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' OF HOLOMORPHIC FUNCTIONS

PETER RUSEV

Hemp Pyces. TIOJIHBIE CUCTEMBI ®YHKUUN TPUKOMU B IIPOCTPAHCTBAX
FOJIOMOP®HBIX &Y HKUUN

Iycrs ¥(a,c;z) — rnaBHas BETBb BHLIPOXKAEHHON ruUnepreoMeTpUMYecKoi GyHKUMK
Tpukomu ¢ mapaMeTpaMmu a; ¢ ¥ G — NPOM3BONbLHAA OJHOCBA3HAA NOAOBNACTb KOMMIEK-
CHOM MJIOCKOCTM, pa3pe3aHHON No BeUleCTBeHHOM HemosoxuTenbHolt nonyocu. [lokasano,
YTO CUCTUMaA BHJA '

{I(n+r+a+l,a+1;2)}0e,
MosHa B NPOCTPAHCTBE KOMMNEKCHBIX QYHKUMII rosoMOpPPHBIX B G, cuMTas 4To A M a —
pelleCTBEHHblE M A + o > —1.

Peter Rusev. COMPLETE SYSTEMS OF TRICOMI FUNCTIONS IN SPACES OF HOLO-
MORPHIC FUNCTIONS

Let ¥(a,c¢; z) be the main branch of Tricomi confluent hypergeometric function with param-
eters a, ¢ and G be an arbitrary simply connected subregion of the complex plane cut along the
real non-positive semiaxis. It is proved that a system of the kind

{¥(n+d+a+l,a+1;2)}22,

is complete in the space of the complex functions holomorphic in G' provided that A and « are
real and A+ a > —1.

1. INTRODUCTION

Let G be a region in the complex plane C and H(G) be the C-vector space
of the complex functions holomorphic in G endowed with the topology of uniform
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convergence on compact subsets of G. A system {p,(2)};2, C H(G) is calleq
complete in H(G) if for every f € H(G), every compact set K € G and every € >

there exists a linear combination P(z) = Z enpnl(z), cn EC,n=0,1,2,.. N
n=0

such that |f(z) — P(z)| < € whenever z € K.

Let v be a Jordan curve in C and C, be the closure of its outside with respect
to the extended complex plane € = C U {co}. By H, we denote the vectop
space of the complex functions, where each of them is holomorphic in an open set
containing C,, and vanishes at the point co. The following statement is a criterion
for completeness in spaces of the kind H(G) [2, p. 211, Theorem 17}

(CC) A system {pn(z)}or, of complex functions holomorphic in a simply con-
nected region G C C is complete in the space H(G) iff for every rectifiable Jordan,
curve ¥ C G the only function ' € H., which is orthogonal to each of the functions
{pn(2)}22, is identically zero, 1.e. the equalities

/F(z)(pn(z)dz:O, n=0,1,2,...,
po

imply F = 0.

2. TRICOMI FUNCTION

Tricomi function ¥(a,¢;z) is a “second” solution of the confluent hypergeo-
metric equation zw” + (¢ — z)w’ — aw = 0 in the region C \ {0,00} {1, 6.5, 6.6].
In general, it is a multivalued (analytic) function with branch points at 0 and oo
only. The same notation is used for its main branch in the region C'\ (—~o0,0]. This
branch is of course a holomorphic function and if Rea > 0, it has the following
representation:

(2.1) U(a,c;z) = )/ ut”” exp( u)du

Z+U)a c+1

Remark. Usually, the main branch of Trlcoml function is defined by the
equality

¢4 lexp(—2z(¢
(22) ‘Ii(a G Z I‘((l) / 1+C)I:1( c+1) dC)

where {(¢) = {{ = expipt,0 <t < oo} provided that —7/2 < ¢ < 7r/2 and
—m/2—p < argz < T2 - [1, 6.5, (3)]. But as it is easily seen, if ¢ = 0, the
right-hand sides of (2.1) and (2.2) are equal when z = 2 > 0. In order to prove
this, we put z = ¢ > 0 in (1.1) and change the variable u by zu.

