ГОДИШНИК НА СОФИЙСКИЯ УНИВЕРСИТЕТ "СВ. КЛИМЕНТ ОХРИДСКИ"

ФАКУЛТЕТ ПО МАТЕМАТИКА И ИНФОРМАТИКА Книга 3

Том 88, 1994

ANNUAIRE DE L'UNIVERSITE DE SOFIA "ST. KLIMENT OHRIDSKI" FACULTE DE MATHEMATIQUES ET INFORMATIQUE

Livre 3 Tome 88, 1994

ANTIHOLOMORPHIC CURVATURE OPERATOR IN THE ALMOST HERMITIAN GEOMETRY*

VESELIN VIDEV

Веселия Видев. ОПЕРАТОР АНТИГОЛОМОРФНОЙ КРИВИЗНЫ В ПОЧТИ ЭРмитовой геометрии

В произвольном почти ормитовом многообразием (M,g,J) размерности 2n для произвольной точки $p \in M$ и произвольной пары касательных векторов X, Y из тангенциального пространства \dot{M}_{p} мы рассматриваем линейный симметрический оператор

$$\alpha_{X,Y}(u) = \frac{1}{2}[R(u,X,Y) + R(u,Y,X)].$$

Здесь для плоскости $E^2(p;X,Y)$ имеем $E^2\perp JE^2$, т. е. $E^2(p;X,Y)$ является антиголоморфной плоскостью. В представленой работе мы изучаем проблем, когда следа спектра оператора $\alpha_{X,Y}$ зависит только от точки $p \in M$ и не зависит от выбора вектора $X \in M_p$.

Veselin Videv. ANTIHOLOMORPHIC CURVATURE OPERATOR IN THE ALMOST HERMI-TIAN GEOMETRY

Let (M, q, J) be 2n-dimensional almost Hermitian manifold, p be an arbitrary point of M, and X, Y be an arbitrary orthonormal pair of tangent vectors in the tangent space M_p . If the plane $E^2(p; X, Y)$ is antiholomorphic, i.e. $E^2 \perp JE^2$, then we define the linear symmetric operator $\alpha_{X,Y}:M_{\mathcal{D}}\to M_{\mathcal{D}}$, where

$$\alpha_{X,Y}(u) = \frac{1}{2}[R(u,X,Y) + R(u,Y,X)].$$

^{*} The research was partially supported by the Bulgarian Ministry of Education and Science, Grant No MM 18/91.

In the present paper we consider the problem when the trace or the spectrum of the curvature operator $\alpha_{X,Y}$ depends on the point $p \in M$ and not on the choice of $X \in M_p$.

Let (M, g, J) be 2n-dimensional almost Hermitian manifold with almost Hermitian scalar product g and almost complex structure J. At any point $p \in M$ and for any orthonormal pair X, Y of tangent vectors in the tangent space M_p we can consider the linear symmetric operator $\lambda_{X,Y}: M_p \to M_p$ defined by

$$\lambda_{X,Y}(u) = \frac{1}{2}[R(u, X, Y) + R[(u, Y, X)],$$

where R is the curvature tensor of M. This operator is defined in the Riemannian geometry from Prof. Dr. Gr. Stanilov [2].

Let $E^2(p;X,Y)$ be a two-dimensional subspace of M_p . Obviously, the pair X, Y is an orthonormal base of the plane $E^2 = E^2(p;X,Y)$. If E^2 is an antiholomorphic plane, i.e. $E^2 \perp JE^2$, we denote the operator $\lambda_{X,Y}$ by $\alpha_{X,Y}$ and call it antiholomorphic curvature operator. Then

$$(1) g(X,Y) = g(JX,Y) = 0.$$

In the present paper we consider the almost Hermitian manifolds which satisfy some conditions of the spectrum and of the trace of the curvature operator $\alpha_{X,Y}$.

