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3anpsn 3anpsnos, Huxosat Mapxoe. O HEKOTOPBIX NMPUMEHEHUAX METOMA
OCOBEHHOCTEM | ~ _ . ‘

Fuapoaunamuka npu Manbix uncnax PellHonbica urpaer BaKHYIO PONb B HCCHENO-
. BAHMAX MEXaHWKM cycneH3ui, xkonomauo#h xumuu u ¢uauonoruu membpan. B craTne Me-
TonoM ocobennocrTeit Mccaeny0TCH HEKOTODHIE CTAlMOHADHEIE BA3KUE TEUEHUA NDPHU Hanm-
Hne 'raep,m:xx niain }KHAKKX HacTHAL. Teqenua npe,nc'rasnﬁroTcn (inHAaMeHTaHbHHMH DE* ’
uteHnAMM ypasHenuii CToKCAa B BIIE CTOKCIETOB, BHIPOYXKACHHEX KBAAPONOOB, CTOKCOHOB
¥ Apyrux mynpTtunonon. Paccmorpenm caenyioumme 3azmaum: 1) TeuéHue, NOPOMIAEHHOE
TpaHcaAuMel U poTaumeit TBépaoi chepuueckodl vacThuml; 2) TpaHcnAUMA cdepuueckoil
Kannay B HenoABWXKHOH BA3ko#N uacTune, obrexaeMoil nunelinmm rPaAMeHTHBIM NOTOKOM.
Oﬁcym;(aro'rcn IOCTpOEHME PenieRuit pTUX 3a7a4 U OCHOBHEIE XapaKTEPUCTUKH TAKOTO BU-
Aa pelieHui,

‘ Zaprya.n Zapryanov, Nikoley Markov. ON SOME APPLICATIONS OF THE SINGULARITY
METHOD

- The hydrodynarmcs of low Reynolds number flows plays an lmporta.nt role in the study
of suspension machanics, colloid science and membrane physiology. In the present paper once .
again (now via the singularity method) some steady viscous flows in the presence of rigid or
. fluid particles are examined. The flows are represented in terms of fundamental solutions to the
governing Stokes equations, including Stokeslets, degenerated quadrupoles, Stokesons and some
other multipoles. The problems considered are: 1) flow due to the translation or rotation of
a ngid spherical particle; 2) a translating spherical drop in a viscous quiescent fluid; 3) small
deformations of a fluid particle in a general linear flow.

The construction of the solutions of these problems and. the salient features of such kind of

" solutions are dxscussed
A



1. INTRODUCTION

An approximate solution to the Navier — Stokes equations can be obtained for
the case in which the Reynolds number, or the ratio of inertial to viscous forces, is
very small. Then the inertial effects can be neglected, and the action of viscosity is
’ ' ‘ LUp
‘ U
is small either because the fluid is very viscous (z — o) or because the inertia,
or density, is very small (p — 0). These flows are frequently called “creeping”
flows. This simplification is justified since many multlpartlcle systems do mvolve
sufficiently slow motions for this assumption to be valid.

The creeping flow and continuity equations are

(1.1) V.T = V% — Vp+ FOs(7) = 0,

considered to be controlling. We can imagine that the Reynolds number Re =

(1.2) o va=o.

Here F(¢) denotes a point force appliéd to the fluid at 7 = 0, 6(7) is the Dirac delta
function, ¥ is the velocity, §'is the pressure and T is the stress tensor. The meaning
of the ﬁrst equation is:

1) For ¥ # 0, V.T = 0;

if) For any volume V' that encloses the point # = 0,

/ f V.Tdr = — ),
1 %

‘The linearity of the creeping flow equations allows the creation of a class of -
solution methods that is readily applied to various types of hydrodymanic problems.’
These methods for solving Stokes equations are based upon fundamental solutions,
corresponding to the flow produced by a point force in a fluid space. If the boundary
shapes of the problem under consideration are simple, then -an analytic solution
can be achieved by usmg the mterna,l distributions of force and force multlpole
singularities. =~ ,
~ In this connection it is useful to wrzte down some of the derivatives of the

