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BENARD-MARANGONTI INSTABILITY IN A LIQUID LAYER
WITH TEMPERATURE-DEPENDENT VISCOSITY

SLAVTCHO SLAVTCHEV

Caragno Crasves. HEYCTOVILIMBOCTBUBEHAPA—MAPAHFOHI/I B CJOE KUI-
KOCTH C BA3KOCTBIO, 3ABUCHUIEU OT TEMIIEPATYPHLI

Uccnenosana ruapoamHaMuueckad HeyCTONUMBOCTL TOHKOIO CJIOA XXMAKOCTHU C Ne-
PEMEHHOM BA3KOCTBHIO, PACHOJIOXKEHHOIO Ha TFOPUM3OHTalbnHoM narperoil nnacrune. Heyc-
TOKUMBOCTbL NMOPOMNKIAAETCA B pe3yNbTaTe U3MEHEHHUA NOBEPXHOCTHOIO HATHAYKEHWA BAOJb
BepXHeil cBo6oanol rpanune cnosa. [IpUHATO, YTO BAZKOCTb *KUAKOCTH YMEHBIIAETCA C Ha-
pacTaHMEM TeMIepaTyphl 110 BKCNOHEeHUMAIHOMY 3aKkoHy. [Ipumenaerca Teopusa nuHeliHoM
rMAPOAMHAMMUYECKOH YyCTOMUMBOCTU M COOTBETCTBYIOUlaA 3aZauya Ha co6CcTBeHble 3Haue-
HUA pemaeTcA aHANUTUUYeCKUM cmocobom. Halzennt kpuruueckne 3Hauenma umcna Ma-
PaHTOHM, ONPEAESIEHHOrO Ha OCHOBE CDeJHero apM(MeTHUeCKOro 3HaUeHUA BA3KocTeil Ha
o6oux rpauunax cnosa. Kpuruueckne uncia MapaHroHu 3aBUCSIT OT napamMeTpa BA3KOCTH,
npeacrtaBaaouero coboli sorapMdM OTHOWEHUA MaKCUMaJIbHOW BA3KOCTM Ha CBoGOIHOM
NOBEPXHOCTU K MUHUMaJbHON Ha nnactude. JInA maHHOM YKUAKOCTU M3MEHEHME BA3ZKOCTH
umMmeeT HeBoNbWON cTabUNU3NpYIOLMA addeKT B Clrydae oUeHb TOHKMX CJIOEB M OKa3bIBaeT
3HauYUTeNnbHOE fecTabMNM3Mpylollee BAUAHME B OTHOCUTENbHO TONCTHX CJIOAX.

Slavtcho Slavtchev. BENARD-MARANGONI INSTABILITY IN A LIQUID LAYER WITH
TEMPERATURE-DEPENDENT VISCOSITY

Surface-tension driven instability in a thin horizontal layer of variable-viscosity fluid, bounded
by a heated rigid plate from below and a free surface from above, is studied. The viscosity is
assumed to decrease exponentially with increasing the temperature. The linear hydrodynamic
stability analysis is applied. The corresponding eigenvalue problem is solved analytically. The
critical values of the Marangoni number, based on the mean of the liquid viscosities at the layer
boundaries, depend on a viscosity parameter presenting a logarithm of the ratio of the maximum
viscosity at the free surface to the minimum value at the plate. For a given liquid, the viscosity
variation has a small stabilizing effect in very thin layers and a considerable destabilizing influence
in relatively thick ones.
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1. INTRODUCTION

The paper deals with the so-called Benard-Marangoni instability, due to varia.
tion of the surface tension with the temperature, in a horizontal liquid layer bound.,
ed by a rigid plate from below and opened to the ambient gas from above. The
layer is nitially at rest and is heated from below or cooled from above. The liquig;
viscosity is assumed to vary exponentially with the temperature. At some cop,
stant temperature gradient across the.layer the fluid starts a motion. The stability
problem is to determine the conditions at which instabilities appear in the layer;

The onset of thermoconvective instability has been studied since the experi.
mental work of Benard [1] showing a cellular pattern of fluid motion. Rayleigh [2)
first explained the phenomena attributing it to the action of buoyancy forces, due
to the density variation with the temperature. Later, Pearson [3] proposed anothey
mechanism by which the cellular convection is caused by surface tension forces,;
due to the surface tension variation with the temperature. As Pearson’s stability
analysis is mainly applicable to thin liquid layers, Nield [4] included gravity forces
to find the stability criteria in the case of thick layers.

Many aspects of the linear stability theory predicting the critical Marangonj
number for appearance of thermocapillary convection in liquid layers have been
considered (see, for instant, review (5] and book [6]). The effects of the free surface
deformation [7-9], as well as of the viscosity variation with the temperature by a
linear law [10, 11] have been analyzed. The interest of the scientists in Benard-
Marangoni instability has recently increased after the intensive experiments carried
out in Space (see, for example, [12]).

