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VESELIN VIDEV

Beceaun Budes. OIIEPATOP AHTHMI'OJIOMOP®HOM KPUBU3HEI B IOUTYU BP-
MUTOBO¥ TEOMETPUHU

B npousBonsnoM noutn spmuToBoM mHoroobpaszmem (M,g,J) pasmepHocTH 2n ana
npousBonbHoil Touku p € M u npoussBonbHoll napbl kacaTenbHbiX BekTopos X, Y u3 Tan-
FeHLMaNbHOrO NPOCTpaHCTBa Mp MEI'PacCMATpUBaeM NMHEHHLIR cUMMeTpUUecKuii onepa-
TOp

axy(u)= %[R(u,X,Y) + R(u, Y, X)].

3aecs ana nnockoctn E%(p; X,Y) umeem E? L JE?, 1.e. E?(p; X,Y) sBnserca anruro-
nomopdHo#M maockocTbio. B npeacraBnenoit pabore Mbl miyuaem npo6neMm, koraa ciena
CNeKTpa omepaTopa ax,y 3aBUCHUT TOJNILKO OT TOUkK p € M u He 3aBucuUT oT BHIGOpa Bek-
Topa X € Mp.

Veselin Videv. ANTIHOLOMORPHIC CURVATURE OPERATOR IN THE ALMOST HERMI-
TIAN GEOMETRY

Let (M,g,J) be 2n-dimensional almost Hermitian manifold, p be an arbitrary point of M,
and X, Y be an arbitrary orthonormal pair of tangent vectors in the tangent space Mp. If the
plane E2(p; X,Y) is antiholomorphic, i.e. E? L JE?, then we define the linear symmetric operator
ax,y : Mp — Mp, where

axy(u) = %[R(u,X,Y) + R(w,Y, X)).

* The research was partially supported by the Bulgarié.n Ministry of Education and Science,
Grant No MM 18/91.
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In the present paper we consider the problem when the trace or the spectrum of the curvature
operator o x y depends on the point p € M and not on the choice of X € M.

Let (M, g, J) be 2n-dimensional almost Hermitian manifold with almost Her-
mitian scalar product ¢ and almost complex structure J. At any point p € M and
for any orthonormal pair X, Y of tangent vectors in the tangent space M, we can
consider the linear symmetric operator Axy : M, — M, defined by

Axy () = %[R(u,X,Y) + Rl(w,Y, X)],

where R is the curvature tensor of M. This operator is defined in the Riemannian
geometry from Prof. Dr. Gr. Stanilov [2].

Let E%(p; X,Y) be a two-dimensional subspace of M,. Obviously, the pair X,
Y is an orthonormal base of the plane E? = E%(p; X,Y). If E? is an antiholo-
morphic plane, i.e. E? L JE? we denote the operator Axy by axy and call it
anttholomorphic curvature operator. Then

(1) : | (X, Y)=g(JX,Y)=0.

In the present paper we consider the almost Hermitian manifolds which satisfy
some conditions of the spectrum and of the trace of the curvature operator axy.
Let z, y be another orthonormal base of the plane E*(p; X,Y). Then

z=cosp.X —e.sing.Y,

2
2) y=sinp.X +e.cospY, €==1.

We have the relation
sin 2¢
2

(3) agy(u) = cos2p.axy(u)+ [R(u, X, X) ~ R(u,Y,Y)].

From this equality it follows that the antiholomorphic operator ax y is not invariant
with respect to X, Y. Hence we can state the following problem: to investigate
the almost Hermitian manifolds (M, g, J), for which the trace or the spectrum of
the antiholomorphic curvature operator ax y does not depend on the orthogonal
transformation of the orthonormal base of the plane E?(p; X,Y), i.e. the following
holds:

(4) trace az y = trace axy
or
(5) spectrum of o,y = spectrum of ax,y.

Lemma 1. The traceaxy =0 iff (2) and (4) are satisfied.
Proof. By equality (3) we have

sin 2¢
2

gy (wi) = cos 2pax,y (u) + [R(ui, X, X) = R(wi, Y, Y)].
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From the latter we get

sm2p .
(6) g(agy(ui), ui) = cos2p.g(axy (ui),u;) + 5 So[]& (ui, X) = K(u;,Y)] = e,
t=1,2,...,2n, »
where uy, U2, ..., Un, Un41, - . ., U2n are eigenvectors of the operator ax y, forming

an orthonormal base of M,,. Because of the symmetry of the operator ax y it follows
that there exists such a base in any of the cases. Note the eigenvalues of axy by
¢i,i=1,2,...,2n. From (6) we can find

S(z,y) = cos2pS(X;Y) + sin 205 (X\;%Y’YX\;;) .-

By the definition of ax y we have
¢ = R(ui, X,Y,w), 1=1,2,...,2n.