Ossen — Burger’s tensor
r r

(1.3} : | Bi; =

 and degenerate quadrupole V? B,j.
' 1) The first derivative of the Ossen — Burger’s tensor (the Stokes dlpele)

: . 0By 3
(1.4) VB,‘j = B2y I = B,;j,k = ( 5,_,3:}3 + 5 e T+ 51¢li) —— sx,’xj:ck;
11) The second demvatlve of the Ossen — Burger s tensor
- 9By 8 385 2 3,
(1.5) 33:;68::: = Bijex = ——% + 3‘? + 5;1553;: Sl(éikmj +bjkzi)Te
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* 3 » " 15
. (&kxgxk + 6}&:37%:37: + 33:333) + 33333

ii1) The degenerate quadrupole

26;; 6

(1 6) B szij =’V.(VB,‘J') = B,'j W= —;é— p;

—TiTi;
w) The derivative of the degenerate quadrupole (the degenerate oetupole)

30

(1.7)  V(V?Bij)=V?Bijx=— 5(6.1% + 61T + pit;) + =7 2iz; 2k

(Here we shall note that in order to ‘ebtain (1;3)~—(1.7-) one has to use the following
formulas: , _
bijay = x5, b =3, g% = &;j, TiTi= "%; g—; = ‘?"-)
- For the general particle sha.pe the multipole expansion representatlon [1-3] re-
quires an infinite number of terms. If the particle shape is simple the multipole
expansion representatlon may contain only a finite number of terms. For the case of
a spherical particle, for example, the multipole expansion contains (as we shall see
in section 2) only two terms. For the other simple shapes like ellipsoid a truncated
expansion in just the lower order singularities is possible, provided that these sin-
gulatities are distributed over a region. The other example is the solution for very
elongated, slender particles where the integral representation can approximately be
reduced to a line distribution of point forces along the centré line of the particle.
For interior flows (like the drop inside a flow) the velocity field of the Stokeson

(1.8) v = HijUi = (2r°6;; — zi2;)U;

"is used. Since the Stokeson is a linear with respect to a constant vector U (as we

shall see in section 3), it enters into the solution for a translating drop. In view of

the fact that the Stokeson is quadratic in r, its grad1ent is linear in r.

 Other interior solutions are roton and stresson which are equal to the symmetric

and antisymmetric derivatives of the Stokeson, respectively. Since the roton and

- stresson correspond to a rigid body rotation and a constant rate of strain field
(which are not typical for fluid flows) they are used rarely. _ \

A knowledge of the flow in and around a droplet submerged in an unbounded
or bounded fluid is of considerable practicle interest. The submerged of the basic
equation subject to the boundary conditions for such type of problems has to yield
explicitly the flow fields interior to the droplet and exterior to it, and the general
" equation of the interface. However, the mathematical treatment of solving simul-
taneously the flow fields and the equation of the interface is excessively difficult.
That is why an iterative procedure was adopted by Taylor [4]. o ‘

~ First, the drop is postulated to be spherical and the flow fields are determmed
using the boundary conditions of continuity of the tangential velocity vectors, van-
ishing of the normal component of the velocity vectors, and continuity of the tan-
gential components of the stress-vectors inside and outside of the spherical drop.
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Later, the function descnbmg the devmtlon of the droplet from sphericity is de-
termined using the relation between the outside and inside values of the normal
components of the stress vectors. The newly determined interface may then be
used for calculating the flow fields of the second zteratmn and so on.

2. FLOW DUE TO THE TRANSLATION OR ROTATION
' OF A RIGID SPHERICAL PARTICLE

The slow translation of a rigid spherical particle of radius a through a quies-
cent viscous fluid induces a flow which can be found by means of the singularity
method. Since this flow produces a net force on the spherical particle in order to
construct a solution via internal singularities, we require a Stokeslet B.F(¢) located
at the sphere centre. However, the Stokeslet is most often accompanied by the
degenerate quadrupole. Thus, we suggest: trying to construct a solution that is a
superposition of a Stokeslet and a degenerate quadrupole both located at the centre
of the spherical particle, i. e. '

@1 )= BB+ V().
- Since each term in this expression satisfies the creeping flow equations (1.1)

and (1.2), further we shall try to determine the unknown vectors p p and ¢ from the
following boundary conditions: ~

: (2.2.) o v:l—j at r=a,
(23) ; - >0 as r— oo,

where Ui is the velomty of the particle.