Many liquids and, in particular, some oils have viscosity decreasing exponen-
tially with increasing the temperature [13, 14]. Stationary stability in layers at such
a viscosity law has been considered in {15], but the solution of the problem is ob-
tained only at zero wave number. As the critical values of the Marangoni number,
above which the fluid is expected to start a motion, correspond to non-zero wave
numbers (with exception of the case of both insulating boundaries of the layer (3]},
that solution does not predict the exact values of the critical Marangoni number,
as well as the critical wave numbers.

Here, the influence of the exponential variation of the viscosity on stationary
Benard-Marangont instability in a liquid layer is studied analytically.

2. FORMULATION OF THE PROBLEM

Consider a liquid layer placed on a horizontal rigid plate with an upper surface
opened to the ambient, motionless gas. The free surface is assumed flat and non-
deformable, and the layer is heated from below or cooled from above. The physical
properties of the fluid are supposed constant with exception of the dynamic viscosity
p and the surface tension o, both depending on the temperature T

(1) p = poexp[—y(T — To)),
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(2) , o =00~ e(T —Tp),

where po and oy are values of the corresponding quantltles at some reference tem-
perature To, v and £ are positive constants.

In the equilibrium state the fluid is at rest, the pressure pg is hydrostatic and
the temperature changes linearly across the layer from some value at the bottom,
T, toa lower value Ty = Ty, — Ad at the free surface, where d is the layer depth and
g>0. The experiments show that above some value of the temperature difference
Ad, named critical, the liquid starts to move.

The governing equations of motion are the equations of mass, momentum and

energy:

dive =0,
dv .
(3) p (_87 + v.Vv) = —Vp+div(2uDv),
%% +ov.VT = szT

where t is the time, v(u, v, w) — the fluid velocity, p — the density, p = pa ~ po, Po
is the hydrostatic pressure, p4 is the dynamic pressure, x -— the thermal diffusivity,
¥ — the gradient vector, D — the deformation rate tensor. Cartesian coordinates
are introduced with the plane (z,y) coinciding with the bottom wall and axis 2
pointing to the free surface.

The linear hydrodynamic stability analysis is applied to determine the condi-
tion for appearence of instabilities. The reference state is perturbed by a small
disturbance

(4) 'U:'Ul(l'ay,zyt), P:p’(z:%‘z;t): TZTw—ﬂZ+TI(.’I,',y,Z,t),
the evolution of which is governed by a system of linearized equations. The non-

dimensional equations for the vertical velocity w, the pressure and the temperature
are written as follows (the dimensionless quantities are denoted without prime):

- (7 df 0 d2f
1 202 2 o2
6 = fVVw +2d 2 —Vw d 6 Vew
df 2, d*f Ow
(5) Vip = 2dV +ZEZ—262,
oT 2
875 ~ VT =w,

where Pr = uo/px is the Prandtl number and f(z) = p/uo follows from (1). The
spatial coordinates, the time, the velocity, the pressure, and the temperature are
scaled by the quantities d, d°/x, x/d, pox/d? and fBd, respectively.

The analytical form of f(z) depends on the value of the reference temperature
To, and correspondingly, on uo. The choice of the reference viscosity is also im-
portant for the definition of another, parameter of the problem — the Marangoni
number, which characterizes the instability conditions. The value of the dynamic
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viscosity at the free surface, y,, or that at the rigid wall, u,,, is often used as
We shall see below that the mean of these values is a more convenient choice.
The boundary conditions for equations (5) are as follows:
a) at the rigid plate (z = 0) :
ow
w=-— =0,
0z

T = 0 (conducting case) or %f— = 0 (insulating case);

b) at the free surface (z = 1)

o*w o*T  o*T
(7) 'U)—-O, p—07 f(l)azz—‘Ma’<azz+ay2))
oT .
(8) 5;+B1.T— 0,

where Ma = ¢fd?/xuo is the Marangoni number, Bi = ard/A — the Biot nums
ber, ap — the heat transfer coeflicient, and A — the heat conductivity. The last
equation in (7) follows from the tangential force balance at the surface including
the surface tension gradient expressed by the temperature gradient. Both, the con-
ducting case in which the wall temperature is kept constant during appearing &
disturbance and the insulating case in which the heat flux at the wall does not
change, are considered.

