годишник на софийския университет "св. климент охридски"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 3

Том 88, 1994

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE

Livre 3 Tome 88, 1994

COMPLETE SYSTEMS OF TRICOMI FUNCTIONS IN SPACES OF HOLOMORPHIC FUNCTIONS

PETER RUSEV

Петр Руссв. ПОЛНЫЕ СИСТЕМЫ ФУНКЦИЙ ТРИКОМИ В ПРОСТРАНСТВАХ ГОЛОМОРФНЫХ ФУНКЦИЙ

Пусть $\Psi(a,c;z)$ — главная ветвь вырожденной гипергеометрической функции Трикоми с параметрами a,c и G — произвольная односвязная подобласть комплексной плоскости, разрезанной по вещественной неположительной полуоси. Доказано, что систима вида

$$\{\Psi(n+\lambda+\alpha+1,\alpha+1;z)\}_{n=0}^{\infty}$$

полна в пространстве комплексных функций голоморфных в G, считая что λ и α — вещественные и $\lambda + \alpha > -1$.

Peter Rusev. COMPLETE SYSTEMS OF TRICOMI FUNCTIONS IN SPACES OF HOLO-MORPHIC FUNCTIONS

Let $\Psi(a,c;z)$ be the main branch of Tricomi confluent hypergeometric function with parameters a,c and G be an arbitrary simply connected subregion of the complex plane cut along the real non-positive semiaxis. It is proved that a system of the kind

$$\{\Psi(n+\lambda+\alpha+1,\alpha+1;z)\}_{n=0}^{\infty}$$

is complete in the space of the complex functions holomorphic in G provided that λ and α are real and $\lambda + \alpha > -1$.

1. INTRODUCTION

Let G be a region in the complex plane C and H(G) be the C-vector space of the complex functions holomorphic in G endowed with the topology of uniform

convergence on compact subsets of G. A system $\{\varphi_n(z)\}_{n=0}^{\infty} \subset H(G)$ is called complete in H(G) if for every $f \in H(G)$, every compact set $K \in G$ and every $\varepsilon > 0$

there exists a linear combination $P(z) = \sum_{n=0}^{N} c_n \varphi_n(z), c_n \in \mathbb{C}, n = 0, 1, 2, ..., N_i$ such that $|f(z) - P(z)| < \varepsilon$ whenever $z \in K$.

Let γ be a Jordan curve in C and C_{γ} be the closure of its outside with respect to the extended complex plane $\overline{C} = C \cup \{\infty\}$. By H_{γ} we denote the vector space of the complex functions, where each of them is holomorphic in an open set containing C_{γ} and vanishes at the point ∞ . The following statement is a criterion for completeness in spaces of the kind H(G) [2, p. 211, Theorem 17]:

(CC) A system $\{\varphi_n(z)\}_{n=0}^{\infty}$ of complex functions holomorphic in a simply connected region $G \subset C$ is complete in the space H(G) iff for every rectifiable Jordan curve $\gamma \subset G$ the only function $F \in H_{\gamma}$ which is orthogonal to each of the functions $\{\varphi_n(z)\}_{n=0}^{\infty}$ is identically zero, i.e. the equalities

$$\int_{\alpha} F(z)\varphi_n(z) dz = 0, \quad n = 0, 1, 2, \dots,$$

imply $F \equiv 0$.

2. TRICOMI FUNCTION

Tricomi function $\Psi(a,c;z)$ is a "second" solution of the confluent hypergeometric equation zw'' + (c-z)w' - aw = 0 in the region $\overline{C} \setminus \{0,\infty\}$ [1, 6.5, 6.6]. In general, it is a multivalued (analytic) function with branch points at 0 and ∞ only. The same notation is used for its main branch in the region $C \setminus (-\infty, 0]$. This branch is of course a holomorphic function and if Re a > 0, it has the following representation:

(2.1)
$$\Psi(a,c;z) = \frac{z^{1-c}}{\Gamma(a)} \int_{0}^{\infty} \frac{u^{a-1} \exp(-u)}{(z+u)^{a-c+1}} du.$$

Remark. Usually, the main branch of Tricomi function is defined by the equality

(2.2)
$$\Psi(a,c;z) = \frac{1}{\Gamma(a)} \int_{l(\varphi)} \frac{\zeta^{a-1} \exp(-z\zeta)}{(1+\zeta)^{a-c+1}} d\zeta,$$

where $l(\varphi) = \{\zeta = \exp i\varphi.t, 0 \le t < \infty\}$ provided that $-\pi/2 \le \varphi \le \pi/2$ and $-\pi/2 - \varphi < \arg z < \pi/2 - \varphi$ [1, 6.5, (3)]. But as it is easily seen, if $\varphi = 0$, the right-hand sides of (2.1) and (2.2) are equal when z = x > 0. In order to prove this, we put z = x > 0 in (1.1) and change the variable u by xu.

