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KRASIMIRA PRODANOVA

Kpacumupa Mpodanosa. CTATUCTUYECKUE CBOMCTBA OUEHKU HAMMEHIIINX
KBAIIPATOB IJIi MAKCUMAJILHOI'O SKCKPETUPAHOI'O KOJIMYECTBA
JEKAPCTBA

HeTounocTh omeHxkM MakKcMMaNbHOTO BKCKPETHMPaHOro KoJuuyecTBa JnexapcrBa U™
BiedeT 3a cobol omMBKKU NPpU ONpeZie/IEHUN HEKOTOPHIX (apMaKOKMHETHUYECKUX NapaMeT-
poB nexkapctB. O6bruno onennbanue U™ npesnaercs, ucnonbiys HabniodaeMble CTOWHOCTH
A KymynaTusHodt skckpenum U(t). B nmannoit paBore McHoNb3yeTcs cToXacTUdecKas
MOA€JIb NJiA OUCHHUBaHHUA OLUHSKVI OIl€EHKHN UOO Pa.cnpe,z_(eneﬂue JIeKapCTBa ONUCHLIBAETCH
n-uacTesoit papMakokmHeTUueckoit moaenm (n =1,2,...) ¢ BcacuiBanneM. [Ipeumymecrso
MOJE/NMH B ee NPUIIOKMMOCTH B cJyuasnx, koraa or6op npo6 U(t) me menaH uepes paBHbIE

HPpOMEXKIAYTKH BPDEMEHU.

Krasimire Prodanova. STATISTICAL PROPERTIES OF THE LEAST SQUARES ESTIMA-
TOR OF MAXIMUM EXCRETED DRUG AMOUNT

Inaccuracy in estimation of the maximum excreted drug amount (U) is the main cause of
errors in determination of some pharmacokinétic parameters of drugs. Usualy, one estimates U
using observed values of the cummulative excretion (U(t)). This paper uses a new stochastic model
to obtain the least squares estimator of U®. The advantages of the model are that it is applicable
for any drug, whose pharmacokinetics may be formalized with a linear n-compartment model
(n =1,2,3,...) with or without phase of absorption and it may be used when the measurements

for U(t) are non-equidistant.
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1. INTRODUCTION

The basic information concerning pharmacokinetics of a given drug is obtained
by measurement the plasma concentrations in appropriate moments of time. The
pharmacokinetics model best describing the drug behavior is determined on the
ground of these data. According this model some basic pharmacokinetic param-
eters, such as rate constants of absorption, distribution, elimination, maximum
plasma concentration, apparent volume of distribution, total clearance etc., are es-
timated. Additional information for the pharmacokinetic drug behavior is obtained
by simultaneous measurement of both plasma and urinary concentrations. On the
-basis of the model and this information the kinetics of the urinary excretion is
studied. This makes possible the determination of the rate constant of excretion,
renal clearance, maximum cumulative amount of drug excreted in the urine, etc.
On the other hand, the knowledge of the total and renal clearance of a drug makes
possible the determination of the rate of urinary excretion and the extend of other
extra renal mechanisms taking part in this elimination.

The measured data describing the kinetic of the excretion generally are pre-
sented as a relation between the velocity of the process of excretion [dU(t)/dt] and
the time ¢ (a differential approach) or as a relation between the cumulative excreted
drug amount U(t) and the time ¢ (an integral approach).

When employing the first approach, the instantaneous velocities are calculated
using the ratio of eliminated drug amount AU and the corresponding interval of
time At. However, the time intervals At, during which the urine tests are made,
are usually of the same order as the drug elimination half-life (i.e. too big). This
reduces essentially the reliability of the estimated pharmacokinetic constants.