Then 1t follows that
sin 2

trace oz y = cos 2p.traceaxy + Sp.traceax Yy X-Y.
éz 2

Hence
(7) trace axy = S(X, Y) =0.
The implication traceaxy = 0 = (4) is trivial. Further, let (7) holds. We can

X+Y X-Y
V2 V2

apply (7) for the orthonormal base of the antihblomorphic plane

E?(p; X,Y), ie.

Hence we obtain

(8) S(X,X)=58(,Y).

The last relation can be applied for the orthonormal pair X, JY':

(9) S(X,X)=8(JY,JY).

Now from (8) and (9) we get

(10) S(Y,Y)=S(JY,JY)

and the latter holds for any unit tangent vector ¥ € M, attany point p € M.
Thus (7) = (10), but the converse is not true.

Lemma 2. Let (M, g,J) be 2n-dimensional almost Hermitian manifold, p be
an arbitrary point of M, and X, Z be arbitrary unil tangent vectors in the tangent
space M,. Then the following statements are equivalent:

(1) S(X,JX) =0 '

(i) S(X,X)=S(JX,JX);

(i) S(X,Z2) =S(JX,JZ), i.e. S is a Hermitian Ricci-lensor.
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Proof. Let (i) holds. Then
S(X—f—JX X—JX):0
V2 V2 '
From the latter and from the symmetry of S it follows that
S(X,X)=S(JX,JX).

Conversely, if (ii) holds, then
S(X+JX X+JX)__S<JX—X JX—X)

Hence
S(X, XY+ S(JX,TX) +25(X,JX) = S(X, X) + S(JX, I X) - 28(X, J X).

‘Therefore we obtain directly that (i) = (i).

Further, let (ii) holds. Then

'S<X+Z X—Z) _S(JX+JZ JX*JZ)
V2 ov2 ) V2 V2

for any tangent vectors X, Z of M,. From here it follows that

S(X,X)+25(X,2)+ S8(2,2) = S(JX,JX)+25(JX,JZ)+ S(JZ,] Z)
and it gives us (ii1). Thus (ii) = (iii). Conversely, if (iii) holds, putting Z = X we
obtain (ii).

Now we can remark that if (7) holds, then each of the equalities in Lemma 2
is satlsﬁed This fact we shall use in the next theorem.

Theorem 1. Let (M,g,J) be 2n-dimensional almost Hermitian manifold.
Then the following statementis are equivalent:

(1) (M,g,J) is an Einstein almost Hermitian manifold;

(i1) The trace of the antiholomorphic curvature operator axy does not depend
on the orthonormal base of the plane E*(p; X,Y) at any point pe M.

Proof. (1) = (ii) Let (i) hold. Then
S(z,y) = K.g(z,y), K = const.

From here follows (7). Then we have (i1).

Conversely, let (i) hold and let e;, ez, ..., en, Jei, ..., Jen be an adapted
base in the tangent space M,. Then, according to (ii) and Lemma 2, we get the
equalities

S(e,-,ej) = S(Je,-,Jej) = 0, ’i:}‘-‘ j, i,j = 1,2,...,n
(11) S(ex,Je:) =0, k,it=1,2,...,n

S(ei,ei) = S(Jei, Jei) = S(ej,e5) = S(Jej, Je;) = f(p).
Here f(p) is a constant at a point p. We have

u=ue +u'Je, v= vte; + v Jex.
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Hence
S(u,v) = S(u’eJ +utJe;, vies + v Jek)
= wv'S(e;, e) + u v S(ej, Jer) + u'v' S(Jes, e4) + u'vF S(Je;, Jex).
From the latter and (11) we obtain
S(u,v) = flu'vig(e:, &) + ufv¥g(Jex, Jer)]
= fg(u'e; +ul Jej,vie, 4+ vF Jex) = f.g(u,v)
and hence

S(u,v) = f.g(u,v), f=const,

for any tangent vectors u,v € M, and at any point p € M. That means (M, g, J)
is an Einstein almost Hermitian manifold. Thus (ii) = (i).
Further, let (M, g,J) be 2n-dimensional almost Hermitian manifold for which

R(z,y,z,u) = R(Jz,Jy,Jz,Ju)

forall z,y,z,u € M, and at any point p € M. That means (M, g,J) is an Einstein
almost Hermitian manifold.