Let x, y be another orthonormal base of the plane $E^2(p; X, Y)$. Then

(2)
$$\begin{aligned} x &= \cos \varphi . X - \varepsilon . \sin \varphi . Y, \\ y &= \sin \varphi . X + \varepsilon . \cos \varphi . Y, \quad \varepsilon = \pm 1. \end{aligned}$$

We have the relation

(3)
$$\alpha_{x,y}(u) = \cos 2\varphi \cdot \alpha_{X,Y}(u) + \frac{\sin 2\varphi}{2} [R(u,X,X) - R(u,Y,Y)].$$

From this equality it follows that the antiholomorphic operator $\alpha_{X,Y}$ is not invariant with respect to X, Y. Hence we can state the following problem: to investigate the almost Hermitian manifolds (M,g,J), for which the trace or the spectrum of the antiholomorphic curvature operator $\alpha_{X,Y}$ does not depend on the orthogonal transformation of the orthonormal base of the plane $E^2(p;X,Y)$, i.e. the following holds:

(4)
$$\operatorname{trace} \alpha_{x,y} = \operatorname{trace} \alpha_{X,Y}$$

or

(5) spectrum of
$$\alpha_{x,y}$$
 = spectrum of $\alpha_{X,Y}$.

Lemma 1. The trace $\alpha_{X,Y} = 0$ iff (2) and (4) are satisfied.

Proof. By equality (3) we have

$$\alpha_{x,y}(u_i) = \cos 2\varphi \alpha_{X,Y}(u_i) + \frac{\sin 2\varphi}{2} [R(u_i, X, X) - R(u_i, Y, Y)].$$

From the latter we get

(6)
$$g(\alpha_{x,y}(u_i), u_i) = \cos 2\varphi \cdot g(\alpha_{X,Y}(u_i), u_i) + \frac{\sin 2\varphi}{2} [K(u_i, X) - K(u_i, Y)] = c_i,$$

 $i = 1, 2, \dots, 2n,$

where $u_1, u_2, \ldots, u_n, u_{n+1}, \ldots, u_{2n}$ are eigenvectors of the operator $\alpha_{X,Y}$, forming an orthonormal base of M_p . Because of the symmetry of the operator $\alpha_{X,Y}$ it follows that there exists such a base in any of the cases. Note the eigenvalues of $\alpha_{X,Y}$ by c_i , $i = 1, 2, \ldots, 2n$. From (6) we can find

$$S(x,y) = \cos 2\varphi S(X,Y) + \sin 2\varphi S\left(\frac{X+Y}{\sqrt{2}}, \frac{X-Y}{\sqrt{2}}\right).$$

By the definition of $\alpha_{X,Y}$ we have

$$c_i = R(u_i, X, Y, u_i), \quad i = 1, 2, \dots, 2n.$$

Then it follows that

trace
$$\alpha_{x,y} = \cos 2\varphi$$
.trace $\alpha_{X,Y} + \frac{\sin 2\varphi}{2}$.trace $\alpha_{\frac{X+Y}{\sqrt{2}}}, \frac{X-Y}{\sqrt{2}}$.

Hence

(7)
$$\operatorname{trace} \alpha_{X,Y} = S(X,Y) = 0.$$

The implication trace $\alpha_{X,Y}=0 \Rightarrow (4)$ is trivial. Further, let (7) holds. We can apply (7) for the orthonormal base $\frac{X+Y}{\sqrt{2}}$, $\frac{X-Y}{\sqrt{2}}$ of the antiholomorphic plane $E^2(p;X,Y)$, i.e.

$$S\left(\frac{X+Y}{\sqrt{2}}, \frac{X-Y}{\sqrt{2}}\right) = 0.$$

Hence we obtain

$$(8) S(X,X) = S(Y,Y).$$

The last relation can be applied for the orthonormal pair X, JY:

$$(9) S(X,X) = S(JY,JY).$$

Now from (8) and (9) we get

$$(10) S(Y,Y) = S(JY,JY)$$

and the latter holds for any unit tangent vector $Y \in M_p$ at any point $p \in M$.

Thus $(7) \Rightarrow (10)$, but the converse is not true.

Lemma 2. Let (M, g, J) be 2n-dimensional almost Hermitian manifold, p be an arbitrary point of M, and X, Z be arbitrary unit tangent vectors in the tangent space M_p . Then the following statements are equivalent:

- (i) S(X, JX) = 0;
- (ii) S(X, X) = S(JX, JX);
- (iii) S(X,Z) = S(JX,JZ), i.e. S is a Hermitian Ricci-tensor.