The defects of the integral approach are due mainly to the lack of effective
methods for determination the maximum drug amount excreted by the urine —
U® = tl_l*r& U(t), on which depends the accuracy of the estimated pharmacokinetic

constants. Namely, the value U™ could be found analytically by the methods of
Guggenheim [1] or Mandelsdorff [2] if the intervals At are equal. However, usually
it is not so. In [3] a comparatively simple method for estimation of U is proposed,
but it may be applied only for drugs, whose pharmacokinetics is described by linear
one—'compar‘tment model without phase of absorption.
In the present paper, employing the integral approach, a method for estimation
of U™ is proposed. It offers the following advantages:
o Does not restrict the choice of the intervals At;
o [s applicable still for drugs, whose pharmacokinetics is described by a linear
n-compartment (n = 1,2,...) model with phase of absorption;
o Provides the opportunity for estimation the statistic error of the estimated
Ue=. ‘
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2. PROBLEM STATEMENT AND MATHEMATICAL MODEL

Let perform a single treatment of a given drug on an individual. In the mo-
ments of time ¢, t5, ..., {,, there are measured values of the plasma concentrations
Y1, Y2, -5 Ym- -

Let the drug distribution in the body is described by an n-compartment phar-
macokinetic model. Then the drug concentration (plasma concentration) in the
central compartment is given by the relation

(1) Cc@t) = icﬂf’“‘t,

where C; and k; > 0 are constants {1]. If there is a phase of absorption, then the
time ?j,¢, the drug shows up, is the solution of the equation C(tjag) = 0.

Let us have for the assumed model y; = C(t;),i=1,2,...,m

The velocity of changing the cumulative drug amount excreted by the urine is
given by the formula

du(t) _

(2) — = kVOQ),
where k and V are correspondingly the constants of excretion and the volume of
the central compartment (the constant product £V is the so-called renal clearance).

After integration of (2) in the interval [t|.g, t] and taking into account the initial
condition Uf(tiag) = 0 for the cumulative drug amount excreted till the moment ¢,
we obtain

(3) U =kvy (If— [ekitis 4 =Eit] |
i=1

According to [4] the maximum cumulative drug amount excreted in the urine,
U™, is defined by the limit
U* = tlim U(t),
—00

le.
(4) , U® =kV Z_; %e'k*t‘“S.
Then (3) may be presented in the form

S (Cifks)eht

=1

(5) U(t):U°° 1- ,; ,
. ];(c, [kj)e=kitus
(6) U(t) = U®p(t),

where o(t) denotes the expression in brackets from (5).

349



Let us assume that along with the plasma concentrations for the same indi-
vidual are measured also the drug amounts U; excreted till the moments of time ;
(i=1,2,..., N). We suppose that

U(Ti) =U,
Now we shall estimate U employing U; and using formula (6).
Let us consider the function

(7) g(U*) = Z[Ui - U®p(t:)].

We shall minimize the function g(U®). This function obtains its global minima
when

M=
&
3

J
8

i
i

(8)

NG ESIIA

et

Let us denote by UT = (Uy,Us,...,Un) (T — transpose of a matrix) the
" vector of experimental data for the cumulative excreted amount and by WT =
(W1, Ws, ..., Wn) the vector with components

LN
"

(9) W,-:—NM—, i=1,2,...,N.
2 [e(t)

Then U* may be presented in the form
(10) U =UTW.

In order to estimate the error of U™, we shall generalize the assumed above
n-compartment model as a stochastic one and thus it will make possible the use
of the a priori information about the error either caused by measurements or by
different factors.

Let y; satisfy the following statistic model:

Y = Clt) +wvi, i=12,.

where v; are independent identically distributed norrnal random variables, i.e. v; €

N(0,0?).
Let {z;}7 be observations on {{;}T* — random variables. Let employing some
method an estimator § = §(z1, Z2, . . ., Z,) of the unknown parameter ¢ be obtained.

It is well-known that every reasonable method along with the estimator § supplies
an estimator of the error 6 of §. Again, any such method achieves an asymptotic,
normal distribution for the estimator, i.e. § € N(6, 8). Then, according to the usual
statistical philosophy, we may write 8 € N(§, ).

We use the method of non-linear regression to estimate the unknown parame-
" ters C; and k; (see eq. (1)) from the data (¢;,y;), i.e. we estimate the components
of the vector

= (Ci,...,Cn k1, ... kn)
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as well as its error o?w.