If ps is taken as the reference viscosity, the function f(2) is given by
9) f(z) =exp[N(z~1)] at 0<2<1,
where N = 7yfd is a non-dimensional parameter. Then, in the third boundary
condition (7), f(1) = 1 and Ma is replaced by the “surface” Marangoni numbez
Ma, = €fd®/xus. Putting z = 0 into (9), we obtain the expression N' = In(p, /py ),
The viscosity parameter represents a logarithm of the ratio of the maximum vis~
costty to the minimum one in the liquid layer. When the Marangoni number
is based on p, (named here “wall” Marangoni number), we have the relation
Ma,, = Ma, exp(N). '

As we shall see below, the critical values of the different Marangoni numbers
behave in a different way when the viscosity parameter varies and this makes some
difficulties in explaining the mathematical results from a physical point of view.

3. STATIONARY INSTABILITY

We seek a non-trivial solution of the stability problem (5)-(8), taking p, as
the reference viscosity and (9) for f(z). In our case it is not necessary to consider
the pressure equation (5). The solution of the other two equations is expressed in
the form

(10) w = —F(z,y)W(z)exp(wt), T = F(z,y)b(z)exp(wt),
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where the function F(z,y) satisfies the Helmholtz equation

&?’F  9*F

— 4 2 —
(11) 57 T T F=0.

Here @ is the wave number and w is the time constant, which is, in general, a
complex number. The functions W(z) and 6(z) satisfy the following equations:

(12) F()(D? — o’ + N>+ 2ND)(D* - o®) + 2N*a*]W
= Pr lw(D? - o®)W,
(13) [w = (D*~a?)6 = -W,

where D denotes the derivation with respect to z. At obtaining equation (12), the
derivatives Df(z) = N f(z) and D? f(z) = N?f(z) are used.
The boundary conditions (6)—-(8) are written as

14) W(0) = DW(0) = 0,
(15) 6(0) = 0 (conducting case) or D@(0) = 0 (insulating case),

(16) W(1)=0, D*W(1)= Ma,a?d(1), DO(1)+ Bif(1) = 0.

Supposing the existence of the principle of stability exchange, we consider only
the case of marginal instability when w = 0. In this case the Prandtl number is
excluded from the problem and equations (12)—(13) are reduced to the form

17 D? — a? + N2 + 2N D)(D? — a?) + 2N2a2|W = 0,
( :

(18) (D? - a®)8 = W.

Four parameters Ma, @, N and Bi are involved into the stability problem (17)-
(18), (14)—(16). The Biot number, which specifies the heat balance condition at
the free surface, as well as the viscosity parameter, is to be chosen. Then, at given
Bi and N, the solution of the problem is searched for pairs (Ma, a). A graph of Ma
versus o, representing the neutral curve, has one minimum at the so-called critical
values Ma® and o°. For Ma < Ma° instabilities do not appear, but at Ma® the
onset of convection takes place in the form of a pattern which is characterized by
the wave number o°.

The solution of (17)-(18) with boundary conditions (14)~(16) is obtained in an
analytical form elsewhere [16]. Here, some critical values of the “surface” Marangoni
number and the wave number are given in Table 1 for various N and Bi.

4. DISCUSSION OF THE RESULTS

As it is seen in Table 1, the critical wave number decreases with increasing the
viscosity parameter. This means that the convection sets on in variable-viscosity
liquids with cells having larger lengths than those in the case of constant-viscosity

liquid.
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Table 1

Bi = 0 (cond. case) Bi = 2 (cond. case) Bi =1 (insul. case)

N Ma¢ ot Ma$ af Ma$ ot
0 79.57 1.99 150.64 2.38 96.27 1.76
0.1 76.89 1.98 145.87 2.37 92.76 1.73
0.5 67.00 1.94 128.36 2.32 79.74 1.68
1.0 56.55 1.88 109.85 2.24 66.03 1.60
1.5 47.88 1.81 94.46 2.16 54.66 1.52
2.0 40.66 1.74 81.58 2.07 45.23 1.43
3.0 29.53 1.59 61.56 1.88 30.87 1.28
4.0 15.89 1.28 49.96 1.70 20.95 1.13
6.0 11.76 1.13 27.90 1.34 9.56 0.87
8.0 8.80 1.00 17.15 1.00 4.51 0.67
110.0 4.11 0.64 11.21 0.75 . 2.34 0.50

The “surface” Marangoni number Ma$ also decreases when N increases. At
the same time, the “wall” Marangoni number calculated from the formula Ma, =
MaS exp(N) increases. For example, in the conducting case (Bi = 0), Mal = 47.88
at N = 1.5 is 40% smaller than the critical value 79.57 at N = 0 (for constant-
viscosity fluid), while Maj = 214.58 is about 2.7 times larger.