In fact, since B(7) and V2B() tend to zero as r — oo, the boundary condition
(2.3) is fulﬁlled automatically. If we succeed to do' this then from' the uniqueness
theorem (cited in section 1) it follows that we have found the solution of the con- -

sidered problem. :
Introducing, in (2. 1) the exphmt forms of the smgulamtles we obtam

ey  dD= p(I "")+é‘-(3.§.+§f§)_-i

If 7 is the unit normal vector to the sphencal particle surface, we ha:ve 7= an at g
r = a and the boundary condition (2.3) gives

\ : ~ L (I nn 2I ‘
‘ .U:‘p.(;f{-*g')'f'q (:-—6 )

.. or

(2.5) - %0 = a’F+ 27+ (a*F ~ 6§).77.
Since the problem considered is linear it is reasonable to assume that the
unknown vectors p and §'in the equatlon (2. 1) are expressed linearly via the particle

 velocity U i.e. . :
(. 6) | F=Cl, §=C,U,
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where Cp and Cj are unknown constants. With (2.6) the equation (2.5) becomes
|  (=a® + Coa® + 2C5)T + (a*Co — 6Cs) 0. =

or S o

@7 (—a®+ Coa? +20,)T + (a2Co — 6Cy)Unii = 0

Taking into account that U and 7 are mdependent vectors we obtam the fol-

lowing system for the constants Cy and Cs:

2(;0 + 202 = a3
_az(l'g - 602 = 0. _

3
"Hence Cp = %a and Cz ag and (2.1) becomes
- 30 (13 e \
(2.8) ' ) |
= 6ruall. (14 Lv2) B0
= 6mrual. (1+ 5 \Y% ) Brn

It is easy to show that this expression is identical to the standard result in spherical
co-ordinates given in elementary books on fluid mechanics. (See for example [5].)

Therefore, indeed the translating spherical particle in a Stokes flow requires a
degenerate quadrupole, in addition to a monopole of strength 6rpal/. Of special
interest is the fact that we have derived the Stokes law, F' = —67pal,. for the
drag on the spherical particle undergoing a steady translatlon, without an explicit
computation of the surface stress vector i, = T.fi|p=q. Here we have used the
statement that the solutions expressed as a multipole expansion yield quantities of
interest, such as the hydrodynamic force, in a straight-forward fashion, ' :

Now let us consider the flow due to a rotating spherical particle through an
unbounded quiescent viscous fluid. We suppose that the spherical particle rotates
with an angular velocity & and that the radius of the sphere is equal to a. If we
~ take a cartesian co-ordinate system with an origin that coincides with the sphere
‘ ‘centre then the boundary conditions of the prob}em conmdered are as follows:

29 | 70 as r—oo,

(2.10)  U=d xaé at r=a,

where & is a unit vector in direction #. The equation (2.10) suggests that the
produced flow may be represented merely in terms of a rotlet. (couplet) with strength
Chd, 1oca,ted at the centre of the sphere, 1. e.

2.11) T = 0@ x

With boundary condition (2.10) the velocity field (2.11) gives
& x aé, = Cuw x =X,
| S a

!




whence C; = a®. Therefore

3
(2.12) 7= ;‘—3(& x 7).

Using (2.12) we can calculate the torque acting on the particle:

M= f / 7 x (T.7)do = —87pa’d.
s o

3 A TRANSLATING SPHERICAL DROP IN A VISCOUS
QUIESCENT FLUID

Consider a spherical drop moving slowly with velocity U in a viscous quiescent
fluid. We suppose that the fluids both outside and inside the drop surface are
. immiscible, and that the surface tension, &, at the interface is sufficiently strong
to keep the drop approximately spherical against any deforming effect of viscous
forces. It is also assumed that the Reynolds number of the motion within the drop
is small compared with the unity, like that of the motion outside the drop. The two
fluid motions are discribed by the equations (1 1) and (1.2) with different values of
“the viscosity — p and ji (here the ca,ret indicates a quantity relatmg to the internal .
fluid and its motions). :
, We choose the origin of the co-ordinate system to be at -the instantaneous

position of the centre of the drop with radius a. The velocity ¥ and the difference
' p — Poo must vanish at infinity, and ? and P — Po are finite everywhere within the

fluid particle. :
The boundary conditions at; the.interface of the droplet r = a, are as follows:

