one? ‘

However regrettable it may seem, the nuda veritas is that those are questions:
which are much more easily put than answered — if they are answered at all. By the
way, this state of affairs is due to the idiosyncrasies of the true history of rational
mechanics — the genuine one, we mean, not the popular, folklorish, mythological
one, the one that reminds the fairy-tale of Newton’s apple and has given Truesdell
a good reason to complain about “the universal ignorance of the true history of
mechanics” [1, p. 117].

- By an irony of historical fate Rational Mechanics — a granddaughter of As-
tronomy, a daughter of Geometry, and the blood mother of Analysis — lapsed into
the sorry plight of a poor kinswoman in the fabulously rich family of mathemat-
ical sciences. This aristocrat of mind was struck down in the sinister days of the
French Revolution never to recover again through a genuine restoration act. The
only attempt at her rebirth was made at the beginning of this century by Hilbert
who included in his famous list of mathematical problems {2] Nineteenth Century
bequeaths to Twentieth, as Problem Number Six, the problem of axiomatical con-
solidation of the logical foundations of rational or mathematical mechanics, “but
this problem, like all those he proposed concerning the relation between mathe-
matics and physical experience, has been neglected by mathematicians” [1, p. 336].
As a matter of fact, the subsequent development is even a negative one, since it
only simulates axiomatics by ignorant profanations. Since this paper is alien to any
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olemic tendency whatever, the said above is enough and to spare.
erred in his faith in Twentieth Century. His Sixth Problem is left to t
if God will permit it.

There are great similarities in the fates and stories of mechanics anq chemistr
Both are as antique as Methuselah. Both are every nook and corner around u:.
Both are as mazy as labyrinth. Both are parts of physics, though small parts of it.
Both have gone through millenial fallacies. Last but not least, in any of them theré
was a single man who all of a sudden, ultimately, and completely, was beginning
to see through it.

Lavoisier in chemistry. Newton in mechanics.

One may read in traditional treatises on analytical mechanics — like {3] ez-
empli gratia — statements like “The subject of particle dynamics was founded by
Galileo early in the seventeenth century” (p. VII), and one may swallow the bait
— hook, line, and sinker. They belong, however, to mechanical mythology, to
historical enthusiasm, s’il vous plait — by no means to historical reality, though.
There is no dynamics at all to be found in Galileo’s works, in general, and in his
Two New Sciences [4], in particular. The most one may find there is kinematics
— mathematical & experimental. As regards Galileo’s mathematical kinematics,
its originality is disputable; some words in this connection are said immediately
below. As regards Galileo’s experimental kinematics, its originality seems to be in-
dubitable, and it ranks Galileo first in the line of the founders of the experimental
scientific method — if one disregards the millenial works of alchemists.

If one puts trust in Truesdell’s Essays [1], “Historians of letters had meanwhile
created the myth of the ‘Renaissance’. According to this myth, in the Middle Ages
man hibernated beneath a pall of scholastic repetition, borrowed from Aristotle
and enforced by the Church; the Renaissance, casting all this aside, opened its eyes
and discovered man and the world by personal sensation. While for the arts this
theory may be tenable as an expression of taste, in science other than anatomy it
is not: The ‘early’ Renaissance, 1450-1500, stands in the front rank of competition
for the most sterile half-century of Western mathematics and physics, and the
only exact science of the. ‘late’ or ‘high’ Renaissance, 1500~1550, is algebra, which
grew, not from open-eyed wonder at the world, but rather from bookish study of
Arabian mathematics. Where is the empirical science which should have crowned
the ‘rebirth’ of knowledge? Galileo, whom some physicists enthrone as founder of
the empiricism they claim as their own, came one hundred years later, in the late
Mannierist and early Baroque periods ... such historians of science as then there
were — a paltry scatter of semi-philisophers and science teachers — found several
of Galileo’s ideas, more or less, in Leonardo’s notes. Previously, historians had
believed that Galileo thought these things out of ‘genius’ applied to thin air. In
1788 Lagrange . .. had written of Archimedes and Galileo, ‘the interval separating
these two great geniuses disappears in the history of mechanics’, and this simple
view, as satisfying as the account of creation given in Genesis, was good enough for
Mach a century later ... ‘Discovery’ of Leonardo transferred the point of application
of the same theory a century backward. He, too, had the same material to work
with: ‘genius’ and thin air, and the remaining problem for this group of historians

But Hilbert
he next one,
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was only to see how Leonardo’s ideas got to Galileo, thus making the latter a true,
grandson, if not son, of Renaissance” {pp. 25, 27).