The different behaviour of the critical Marangoni numbers Maj and Ma;, leads
to opposite conclusions about the influence of the fluid viscosity on the marginal
instability. Owing to the decrease of Maj, one may conclude that the viscosity
variation has a destabilizing effect in comparison with the case of fluid of constant
viscosity ps. From the other side, the large increase of Ma;, with N suggests to
expect strong stabilization of the layer in comparison with a layer of constant-
viscosity liquid. 4

To make a physically correct conclusion from the exact mathematical solution
of the problem, one needs to compare the theoretical results with experimental da-
ta. The critical Marangoni number determines the critical temperature difference
AT = 8d. This quantity is to be compared with the measured value of the tem-
perature difference, just above which a particular fluid layer changes spontaneously:

“from the equilibrium state to cellular convective motions.

To our knowledge, experimental results for Benard-Marangoni convection in
variable-viscosity liquids have not been published, although many experiments on
Benard-Rayleigh convection, mostly in layers with rigid boundaries, have been car-
ried out [6]. To diminish the influence of gravity in studing Marangoni instability,
it is necessary to use very thin layers in terrestrial conditions or to perform exper-
iments at spacecrafts, where, unfortunately, serious technical problems are to be
solved to keep stable external conditions during the experiment.

As experimental data are not avalable, the theoretical results are discussed
here on the basis of the physical mechanism of Benard-Marangoni instability ex-
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plained first by Pearson [3] for the case of constant-viscosity fluids. According to
that mechanism, at some difference between the temperatures at the rigid and free
poundaries of the layer a disturbance creates a hot spot (compared with its neigh-
pours) at some point of the free surface. As the surface tension decreases linearly
with temperature, there is a net surface traction away from this point and, due
to viscosity, the subsurface fluid is dragged away. By the conservation of mass, in
the layer beneath the spot a flow from bellow is induced and a convective motion
starts.

Let us see what happens when the fluid has a variable viscosity. If the liquid
is extremely viscous, i.e. the coeflicient v in (1) or, equivalently, N is sufficiently
large, the flow from bellow brings to the free surface an warm fluid, the viscosity of
which is much smaller than the viscosity p; of the colder surface fluid surrounding
the hot spot. Then, comparing with the condition for appearance of instabilities in
the case of constant-viscosity liquid, smaller thermocapillary forces are needed to
overcome the viscous friction of the subsurface fluid. It means that the convection
sets on at smaller temperature gradients across the layer and, consequently, for
less critical values of the Marangoni number. When the difference between the
maximum and the minimum viscosities of the liquid increases, 1.e. the ratio py/py,
increases also, the critical Marangoni number should decreases. This behaviour is
similar to that of MaS with the variation of the viscosity parameter N.

For small N (N « 1) the difference between p, and y,, (given by the approx-
imate formula p,(1 — N)) is proportional to N. When a disturbance, creating the
hot spot at the free surface, initiates a motion of warm fluid from below beneath
the spot, this fluid mixes with the upper cold one. Because of the small viscos-
ity variation, the mixed subsurface liquid is expected to behave like a fluid with
“constant” viscosity equal to the mean value of p, and g, (1 — N), namely,

(19)  =w(i-5)

The Marangoni number Ma based on this viscosity has a critical value

~c Ma e N
(20) ‘ Ma = 1 ~ Ma3|N=0 (1 + 7) ,
\ I-3

which is a little larger than the critical Marangoni number for fluid of constant
viscosity ps posed at the same temperature conditions. So, in the case of almost
linear variation of the viscosity with the temperature, some small stabilizing effect
is expected. The increase of Ma at small N is very similar to the behaviour of the
critical “wall” Marangoni number.

Basing on the above presented instability mechanism for variable-viscosity flu-
ids, we define a “mean” Marangoni number

(21) a= szasT\f"
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1 —
based on the mean value ff = 5(/1, + ptw). Some curves of the critical number Ma ¢

as a function of the viscosity parameter are given in Fig. 1 for the values of the Biot
number from Table 1. The critical “mean” Marangoni number increases (according
to formula (20) at very small N) and after reaching a maximum, decreases rapidly.
It coincides with 2Maj for N > 7.

For a given liquid the variation of NV is related to the change of the layer depth.
Hence, in very thin layers the viscosity variation has a small stabilizing effect, while
it plays a destabilizing role in relatively thick layers.

5. CONCLUSIONS

On the base of an analytical solution of the hydrodynamic stability problem
the influence of temperature-dependent viscosity on Benard-Marangoni convection
in a liquid layer is studied. The exponential variation of the viscosity plays mostly
a destabilizing role, especially in relatively thick layers, in comparison with the
conditions for setting on a stationary convection in constant-viscosity fluids. In the
case of very thin layers, when the exponential is approximated by a linear function,
some stabilizing effect is expected. The critical wave numbers are always smaller
than those for convective motion in constant-viscosity liquid. This means that
convective cells of larger lengths may appear in variable-viscosity liquids.

The results of this study need to be confirmed by future experiments on Benard-
Marangoni instability.
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