Under the assumpton that a + ¢+ 1 # 0,-1,-2,... we define the function
U(a,c; z) by

(2.3) V(a,c;z2)=T(a+c+1)¥(a+c+1,c+1;2).
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If a, as well as a — ¢ + 1, is different from 0, -1, -2, ..., the following relation

is valid [1, 6.5, (6)}:
(2-4) Y(a,c;2) = 2! W(a—c+ 1,2~ ¢c;2).

By using it, we come to the representation

F(a+c+1) u® exp(—u) du.
T(a+1) (z+ u)atet!

(2.5) U(a,c;z) =

which is valid in the region C \ (—o0, 0] provided that Rea > —~1 and a+c+ 1 #
0,—1,-2,...

3. AUXILIARY STATEMENTS

Ifa+1#0,-1,-2,..., the function

I(a+1)

(3.1) T(a;z,w) = Aot

is holomorphic with respect to w in the region C \ {,, where I, denotes the ray
{w=-z-1¢0<t< o0}

Let z € C\(—00,0], then the equation Re(—w)/? = Re z'/2 defines a parabola
p. passing through the point —z and having its vertex at the point —(Re z}/2)2,
We denote by A, the inside of p,. Evidently, A, € C'\, for every z € C'\ (—o0,0].

Lemma I Let A> -1, 4+a+1#0,-1,-2,... and 2z € C \ (—c0,0]. Then
for every w € A, the equalily

o0

(3:2) T\ +;2,0) :Z (n+ X a;2) L0 (w)

oo
holds, where {Lg,)‘)(w)} , are the Laguerre’s polynomials with parameter A.
n= -

Proof. By the generalized Pollard’s theorem [3, Theorem A] the function
T(A+ a; z,w) has an expansion in the Laguerre’s polynomials with parameter ) in
the region A,, i.e.

o0
T(,\ + o Z,'U)) = Z An(/\, o, Z)LS;\)(U))

n=0

For the coefficients of the series in the right-hand side we have the following
representations:

An(Va;z) = TA+a+1)I(n+1) /oou)‘ eXp(—u)ng)‘)(u)

F(n+X+1) (z + u)Fatl _d“, n=20,1,2,...
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Futher, the Rodrigues’ formula for the Laguerre’s polynomials [1, 10.12, (5))
gives :

(1 TO+a+1) T exp(-u)} ™
I'(n+A+1) (z 4+ u)rtatl “
o]

An(A e z) = n=20,1,2 ...,

and after integration by parts we obtain

. *I’(n+z\+a+l exp ) _
An(QQa;z) = WAt D /(z+u)"+’\+“+1 du, n=0,1,2,...,

le. An(A,a;z):El(n+A,a;z),n:0,1,2,... ‘

If u > 0, by A, we denote the closed set defined by the inequality Re z1/2 >
provided that z € C \ (—00,0]. In other words, A,, is the closure of the outside of
the parabola with focus at the origin and vertex at the point 2.

Lemma I1. Whatever p > 0, ap and ¢ € R be, the inequalily
(3.3) [¥(a,c;z)| =0 (lzl"‘/z_l/"ac/?‘l/“ exp(—2u \/E))

holds uniformly with respect o z € A,, and a > ap.

Remark. The exact meaning of (3.3) is that there exists a constant M =
M(p,a0,c) (1.e. M depends on p, ap and ¢ only) such that

(3.4) 1¥(a, c; 2)] < M|z{=e/2~U4ge/2= YA exp(—2p\/a)
when z € A,‘ and ¢ > ag.

Proof. Suppose that ¢ > 1/2. The integral representation [1, 6.11, (10)] and
the equality (1.3) give that if 2 € C'\ (~o0, 0] and a > 0, then

(3.5) U(a,c;z) =

22_6/2 7 atcf?2 ( )1' (2\/_—) d
F(a T 1) u €Xp U ‘ Zuj)au
0

where K, is the modified Bessel function of the third kind with index c.