Incipit Pierre Duhem:

“A scientist, as a sound historian of science must be ... Whatever a litteratq
may consider a reasonable activity for a ‘genius’, few scientists will believe that g
thousand pages of mechanics [written by Leonardo’s own hand], right or wrong;
have ever sprung from the application of genius to thin air. The question Duhem
asked himself was, where did Leonardo learn all this, and what fraction of it did
he modify or add from his own thought or experience7 In the attempt to answeg
these questions, Duhem became the first person since the Renaissance actually
to read what the mediaeval schoolmen wrote on mechanics and physics. In 3
real sense, he discovered the science of Middle Ages, and he added, attached tq
concrete and definite discoveries and theorems, a long list of names never before
encountered in histories of science: Jordanus de Nemore, Jean Buridan, Nicole
Oresme, Richard Swineshead, William Heytesbury, and others. In the midst of his
immortal historical discoveries Duhem had already reached the conclusion that ..
‘In the mechanical work of Leonardo da Vinci there is no essential idea that does
not come from the geometers of Middle Ages.’

Later studies by a school of painstaking historians, along with the publications
of the texts Duhem used and others unknown to him, have revised much of the de-
tail but little of the general aspects of the picture of mediaeval achievement drawn,
by Duhem. The now published sources ... prove to us, beyond contention, that
the main kinematical properties of uniformly accelerated motions, still attributed-
to Galileo by the physics texts, were discovered and proved by scholars of Mer-
ton College — William Heytesbury, Richard Swineshead, and John of Dumbleton.
Their work distinguished kinematics, the geometry of motion, from dynamics, the
theory of causes of motion. Their approach was mathematical. They succeeded in
formulating a fairly clear concept of instantaneous speed, which means that they
foreshadowed the concept of function and derivative, and they proved that the
space traversed by a uniformly accelerated motion in a given time is the same
as that traversed by a uniformly motion whose speed is the mean of the greatest
“and least speeds in the accelerated motion. In principle, the qualities of Greek
physics were replaced, at least for motions, by the numerical quantities that have
ruled Western science ever since. This work was quickly diffused into France, Italy,
and other parts of Europe. Almost immediately, Giovanni da Casale and Nicole
Oresme found how to represent the results by geometrical graphs, introducing the
connection between geometry and the physical world that became a second charac-
teristic habit of Western thought — a habit so deep-seated that it is known to every
carpenter and passes unremarked only in certain highly spécialized professions.

. these ideas, which originated in England and France in the early fourteenth
century, were discussed back and forth in periods of varying activity and inactivity
in France, the Empire, and Italy in the latter half of the same century and were
taught in Italian universities in the next one, at the end of which a flood of printed
books opened the subject to everyone — everyone who could understand Latin and
mathematics” (ibid., 25, 27, 29-31).
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In such a manner it becomes clear that a considerable part of the mathematical
information included in Giornata terza and Giornala quarta of Galileo’s Discorsi
[4] and eo 1pso attributed to him through ignorance, mental indolence, adoration
of authority, or simply from force of habit, has been known quite a while ago, just
Jike Euclid did not invent all the mathematics his books present; and that, not
unlike Euclid, Galileo is worthy of praise for the organization, systematization, and
propagation of this knowledge.

There is something more, however. Although uniformly accelerated motions
were studied as such almost three centuries before Galileo, nevertheless to all ap-
pearances they have not been as yet connected with particular physical phenomena.
In other words, scholastics caime to know some properties of uniformly accelerated
motions if such ezisted, but they could not point out a practical example of a con-
crete natural motion of uniform acceleration. Ten to one Galileo was the first not
only to see, but also to prove, that the free fall of bodies (Movimenti Locali) is such
an example, and accomplished this by means of an experimental demonstration.
(Gott sei Dank that physical measurements are always false: failing this Galileo
could not make his discovery, since in Nature there does not exist such a miracle
like a constant force.)

And although Galileo undoubtedly. had intuitive ideas about forces and mo-
tions as causes and effects, in his work there is not the slightest hint at all of any
quantitative connection between these mechanical entities.

As regards some dynamical pre-Galilean ideas, Truesdell has drawn the follow-
ing picture: /

“A precursor of the later ideas of inertia, momentum, and energy may be
found in the theory of ‘impetus’ put forward by Jean Buridan at Paris during the
period when kinematical concepts were developed at Oxford. Rejecting Aristotle’s
view on the morion of projectiles, Buridan adopted an idea mentioned by John the
Grammarian some 800 years earlier, namely that ‘some incomporeal motive force
is imparted by the projector to the projectile’. Buridan replaced this assertion of
quality by a statement of quantity: ‘... by the amount more there is of matter, by
that amount can the body receive more of the impetus and more intensely’ and ‘by
the amount the mover moves the moving body more swiftly, by the same amount it
will impress a stronger impetus’. Thus Buridan comes close to defining as ‘impetus’
what we now call ‘momentum’. That a quantity of this kind measures the tendency
of a body to persevere in motion, Buridan infers from what he calls ‘experiences’
— observations of simple phenomena concerning. ..” (ibid., 31).

If we quote such vast excerptions from Truesdell’s Essays, it is because of the
extreme importance of the historical information they include and by reason of our
aversion to making concealed plagiarism by giving a restatement of them. As far
as our knowledge goes, in the whole span of mechanical literature before Newton
one cannot find the haziest notion of that greatest scientific induction which is
contained in Newton’s dynamical Lez II from Principia [5):

Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum
lineam rectam qua vis illa imprimitur.