It is well-known that a plane E2 € M, is an antiholomorphic plane if E2 L JE?,
and E? is a holomorphic plane if E? = JE2

Let (M, g,J) be an AH3-manifold for which at any point p € M the sectional
curvatures of any holomorphic and any antiholomorphic plane of the tangent space
M, are point-wise constants on the manifold M. We denote them by p and v. The
curvature tensor R in this case can be represented in the following way [2]:

-y
R(z,y,z) = v[g(y, 2)z — g(z, 2)y] + E—g——[g(Jy, z)Jz —g(Jz,2)Jy — 29(Jz,y)J 2].
From here it follows that

sy (u) = =20, X)Y +9(u,Y)X] -

]

From the last representation we can obtain that the eigen vectors of the operator
X+Y X-Y JX+JY JX-JY

Qaxy are \/-2- ) \/§ ) \/5 ) \/5
—-%V, % 5(/1 - v), —%(u — v), and every eigen vector u, orthogonal to the
span {X,Y,JX,JY}, has a corresponding eigen value zero. Obviously, if (M, g, J)
is an AHz-manifold with point-wise constant holomorphic and point-wise con-
stant antiholomorphic sectional curvature, then (4) and (5) hold. Remark that
(5) = (4), but the converse is not true.

In the sequel we assume that (M,g,J) is a 4-dimensional A Hj3-manifold for
which (5) holds or the spectrum of the curvature operator ax,y does not depend
on the orthonormal base of the plane E?(p; X,Y). Then the characteristic equation
of the antiholomorphic operator ax y can be represented in the form

(12) det (aij) = 0,

with corresponding eigen values

v,
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where
a;; = sin 2¢[R(e;, X, X, e;) — R(ei, Y, Y, ;)] + 2cos 20 R(e;, X, Y, €;) ~ 2,
(13) ay; = sin2p[Riex, X, X,€;) — R(ex,Y,Y, ¢;)]
+ cos2¢[R(ex, X, Y, ¢;) + Rlex, Y, X, e;)], k#4, 4,5,k=1,23,4.
Here the vectors ey, ea, €3, e4 form an adapted base in the tangent space M;, hence

63:J€1,64_—‘J€2. )
Further we shall use the next lemma. [3].

Lemma 3. A 2n-dimensional almost Hermitian manifold (M, g,J) is an AHs-
manifold with point-wise constant holomorphic and point-wise anttholomorphic sec-
tional curvature iff at any point p € M and for any orthonormal pair of tangent
vectors X, Y of My, which satisfy (1), it holds

R(X,JX,JX,Y)=0.

From (12) and (13), putting X =e1,Y =€y, o = %, we obtain the equation

—Ki2~2c 0 —Riyn —R3201
0 Kz ~c Riyy2 R3119 -0
—Rizg;. Riyiz Hi—Kip—2c 2R3111 ’
—Rsyp1  Rape 2Ra111- K3~ Hy—2c

which gives us
16¢* — 4A,¢® — 4Az¢ + A3 = 0.
Here »
iy
A=A (P; €1, €2, Z) = 4R% 55 + (Riyaz + Ra121)” + Riyp1 + Riys
+ K12+ R%121 + R%IZX’

A 2 2
—) = K13 (R}yq, + Rby01 — R3115 — R311a)

Ay = A <p;el’e,2’ A

+ (Hy — Ks1) (R 15 + Rippy — Rl — Ripy)
- 4R1113(Ra112-Ri112 + Razgr Rizey),

A3 = A3 (P; e1, €2, %) = ~K12[4Rn12.Ranna-Ranni — Rypya(Hn = K1)
— 4R511. K12 — B3, (K3 — Ha) + K% (H — Kip)?
4 4K13 Rigg1 Ragor - Ran = 2Risor - Roniz-Razor Rinnz
+ R%;u'R%zzl + Kiz(Kyz - H2)2'R%221

~ RZ,y, . K12(Hy — K1) + R%, 5. R3,,,.
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Also from (12) and (13), putting X = e;, Y = ez, ¢ = 0, we obtain
—2¢ —Kyp Ry Raym
—-Kij» -2 Ry191 Ry122
Riyj21 Raizi 2Riga1—2¢ Rayor + Ram
R3121 Ryi2z2 Rzian + Rz 2Rz102— 2¢

=0,

and then we obtain ’
1664 - 4Blc2 - 2326 + Bs = 0. )

Here
Bi(p;,e1,€2,0) = 4R3,55 + (Ra1a1 + Ri123)* + Riyo + R} + Kb
+ R, + REjg,
Ba(p;, e1, €2, 0) = 2Ry101(R3y01 + Rilzi)Rmzi - 2R§127-R1121
— 2Ry191-Ra125 — 2K12.R3191 - Ra123 — 2K12.Ri191- Ropa1
— Ruip(Rao1 + R112§)R5121 + 2R11_21-R§12§ — 2R3 -Ripar,
Bs(p; 'e1,€2,0) = 2K{5. Ry123 + K12.R3121- Ro121(Ra121 + Ri122)
+ K12 Rii1(Ra121 + Ri123)Roraz + Ki5(Rayai + Riraz)’
~ 2K12.Riya1-Ra1a1- Ra123 + R 51 Ri19p — 2Ro121. R2121R2122R1121
+ Ki12.R3121.Ra131 (Ra121 + Riy23) + B350 R3a1-

Since (M, g, J) satisfies condition (5), then (4) holds and according to Theorem 1
that means (M, g,J) is an Einstein almost Hermitian manifold. We shall use the
next lemma [1].