Therefore for the unknown vector # we have
(11) 0 € N(b,ow).

Let us consider also the vector U of the urine measurement. The components
U; are usually obtained as follows: During the trial all the excreted urine is ac-
cumulated. At the moment 7;, the drug amount U; is measured. Obviously, the
obtained Uy, Us, ..., Uy are dependent. '

In order to take into account the error in the data of U;, let introduce the drug
amount z; excreted in the interval [r;_1,7], ¢ = 1,2,..., N, where 1y = tj55. We
assume that

T = & + €,
where ¢; € N(0,0?). The parameter o1 is supposed to be equal to the error of the
method of measurement of the corresponding drug. Then, the measured cumulative
amounts (the components of the vector U) are obtained as follows:

k
(12) . Ue=)» zi, k=12, N
i=1 .

Now for U we get
(13) UeNU,o?KKT),

where K is the matrix

The computation of cov[U] = ¢? KK is given in detail in Appendix I.

The problem is to estimate the error of U = UTW.

The vectors U and W are random but independent, because the observations
of the random vectors U and 6 are made at different places (urine and plasma) and
besides not at the same time. Therefore, if we consider the random' vectors

{:9—@ and p=U-U,
they would be also independent. From (11), (13) it follows
(14) EEN(, 0?) and ne€ N(0,0ilyn),

(In is the unit matrix of order N).
"~ The vector ¢ influences the components of W by the function ¢(t), i.e.

o(t:/0) '
N
sz [o(t;/0))?

Let now present U in the form

U~ U+0’1]{7),

W; = =12,...,N.
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and also to present W by Taylor series in the vicinity of 8, neglecting the terms of
second and higher order:
where W = W(8) and Q = grad W (6).
» 8
Now for the estimate of U® = UT W we obtain
U® e N(U®,cov{U™]),
where A o
U® = (U + 01 Kn) (W + Q).

The main result is the next a little bit complicated formula:

(15)  cov[U®] = 02 AwAT + o2 tr[KTWWT K] + o202 tr[ KT QwQT K].

In Appendix II the components of the matrix Q and cov[/®] are computed.

3. EXAMPLES AND COMPARISON WITH OTHER METHODS

With the above proposed method we have estimated the maximum cumulative
amount of Sulfamethxozole (free) after single oral administration of two tablets of
Biseptol (Polfa). Each of them contains 400 mg Sulfamethxozole (SMZ) and 80 mg
Trimetoprim.

As an example, we show the results of an expe_rlment for six healthy volunteers.
Formally, their names are noted by AAA, BBB, CCC, EEE, YYY, ZZZ.

In Table 1 the plasma concentrations of SMZ in [mg/ml] measured in the
moments of time ¢; in [h],1=1,2,...,7

TABLE 1. The plasma concentrations of SMZ [mg/ml]

measured in the moments of time t; [h] (i=1,2,...,7)

t [b] 0.5 1 1.5 3 6 10 24
AAA 1 10 18 41 | 45 33 11
BBB 26 40 38 37 27 20

cce 20 33 | 45 46 36 24 9
EEE 4 11 12 33 40 26 9
YYY |25 | 40 | 41 | a8 | 47 | 20 | 14
277 17 32 48 52 41 45 14

The cumulative amounts U; of SMZ excreted till the moment of time 7;, 1 =
1,2,...,6, are given in Table 2.

It turns out that the data of Table 1 show a good approximation with a relation
of the form (1) for n = 2:

C(t) = Cle_k‘t + Cge—kzt,
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TABLE 2. The cumulative amounts U; [mg] of SMZ

excreted till the moment of time 7; [h] (: =1,2,...,6)

7 [h] 3 6 12 24 48 72

AAA 67.00 101.76 139.76 197.52 200.01 203.85
BBB 14.40 61.90 81.85 123.65 | 136.97 148.02
cce 19.76 45.40 78.05 119.85 134.80 135.14
EEE 1.87 8.14 22.64 38.39 59.39 60.39
YYY 20.20 36.44 46.30 69.40 86.65 92.25
777, 15.29 40.89 74.79 110.39 134.39 139.59

where k1 > k; > 0 (k; — rate constant of absorption, ky — rate constant of

elimination) and C; < 0, C > 0.