Proof. Let (i) holds. Then

$$S\left(\frac{X+JX}{\sqrt{2}}, \frac{X-JX}{\sqrt{2}}\right) = 0.$$

From the latter and from the symmetry of S it follows that

$$S(X,X) = S(JX,JX).$$

Conversely, if (ii) holds, then

$$S\left(\frac{X+JX}{\sqrt{2}}, \frac{X+JX}{\sqrt{2}}\right) = S\left(\frac{JX-X}{\sqrt{2}}, \frac{JX-X}{\sqrt{2}}\right).$$

Hence

$$S(X, X) + S(JX, JX) + 2S(X, JX) = S(X, X) + S(JX, JX) - 2S(X, JX).$$

Therefore we obtain directly that (ii) \Rightarrow (i).

Further, let (ii) holds. Then

$$S\left(\frac{X+Z}{\sqrt{2}}, \frac{X-Z}{\sqrt{2}}\right) = S\left(\frac{JX+JZ}{\sqrt{2}}, \frac{JX-JZ}{\sqrt{2}}\right)$$

for any tangent vectors X, Z of M_p . From here it follows that

$$S(X, X) + 2S(X, Z) + S(Z, Z) = S(JX, JX) + 2S(JX, JZ) + S(JZ, JZ)$$

and it gives us (iii). Thus (ii) \Rightarrow (iii). Conversely, if (iii) holds, putting Z = X we obtain (ii).

Now we can remark that if (7) holds, then each of the equalities in Lemma 2 is satisfied. This fact we shall use in the next theorem.

Theorem 1. Let (M, g, J) be 2n-dimensional almost Hermitian manifold. Then the following statements are equivalent:

- (i) (M, g, J) is an Einstein almost Hermitian manifold;
- (ii) The trace of the antiholomorphic curvature operator $\alpha_{X,Y}$ does not depend on the orthonormal base of the plane $E^2(p; X, Y)$ at any point $p \in M$.

Proof. (i) ⇒ (ii) Let (i) hold. Then

$$S(x, y) = K.g(x, y), \quad K = \text{const.}$$

From here follows (7). Then we have (ii).

Conversely, let (ii) hold and let $e_1, e_2, \ldots, e_n, Je_1, \ldots, Je_n$ be an adapted base in the tangent space M_p . Then, according to (ii) and Lemma 2, we get the equalities

(11)
$$S(e_i, e_j) = S(Je_i, Je_j) = 0, \quad i \neq j, \ i, j = 1, 2, \dots, n,$$

$$S(e_k, Je_t) = 0, \quad k, t = 1, 2, \dots, n,$$

$$S(e_i, e_i) = S(Je_i, Je_i) = S(e_j, e_j) = S(Je_j, Je_j) = f(p).$$

Here f(p) is a constant at a point p. We have

$$u = u^j e_i + u^i J e_i, \quad v = v^t e_t + v^k J e_k.$$

Hence

$$S(u,v) = S(u^{j}e_{j} + u^{i}Je_{i}, v^{t}e_{t} + v^{k}Je_{k})$$

= $u^{j}v^{t}S(e_{j}, e_{t}) + u^{j}v^{k}S(e_{j}, Je_{k}) + u^{i}v^{t}S(Je_{i}, e_{t}) + u^{i}v^{k}S(Je_{i}, Je_{k}).$

From the latter and (11) we obtain

$$S(u, v) = f[u^{i}v^{i}g(e_{i}, e_{i}) + u^{k}v^{k}g(Je_{k}, Je_{k})]$$

= $f.g(u^{i}e_{i} + u^{j}Je_{i}, v^{t}e_{t} + v^{k}Je_{k}) = f.g(u, v)$

and hence

$$S(u, v) = f.g(u, v), \quad f = \text{const},$$

for any tangent vectors $u, v \in M_p$ and at any point $p \in M$. That means (M, g, J) is an Einstein almost Hermitian manifold. Thus (ii) \Rightarrow (i).

Further, let (M, g, J) be 2n-dimensional almost Hermitian manifold for which

$$R(x, y, z, u) = R(Jx, Jy, Jz, Ju)$$

for all $x, y, z, u \in M_p$ and at any point $p \in M$. That means (M, g, J) is an Einstein almost Hermitian manifold.

It is well-known that a plane $E^2 \in M_p$ is an antiholomorphic plane if $E^2 \perp JE^2$, and E^2 is a holomorphic plane if $E^2 \equiv JE^2$.

