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SOME PROBLEMS OF THE ROBOT CONTROL BASED
ON USING CHANGEABLE STRUCTURES"

KRASIMIR GEORGIEV

Kpacumup leoperes. HEKOTOPBIE NMPOBJIEMBI YTIPABJIEHWA POBOTOB IIPU
MOMOUIM M3MEHUYUNBLIX CTPYKTYP

O6ocHoBaHa MaTeMaTM4eCKas MOJE/b AUHAMUKM aHTponomMopoHux poboToB. Pewre-
HWEe MOJENN MOMHO NPDUMMEHUTb AJIA Uenu ynpasnenus. [Ipnmenenne eToro ioaxona pac-
IMpAeT BO3MOXKHOCTH aJaNTUBHLIX YyNpPaBJAIOIMUX cUcTeM poboTos.

Krasimir Georgiev. SOME PROBLEMS OF THE ROBOT CONTROL BASED ON USING
CHANGEABLE STRUCTURES

For antropomorphic robots a compact system of differential equations is obtained. The
solutions are applicable for control purposes. The new approach improves the possibilities of the
adaptive robot control systems.

Robot conventional control and structures [1-3] do not consider elasticity and -
endeffector accuracy. So in this paper an approach to control strategy based on
using new structures for compensation of the robot oscillations is proposed.

1. DYNAMICAL MODELLING

Let assume a robot (antropomorphic type) as a system of rigid bodies with

* The research was supported by the National Foundation for Scientific Investigations under
Contract 25/1991.
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natural generalized coordinates and additional elasticities in the joints. Then we
suppose forces and moments to be applied in the points of the lumped mass model.
Starting from the differential equations in the Lagrangian formulation and after
linearization, we get for the decuplition motion in a vector matrix form

1) (Ma+Mi)g+ MAgq+ Bg=UQ,

M,Aq+ CAq=—-M,q, '
where ¢ = [q1,92,¢3]7 is the column vector of the general coordinates, Aq =
[Ag1, Aga, Aga) — the column vector of the link deformations, M, — the matrix
of the actuators masses, M; — the diagonal matrix of actuators inertia torques, C
— the diagonal matrix of the compliance, C = diag[Ci,C2, C3], Q = [Q1, Q2, @3]
— the column vector of the drive forces and moments, B — the diagonal matrix
of the dissipation forces, U — the matrix of the transfer ratio between drives and
links.
Solving system (1), we obtain

g=(Ma+ M) (UQ - Bpqg — M.p*Aq)/p’,
Agq=(-CAg- M. p*q)M;' [p?,

where p is a differential operator.

(2)

2. ROBOT CONTROL PROBLEMS

By building additional structures in the robot chain we can obtain ‘of line’
feedback from the robot endeffector and to improve the stability of the robot con-
trol. .
The adaptive damping module, built in the manipulator, is shown on Fig. 1.
The device consists of four micropneumatic valves, elastic springs and special body,
fixed on the endeffector of the robotic manipulator.
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Fig. 1. An adaptive damping module
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Fig. 2. Closed block diagram with a feedback

The compliance of the damping module is controlable by the action of a pneu-
matic pressure and servocontrol loop, applying microposition sensors.

Fig. 2 shows the structural block diagram of the mass model with built adaptive
module. The chain is of a closed type and we suppose drive forces to be formed
by sensor feedback from the endeffector position (K f is a gain coefficient) and the
other local feedbacks in the joints.

The relay action of the adaptive module for damplng the robot oscillations
consists of threshold increasing of the wrist compliance. In such a manner we
can control the compliance matrix C in (2) and the values of the manipulator
oscillations ‘of line’ during the motions.

Therefore we suppose the compliance to be controlled using the following for-
mula:

3) C=Ci(t)+AC,

where C;(t) is the initial adjustable compliance, AC-— the controlable threshold
value of compliance.

3. SOME RESULTS

For the antropomorphic robots the numerical procedure and examples have
been developed using the next data: mass inertia characteristics {two mass model)
M, = 16 kg, My = 11 kg (with damping module), J; = Jo = 10.8 kg/m, l; = I =
1m, C; = 6.10* Nm/rad, AC = 10.6 Nm s/rad.

On Fig. 3 the decreasing of the amplitudes of the robot’s arm oscillations (with
adaptive damping module) on the base of the provided numerical investigation is
shown.
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Fig. 3. Manipulator oscillations

This new approach to the robot control leads to the fact that the building
of changeable structures (adaptive damping modules) in the robot chain improves
the functional capabilities of the adaptive control systems. Applying additional
structures in the manipulation robots enables to create a control methodology and
to restrict the amplitudes of the robot’s arm oscillations.
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