Or, just the same, in Motte’s Translation [6]:
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The change of motion is proportional to the motive force impressed; and is
made in the direction of the right line in which that force is impressed {7, 1, p. 13].

The cardinal importance of this physical law (with the traditional school formu-
lation mass by acceleration equals force) for the whole spectrum of natural sciences
is trivially known in order to be underlined here. Much more interesting is the
question of the psychological motives for this imprecedented scientific discovery.
How did, in other words, Newton attain this achievement? Which considerations
did he take into account in order to formulate his Lez? What did he conjecture,
how did he guess, what did he fancy making his thoroughfare through the jungle
of most multifarious motions and forces?

One cannot be sure. One may only guess.

One of the most annoying slips a historian of science may make is to antedate
ideas. The ancient dictum temporis filia veritas may quite equitably be paraphrased
in temporis filia idea. Velocity and force did not mean for Newton and his contem-
poraries the same things these terms mean for you and me. For us these notions
have undergone a tricentenarial embryonal as well as extrauterine evolution. Their
vectorial character is a much more ulterior discovery. Let us ezempli causa peek
into Newton’s two first Definitiones: )

Def. 1. Quantitas Materiae est mensura ejusdem orta ex illius Densitate et
Magnitudine conjunclim.

Def. II. Quantitas motus est mensura ejusdem orta ex Velocitale el quantitate
Materiae conjunctim.

Or in Motte’s Translation [7, I, p. 1]:

Definition 1. The quantity of matter is the measure of the same, arising from
its density and bulk conjointly.

Definition II. The quantity of motion s the measure of the same, arising from
the velocily and quantity of matler conjointly.

In his commentaries explaining the meaning of Definitions I & II Newton says:

“It is this quantity [of matter] that I mean hereafter everywhere under the
name of body or mass. And the same [quantity of matter] is known by the weight
of each body, for it is proportional to the weight. ..” & “The [quantity of] motion of
the whole is the sum of the [quantities of] motions of all the parts [of the body]...”
7,1, p. 1].

One can immediately see irreconsilable logical contradictions already in these
initial statements of Principia. No subtle perspicacity is needed, indeed, to com-
prehend that if Newton’s treatise is mechanics at all, it is exlusively mass-point
dynamics. As Truesdell notes, “while Newton had used the word ‘body’ vague-
ly and in at least three different meanings, Euler realized that the statements of
Newton are generally correct only when applied to masses concentrated at isolated
points” {1, p. 107]. For mass-points, however, Newton’s Definition I becomes mean-
ingless, since for a point densitas and magnitudo disappear conjunctim like water
at heating ad totalem evaporationem. But if Newton’s bodies are mass-points, then
the phrase “all the parts” in the second comment becomes meaningless too. And
so on, and so forth, etcetera.
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Not this is, however, the problem now. Let Newton’s moving objects be mags.
points; let velocities and forces have scalar, rather than vectorial, nature; let, for
the sake of simplicity, the motion be rectilinear, as in the case of a free fall along
the vertical. What made Newton think that mass by acceleration gives force?

Seeking a plausible answer of this question, let us first consult Newton’s Lez I:

Corpus omne perseverare in statu suo quiescend: vel movendi uniformiter in
directum, nisi quatenus a viribus impressis cogilur statum illum mutare.

Or in Motte’s Translation [7, I, p. 13]:

Every body continues in ils state of rest, or of uniform motion in a right line,
unless 1t is compelled to change that state by forces impressed upon it.

In such a manner, Newton had three keys in his hand:

1. Buridan’s idea that the “impetus” is increased when both the mass and
velocity are increased.

2. No force — no acceleration.

3. Galileo’s discovery that constant force (weight) generates uniformly accel-
erated motion.

Now (by our humble opinion) Newton’s psychological motives:

Buridan’s “impetus” being identified with Newton’s “quantitas motus”, the
simplest formula connecting it qualitatively (causal nexus) and quantitatively with
the idea of force — as vague, pale, and dim in Newton’s head as it is in our
heads today — and conformable to iterns 2 and 3 just now stated above consists
in equalization of vis with mutatio of impetus as formulated in Lez 1I, “change”
meaning, as it has been traditional in Newton-Leibniz days, differentiation (with
respect to the time in this particular, dynamical, case). (Strange though it may
seem, as far as our knowledge goes, nobody has hitherto made out that Newton’s
Lezr 1 parasitizes in the umbra of Lez II. Indeed, put “force equal zero” in Lez II
and you obtain Lex I. The hypothesis that Newton did not see this simple fact is
unthinkable. Why did he not take it away? Heaven only knows. Some authors
are inclined to see in Lex I an implicit definition of the term materiae vis insita or
innate force of matier. Such an explanation is, however, untenable, since Newton’s
Definitio 111 is explicitly dedicated to this last term, as well as his Definitio IV is
explicitly dedicated to the term vis impressa or impressed force. Let us note at
that that the idea of an implicit or ariomatical definition is at least two.centuries
younger than Newton’s Principia being Hilbert’s invention.)