Let (M, g, J) be an AH_3 -manifold for which at any point $p \in M$ the sectional curvatures of any holomorphic and any antiholomorphic plane of the tangent space M_p are point-wise constants on the manifold M. We denote them by μ and ν . The curvature tensor R in this case can be represented in the following way [2]:

$$R(x,y,z) = \nu[g(y,z)x - g(x,z)y] + \frac{\mu - \nu}{3}[g(Jy,z)Jx - g(Jx,z)Jy - 2g(Jx,y)Jz].$$

From here it follows that

$$\alpha_{x,y}(u) = -\frac{\nu}{2} [g(u,X)Y + g(u,Y)X] - \frac{\mu - \nu}{3} [g(Ju,Y)JX + g(Ju,X)JY].$$

From the last representation we can obtain that the eigen vectors of the operator $\alpha_{X,Y}$ are $\frac{X+Y}{\sqrt{2}}$, $\frac{X-Y}{\sqrt{2}}$, $\frac{JX+JY}{\sqrt{2}}$, $\frac{JX-JY}{\sqrt{2}}$ with corresponding eigen values $-\frac{1}{2}\nu$, $\frac{1}{2}\nu$, $\frac{1}{2}(\mu-\nu)$, $-\frac{1}{2}(\mu-\nu)$, and every eigen vector u, orthogonal to the span $\{X,Y,JX,JY\}$, has a corresponding eigen value zero. Obviously, if (M,g,J) is an AH_3 -manifold with point-wise constant holomorphic and point-wise constant antiholomorphic sectional curvature, then (4) and (5) hold. Remark that $(5) \Rightarrow (4)$, but the converse is not true.

In the sequel we assume that (M, g, J) is a 4-dimensional AH_3 -manifold for which (5) holds or the spectrum of the curvature operator $\alpha_{X,Y}$ does not depend on the orthonormal base of the plane $E^2(p; X, Y)$. Then the characteristic equation of the antiholomorphic operator $\alpha_{X,Y}$ can be represented in the form

$$\det\left(a_{ij}\right) = 0,$$

where

$$a_{ii} = \sin 2\varphi [R(e_i, X, X, e_i) - R(e_i, Y, Y, e_i)] + 2\cos 2\varphi R(e_i, X, Y, e_i) - 2c,$$

$$(13) \quad a_{kj} = \sin 2\varphi [R(e_k, X, X, e_j) - R(e_k, Y, Y, e_j)] + \cos 2\varphi [R(e_k, X, Y, e_j) + R(e_k, Y, X, e_j)], \quad k \neq j, \quad i, j, k = 1, 2, 3, 4.$$

Here the vectors e_1 , e_2 , e_3 , e_4 form an adapted base in the tangent space M_p , hence $e_3 = Je_1$, $e_4 = Je_2$.

Further we shall use the next lemma [3].

Lemma 3. A 2n-dimensional almost Hermitian manifold (M, g, J) is an AH_3 -manifold with point-wise constant holomorphic and point-wise antiholomorphic sectional curvature iff at any point $p \in M$ and for any orthonormal pair of tangent vectors X, Y of M_p , which satisfy (1), it holds

$$R(X,JX,JX,Y)=0.$$

From (12) and (13), putting $X = e_1$, $Y = e_2$, $\varphi = \frac{\pi}{4}$, we obtain the equation

$$\begin{vmatrix} -K_{12} - 2c & 0 & -R_{\bar{1}221} & -R_{\bar{2}221} \\ 0 & K_{12} - c & R_{\bar{1}112} & R_{\bar{2}112} \\ -R_{\bar{1}221} & R_{\bar{1}112} & H_1 - K_{\bar{1}2} - 2c & 2R_{\bar{2}111} \\ -R_{\bar{2}221} & R_{\bar{2}112} & 2R_{\bar{2}11\bar{1}} & K_{1\bar{2}} - H_2 - 2c \end{vmatrix} = 0,$$

which gives us

$$16c^4 - 4A_1c^2 - 4A_2c + A_3 = 0.$$

Here

$$A_{1} = A_{1} \left(p; e_{1}, e_{2}, \frac{\pi}{4} \right) = 4R_{\bar{2}12\bar{2}}^{2} + (R_{\bar{1}12\bar{2}} + R_{\bar{2}12\bar{1}})^{2} + R_{\bar{2}12\bar{1}}^{2} + R_{\bar{2}12\bar{2}}^{2}$$

$$+ K_{12} + R_{\bar{1}121}^{2} + R_{\bar{2}121}^{2},$$

$$A_{2} = A_{2} \left(p; e_{1}, e_{2}, \frac{\pi}{4} \right) = K_{12} \left(R_{\bar{1}221}^{2} + R_{\bar{2}221}^{2} - R_{\bar{1}112}^{2} - R_{\bar{2}112}^{2} \right)$$

