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A new class of random dispersions is considered in which not only the location
of the spheres is random, but their conductivity is random as well. The classical
variational principles are employed in which classes of trial fields in the form of suitably
truncated functional series are introduced. In this way three-point variational bounds
on the effective conductivity of the dispersion are derived and discussed in more detail
for some particular statistical distributions of sphere conductivity. A rigorous formula
for the effective conductivity, correct to the order square of sphere fraction, is finally
obtained which contains only absolutely convergent integrals. '
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1. INTRODUCTION

Consider a dispersion of homogeneous non-overlapping spheres of random con-
ductivity Ky, immersed at random into an unbounded matrix of conductivity .
For convenience of notations hereafter we represent the conductivity k; in the form
K; = K5, where Ky = (K;) is the mean conductivity of the sphere, embedded
into the matrix. Then § represents their “non-dimensional conductivity” for which
(s)=1.

Let {x;} be the random system of sphere’s centers and at the position x; a
sphere with conductivity s;, random as well, is centered. Thus a set of marked
random points {X;, s;} is defined whose statistical description suffices for the dis-
persion. A similar marked random system was considered by Christov and Markov
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[1, 2] in the study of dispersions of spheres with random radii @. (For the general
definition of sets of marked random points see [3].) We assume henceforth, for the
sake of simplicity solely, that the spheres possess a fixed and non-random radius a.
Then the random conductivity field x(x) of the dispersion has the form

K(X) = Km + Z(Kfsj — Km)h(x — x;j), (1.1)
j
where h(x) is the characteristic function for a single sphere located at the origin.
In Sec. 2.1 we briefly discuss the statistical description of the system of marked
random points {x;, s;}, similar to that used in [1, 2].

For definiteness we shall deal with the problem of heat conduction through
the random dispersion as a simple representative of a wide class of similar trans-
port phenomena. The governing equations of the problem, in the absence of body
sources, are

V.q(x) =0, q(x)=«(x)Vi(x), (Vi) =G, (1.2)

where §(x) is the random temperature field, q(x) — the heat flux vector, G is the
prescribed macroscopic value of the temperature gradient, the brackets () denote
statistical averaging. Hereafter the media are assumed statistically homogeneous
and isotropic. The solution of Egs. (1.2) is understood in a statistical sense, so that
one is to evaluate all multipoint moments (correlation functions) of §(x) and the
joint moments of «(x) and 0(x), see, e.g., [4]. Among the latter is the one-point
moment

(k(x)VO(x)) = «™ (VO(x)) = k™G, (1.3) |

where x* is the effective conductivity of the medium.

As argued by Christov and Markov [5], the solution 6(x) of the random problem
(1.2) can be expanded as a functional (Volterra-Wiener) series, generated by the
conductivity field k(x), namely,

f(x) =G -x +/K1(x - y)&'(y)d®y

+/ Ko(x — y1,x = y2)[£' ()6 (y2) = M§(y1 = y2)| By1dPy2+---, (1.4)

with certain non-random kernels T3, ¢ = 1,2,... They also proposed to truncate
this series afterwards. In Eq. (1.4) «'(x) = k(x) — (k), M5 (x —y) = («'(x)&'(¥)).
(Hereafter the integrals with respect to spatial variables are over the whole R3 if
the integration domain is not explicitly indicated.) Two types of applications for
such truncated series could be envisaged. The first is to use them as approximate,
in a certain sense, solutions of the problem (1.2). This possibility was discussed
in more detail and worked out in the case of random dispersions of spheres by
Markov [6, 7] and Markov and Christov [2]. For the dispersion under study this
kind of application will be explained and worked out in Sec. 2.2. The second is

to use such truncated series as classes of trial fields for the variational principles
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(8, 12]. This idea was developed by Markov [8] on the base of the classical principle,
corresponding to the problem (1.2), namely,

Walo() = (x(0)|76(x)") — min, (V6(x)) = G, (1.5)

min Wy = &*G? | see, e.g., [4]. For example, the simplest non-trivial class is
obtained when the functional series (1.4) is truncated after the single integral term,
1.e.