Any child would now see that the experimental and observational backing of
Lez 11 by means of Galileo’s law of free fall is a rather brittle one. Its fragility is
menaced not only by its solitary confinement, the proclamation of Lez II in the
capacity of an universal physical law on the basis of one and only natural precedent
being as bold, daring, and venturesom logical act as the inductive inference from
1 to 0o0. No, it is threatened also by the fact that even the free fall in the earth
atmosphere is not a pure phenomenon, the resistance of the air exceeding in some
cases the active force of gravity. That is why Newton badly needed new confirma-
tions of his law — and found them in the celestial motions, sometimes even with
the aid of forged data. (One may accept as a practical joke the affirmation that
if the Earth’s sky was as cloudy as Venusian heaven, then mechanics would never
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be created; but this is no joke at all. Celestial motions are “pure” in that sense
that no unknown reactions of geometrical constraints accompany them; that is why
Newton’s Law II could be verified by their aid. On the contrary, any terrestrial
movement is generated and simultaneously generates reactions of the constraints;
being unknown — moreover, demanding dynamical determination themselves —
these reactions admit no experimental verification of Law II as such, an sich, and
in se.) '

From a physical point of view mass-point and rigid body dynamics are phe-
nomenological sciences. It is a tritiness to say that nothing can be proved concern-
ing Nature, but this vapidity is especially true for the phenomenological approach.
Voila a rather impressive instance, as notoriously known as commonly ignored.
Anybody writes HoO, but does anybody know why? Why not HO? Or HO,? Or
Hg9901001? Are there many professors of chemistry who know why they write H,O?
The most probable answer you may expact (screening the nuda veritas that they
do so because others do so) is that it is proved. Is it really? Phenomenologically,
at least (in other words, by virtue of the phenomenological chemical and physical
laws, like those of Richter (1792-1802), Proust (1799-1806), Dalton (1802-1808),
Gay-Lussac (1805-1808), Avogadro (1811), Mitscherlich (1818-1819), Dulong and
Petit (1819), Faraday (1834), Hess (1840), Cannizzaro (1858) etc.), one can prove
nothing of the kind. If we must speak the truth and shame the devil, then we must
confess that the formula H,O is a matter of faith rather than a point of proof.

In the light of those explanations one must realize crystal-clearly that this
enfant naturel, this fruit of a not quite legal liaison of logic and psychology —
Newton’s Ler II — stands beyond proof: it has the mathematically social status
of a postulate, or a hypothesis, or an axiom in Hilbertian sense of the word.

And that in Newton’s original formulation, quoted above in English as well as
in Latin in order to leave place for no uncertainty, this law represents a classical
case of a Circulus Vitiosus. In other words, this original formulation of Lez II
implies that it is true if it is true, or rather that if it is true, then it is untrue.

In order to penetrate into the nucleus of this mathematical fact, let us suppose
that -Ozyz and Q€n( are orthonormal right—handed orientated Cartesian systems
of reference with unit vectors ¢, 3, k and £°, °, ¢° of the axes Oz, Oy, Oz and
Q¢€, Qn, Q, respectively, and let 2€9¢ be moving in some manner with respect to
Ozyz. Let by definition r, = OQ and » = OP, p = QP for any point P. Dots
denoting derivatives with respect to the time ¢ with regard to Ozyz, i.e.

(1) =314+ y) + ik
provided '
(2) r=ri+yj+ zk,
let

1 . ) .
(3) wzi(ﬁéXgo'f’nox'flo‘f'CoXCo)

be the instantaneous angular velocity of Q¢n¢ with respect to Ozyz. Besides, let

) . L . g .
5 denote by definition the local derivative with respect to ¢ of any vector function
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with regard to Q&n(, Le.

bp . -
(4) 57 =+ (¢
provided
(5) p =& +m" +(¢°.
Then, as it is well-known, for any vector function a the identity
. ba
6 = =
(6) ‘ a=wXa-+ 5
holds.
Under these conventions the identity
(7 T=T,+p
implies
. )
(8) P =Ty 4w X pt oo
ot
and
.. . ] 82
9 r:rn+wxp+wx(wxp)+2wx£+ag'

On the other hand, if P represents a mass-point with mass m, then its motus

L bp . . . .