Under the assumpton that $a+c+1\neq 0,-1,-2,...$ we define the function $\widetilde{\Psi}(a,c;z)$ by

(2.3)
$$\widetilde{\Psi}(a,c;z) = \Gamma(a+c+1)\Psi(a+c+1,c+1;z).$$

If a, as well as a-c+1, is different from 0, -1, -2, ..., the following relation is valid [1, 6.5, (6)]:

(2.4)
$$\Psi(a,c;z) = z^{1-c}\Psi(a-c+1,2-c;z).$$

By using it, we come to the representation

(2.5)
$$\widetilde{\Psi}(a,c;z) = \frac{\Gamma(a+c+1)}{\Gamma(a+1)} \int_{0}^{\infty} \frac{u^a \exp(-u)}{(z+u)^{a+c+1}} du,$$

which is valid in the region $C \setminus (-\infty, 0]$ provided that $\operatorname{Re} a > -1$ and $a + c + 1 \neq 0, -1, -2, \dots$

3. AUXILIARY STATEMENTS

If $a+1 \neq 0, -1, -2, \ldots$, the function

(3.1)
$$T(a; z, w) = \frac{\Gamma(a+1)}{(z+w)^{a+1}}$$

is holomorphic with respect to w in the region $C \setminus l_z$, where l_z denotes the ray $\{w = -z - t, 0 \le t < \infty\}$.

Let $z \in C \setminus (-\infty, 0]$, then the equation $\operatorname{Re}(-w)^{1/2} = \operatorname{Re} z^{1/2}$ defines a parabola p_z passing through the point -z and having its vertex at the point $-(\operatorname{Re} z^{1/2})^2$. We denote by Δ_z the inside of p_z . Evidently, $\Delta_z \in C \setminus l_z$ for every $z \in C \setminus (-\infty, 0]$.

Lemma I. Let $\lambda > -1$, $\lambda + \alpha + 1 \neq 0, -1, -2, \ldots$ and $z \in \mathbb{C} \setminus (-\infty, 0]$. Then for every $w \in \Delta_z$ the equality

(3.2)
$$T(\lambda + \alpha; z, w) = \sum_{n=0}^{\infty} \widetilde{\Psi}(n + \lambda, \alpha; z) L_n^{(\lambda)}(w)$$

holds, where $\left\{L_n^{(\lambda)}(w)\right\}_{n=0}^{\infty}$ are the Laguerre's polynomials with parameter λ .

Proof. By the generalized Pollard's theorem [3, Theorem A] the function $T(\lambda + \alpha; z, w)$ has an expansion in the Laguerre's polynomials with parameter λ in the region Δ_z , i.e.

$$T(\lambda + \alpha; z, w) = \sum_{n=0}^{\infty} A_n(\lambda, \alpha; z) L_{n}^{(\lambda)}(w).$$

For the coefficients of the series in the right-hand side we have the following representations:

$$A_n(\lambda,\alpha;z) = \frac{\Gamma(\lambda+\alpha+1)\Gamma(n+1)}{\Gamma(n+\lambda+1)} \int_0^\infty \frac{u^{\lambda} \exp(-u) L_n^{(\lambda)}(u)}{(z+u)^{\lambda+\alpha+1}} du, \quad n = 0, 1, 2, \dots$$

Futher, the Rodrigues' formula for the Laguerre's polynomials [1, 10.12, (5)] gives

$$A_n(\lambda,\alpha;z) = \frac{(-1)^n \Gamma(\lambda+\alpha+1)}{\Gamma(n+\lambda+1)} \int_0^\infty \frac{\left\{u^{n+\lambda} \exp(-u)\right\}^{(n)}}{(z+u)^{\lambda+\alpha+1}} du, \quad n=0,1,2,\ldots,$$

and after integration by parts we obtain

$$A_n(\lambda\alpha;z) = \frac{\Gamma(n+\lambda+\alpha+1)}{\Gamma(n+\lambda+1)} \int_0^\infty \frac{u^{n+\lambda} \exp(-u)}{(z+u)^{n+\lambda+\alpha+1}} du, \quad n = 0, 1, 2, \dots,$$

i.e. $A_n(\lambda, \alpha; z) = \widetilde{\Psi}(n + \lambda, \alpha; z), n = 0, 1, 2, ...$

If $\mu > 0$, by $\tilde{\Delta}_{\mu}$ we denote the closed set defined by the inequality $\text{Re } z^{1/2} \ge \mu$ provided that $z \in C \setminus (-\infty, 0]$. In other words, $\tilde{\Delta}_{\mu}$ is the closure of the outside of the parabola with focus at the origin and vertex at the point μ^2 .