(i) Vanishing of the normal component of the velocity vectors:.
| (G- O)i=0, (F-0)i=0
(ii) Continuity of the tangential velocity vectors:
7.(I—ad)=10.(I— nn);
(iii) Continuity of the t;ahgen}iial components of the sf‘ress vectors:
TRy 7R = (F.7).(1 — 7). |

With the equation
T/ = —pii + 2uE.7

the equation (iii) has the form

RV (E.2).(I - 7) = ME.7).(I - i),

where A = -fi, the ratio of the drop and the solvent viscosities, respectively. A
C i H ‘

cursoty inspection of the menu of the available singularities results in the following

0

-.
&
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selections: a Stokeslet a.nd a degenerate quadrupole outside the drop, and a Stoke-
son and a uniform field U inside the drop. Then the velocity fields outside and
inside the drop can be written, respectively, as ‘

—

(3.2) » | V= -»-—-U (Co+cza2v2)B(F)

(3.3) R §=DOU+D2a 2UH(7‘-)
where the four unknown constants Cp, C3, Do and Dy are determmed from the
" boundary conditions at the drop interface.
Taking into account formulas (1.3), (1. 5), from (3. 2) we obtam

003 Bi;U; +C'23a sz,,U

e (b ) e (- 52),

r3

o

~ Since at r=a we have z; = an;, the equation (3.4) gwes

| ' 3 [(Cy 3 C
| (36) ‘ | V4 -:: §Ux ( 20 + Cg) +-2-n‘n}U3 ( 20 362)
and thus | - : ‘ ‘ .
ViN|r=a = gniU (020 + Cz) +ﬁ-§-n,‘n,ﬂj(fj (%9- — 302)
(3.6) o
i

v ‘R,TU,’ (%C{) - 302) .
AN

Therefore, from the first kinematic condition (i) we find
(3.7) - 3Co — 6C; = 2.
Reverting to (3.4) we obtain W

v,-DoU + Dy 2(2':' 6,3 x,x:,)UJ, ,

: "t’;'|r=a = (Do + 2DQ)U§ —nin;U; Dy,

and thus ' , .

(3.8) tinilra = (Do + Do)n:Us.

Tt follows from the second kinematic condition (i) that )
39 . Do+ Dy=1.

The condition of contmmty of the velocity at the surface of the drop (11) requires
to accomplish the following computatlons , ”

(f - nn ,.17|§ = (f)’— ﬁﬁff); = (300 + Cg) ( - n,njU,)

. . 1



e (I — AR), b} = (6 — . v), = (Dg + 2D3)(Us — nin; U;).
Substituting these expressions into (ii) ylelds o
(3.10) 3G, +6C; =4D, + 8D,.
In order to Aappiy theé boundary condition (iii) we have need of the calculation
. of the rate of stress tensors E and E. From (3.2) and (3.3) it follows that

. 1 %] i Ov; » 3 iy
‘ Ceijlrma =5 | o + 22 | = 2aCo(Buxj + Bjxi)Us
. » 2 3x3~ Ox; 8

(3.11) - ~ t

+ 39°Ca(V*Bir,; + V?Bjx i) Ui,

| i 1 /8% = 0% D, L |
(3.12) « e,'j],-za = —2- (é?:; -+ 3;;) ‘?‘—6 = %a (3n;U5’-~3njU; - QégjnkUg).