From the defining equalities (1, 7.2, (13), (37)] and the asymptotic formula
(1, 7.4, (4)] it follows that there exists a positive constant A = A(c, ) such that
if { € C\ (—0,0}, then [Kc(20)] < AJ¢|7¢ when 0 < |¢] < p?, and |Kc(20)] <
Al¢|" %2 exp(—2Re() when |¢] > p?. Then (3.5) leads to the conclusion that for
every z € A# and every a > 0 the following inequality holds: ‘

[W(a,c;2)] < 24024 {11 (1, a, ¢; 2) + La(ps, @, 5 2)

where
B2/l

a

|2|~¢/2+1/4
u® exp(—u) du

Lip,ac;z) = BCERE
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and
o0

/ yote/2-1/4 exp(—u — Qp\/ﬂ) du.
w2/l

Since |z] > p? for every z € A, and, moreover, ¢/2 > 1/4, we have that if
z € A, and a > 0, then

1
12(;1, a,c;z) = m

Li(p,ac;z) < p=t?/T(a +2).
Further from the equality
lim a=¢/2+Y4 exp(2uv/a)(T(a +2))"' =0

7n— 00

it follows that for every aq > 0 there exists By = By (g, ao, ¢) such that the inequal-
ity

Ii(p,a,c¢2) < Bya®/?-1/4 exp(—2u+/a)
holds for every a > ag and every z € Au. ’

If we change u by u?/2 and take into consideration the integral representa-
tion [1, 8.3, (3)] for the Weber-Hermite function D,(z), then we obtain that the
inequality

eXP("#z/?)IZ(Il; a, ¢ Z)
< 24¢/243/1 (30 1 ¢ 4 3/2)(I(a + 1)) D-zapesan) (VD)

is valid for every z € A,, and every a > 0.

By means of the asymptotic formula [1, 8.4, (5)] as well as Stirling’s formula
we come to the conclusion that for every ag > 0 there exists a constant By =
Ba(pt, ao, ¢) such that the inequality

Iy(p, a,¢; 2) < Bya®/?~ Yt exp(—2u+/a)

1s valid whenever z € A,‘ and a > ap.

So far the validity of the inequahty (2.4) with M = 2A max(B,, B;) 1s proved
under the assumption that ¢ > 1/2. By means of the relation (2.4) we prove that
it holds also in the case when ¢ < 1/2.

4. MAIN RESULT

Theorem. Let A and a be real and let A+ a > —1. Then for every simply
connected region G C C \ (—o0,0] the system
(4.1) {¥(n+r+a+1l,a+1;2)},
is complete in the space H(G).

Proof. 1t is sufficient to prove that the system

(4.2) {E:(n+,\,a;z)}

has the desired property.

oo
n=0
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Let ¥ C G be a rectifiable Jordan curve and let the function F be in the Spacq

H,. We define the function f in the region C \ {J {, by
zE€Y

f(w) = /T(/\ +a;z,w)dz.

Let ¢ be a point of v such that Re(!/? < Rez!/? for every z € 7. In the regiog
A¢ we have the representation

(4.3) fw) =" Ta(F) LM (w),

where

To(F)= [ F(z)¥(n+ X a;2)dz, n=0,1,2,...

< —

In order to prove this, it is sufficient to show that the series in (3.2) is uniformly
convergent on the curve ¥ whenever w € A¢.

Let 4 = Re¢'/? and w € A¢, then the 1nequa11ty Re(—w)/? < p holds. By
using the asymptotic formulas for the Laguerre’s polynomials [4, (8.22.1), (8.22. 3)]
as well as the inequality (3.3) we come to the conclusion that there exists a positive
integer ng such that the inequality

[¥(n+ 2, a3.2) L) (w)] = O (n@+*= D/ exp[—2(u — Re(—w)/)v/n])

holds uniformly with respect to z € y and n > ng. In other words, the series in (3.2)

is majorized on vy by a convergent series and therefore it is uniformly convergent

on v. After integrating it term by term on vy, we get the representation (4.3).
Suppose that T, (F) = 0 for every n = 0,1,2,... Then (4.3) gives that f =0

in the region A, i.e.
Y ) N
)= | gy 4=
b

for every w € A¢. Further the equalities f(™(0) =0, n=0,1,2,..., give that

/F(z)z,-*-a-lz-" dz=0, n=0,1,2,...
g

Since by Runge’s theorem [5, p. 176, (2.1)] the system {z‘"}:o:0 is complete
in H(G), from the completeness criterion (CC) it follows that F' = 0.

Corollairy. Under the conditions of the Theorem the sysiem
{T(n+A+11-a29)10%
is complete in H(G).
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