Lemma II. Whatever $\mu > 0$, a_0 and $c \in \mathbf{R}$ be, the inequality

(3.3)
$$|\widetilde{\Psi}(a,c;z)| = O\left(|z|^{-c/2-1/4}a^{c/2-1/4}\exp(-2\mu\sqrt{a})\right)$$

holds uniformly with respect to $z \in \tilde{\Delta}_{\mu}$ and $a \geq a_0$.

Remark. The exact meaning of (3.3) is that there exists a constant $M = M(\mu, a_0, c)$ (i.e. M depends on μ , a_0 and c only) such that

(3.4)
$$|\widetilde{\Psi}(a,c;z)| \le M|z|^{-c/2-1/4} a^{c/2-1/4} \exp(-2\mu\sqrt{a})$$

when $z \in \tilde{\Delta}_{\mu}$ and $a \geq a_0$.

Proof. Suppose that $c \ge 1/2$. The integral representation [1, 6.11, (10)] and the equality (1.3) give that if $z \in \mathbb{C} \setminus (-\infty, 0]$ and a > 0, then

(3.5)
$$\widetilde{\Psi}(a,c;z) = \frac{2z^{-c/2}}{\Gamma(a+1)} \int_{a}^{\infty} u^{a+c/2} \exp(-u) K_c(2\sqrt{zu}) du,$$

where K_c is the modified Bessel function of the third kind with index c.

From the defining equalities [1, 7.2, (13), (37)] and the asymptotic formula [1, 7.4, (4)] it follows that there exists a positive constant $A = A(c, \mu)$ such that if $\zeta \in \mathbb{C} \setminus (-\infty, 0]$, then $|K_c(2\zeta)| \leq A|\zeta|^{-c}$ when $0 < |\zeta| \leq \mu^2$, and $|K_c(2\zeta)| \leq A|\zeta|^{-1/2} \exp(-2 \operatorname{Re} \zeta)$ when $|\zeta| \geq \mu^2$. Then (3.5) leads to the conclusion that for every $z \in \tilde{\Delta}_{\mu}$ and every a > 0 the following inequality holds:

$$|\widetilde{\Psi}(a,c;z)| \le 2A|z|^{-c/2-1/4} \{I_1(\mu,a,c;z) + I_2(\mu,a,c;z)\},$$

where

$$I_1(\mu, ac; z) = \frac{|z|^{-c/2+1/4}}{\Gamma(a+1)} \int_0^{\mu^2/|z|} u^a \exp(-u) du$$

and

$$I_2(\mu, a, c; z) = \frac{1}{\Gamma(a+1)} \int_{\mu^2/|z|}^{\infty} u^{a+c/2-1/4} \exp(-u - 2\mu\sqrt{u}) du.$$

Since $|z| \ge \mu^2$ for every $z \in \tilde{\Delta}_{\mu}$ and, moreover, $c/2 \ge 1/4$, we have that if $z \in \tilde{\Delta}_{\mu}$ and a > 0, then

$$I_1(\mu, ac; z) \le \mu^{-c+1/2}/\Gamma(a+2).$$

Further from the equality

$$\lim_{n \to \infty} a^{-c/2 + 1/4} \exp(2\mu \sqrt{a}) (\Gamma(a+2))^{-1} = 0$$

it follows that for every $a_0 > 0$ there exists $B_1 = B_1(\mu, a_0, c)$ such that the inequality

$$I_1(\mu, a, c; z) \le B_1 a^{c/2 - 1/4} \exp(-2\mu\sqrt{a})$$

holds for every $a > a_0$ and every $z \in \tilde{\Delta}_u$.

If we change u by $u^2/2$ and take into consideration the integral representation [1, 8.3, (3)] for the Weber-Hermite function $D_{\nu}(z)$, then we obtain that the inequality

$$\exp(-\mu^2/2)I_2(\mu, a, c; z) \le 2^{a+c/2+3/4}\Gamma(2a+c+3/2)(\Gamma(a+1))^{-1}D_{-(2a+c+3/2)}(\mu\sqrt{2})$$

is valid for every $z \in \tilde{\Delta}_{\mu}$ and every a > 0.

By means of the asymptotic formula [1, 8.4, (5)] as well as Stirling's formula we come to the conclusion that for every $a_0 > 0$ there exists a constant $B_2 = B_2(\mu, a_0, c)$ such that the inequality

$$I_2(\mu, a, c; z) \le B_2 a^{c/2 - 1/4} \exp(-2\mu\sqrt{a})$$

is valid whenever $z \in \tilde{\Delta}_{\mu}$ and $a \geq a_0$.