- Using (1.5) it is easy to obtain the formula
. ' 60
(V?Bik j + V?Bik i) lr=a = ‘-*(5;% + 6uinj + 8ijne) + —man;na,

and thus

- 3C 9C,
€ lr...a = Z_{}“ﬂkUk(éxg - 371«;“3) + -—"nkUk(San + 631)
9 S _ | o
—--é-gcz(n;Uj + n; Ug) . :
and '
' ' _ e 3
€ij Ny &z‘r:a i (9(;2 'é‘cﬂ) .
Hence |
| (I ~ 7)) (EA); = B.7 — A (EA); -
(3.13) 2 9 .. 9C, .. 9Cy,
.= —-2—50217.' + 5ningUr = '%’(”inkUk -~ Ui)
and | “
' o a ey Dy ZD
' , (I - fin)(En)], = f-?-(n;nkU;c + 3Ui) — ——En,nkUk
- 2a : a
(3.14) ~ |

= §P—-(n,ﬂkU)¢ - U)

Substituting (3.13) and (3.14) into (u) we ﬁnd the fourth equation for the
constants Co, Cs, Dy and Dg

(3.15) S ADy+3Ce =

19



Solving the system (3.7), (3.9), (3.10) and (3.15) for the coefficients Cop, Cs,
Dy and Dy we find

oo 243 R
TN PR+
D = 3+ 1

20+ T o1+ N
Consequently the equations (3.2) and (3.3) have the form

. L . 243 Aa?v? ] B(F) -
,(3'1_6‘) | v= pram [ 22+ 3X\)| 8mp T’
' r > 342X = 1 1 -

(3.17) | = ol ~ sy el HO

The notable feature of (3.16) is that in the limit as A — oo, Cy and C, assume

the values for the rigid particle given previously in (2.8) while in the limit as A — 0

the degenerate quadrupole vanishes and the Stokeslet alone provides the exact
solution for a translating bubble..

‘ In order to calculate the force on the fluid particle we have to mtegrafce the

surface stress vector over the drop surfa,ce

(3.18)‘ V / (T. n)do' = 47r,uaU (2:8‘ : i))

~In the limiting case, .\ — 00, this expression for the drag becomes F. = 6rpal,
. which is simply the Stokes’ law for the drag on a rigid spherical particle. In the
limit A — 0 the expression (3.18) becomes ‘

(3.19) | | ' F= 4?r;zaU
which i is the drag on a spherxca.l bubble at Re < 1.

4. SMALL DEFORMATIONS OF A FLUID PARTICLE
IN A GENERAL.LINEAR FLOW

In section 3 we solved the problem of a spherical drop of radius e in uniform
flow at zero Reynolds number. It is of interest to compute the small deformations
of a drop 1 ina general linear flow at zero Reynolds number. : '

We assume that at large distances from the fluid particle the fluid undergoes
a general linear flow : _

@y | «WQW°QW?‘H%m

where 7 is a position vector esy = const and Qff = const (i,j = 1, 2, 3) are the

dimensionless rates of strain and vorticity tensors respectively, and G represents

the magnitude of V. We know from section 3 that a drop will deform in almost
any viscous flow, other than in uniform (steady) translation through a stationary
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fluid. With characteristic velocity V, = Ga the dimensionless form of the equatlon
(4. 1) is

(42) o 7° = (E® +Q%®).Ff, r— o0.

We assume that the density of the fluid inside the drop is equal to that of the
ambient fluid but the viscosities of the two fluids 4 and u are different (here also
the physical parameters pertaining to the interior of the drop will be distinguished
from the corresponding exterior parameters by a caret). Further we assume that
the surface tension o is constant on the drop surface and the capillary number-

. V. . |
Ca= %ﬁ issmall,i.e. Ca1..

The magnitude of the drop deformation-depends on the capillary number and
the ratio of the internal and external viscosity A = £ For Ca < 1 very small

deviations from a spherical shape are possible. Taking into account this fact we
express the drop shape in the form

T I F@E ) =1~ 14 Caf(?) =

So we assume that the deviation from sphericity is contained in the function f(7)
and that the magnitude of this deviation is proportional fo Ca. It is also assumed
that the Reynolds number of the motion within the drop is small compared with
unit like that of the motion outside the drop.