K = {e(x) | 6(x) =G -x + / Ky(x - y)n'(y)day}, (1.6)

where K(x) is an adjustable kernel. This class was introduced and discussed in
detail by Markov [8], where it was shown that minimizing W4 [0(-)] over the class
KZ&) gives the best three-point upper bound &(®) on the effective conductivity x*
1.e. the most restrictive one which uses three-point statistical information for the
medium. In order to obtain the appropriate three-point lower bound on x*, it is
necessary to consider the classical dual variational principle for the problem (1.2)
formulated with respect to the heat flux q(x) = V x &(x),

" Weld()) = (kXY x 8(x)[*) — min, (q(x)) = Q, (1.7)

min Wg = k*Q? (here k(x) = 1/x(x) and k* = 1/k*), over a class of the kind (1.6).
In Sec. 3.1 we shall derive the optimal three-point bounds for the dispersion making
use of an alternative variational procedure successfully applied in the monodisperse
case, see [8, 9, 12].

Moreover, Markov [8] showed how the earlier proposed variational techniques
could be put into this general frame. For example, the Beran method [13] is a Ritz
type procedure in which the kernel K, in (1.6) is chosen to be proportional to the
fixed (Beran’s) kernel Kp:

1
4r)x|’
where A € R is an adjustable parameter. The question of the optimality of Beran’s
procedure for the dispersion under study will be discussed in Sec. 3.2. It will be
shown that it is not optimal even to the order ¢, where ¢ is the volume fraction of
the spheres. Finally, in Sec. 4, using some of the author’s ideas of his recent work
[14], an exact c2-formula for the effective conductivity k* of the dispersion under
study will be found in a variational way.

Ki(x) = AKg(x), Kp(x)=G:-V (1.8)

2. STATISTICAL DESCRIPTION OF THE DISPERSION AND FACTORIAL
FUNCTIONAL EXPANSION

2.1. STATISTICAL DESCRIPTION OF THE DISPERSION

The system of marked random points {x;,s;} can be considered as a set
of points randomly distributed in the four-dimensional domain R x U, where
U = (0,+00). Similarly to the monodisperse case, this system is fully descrlbed
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by the multipoint probability densities Fi,(y1,...,¥n;51,...,5n), see, e.g., [1, 2, 8].
The latter define the probability

dP = Fo(y1,---,¥n;81,...,5:)d%y1 ...d°yn dsy .. .ds, (2.1)

to find simultaneously a center of sphere within the infinitesimal volumes

Yi <y <yi+dy; (2.2a)
of the spatial positions y; with conductivities 51, ..., 3, in the vicinities
s; £ § < 5 + ds; (2.2b)
of the values sy, ..., sn, respectively, i =1,..., n.
The functions Fy(y1,...,¥n;51,...,5n) define too rich a class of dispersions

whose study seems very complicated in general. That is why, if our aim is to
reach certain tangible results, one must narrow this class. The following arguments
lead in a natural way to such a simplification. Let dPy be the probability to find
simultaneously a center of sphere in each of the volumes (2.2a), regardless to the
conductivity of the latter. Obviously, dP < dPy and

dPY =fn(YI)"';yn)d3yl'~-d3)'n: (23)

where the functions f,(y1,...,¥n) are the multipoint probability densities for the
system of non-marked random points x;, i.e. they are the same that appear in the
monodisperse case, see, e.g., [8]. Then dP = dPydP*, where dP* is the conditional
probability, namely, the probability to find simultaneously a center of sphere in
the volumes (2.2a) with conductivities 5;,...,3, in the regions (2.2b) respectively,
provided a center of sphere is found in the volumes (2.2a). Hence

dP* = nu(s1,...,58n ]yl,.‘..,y,,)dsl...dsn,

where

Fn()’la---,)'nisl,---;sn)zfn(yla---:yn)nn(sla---,sn IYI)-“lyﬂ)a (24)

n =1,2... Obviously, the dependence of functions 7, upon y,,...,yn reflects the
“selectivity” of these sphere’s locations toward spheres of certain conductivities.
The consideration of dispersions in the general case, when such a “selectivity” is
arbitrary, seems a hopeless problem. That is why we adopt now the following
simplifying assumption concerning the structure of the dispersions: There ezist
no locations in the space R® which possess selectivity toward spheres of certain
conductivities. Hence we assume that

nn(sl»---:sn ')'1,---,}’11‘):Pn()’l»---»)’n)
or, according to (2.4),

Fn()’ls---a}'n;sl)-uasn) = fn(}'l,---,yn)Pn(sly'-wsn)’ (25)
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which means, as a matter of fact, that there is no correlation between location and
conductivity of the spheres. The functions P,(s,,...,s,) are the multivariate prob-
ability densities of conductivities of spheres, regardless to the spatial positions of the
latter; they give the probability d Pg of n arbitrarily chosen spheres of the dispersion,
having conductivities in the vicinities (2.2b), to be dP§ = Po(s1,...,5n)dsy .. .dsy,.