The estimate of parameters 87 = (C1,C2, k1, k2) was made employing a pro-
gram of non-linear regression 3R of BMDP [4]. On Table 3 the obtained estimates
for these parameters, for ),z = [In(—C1/C2)]/(k1 — k2) and also for the residual
mean square (RMS), are presented.

TABLE 3. The estimate of parameters 61 = (C1, k1,C2, k3)
made employing a program of non-linear regression 3R of BMDP [5]

6 ol ky Ca ks the | RMS*
AAA —-114.21 0.3986 96.926 . 0.0957 0.54 10.43
BBB -108.68 3.5684 46.315 0.0886 0.25 3.35
CCC —74.94 1.2496 62.198 0.0897 0.16 5.26
EEE ~115.61 - 0.3137 106.258 0.1119 0.42 23.27
YYY —~60.39 0.8218 59.762 0.0705 0.13 16.62
YANA —83.537 1.1625 64.664 0.0548 0.23 39.59

The estimated U and its standard deviation § = (cov[[/®])!/2 are shown in
Table 4.

TABLE 4. The estimated U* and its standard deviation
§= (cov[f]""])ll2

Voll. AAA BBB CCC EEE YYY YANA
U 219.66 141.22 134.37 52.86 91.21 148.41
1) 24.11 14.35 14.12 5.59 9.81 20.29

For comparison, the method given in [3] was chosen, because this method does
not require equal intervals At. Briefly, the essence of this method is as follows: *

Let the pharmacokinetics of the drug is described by an one-compartment
model without absorption, i.e.

C(t) = Cge_’kﬂ .
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Then after integration in the interval [O,t] with initial condition U(0) = 0 one
obtains

Ut) = U®(1 —e k),

After one more integration in the same interval follows
/ 1
/U(t)dt = Ut — k—U°°(1 — ekt
2
0

Now, substituting U (1 —e~*2!) = U(t) and dividing by ¢, one obtains the straight
line Y = aX + b, where ' o :

t
Of U(t)dt 0 . B
Y=— X=—2 b=U and @ = —-—.
t t ko

Now it is clear that U may be estimated as an intercept of the straight line.
This is done after the approximation of the experimental data U; = U(7), using
simple linear regression.

Our data U; (Table 2)'are measured after oral treatment, i.e. there is a phase of
absorption. In order to avoid this phase and use one-compartment model (see the
so-called flip-flop phenomenon” [5]), it is reasonable to neglect the first observation
of U, i.e. for t = 3. For moments of time, long after the maximum of the function

C(t) = Cle_klt + Cze-ht, k1> ko,
is achieved, it may be simplified as follows:
C(t) ~ Cze-k’t.

As it is seen from Table 1, the maximum of plasma concentration for all vol-
unteers is achieved before the third hour.

In Figs. 1-6 by * are denoted the measured U;; by a solid line the approximate
curves U(t) are presented; the original measurements U; are given by *; our estima-
tor is presented by a solid curve and the estimator of [3] — by a dashed one. Our
method shows better approximation than the compared method as it could be seen
in Figs. 2, 3, 5. In the case of volunteer AAA (Fig. 1) the other model is better. In
the case of ZZZ (Fig. 6) the both models are adequate. In the case of EEE (Fig.
4) the both models do not give sufficient approximation of the experimental data.

ACKNOWLEDGEMENTS. The author would like to thank Professors M. Row-
land and L. Benet for their helpful comments and suggestions in the early stage of
elaborating this paper.
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APPENDIX I. Calculation of cov[U]

Let consider first )

cov[Us, U1] = E[(Ux = Ux)(Ui = U))] = E[UxUI] = UL EU; = UiEUR + U U,
Le.
(Al.l) COV[Uk,UI] :E[UkUI]—E'UkEUI.