1s mr and mZ? with regard to Oxyz and Q€n(, respectively, and its mutatio motus
L. 62 . , .

is mr and mgt—z—p with regard to Ozyz and Q€n(, respectively, the mass m being,
by a fundamental postulate of Newtonian dynamics, a constant with respect to the

time t.
Let P be under the action of the vis F and let Lez I hold for both Ozyz and
Qén(. Then

.. 6%p
(10) mr = F, mey = F.
Now (9), (10) imply
: . é
(11) '1'n+wxp+wx(wxp)+2w‘x6—?:0

for any ¢. The condition (11) is, however, by no means obligatory for the motion
of Q&n¢ with respect to Oxyz. In other words, there are systems Q€n¢ for which

(11) is violated.
It is proved that a necessary and sufficient condition for the observance of the
identity (11) for any mass-point P and for any force F' acting on it is

(12) Ty =0, w=0 (V).
Any motion of Qén¢ with respect to Ozyz, satisfying the condition (12), is called

a rectilinear uniform translation of Q€n¢ with respect to Ozyz.
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In such a manner, if Lezx II is true for the system of reference Ozyz and
the motion of the system Q&n¢ with respect to Ozyz is not a rectilinear uniform
translation, then Lez I is not true for Q€n{. Quod erat demonstrandum.

There is a formula of Roman law: Impossibilium nulla est obligatio. Another
formula reads: Ignorantia juris nocet, ignoratio facti non nocet. An ancient saw
preaches: Saecult vitia, non hominis. To charge Newton with flaws that could be
seen only centuries later would be as ridiculous as to charge canibals with lack
of democracy. But it is high time now things to be put on their right places. A
modern formulation of Lez II may read as follows.

Ax N (Newton’s fundamental axiom (postulate, hypothesis, law) of mass-point
dynamics). There exists such a rigid Cartesian system of reference S that, all
derivatives being taken with respect to S, for any mass-point P and for any system
of forces f; acting on P, the derivative with respect to the time of the momentum

of P equals the resultant of F.

Df N. Any system of reference satisfying Ax N is called inertial according to
Newton,

Ax N is an axiom in the spirit and letter of Hilbert’s axiomatical principle.
All mathematical terms it involves are susceptible to strict definitions save two
of them (printed above in italics): acting and fime. Their meaning is defined
implicitly namely by means of Ax N (along with other axioms of Newton’s mass-
point dynamics). If acting and time were definable too, then Ax N would be a
(true or false) theorem rather than an axiom and would need a proof or a disproof.

The definable terms of Ax N are: Cartesian system of reference, rigid (Carte-
sian system if reference), derivative (of a vector function with respect to a Cartesian
system of reference), mass-point, system of forces, resullant (of a system of forces),
and momentum (of a mass-point with respect to a Cartesian system of reference).
Now the question quite naturally arises: how are these things defined?

This question is similar to two other questions. As it is well known, any term of
classical real and complex analysis is defined. How? The answer is: in the frames
of the fields R and C of all real and of all compler numbers, respectively. It is
by no means accidental that Landau entitled Foundations of Analysis his book [8]
dedicated to the axiomatical approach to the whole, rational, irrational, complex
numbers.

In the same way, any term Ax N contains save acting and {tme can be defined
in the frames of the real standard vector space V; for the axiomatical definition of
the latter see, for instance, the article [9], as well as [10] for a complex version.

We are now in a position to answer the question “What does mass-point dy-
namics mean?”, and the answer is: The mathematical theory based upon Ax N (and
other appropriate mechanical axioms).

We can also say what do forces in Newtonian dynamics mean. The answer is:
functions in V, the meaning of this term being specified in the process of evolution
of mass-point dynamics. ‘

There is a point here that must not be left unmentioned. All things considered,
Newtonian forces prove to be real standard vectors. Now, not any real standard
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vector 1s a force, as well as not any number is a length, or an area, or a volume,
or a mass, etc. Length, for instance, is defined as a number — a number, however,
connected with a certain curve line and satisfying specific conditions. In the same
manner, a Newtonian force is defined as a real standard vector — but a vector in a
dynamical context, obeying Ax N, say. The essential point is that the mathematical
nature of this dynamical entity is vectorial.

And here lies the great difference between a Newtonian and an Eulerian force.

Before we enter this last point, let us, by the way, say some words concerning
the developments immediately following the publication of Principia.

Although the following statement may sound extremely unpopular in the ears
of a public hungry for fetiches, the undisguised under fig-leaves truth is that the
mechanical content of Principia is improperly poor. “Except for certain simple
if important special problems, Newton gives no evidence of being able to set up
differential equations of motion for mechanical systems ... the cold fact is the
equations are not in Newton’s book. .. In Newton’s Principia occur no equations of
motion for systems of more than two free mass-points or more than one constrained
mass-point; Newton’s theories of fluids are largely false; and the spinning top, the
bent spring, lie altogether outside Newton’s range” (1, pp. 92-93].

The consequences are that “a large part of the literature of mechanics for sixty
years following the Principia searches various principles with a view to finding the
equations of motion for the systems Newton had studied and for other systems
nowadays thought of as governed by the ‘Newtonian’ equations... The year in
which the ‘Newtonian equations’ for celestial mechanics were first published is not
1687 but 1749. .. The first formulation of the general problem of celestial mechanics
... by means of a system of differential equations occurs in a paper of Euler, written
in 1747 and published in 1749” [1, pp. 90, 92-93, 114].