Since the dispersions under study are assumed statistically homogeneous and
isotropic, the system {x;} has the same properties. Hence, in particular, f; = n
and fr = fe(¥2,1,--.,¥k,1), where y; ; = y; —y; and n denotes the number density,
i.e. the mean number of points x; per unit volume. Obviously, n = ¢/V,, where
Va = 4§7ra3 is the volume of a single sphere. Moreover, we shall assume, as usual,
that fi ~ n* ie. fi has the asymptotic order n* at n — 0, k = 1,2,..., see [8].
We shall note also that the assumption of non-overlapping of spheres yields

fe(¥1,.-,¥) =0, if |yi—y;|<2a forapair i%#j.

Taking into account this assumption and (2.5) for the first pair of probability den-
sities F; and Fo we have

Fi(y;s) =nP(s), Fay1,y2;s1,52) = n?go(r)Pa(s1, 52), (2.6)

where P(s) = Py(s), r = |y2~y1| and go is the zero-density limit of the well-known
radial distribution function g(r) = fa(r)/n?, i.e. g(r) = go(r) + O(n).
Let '
P(x;8) = Z(S(Jc — x;j)6(s — 85) (2.7)
b

be the Stratonovich random density field generated by the system of marked random
points {x;,s;} (see [15, 2]). According to Eq. (1.1) the field x(x) can be written
then as

k(x) = (k) +/ (Kys = km)h(x — y)¥'(y;s)d°y ds,. (2.8)

where ¥'(y;s) is the fluctuating part of the field ¥(y;s). (Hereafter the integrals
with respect to the mark s are over the semiaxis (0, +00).) The random field ¥(x; s)
is uniquely defined by the random set {x;,s;} and vice versa. In particular, the
multipoint moments of ¥(x;s) can easily be expressed by means of the probability
densities Fj:

(¥(y; ) = Fily; s) = nP(s),
(Y(y1;s1)¥(y2; 52)) = Fi(y1;51)8(y1,2)8(s1,2) + Fa(y1, y2; 81, 82), (2.9)
(V(y1;51)¥(y2; 52)¥(y3; 83)) = Fi(y1;51)6(y1,2)8(51,2)8(y1,3)6(s1,3)
+3{6(y1,3)8(51,3)F2(¥1,¥2i 51, 82)}s + F3(y1,¥2,¥3; 51, 52, 53),

etc., see [1, 2], where {-}, denotes symmetrization with respect to all different
combinations of indices in the brackets, s; ; = s; — s;.
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2.2. ON THE c¢2-VIRIAL SOLUTION OF THE PROBLEM (1.2) FOR THE DISPERSION

Similarly to the considerations in [6, 7] (for monodisperse case) and [2] (for the
dispersion of spheres with random radii), it is reasonable to develop the random
temperature field #(x) in the following functional series

8(x) = To(x) +//T1 (x—y, s)Af;)(y; s)d’yds

+////T2(X“YI,X_Y2a31,52)A(2)(YI,)’2;3D32)dsxl-dayz dsydsay+- -+, (2.10)

where

AP =1, AP(yis) =v(y;s),

AP (Y1, YEs 51, 88) = Y(y1; s0)[W(y2; 82) — 6(¥2.1)8(s2,1)]  (2.11)
o [(yr; sk) = 0(ye,1)0(sk1) — - = 8y k-1)0(sk k1)), £=2,3,...,

are the random fields, generated by the random density field ¥(x; s), and called in
[7] factorial fields. The kernel T} in (2.10) can be easily expressed by means of the
first k kernels of the series (1.3). According to a basic result of (7], the series (2.10)
is virial in the sense that the truncation after the p-tuple term of its gives results
for all multipoint moments of the solution #(x) to the random problem (1.2), which

are correct to the order ¢? provided the first kernels 7;, i = 0,...,p, are properly
identified. A general procedure-for the identification of the kernels 7; is described
in [2, 6, 7]. |