$$+ (H_{1} - K_{2\bar{1}}) \left(R_{\bar{2}112}^{2} + R_{\bar{2}221}^{2} - R_{\bar{1}112}^{2} - R_{\bar{1}221}^{2} \right)$$

$$- 4R_{\bar{1}11\bar{2}} (R_{\bar{2}112}.R_{\bar{1}112} + R_{\bar{2}221}.R_{\bar{1}221}),$$

$$A_{3} = A_{3} \left(p; e_{1}, e_{2}, \frac{\pi}{4} \right) = -K_{12} [4R_{\bar{1}112}.R_{\bar{2}112}.R_{\bar{2}11\bar{1}} - R_{\bar{2}112}^{2} (H_{1} - K_{\bar{1}2})$$

$$- 4R_{\bar{2}11\bar{1}}.K_{12} - R_{\bar{1}112}^{2} (K_{1\bar{2}} - H_{2}) + K_{12}^{2} (H_{1} - K_{\bar{1}2})^{2}$$

$$+ 4K_{12}R_{\bar{1}221}.R_{\bar{2}221}.R_{\bar{2}11\bar{1}} - 2R_{\bar{1}221}.R_{\bar{2}112}.R_{\bar{2}221}.R_{\bar{1}112}$$

$$+ R_{\bar{2}112}^{2}.R_{\bar{1}221}^{2} + K_{12} (K_{1\bar{2}} - H_{2})^{2}.R_{\bar{1}221}^{2}$$

$$- R_{\bar{2}22}^{2}.K_{12} (H_{1} - K_{\bar{1}2}) + R_{\bar{1}112}^{2}.R_{\bar{2}221}^{2}.$$

Also from (12) and (13), putting $X = e_1$, $Y = e_2$, $\varphi = 0$, we obtain

$$\begin{vmatrix} -2c & -K_{12} & R_{\bar{1}121} & R_{\bar{2}121} \\ -K_{12} & -2c & R_{212\bar{1}} & R_{212\bar{2}} \\ R_{\bar{1}121} & R_{212\bar{1}} & 2R_{\bar{1}12\bar{1}} - 2c & R_{\bar{2}12\bar{1}} + R_{\bar{2}21\bar{1}} \\ R_{\bar{2}121} & R_{212\bar{2}} & R_{\bar{2}12\bar{1}} + R_{\bar{2}21\bar{1}} & 2R_{\bar{2}12\bar{2}} - 2c \end{vmatrix} = 0,$$

and then we obtain

$$16c^4 - 4B_1c^2 - 2B_2c + B_3 = 0.$$

Here

$$\begin{split} B_1(p;,e_1,e_2,0) &= 4R_{\bar{2}12\bar{2}}^2 + (R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})^2 + R_{212\bar{1}}^2 + R_{212\bar{2}}^2 + K_{12}^2 \\ &\quad + R_{\bar{1}121}^2 + R_{\bar{2}121}^2, \end{split}$$

$$\begin{split} B_2(p;,e_1,e_2,0) &= 2R_{212\bar{1}}(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})R_{212\bar{2}} - 2R_{212\bar{2}}^2.R_{\bar{1}12\bar{1}} \\ &- 2R_{212\bar{1}}.R_{\bar{2}12\bar{2}} - 2K_{12}.R_{\bar{2}121}.R_{212\bar{2}} - 2K_{12}.R_{\bar{1}121}.R_{212\bar{1}} \\ &- R_{\bar{1}121}.(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})R_{\bar{2}121} + 2R_{\bar{1}121}.R_{\bar{2}12\bar{2}} - 2R_{\bar{2}121}.R_{\bar{1}12\bar{1}}, \end{split}$$

$$\begin{split} B_{3}(p;,e_{1},e_{2},0) &= 2K_{12}^{2}.R_{\bar{2}12\bar{2}} + K_{12}.R_{\bar{2}121}.R_{212\bar{1}}(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}}) \\ &+ K_{12}R_{\bar{1}121}(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})R_{212\bar{2}} + K_{12}^{2}(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})^{2} \\ &- 2K_{12}.R_{\bar{1}121}.R_{212\bar{1}}.R_{\bar{2}12\bar{2}} + R_{\bar{1}121}^{2}.R_{2122}^{2} - 2R_{2121}.R_{212\bar{1}}R_{212\bar{2}}R_{\bar{1}121} \\ &+ K_{12}.R_{\bar{2}121}.R_{21\bar{2}1}(R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}}) + R_{\bar{2}121}^{2}.R_{212\bar{1}}^{2}.\end{split}$$

Since (M, g, J) satisfies condition (5), then (4) holds and according to Theorem 1 that means (M, g, J) is an Einstein almost Hermitian manifold. We shall use the next lemma [1].