Lemma 4. Let (M, g) be a 4-dimensional Einstein manifold. Then:

a) The sectional curvature of every plane of My is equal to the sectional cur-
vature of its orthogonal complement in Mp;

b) Rijjk + Rissk = 0 for any different indicies i,j,k,s = 1,2,3,4.

Further we remark that from (5) follows
A;=B;, 1=123.
Then we have
(14) 4R3, 55 + (Rapo1r + R1123)” = (H1 — K12)® + 4Rau13,

which is satisfied for any adapted base e;, ez, Jei, Jey of the tangent space M,
and at any point p € M. Hence we can apply (14) for the adapted base Jeyi, Jea,
—€1, —€2!

(15) 4Ry135 + (Roms1 + Ritze)® = (Hy — K13)? + 4Romy.
From (14) and (15) we obtain ‘
‘ R%ui = R;i?l'
Then we have

Rip3 = €Ryz3, €==1
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In the last equality we can change e; by Jez and we obtain
Riy2 = €Ragay, €= &1,

or

(16) R(Jz,z,z,y) = €R(Jy,y,y, ).

Further we shall use the following result [2]:

Lemma 5. Let (M,g,J) be a 4-dimensional Riemannian manifold for which
the spectrum of the antiholomorphic curvature operator axy does not depend on
the orthonormal base X, Y of the plane E*(p; X,Y). Then the spectrum Qx,y of
axy can be represented in the form

QX,Y = {61)021 —~C1, —62}~
From this lemma it follows that
A3 = Ba = 0
Then from (16) and the expression of A3z we have
(17) As = (K12 + K13 = H1)(Ry5, ~ R110) — 4Rins(Rannz +€-Rizgy ) Ring = 0.
From the last equality, changing e; by Jey, we obtain
Ay = (K1 + K1z — H1)(Rlg Rznz) ~ 4Ry113.(R3i12 — €Riaz)- Ryt = 0.

Using the equality Az — A5 =0, we get
(18) Riy13(Ra112 + €Riz01) Rinnz — Rutiz(Ra112 — €Riann ) Rutiz = 0.
By Lemma 4 and (16) we have

Rii12 = Rizzs = Rzt = €Ryi13
It gives us
(19) Rijp = eRyg1a, €= =L
Changing e; by Je;, we have
(20) —Riy12 = €Rqy10, €= %L

Now, using the equalities (18)-(20), we obtain the relation

Ri113(Rai12 + €Rig1)Rijin + € Rluz(Rzuz = 5R1221)R1112 =0,
which gives us
(21) Riy12-Riy13-R3112 = 0.

Then
Rij12=0 or Rij3=0 or Rzy,=0.

The first two equalities are equivalent to the equality of Lemma 3. Let R34y = 0:
That means
R(Ju,v,v,u) =0
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for all u,v € My, connected by (1), at any point p € M. Using the last equality
and putting Bs = 0 in the equation, we have

By = ~2R} 5. Rija1 + 2R1y9, . Ra1p3 = 0,

which, according to (16), gives us

R%nz-RlﬁZ + eRq119.Ry112 = 0.
Hence we have

Riy2(Riy12-Ratte + €Ry112) = 0.
That means

Ri112=0

or
(22) RijpRa12 + €Ry312 = 0.
The first equality is the equality of Lemma 3. In the second one let change e; by
Jey. Then we obtain

(23) —Ry112-Ring + €Rip = 0
Then we sum (22) and (23) and get

(24) Rtz + Ri112= 0.

In (24) we change €; by Je; and obtain

(25) Riip + Ryiia = 0.

From (24) and (25) we get the equality of Lemma 3 and according to it we have
that (M, g, J) is an AH3z-manifold with point-wise constant holomorphic and point-
wise constant antiholomorhic sectional curvatures. Now we can formulate the next
theorem.

Theorem 2. Let (M,g,J) be a 4-dimensional almost Hermitian manifold.
Then the following statements are equivalent:

(i) (M,g,J) is an AHs-manifold with point-wise consiant holomorphic and
poin-wise constant antiholomorphic sectional curvatures;

(ii) The specirum of the antiholomorphic curvature operator axy does not
depend on the orthonormal base of the antiholomorphic plane E?(p; X,Y) at any
pointpe M.
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