Since our aim is the evaluation of the effective conductivity «* to the order
¢?, we are interested in the solution of the problem (1.2) to the same order. To
simplify the analysis, after [2, 6, 7] we render the series (2.10) nZ-orthogonal in the
sense that the averaged value of the product of any pair of its different terms has
the order o(n?). To this end we introduce the following linear combinations of the
factorial fields (2.11):

DY =1, DY(y;s) = AP (y;s) = nP(s) = ¥'(v;9),
D,(pz)()’uYz; 51,82) = ASp2)(y1,Y2;51, s2) = n’go(y2,1)Pa(s1, 52)
—n?go(y2,1)Pa(s1,2)[DS(y1; 51)/ P(s1) + DY (y2; 82)/ P(s2)],

Dg‘)(yl, e Yii 81, .,sk) = Asbk)(yh - Yk, 81, .'.,81,), (2.12)
k =3,4,... As a consequence of Eqgs. (2.9) and (2.11) it can be easily verified that

<D$)(y;s)> =0, <D.(/,2)(Y1,Y2;81,82)> = o(n?), (2-13a)
(D (v1;51)D (v2,¥3: 3, 53) ) = o(n?). (2.13b)
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Since the series (2.10) is virial, these relations suffice to claim that the fields (2.12)
form an n?-orthogonal system. Then let us truncate the series (2.10) after the
four-tuple integral term. Thus we obtain the kind of the ¢?-solution of the random
problem (1.2) for the dispersion. In the truncated series we rearrange the terms in

such a manner that only the n?-orthogonal fields D‘(pl) and Dfpz) enter:
0(x) =G -x +//T1(x -y, s)D(l)(y; s)d’yds

/// To(x —y1,x - )’2,31,82)0 (}’1,}'2,81,32)d y1d%y2 dsidsy.  (2.14)

The new kernels 71 and 73 here (no new notations are used for them) are linear
combinations of the kernels Ty, 77 and T5 of the series (2.10). The zeroth-order
term in (2.14) is indeed G - x, since Dfpl) and D&,z) are centered and (Vé(x)) = G
see Egs. (2.13) and (1.2).

The identification of the kernels 77 and T3 can be performed by a procedure,
proposed originally by Christov and Markov [5], see also [2, 6, 7). It consists in
inserting the truncated series (2.14) into the random equation (1.2), multiplying the
result by the fields D(p ), p=0,1,2, and averaging the results. In this way a certain
system of integral- dlﬂ'erent.lal equations for the needed kernels of the truncated
series can be straightforwardly derived. Here we employ an alternative method,
recently proposed in [14] for the monodisperse case. Namely, the truncated series
(2.14) will be inserted into the classical variational principle (1.5) as a class of trial
fields, varying the kernels. Since this class contains the actual temperature field
to the order ¢2, the obtained equations for the optimal kernels 7} and T, are the
same as those for the needed kernels in (2.14). In particular, this procedure leads
in passing to the exact determination of the effective conductivity to the order c?.

In what follows we shall need also the following formulae for the moments of
the field (2.12):

(D (y151) D5 (v2; $2)) = nP(s1)6(y1,2)8(s1,2) — n*Ro(¥1,2351,52),  (2.15a)

(D155 D (323 52)D (va3 39)) = nP(s1)8(31,2)8(51,2)6(71,3)8(51,)
—n?3{6(y1,2)8(s1,2)Ro(y2,3; 82, 83) }s, (2.15b)
<D,(f)(y1,y2; s1,52) D\ (v3; 83) DY (ya; 34)> |
= <D.(¢,2)(Y1,Y2;81,32)0.(,,2)(}'3,)!4;83,34)> = n*go(y2,1) P2(51, 52) (2.15¢)
X [6(y3,1)8(53,1)6(y4,2)6(54,2) + 8(y4,1)6(54,1)6(y3,2)6(s3,2)],
<D,(¢,2)(}'1 Y25 81, 32)D,(p2)(y3; Y4; 53, 84)0,(,,1)()'5; Ss)>

= n®go(y2,1) Pa(s1, 52)[6(¥5,1)8(s5,1) + 6(¥s5,2)6(s5,2)] (2.15d)
x[6(y3,1)6(53,1)6(y4,2)6(54,2) + 6(y4,1)6(54,1)6(y3,2)8(53,2)],
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where
Ro(y2,1;51,82) = P(51)P(s2) — go(ly2.1]) Pa(51, 52) 5 (2.16)

they are correct to the order n? and represent straightforward consequences of
Egs. (2.9), (2.11) and (2.12).