Lemma 4. Let (M, g) be a 4-dimensional Einstein manifold. Then:

a) The sectional curvature of every plane of M_p is equal to the sectional curvature of its orthogonal complement in M_p ;

b)
$$R_{ijjk} + R_{issk} = 0$$
 for any different indicies $i, j, k, s = 1, 2, 3, 4$.

Further we remark that from (5) follows

$$A_i = B_i, \quad i = 1, 2, 3.$$

Then we have

(14)
$$4R_{\bar{2}12\bar{2}}^2 + (R_{\bar{2}12\bar{1}} + R_{\bar{1}12\bar{2}})^2 = (H_1 - K_{\bar{1}2})^2 + 4R_{\bar{2}11\bar{1}},$$

which is satisfied for any adapted base e_1 , e_2 , Je_1 , Je_2 of the tangent space M_p and at any point $p \in M$. Hence we can apply (14) for the adapted base Je_1 , Je_2 , $-e_1$, $-e_2$:

(15)
$$4R_{2\bar{1}\bar{2}2} + (R_{2\bar{1}\bar{2}1} + R_{1\bar{1}\bar{2}2})^2 = (H_1 - K_{1\bar{2}})^2 + 4R_{2\bar{1}\bar{1}1}.$$

From (14) and (15) we obtain

$$R^2_{\bar{1}11\bar{2}} = R^2_{2\bar{2}\bar{2}1}.$$

Then we have

$$R_{\bar{1}11\bar{2}} = \varepsilon R_{2\bar{2}\bar{2}1}, \quad \varepsilon = \pm 1.$$

In the last equality we can change e_2 by Je_2 and we obtain

$$R_{\bar{1}112} = \varepsilon R_{\bar{2}221}, \quad \varepsilon = \pm 1,$$

or

(16)
$$R(Jx, x, x, y) = \varepsilon R(Jy, y, y, x).$$

Further we shall use the following result [2]:

Lemma 5. Let (M, g, J) be a 4-dimensional Riemannian manifold for which the spectrum of the antiholomorphic curvature operator $\alpha_{X,Y}$ does not depend on the orthonormal base X, Y of the plane $E^2(p; X, Y)$. Then the spectrum $\Omega_{X,Y}$ of $\alpha_{X,Y}$ can be represented in the form

$$\Omega_{X,Y} = \{c_1, c_2, -c_1, -c_2\}.$$

From this lemma it follows that

$$A_3 = B_3 = 0.$$

Then from (16) and the expression of A_3 we have

$$(17) \ A_3 = (K_{12} + K_{1\bar{2}} - H_1)(R_{\bar{1}221}^2 - R_{\bar{2}112}^2) - 4R_{\bar{1}11\bar{2}}(R_{\bar{2}112} + \varepsilon.R_{\bar{1}221}).R_{\bar{1}112} = 0.$$

From the last equality, changing e_1 by Je_1 , we obtain

$$A_3' = (K_{\bar{1}\bar{2}} + K_{\bar{1}\bar{2}} - H_1)(R_{122\bar{1}}^2 - R_{\bar{2}\bar{1}\bar{1}\bar{2}}) - 4R_{1\bar{1}\bar{1}\bar{2}} \cdot (R_{\bar{2}\bar{1}\bar{1}\bar{2}} - \varepsilon R_{\bar{1}221}) \cdot R_{1\bar{1}\bar{1}\bar{2}} = 0.$$

Using the equality $A_3 - A_3' = 0$, we get

(18)
$$R_{\bar{1}11\bar{2}}(R_{\bar{2}112} + \varepsilon R_{\bar{1}221})R_{\bar{1}112} - R_{1\bar{1}\bar{1}\bar{2}}(R_{\bar{2}112} - \varepsilon R_{\bar{1}221})R_{1\bar{1}\bar{1}2} = 0.$$