In general, as one is solving. for the motion inside and outSIde -of the drop
one has to determire the shape of the drop. It should be emphasized that the
shape of a neutrally buoyant immiscible liquid drop immersed in a continuous liquid

*. undergoing shear is not governed solely by the bulk and interfacial propertles of the

two phases, but also depends upon the rate of the shear. Despite the linearity of the
Stokes equations governing the flow both inside and outside of the drop, in general
‘the determination of the drop surface equation constitutes a non-linear problem,.
owing to the fact that the unknown shape has to be calculated simultaneously
along with the solution of the equations of motion. In consequence of this non-
linearity, the droplet shape has not yet been found i in its full generality, but rather
only for small departures from the spherical form. -For small values of capillary
number Ca the boundary conditions on the drop surface could be linearized about
‘the boundary conditions for an exactly spherical drop and we shall see that for the
above problem an approximate analytic solution could be obtained. The two fluid
motions are described by the equations (1.1) and (1.2) with different values of the
viscosity — p and fi. We choose the origin of the co-ordinate system to be at the
instantaneous position of the centre of the drop.

' The boundary conditions in a dimensionless form at the mterfa,ce of the drop
are as follows: , - « ,

. (1) vamshmg of the normal components of the velocity veetors, 1. e.

(4.4) rn=0, -
(4.5) §.7=0;

14
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(ii) continuity of the tangential velocity vectors, i. e.

(4.6) ‘ | 7(I — A7) = .(I — R.7);
_(iii) continuity of the tangential components of the stress vectors
4n (E.7).(I — &) = ME.7).(I - il); | )

(iv) relation between the outside and the inside values of the normal compo-
nents of the stress vectors ‘

48) (T — Ay o

’ ' « Ca - AR

Here V, is acting over the drop surface and 7 is the outer normal. In addition,

 there is a boundary condition -at infinity, namely (4.2), and the requirement. that
~ the solution be finite everywhere

Applying the method of domain pertubations’ (descrlbed in section 1) we first
postulate that the drop is spherical with radius “e”, and the fields inside and outside
it are solved, using only the equations (4.2) and (4.4)—(4.?’). 3 | ‘

Later the function f(7) describing the deviation of the droplet from sphericity is
determined using the boundary condition (4.8). Therefore, the solution presented
herein should be considered as a first approximation of a much more complex
problem [6].

If we consnder the disturbance flow ¥ due to the drop, then the total flow is
v= 7% 4+ 7 and §' — oo as r — co. Inspecting the functional form of the various
sxngulamtles presented in section 1 we decided to represent the disturbance velocity

field outside of the drop in terms of a Stokeslet dipole and a degenerate octupole:

(4.9) | = 2mua(E.V). (cl+0a2v2)8(?

4

-

where C; and C are unknown constants
‘Further we shall prove that in order to model correctly the flow inside the drop

we have to use the velocity field
' (4.10) 6 = dy B 7+ dy@™ x 4 dg[5r2(E® 7) — 277 E% 7)),

where dy, d9 and ds are specified by the bsundaxy conditions.
Since the Stokeson H = 2r%l'— 77 is quadratic in r ‘the gradient of H is

-a third-order tensor that is.linear in r. It turned out that the symmetric and

antisymmetric derivatives (which are known as roton and stresson) can be used as
“building materials” in the construction of the interior flow field for a spherical drop

in the linear field (4.2). That is so because roton and stresson simply correspond to

a rigid body rotation and a constant rate of strain field. In (4.9) we also use a cubic
field which is the less obvious portion of the solution. It should be emphasized that
in order to avoid any singularity at the origin of the co-ordinate system we must
use growing harmonics inside the drop.. :

The cubic field can be obtained by the apRroprlate linear combination of E® :
77r and r2 E° 7. If we seek the veloc1ty field © inside the drop in the form

gidgEm.r-i-dgwxr-i—v ,

4
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then o .
o' = AE® : FFF 4+ BrzEm.ﬁ

| o 2
where A and B are unknown.constants, but it is easy to show that A = —gB;

From the equatlon of continuity (4.2) it follows that

Vi = = bAeg;xra; + 236,”:1:;5:::;
» | = (54 + 2B)efiziz; = 0,
and thus
' 54+ 2B = 0.
Therefore we cé,n write down |
| 8’ = dy(5r° B 7~ 2B : 7).
Further we shall calculate the constants C1, Cy, dy, d3 and d3 from the bound-

ary conditions (4.4)-(4.7). |
- Taking into account formulas (1.3) and (1.5) from (4.9) we obtain