Meanwhile a new actor comes on the mechanical stage. In 1743 D’Alembert
published his dynamical treatise [11] destined not to remain unnoticed. The nui-
sance is not that this author goes back on his words, pouring out bountiful pledges
on the title page of the book; the calamity is that in this Traité a new mechanical
philosophy is developed, foreordained to play in the future havoc with the natural
development of solid dynamics. Moreover, this book marks the beginning of an era
when logical vices penetrate into mechanical morals. ]

"~ D’Alembert is one of the most muddle-headed authors that ever entered the
field of mechanics — in this respect the only one who could fittingly rival him is
maybe Maupertuis. It is true that great historical generosity is needed sometimes
to appreciate writings from this epoch, but D’Alembert’s dynamical treatise goes
beyond all bounds. It is pointless to quote even a single line from it, since any page
simply swarms with nonsenses. The book may be used as a detector of hypocrisy:
any dissimulator will insist that he makes any sense of it. To cap it all, the arrogance
of its composer is unbreakable. To get some idea about his effrontery, it is sufficient
to point out that he claims to solve, on a single page at that, the following Probléme
general, and to proclaim his “solution” in the capacity of a “general principle for
the determination of the movements of several bodies which interact in an arbitrary
manner”:

451



Soit donné un systéme de Corps disposés les uns par rapport auzr autres d’une
maniére quelconque; et supposons qu’on imprime d chacun de ces Corps un Mouve-
ment particulier, qu’il ne puisse suivre ¢ cause de l'action des autres Corps, trouver
le Mouvement que chaque Corps doit prendre.

A mere glimpse at D’Alembert’s “solution” is sufficient to find it as ingenious
as Immaculate Conception. As such it appears half a century later in Lagrange’s
Méchanique Analitique (sic) [12] under the name of “principle of D’Alembert”. For
the history of rational mechanics this has been a genuine catastrophe.

The Great Fault that gave rise to it consists in D’Alembert’s outlook on the
mathematical nature of the rigid body concept. Borrowing his own view-point from
D’Alembert’s ideas, Lagrange figures to himself a rigid body as “an assembly of -
corpuscules or mass-points joined together in such a way as always to conserve their
mutual distances” [13, cited according to 1, p. 259]. Strange enough, more than
two centuries it came to nobody’s mind to put this mechanical philosophy to a.
mathematical test. In other words, no one asked himself whether all this is possible
or not, alias, what will keep these “corpuscules or mass-points” at constant mutual
distances. In point of fact this check-up is as easy as shelling peas.

If it is possible to maintain n mass-points at constant distances for any n, then
the same should be true for n = 2. Let P, be free mass-points with masses m,
and radius-vectors r,, respectively, supported at constant distance by the forces
F,, v = 1,2. In other words, there exist by hypothesis such forces F', that the
conditions

)

(13) myr, =F, (v=1,2; W),
(14) ' Lo =) =0 (V1)
dt
are satisfied. Now (14) is equivalent with
(15) (r1=ma)(v1 —v2) =0 (W),
provided by definition v, = 7,, v =1, 2. Especially, for t = 0 (15) implies
(16) (P10 — 720)(v1i0 — v20) = 0;

provided by definition 7,0 = 7,(0), v,0 = v,(0), » = 1,2.

But (16) is impossible — it is an absurdity! Indeed, it imposes restrictions on
the initial conditions of a dynamical problem involving free mass-points contrary
to all. good mathematical manners and customs. This unthinkable conclusion is
an immediate logical corollary from the hypothesis that there exist forces realizing
constant distance between the two mass-points, ergo Lagrange’s mental picture of
a rigid body as “an assembly of corpuscules or mass-points” belongs to the sphere
of scientific fiction. : ’

Let ¥ be a system of mass-points P,(m,,r,), v = 1,...,n, subject to holo-
nomical geometrical constraints, and let gx, A = 1,...,{, be mutually independent
parameters determining their positions in space. Let F, and R, be respectively
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the active and passive force (reaction of the constraint) actingon P,, v =1,... n.
Then it is proved that

; [ d or, dOoT 8T (o ?)
(17) ;(dt(myv) F, R)aq,\_a%_gq_)‘-Q -Q\
x=1,...,(, where by definitionv, =7,,v=1,...,n, and

_1 . 2 (a) (p) 3“
(18) T—igm”vw ZF , ZR
/\:1,.“,1.

The equations (17) are identities. In other words, they are derived only on
the basis of the . definitions of the corresponding mathematical entities involved,
without use of any dynamical hypothesis whichever.