So far the validity of the inequality (2.4) with $M = 2A \max(B_1, B_2)$ is proved under the assumption that $c \ge 1/2$. By means of the relation (2.4) we prove that it holds also in the case when c < 1/2.

4. MAIN RESULT

Theorem. Let λ and α be real and let $\lambda + \alpha > -1$. Then for every simply connected region $G \subset \mathbb{C} \setminus (-\infty, 0]$ the system

$$(4.1) \qquad \qquad \{\Psi(n+\lambda+\alpha+1,\alpha+1;z)\}_{n=0}^{\infty}$$

is complete in the space H(G).

Proof. It is sufficient to prove that the system

(4.2)
$$\left\{\widetilde{\Psi}(n+\lambda,\alpha;z)\right\}_{n=0}^{\infty}$$

has the desired property.

Let $\gamma \subset G$ be a rectifiable Jordan curve and let the function F be in the space H_{γ} . We define the function f in the region $C \setminus \bigcup_{z \in \gamma} l_z$ by

$$f(w) = \int_{\gamma} T(\lambda + \alpha; z, w) dz.$$

Let ζ be a point of γ such that $\operatorname{Re} \zeta^{1/2} \leq \operatorname{Re} z^{1/2}$ for every $z \in \gamma$. In the region Δ_{ζ} we have the representation

$$f(w) = \sum_{n=0}^{\infty} T_n(F) L_n^{(\lambda)}(w),$$

where

$$T_n(F) = \int\limits_{\gamma} F(z)\widetilde{\Psi}(n+\lambda,\alpha;z) dz, \quad n=0,1,2,\ldots$$

In order to prove this, it is sufficient to show that the series in (3.2) is uniformly convergent on the curve γ whenever $w \in \Delta_{\zeta}$.

Let $\mu = \text{Re }\zeta^{1/2}$ and $w \in \Delta_{\zeta}$, then the inequality $\text{Re}(-w)^{1/2} < \mu$ holds. By using the asymptotic formulas for the Laguerre's polynomials [4, (8.22.1), (8.22.3)] as well as the inequality (3.3) we come to the conclusion that there exists a positive integer n_0 such that the inequality

$$|\widetilde{\Psi}(n+\lambda,\alpha;z)L_n^{(\lambda)}(w)| = O\left(n^{(\alpha+\lambda-1)/2}\exp[-2(\mu-\mathrm{Re}(-w)^{1/2})\sqrt{n}]\right)$$

holds uniformly with respect to $z \in \gamma$ and $n \ge n_0$. In other words, the series in (3.2) is majorized on γ by a convergent series and therefore it is uniformly convergent on γ . After integrating it term by term on γ , we get the representation (4.3).

Suppose that $T_n(F) = 0$ for every n = 0, 1, 2, ... Then (4.3) gives that $f \equiv \mathbf{0}$ in the region $\Delta_{\mathcal{L}}$, i.e.

$$f(w) = \int_{\gamma} \frac{F(w)}{(z+w)^{\lambda+\alpha+1}} dz = 0$$

for every $w \in \Delta_{\zeta}$. Further the equalities $f^{(n)}(0) = 0, n = 0, 1, 2, \ldots$, give that

$$\int_{\alpha} F(z)z^{-\lambda-\alpha-1}z^{-n} dz = 0, \quad n = 0, 1, 2, \dots$$

Since by Runge's theorem [5, p. 176, (2.1)] the system $\{z^{-n}\}_{n=0}^{\infty}$ is complete in H(G), from the completeness criterion (CC) it follows that $F \equiv 0$.

Corollary. Under the conditions of the Theorem the system

$$\{\Psi(n+\lambda+1,1-\alpha;z)\}_{n=0}^{\infty}$$

is complete in H(G).

REFERENCES

- Bateman, H., A. Erdeyi. Higher transcendental functions. I, II, III, Mc Graw-Hill B. C., N. Y., 1953.
- 2. Levin, B. Ja. Distribution of zeros of entire functions. Transl. of Mathem. Monographs, 5, AMS, Providence, Rhode Island, 1964.
- 3. Szasz, O., N. Yeardley. The representation of an analytic function by general Laguerre series.

 Pacific J. Math., 8, no 3, 1958, 621-633.
- Szegő, G. Orthogonal polynomials, AMS Colloquim Publications, 23, Providence, Rhode Island, 1939.
- Zygmund, A., S. Saks. Analytic functions. Mathematical Monographs, 28, Polish Math. Soc., Warszawa-Wroclaw, 1952.

Received 15.03.1994