1 1 bijx bire;  bipx;
Vi = 6&;:‘?# -+ §€kiiwk x}, + ZClekj (___; :isk + }:3 4 + 3:3 J
(4.11) N 0, x‘x}m o 8C .
- ;Exsx,}xk) T E — 4 5 ek;( ij Tk + ik Zi + zkxj)

Since at r = 1 we have z; = rn; = n; and (4.11) gives

' o ‘ ' ' 3 15 '
(4.12) | v; = eging(l — 3C2) + €y NiTj Tk (wa—Cl + ——Cz) + 26k3,wk :

Therefore . ’ .
(9 3 N1
(4.13) V.= vin; = egin;ng  1 + 502 - gc}, + §§kjiwk nin;.
* Similarly from (4.10) one gets |
- (4.14) - U = dieging + daegjiwr ny + bdzefony - 2daegningn,
C(415) = i = effmeni(dy + Bz — 2ds) + daerjiw P nym.
‘According to (4.4), (4.5), (4.12) and (4.15) we have
(4.16) - - 3Cy - 18C; = 4,
(417) © dy+3d3 = 0.

From the boundary condition (4.6) we obtain

. 1 -
eg‘}nk(l —‘3(;'3). - e‘;‘}nknjn;(l - 302) + —Ekj;wgc?ij

2
= ei‘znk(d; + 5d3)—; e?}.nknjn;(dl -+ 5(13) -+ dgskj,@,f"n;‘
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and

wls-a

Therefore dy =

(4.18) | 1 - 3C; = d; + 5ds.

- In order to apply the boundary condltlon (4.7) we have need of the followmg
‘quantities:

(4.19) egpnpn,-],ﬂ = ez‘;nknj’(-?-Cl —18C% + 1) ;.

After some algebra we find that the left and the nght-hand side of (4. 7) at r =1
are equal to

. ‘ i 3 |
ekjn;(éjk‘ — nkn.j’)lrzzl = (1 — Z(Jl -+ 1202) (—-eg‘;nknjn,; -+ ez‘}nk),

éxini(6ik — nkny)lr=1 = (di + 8da)(—egjnin;ni + eg;ni).
Substituting these expressions into (4.7) yields -
. ' . N 3 ) )
(4 21) o —_— 1- ""Cl +12C,; = /\(dl + 8d3)

In this way we have four equations, namely (4.16)-(4.18) and (4 21) for four
unknown constants C;, Ca, di and d3."
Solving this system we get o
25X+ 2 A 3 o 1
3331 27 30+ 1)’ dy = ‘2(A+1)*d3” 20+ 1)
Therefore - | |

“2)

| 1., . 25A+2  Aa®  _,\ B(7)
7= E®° F4+ -0 xF+ 2rpa®(EX.F) | %)
T=E® 5 x4+ jya(E' 5(3A+1+3(A+1)V)8@
= —-—§-———~E°°r+1wxr+ !
o 2(A+1) 2 20+ 1) |
The solution just obtained can now be used to calculate from (4. 8) the de-
formation of the drop for small values of the -capillary number Ca. If €, is the
unit vector in the radial direction of a spherlca} co-ordinate. system, then a first

approximation to the unit normal vector fi for small Ca is just €,. According to

< [5rY(E™.7) - 2B% : 7).

@)

ey N — e . . ’ T - s o !
the definition of 7 in terms of F and the equation Vr = — = ¢, it follows that
, r .

VE _ Vr-CaVf _ & —CaVf
[VF| ~ [Vr=CaVfl ~ /1+Cal(V/)? - 2(&- VNI
_ Next it is important to observe that

(428 ii = & — CaVf + 0(Ca?),

(423)  #=

(4.25) | Vil=V.E - CaV2f + O(Ca?),
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‘From (4.24)—(4.26) it follows that the surface curvature V.7l can be expressed

‘ ' 2 ‘ -
V.ii= < —CaV2f + 0(Ca?) = 2(1 — Ca.f) — CaV2f + O(Ca®
(4.27) " f+0(Ca®) = 2 af)f f+0(Ca%)
| =2 — Ca(2f + V2f) + O(Ca?).