If now one accepts Newton’s Lez II, 1.e.

d
(19) a(muvu)_Fu_Ry:'O, v=1,...,n,
in the case considered, and if the geometrical constraints are ideal, i.e.
= or
20) R,—2=0, A=1,...,1
( ; dqx

then (17), (18) imply

(21) @ g =0
i.e. Lagrange’s equations for the system S. As it is seen from (17), the left-hand
sides of Lagrange’s equations for a discrete system of mass-points are purely and
simply linear combinations of the projections of the left-hand sides of Newton’s
equations (19) on appropriate axes, defined in direction by means of the vectors
or,
9gx

After this excursion through the thickets of Newtonian mass-point dynamics,
let us turn our attention to Eulerian rigid body dynamics. As a matter of fact,
the whole of it is a creation of Euler’s own hands. Amongst hundreds of articles
he dedicated to problems of rational mechanics we shall quote only two: the paper
[14] containing the first version of his renowned dynamical equations describing
the motion of a rigid body around its mass center, and the work [15] containing
the first in the whole history of mechanics realization of the fact that the same
two dynamical laws — the principles of momentum and of moment of momentum
— which govern the motion of any solid, become in the same time, if properly
reformulated, those mathematical canons that rule the dynamical behaviour of any
mechanical system whichever, no matter rigid or elastic, no odds liquid or gaseous.
At that the substantive “principles” are by no means fortuitously used above: those
laws are, by their very essence, mathematical postulates or axioms, in other words,

A= Lv=1...,n
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indemonstrable assertions which one may accept or cast aside, but not prove or -
disprove. They are not liable to discussions, too, by virtue of the ancient dogma,‘»
de principiis non est disputandum. .
Applied to rigid bodies, in a modern formulation these laws read as follows:
Ax 1 E (Euler’s first dynamical axiom or postulaie (hypothesis, law) of mo-
mentum of a rigid body). There exists such a rigid Cartesian system of reference
S that, all derivatives being taken with respect to S, for any rigid body B and for
any system of forces _Ii, acting on B, the derivative with respect to the fime of the

momentum of B equals the basis of ﬂ

Df E. Any system of reference satisfying Ax 1 E is called inertial according to
Fuler.

Ax 2 E (Euler’s second dynamical aziom or postulate (hypothesis, law) of
moment of momentum (kinetical moment) of a rigid body). S being an inertial
according to Euler system of reference and all derivatives being taken with respect’
to S, for any rigid body B and for any system of forces E, acting on B, the
derivative with respect to the time of the moment of momentum of B equals the
moment of F, both moments being taken with respect to the origin of S.

The same remarks may be made apropos of the mathematical terms involved
in Ax 1 E and Ax 2 E as those already made apropos the terms involved in Ax
N. Therefore we shall spare them, confining our exposition to the remark that the
only indefinable entities are again acting and time.

There is a great difference, though, between Ax N, on the one hand, and Ax
1 E and Ax 2 E, on the other hand, apart from the fact that in the rigid body
case there are two dynamical axioms rather than a single only. Indeed, if in mass-
point dynamics forces are represented mathematically by real standard vectors, the-
elements of V are already insufficient for representing forces in rigid body dynamics.

It turns out, however, that V remains, if indirectly, the repository, where the
requisites of rigid body dynamics are preserved. Let the set W be defined by

(22) W= {(ssm)eV?:s#£0,sm=0Vs=m=0}

and let the elements of W be called real standard arrows. Now any force in rigid
body dynamics is an arrow in the same manner as any force in mass-point dynamics
is a vector. :

For a developed algebraic theory of arrows see, for instance, the articles [16-18]. .
We shall restrict ourselves to the following concise information. If

(23) F = (F, M)

is a force (i.e. Fe W), then F is called the basis and M is called the moment
of F. In Euler’s dynamics finite systems of arrows are considered. If _1_'1 1s such a
system, then the basis and the moment of 5 are defined as the sums of the bases and

the moments, respectively, of all the elements of E . Euler’s mechanical philosophy

is antipodal to Lagrange’s. Euler regards a rigid body a specific mechanical entity or
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integrity, in the same way as a geometer considers a pyramide, say, an autonomous
geometrical entirety or wholeness rather than the aggregate, or totality, or set of
its points. Let the solid B be under the action of the active forces

(24) F,=(F, M,), p=1,... m,

the moments M,,, pu = 1,...,m, being taken with respect to the origin O of an
inertial according to Euler system of reference Ozyz; let B be subject to geometrical
constraints generating passive forces

(25) R,=(R,,N,), v=1,...,n,

the moments N,, v = 1,...,n, being also taken with respect to O; let by definition

m n m n

(26) F:ZF,,, R:ZR,,, M:ZM"’ NZZNv?
u=1 v=1 - p=1 v=1

if P denotes any point of B, 7 = OP, v = 7, let by definition

(27) K;/vdm, L:/rxvdm

be respectively the momentum and the moment of momentum of B with respect
to Ozyz. Under these conventions, the mathematical formulations of Ax 1 E and
Ax 2 E read

(28) ' K=F+R, L=M+N,

respectively.