Let assume k& < [. Then

N ]

J=k+1

:EK\;”M[};Z } > sie +E{zzz]}+EUkEU,.

i=1 j=k+1 i£]
But as z; are independent random variables, from (A1.2) it follows
(A1.3) E[U:U)] = ko? + EULEU,.

Now from (A1.1) and (A1.3) one obtains
cov[Ux, Uj] = o? min(k, ).

Then
1 11 1
1 2 2 2 .
covU]=1}I1 2 3 3o?=KK o2
| 123 ....... 5
where
1 0 0 0
1 1 0 0
K=4y1 1 1 0
R :

APPENDIX II. Calculation of Q and cov{U®]

Let consider first grad ¢(t/8), where
)

e—k't - g.e—kjtlag e_k'tl&g - g_j_e—kjt
k k; k ;
R T <L) N = i Sk
' 0C; Y 2
Zﬁe_kﬂlus
k.
j=1 7
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and

9e(t/6)
A2.2
(A2.2) o
o~ kit ™ .
G S G (14 btyemtte — (14 Kitiag)e™ (b5 k) kit
ki j=1 k]

b

. n 2
Z Q.e'"kiths
j=1 kJ

where i = 1,2,...,n. Ift = 7 (I = 1,2,...,N), then according to (A2.1) we
calculate the elements of the first n rows of the matrix grad ¢(t/6), whose order is
- e

[2n x N]. For the elements of the next rows, from (n + 1) to (2n), we use (A2.2).
Now let present the function ¢(¢/8) by Taylor series in the vicinity of 8, ne-
glecting the terms of second and higher order:

(A2.3) (1/6) = $(2/0) + [grad plt/ D).
Then from (9) and (A2.3), for the components of W = W(9), it follows:
p(6/0) + lrad (1 /O)]T

(A2.4) wi(6) = i=12,...,N.

2
{‘Z:l w(t; /) + [grad o(t;/ é)]Tél

Now we are ready to calculate the components of Q@ = grad W (). For this
0

purpose we compute the derivative of W (8) with respect to § = (6 — 6) thus getting

Q= gr;id W () = (i"%@) .
=0

The derivative in (A2.4) with respect to &, for £ = 0, gives us the component
up of the matrix Q = grad W(6):
9

N R N : ~ N A N
|35 206/0)| lgrsd (/0 - 26/0) & { ot/ ONenaa ot /)T |

1=

)

where [=1,2,...,Nandp=1,2,...,2n. g
In order to calculate cov[U/*], let us first consider the estimator of U® = UT W,
ie.

N N T /. PR N A
o= = (U +.01Kn) (W + Qg) =UTW+0TQt + o1 KTW + oinT KTQ¢
=U°+U0TQ+o1n" KW +01n" KTQE.
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Then
cov[U®] = E{ [UTﬂf +on" KTW + alnTKTQS]
X [UTQE +on KTW + alnTKTﬂf] ! }

Let denote by A the matrix A = UTQ. Hence
cov[U®] = E [At€TAT] + 01 E [AVVTgTKnJ +01E [A6¢TQT K]

+aE [T A'TW§TAT] + o2k [nT KTWWT K| + o} {nT KT WfTQTKn]

+ 1B [T KTQEETAT] + 02 [nT KTQewT™ Kn] +o?E [pTKTQeeTQ Ky -
From (14) it follows
E€=0, Ep=0, EE( =c*w, Etn=0, En’ =c’KK'.

Hence

E[A€TAT) = 02 AwAT, E[ATQKn] =BT KTQeTAT] =0

and
E [AfWTKn] —F (nTKTWgTAT] =0
As we have
By [KTWeTQTK] =0,
then

E [nTKT W&T‘QTKn] —E {nTE,, {KTV“VgTQT ]{n]} - 0.
Finally, we obtain the desired result: '

cov [U®] = 0? AwAT + o3 tr [KTWWT K| + o203 tr [KT QT K]
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