~ We shall note that the surface curvature can be expressed as the sum of the
inverse principle radii of curvature, that is :

1 1
Vn—*}'z—i'f“'}—g—;

With (4.27) the boundary condition (4.8) gives

Ca{T.[er — CaV f + O(Ca?)] — AT e, — CaV f + O(Ca®)]}

‘ x [e, — CaVf + O(Ca?)] = 2 — Ca(2f + V*f).

It is clear that to order O(Ca?) the boundary condition (4.28-) takes t‘}’xe form

]

(4.28)

o[z Cafaf + 971)],

(T.e,\ - )\f‘.c,).e, =
- or
(420)  (Be—ABe)e = g2-Ca2f + V1)

The shape function f(¥) is a true scala.g and linearly related £6 the va.nables v, b

and (7.7 — AT.7%). Thereforé f() must be expressible in invariant form as a linear
function of E*° (or 2%), i.e.

(4.30) . | f(r”)“brE‘”"'

where b is an unknown constant. | ﬂ |
From (4.27) and (4.30) it follows that the surface curvature V 7l is equal to

(4.31) ' | V.i= 24 4(F.E*.F)bCa + 0(Ca2), o
and thus (4.28) becomes |

| X . :
—6;[2 + 4(7. E* .7)bCa).

In order to apply the boundary condition (4.32) we have to calculate the pres-
sures p and p from the Stokes equations inside and outside of the drop After some
algebra one obtains ‘

6v
32:.3

(4.32)‘ | (E%.er —AE‘W.e,).eV,. =

(4.33) 5d3f3 :cp:cp+1(}dgehxk:c, -2dzefiTrx1bi; — 4d33k}x;.,a:,,

i

(434) ) (V2), = 42dseBas,
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(4.35) (V) = (V') = p42dzefi .

Integrating the equation (4.35) with respect to z; we find that
‘ (4 36) | D P= ﬂQldgeg‘kaxi +}30 - QlﬁdgEco DPT A+ [’1130,
where po = const. ‘

Similarly, one obtains the pressure outside the drop, na,mely

* 3
(4.37) , p= —-2-uClE°° L 77 + ppo,

where py = const.

We observe that the pressure field msxde and outside of the droplet can be
calculated from Stokes equations up to a constant. The constant py involved in
the outside field is determined from the known pressure for the droplet. As we
shall see, the constant py involved in the interior pressure field can be determined
from the boundary condition (4.8) for the normal components of the stress vectors.
Using the equations (4.19), (4.20), (4. 32) (4.36) and (4.37) we obtain the following *

equation for the constant:

e

3
—po + pg + 21d3pE°° T+ ~gClE‘°°rr

(4.38)  +2u [1 +12C, - %1 + -cl — 30C; - ,\(d1 +8d3 + dg,)] E® 7

2
= ,u{ o + 4bE°° “}
It follows from the equation (4.38) that

gy = 2
| | DPo—po = Ca
and | | o R R S
(4 39) §C3 + -2—-1‘-)\d3 +1+ §Cl - 1805 — AMd1 +9d3) = 2b.

2

Fmaﬂy, substituting the constants C1, Ga, dy, d2 and dz from (4 22) in the
equation (4 39) we obtain V ,

- 192 +16
- 8(A+1)’
‘and thus the corresponding drop shape is ‘
‘ 19A + 16 o0
(4.40) r=1+Ca SO )(#»*E 7).

In order to illustrate the result that we have obtained in (4.40) we shall note
that for a simple shear flow (vl = .'L‘g, vg = 0, v3 = O),, 5

4

0

Lo 3N 3 sk
Lo T o I N3 QNS
o O
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and

191 + 16
=1 il
r +Ca.1:13:2 ST 1)’
. . 1
whereas fox; an extensional flow (v; = —_-ixl, vy = ~—-%x2, v3 = &3)
1
| ~3 0 0
E= 1
0 ~3 0
0 0 1/,
and 19X + 16 1 1
22 2
CaS(,\+1)( 1< 2:62

These two flows are sketched in Fig. 1. One can see that although the deformatlon
“is small in all cases for the limit Ca < 1, the slight difference in shape of the two
flows shows that extensional flow is more efﬁcxent at stretching deformable partlcles

than the sunple shear flow.
Ty

2 N
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