Read any textbook, treatise, or monograph on analytical dynamics, say {3],
where Lagrange’s dynamical equations (21) or some of their multitudinous versions
are derived. What do you find there? Do you find any rigid body? No, you find
nothing of the kind. The most you can find is a finite system L of mass-points
P,(my,r,), subject to holonomic geometrical constraints, giving rise to mutually
independent parameters gx, A = 1,...,1, and to passive forces R,, v =1,...,n; if
now F, are active forces, acting on P,, respectively, v = 1, ..., n, you find in those
writings routine mathematical operations based on cockabundy of the sort

N
(29) Y (meie — X;)b2, =0
r=1

[3, Eq. (3.1.1)] — quite solemnly, without a grain of humour, called “the funda-
mental equation for a dynamical system ... a generalization both of the principle
of Virtual Work in statics, and of d’Alembert’s principle for a single rigid body”
[3, p. 28]; and as an end product you see Lagrange’s equations (21). Nota Bene:
F, and R, are vectors! And these equations claim to rule the motions of a solid!

Ez nihilo nihil. Nobody — Hindoo fakirs inclusive — is in a position to restore
Euler’s dynamical axioms (28) out of Lagrange’s dynamical equations (21).

At last, let us say some words about something Lagrange, strange though it
may seem, never knew, namely a mathematical inference of Lagrange’s equations
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for rigid bodies. Let the system of reference Q€n¢ be invariably connected with the
solid B; let p = Q2P; let the mass m and the mass center G of B be defined by

(30) m:/dm, P = i/pdm,
m

provided pg = QG at last, let by definition

(31) Lo = [ px (wx p)dm - mpg x (@ x pg),
provided (3). It is proved that (28) are equivalent with
(32) ‘ K-F-R=0, Lr—~-M—N=0.

If now g, A = 1,...,1, are independent parameters of the rigid body B, then it is
proved that, similarly to (17), the equations

: 61'6 Oow d dT oT (a) »)

33 K-F-R—S4+(Lr-M-N = - = _ —_o\
(4 ) ( )3(1A +( r )(911,\ dt 6(],\ 3q/\ Q)‘ A
A =1,...,1, where by definition r¢ = rq + p, and

' 1 8? . Or

4 T~ - 24 F YT (p) — R,,ﬂ-
(3 ) 2/1} ) Z ) Q)\ l; aq/\ )
A=1,...,l, ry, and 74, being the radius vectors of points of B coinciding in

the moment of time t with the directrices of the forces F, and R,, respectively,
p=1,...mv=1,...,n, ie.

(35) %(ru—rn):wx(r,,~m), v=1,...,m+n,
(36) ruXxFy,=M, 7rny, xF,=N,,
p=1... . mv=1 ... n

Like (17), equations (33) are identities. In other words, they are derived on
the basis of the definitions of the corresponding mathematical entities involved
by means of purely identical transformations, without the use of any dynamical
hypothesis whichever.

If now one accepts Euler’s dynamical axioms Ax 1 E and Ax 2 E or, just the
same, their mathematical equivalents (32), and if the geometrical constraints are
tdeal 1.e.

a"'rn+1/
37 R, =0, A=1,.. 1
) 3l

then (33), (34) imply (21) i.e. Lagrange’s equations for the solid B. As it is seen
from (33), the left-hand sides of Lagrange’s equations for a rigid body B are, purely
and simply, linear combinations of the projections of the left-hand sides of Euler’s

or
axioms (32) on appropriate axes, defined in direction by means of the vectors e

0qx
Ow

d"‘:“,)zl,...,l.
o/
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The equations (17) and (33) are called the fundamental identities of Lagrangean
formalism — for discrete systems of mass-points and for rigid bodies, respectively,
or, just the same, for Newtonian and Eulerian dynamics respectively.

Summa summarum: Newtonian mass-point dynamics and Eulerian rigid body
dynamics are two entirely independent mathematical theories, with different basic
objects and based upon different dynamical axioms. Forces in Newtonian dynamics
are represented mathematically by real standard vectors, while forces in Eulerian
dynamics are represented mathematically by real standard arrows. There is no
certitude a priori that inertiality according to Newton is inertiality according to
Euler and vice versa, or that time in Newtonian dynamics is the same thing as
time in Eulerian dynamics. It is desirable to be so, but ab posse ad esse non valet
consequeniia: being possible, these things must be secured by means of special
dynamical axioms. Is it, or is it not, pedagogically advantageous to expose con-
junctim, as Newton sais, Newtonian and Eulerian dynamics, is a question that
could be debated, but logically such a unification is not predeterminated. The
tendency, modern today, towards “general mechanics” is not solely a mathemati-
cal snobbery of the first water, paying tribute to the vacuous motto la généralité
pour la généralité and derided by the formula “Be wise, generalize!” of practical
mathematical moralism — moreover, it may be harmful. Dose makes poison. The
price of megalomania is as high in mathematics as in everydays life, and there
is a certain limit of enterprise in both, across which enlarging teridencies become
contraproductive.

D’Alembert’s and Lagrange’s faith that solid dynamics may be deduced from
mass-point dynamics is a scientific phantom like Phlogiston and Thermogéne —
a popular fallacy which strangled the great Newton-Bernoulli-Euler’s dynamical
tradition ab incunabilis and caused immensurable damages to rational mechanics.
No progress toward any solution of Hilbert’s Sixth Problem, in one sense or another,
is possible unless and until these ideological abberations are burried in the past —
where they belong.
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