By Lemma 4 and (16) we have

$$R_{\bar{1}112}=R_{\bar{1}\bar{2}\bar{2}2}=R_{2\bar{2}\bar{2}\bar{1}}=\varepsilon R_{1\bar{1}\bar{1}\bar{2}}.$$

It gives us

(19)
$$R_{\bar{1}112} = \varepsilon R_{1\bar{1}\bar{1}2}, \quad \varepsilon = \pm 1.$$

Changing e_1 by Je_1 , we have

$$(20) -R_{1\bar{1}\bar{1}2} = \varepsilon R_{\bar{1}112}, \quad \varepsilon = \pm 1.$$

Now, using the equalities (18)-(20), we obtain the relation

$$R_{\bar{1}11\bar{2}}(R_{\bar{2}112} + \varepsilon R_{\bar{1}221})R_{\bar{1}112} + \varepsilon^2 R_{\bar{1}112}(R_{\bar{2}112} - \varepsilon R_{\bar{1}221})R_{\bar{1}11\bar{2}} = 0,$$

which gives us

(21)
$$R_{\bar{1}112}.R_{\bar{1}11\bar{2}}.R_{\bar{2}112} = 0.$$

Then

$$R_{\bar{1}112} = 0$$
 or $R_{\bar{1}11\bar{2}} = 0$ or $R_{\bar{2}1\bar{1}2} = 0$.

The first two equalities are equivalent to the equality of Lemma 3. Let $R_{\bar{2}112} = 0$. That means

$$R(Ju,v,v,u)=0$$

for all $u, v \in M_p$, connected by (1), at any point $p \in M$. Using the last equality and putting $B_3 = 0$ in the equation, we have

$$B_3 = -2R_{212\bar{2}}^2 \cdot R_{\bar{1}12\bar{1}} + 2R_{\bar{1}121} \cdot R_{\bar{2}12\bar{2}} = 0,$$

which, according to (16), gives us

$$R_{\bar{1}112}^2.R_{1\bar{1}\bar{1}2} + \varepsilon R_{\bar{1}112}.R_{1\bar{1}\bar{1}2} = 0.$$

Hence we have

$$R_{\bar{1}112}(R_{\bar{1}112}.R_{1\bar{1}\bar{1}2} + \varepsilon R_{1\bar{1}\bar{1}2}) = 0.$$

That means

$$R_{\bar{1}112} = 0$$

or

$$(22) R_{\bar{1}112}R_{1\bar{1}\bar{1}2} + \varepsilon R_{1\bar{1}\bar{1}2} = 0.$$

The first equality is the equality of Lemma 3. In the second one let change e_1 by Je_1 . Then we obtain

(23)
$$-R_{1\bar{1}\bar{1}2}.R_{\bar{1}112} + \varepsilon R_{\bar{1}112} = 0.$$

Then we sum (22) and (23) and get

$$(24) R_{1\bar{1}\bar{1}2} + R_{\bar{1}112} = 0.$$

In (24) we change e_1 by Je_1 and obtain

$$(25) R_{\bar{1}112} + R_{1\bar{1}\bar{1}2} = 0.$$

From (24) and (25) we get the equality of Lemma 3 and according to it we have that (M, g, J) is an AH_3 -manifold with point-wise constant holomorphic and pointwise constant antiholomorphic sectional curvatures. Now we can formulate the next theorem.

Theorem 2. Let (M, g, J) be a 4-dimensional almost Hermitian manifold. Then the following statements are equivalent:

- (i) (M, g, J) is an AH_3 -manifold with point-wise constant holomorphic and poin-wise constant antiholomorphic sectional curvatures;
- (ii) The spectrum of the antiholomorphic curvature operator $\alpha_{X,Y}$ does not depend on the orthonormal base of the antiholomorphic plane $E^2(p;X,Y)$ at any point $p \in M$.

REFERENCES

- Stanilov, Gr., I. Petrova. A generalized Jacobi operator in the 4-dimensional Riemannian manifolds. Ann. Sof. Univ., 86, 1992.
- Videv, V., Gr. Stanilov. A curvature operator in the Riemannian geometry. In: Proceedings of II Gaus symposium, Conference A, August 2-7, 1993, München, Germany.
- Kassabov, O. On the axiom of planes and the axiom of spheres in the almost Hermitian geometry. Serdika, 8, 1982.
- 4. Ganchev, G. Characteristics of some classes of almost Hermitian manifolds. Serdika, 4, 1978.

Received 18.03.1994