3. VARIATIONAL THREE-POINT BOUNDS

3.1. THE OPTIMAL THREE-POINT BOUNDS FOR THE DISPERSION

It is natural to begin the consideration of the classical variational principle
(1.5) on the simpler class of trial fields that it yields when the factorial series (2.14)
is truncated after the one-tuple integral term. Namely, we introduce the class

T,&l) = {O(x) | (x) =G -x +//T1(x -y, s)D'(pl)(y;s) d’y ds} , (3.1)

where T1(x, s) is an adjustable kernel. Obviously, this class contains the actual
temperature field to the order ¢ only. That is why one can obtain the exact value
of effective conductivity x* to the same order only, together with certain bounds
on k* for the higher order of c.

This class is the counterpart of the class (1.6). Due to Eq. (2.8), the classes
(1.6) and (3.1) coincide: if a transition from &’(x) to ¢’(x) is performed according
to Eq. (2.8), the kernel Kj(x) is transformed into the kernel Ti(x,s) by means of
the convolution with the characteristic function h(x):

Ti(x,s) = (Kys — km) (h*x Ky) (x) = (Kys ~ nm)/h(x -y)Ki(y)d®y. (3.2)

Consequently, the upper bound on x*, obtained from the restriction of the func-
tional W4 over the class T( ) coincides w1th the optimal third-order bound &(3), see
Sec. 1. Moreover, due to Eqs (2.8) and (2.9), we can claim that the bound x(s) is
the best one for the dispersion which employs the statistical information provided
by the two- and three-point probability densities F and F3.

Making use of Eq. (2.8) and the formulae (2.15) for the moments of the fields

DE;), the restriction W‘gl) [T1()] of the functional W, over the class (3.1) becomes

Wf‘l)[Tl( )l = WA = (k) G* + n (k) {//lVTl(z s)|2P(s) d®z ds

-n /ﬁ‘/ Ro(21 — 22,81, Sz)VTl(Zl,sl) . VT1(22, 82) d321 d322 dsl d82}
+2nG- { //(K,s — km)h(2)VT\ (2, 5)P(s) d°zds
—-n // (Kfsl - !Cm)fo(z; S),Sg)VTl (z, 82) daz dsl dSQ}
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+n { /(Kfs — Km )h(2)|VTi(z, 5)|*P(s) d°z ds

-n [2////(1{,31 — Km)h(21)Ro(22,1, 51,52) VT (21, 51)

. VTI (22, 82) d321d322 d31 d82

+ // Fo(z; 51, 82)|VTi(z, 82)|? d°z ds; d82]} + o(n?), (3.3)

whei'e
Fo(z; 81, 82) = / h(y)Ro(z — y; 51, 52) dy. (3.4)

Hereafter the differentiation is with respect to the appropriate spatial variable.
The optimal kernel Tj(x, s), i.e. the solution of the Euler-Lagrange equation

for the functional Wy), is looked for in the virial form
Ti(x,s) = Ti(x, s;n) = Ty 0(x, s) + T1,1(x, s) n + - (3.5)

This representation of 71(x, s) induces the appropriate virial expansion of the func-

tional (3.3):
Wz(il)[Tl()] - (") 62 + W‘Sl'l)[Tl,O(')]n + W‘gl'z)[Tllo(‘),Tl,l(-)]nz + - (36)

The functionals W and W{"®) depend on the indicated virial coefficients as
follows:

W,(,l'l)[Tl,o(-)] = Km //|VT1,o(x, $)|2P(s) d®x ds
+/ (Kys — km)h(X)[ VT 0(x,s) + 2G]- VT} o(x, s)P(s) d°x ds, (3.7)
W DIT0(), Tua() = W42 0()+2 [ P ds

X /V Akm VT 0(x,5) + (K;5 — £m)h(X)[ G + VT3 0(x,5)]} T1,1(x, 5) d°x,
(3.8a)

Wy 21100 = (K — km)Va / IVT,0(x, 5)[P(s) d®x ds
—/// (Kfs1 = Km)h(x1)|VT1 0(X2, 52)|*Ro(x1 — X2; 51, 52) d°x1 d°x7 dsy dsy
+ nm/// VT1,0(x1,51) - VT1 0(x2, 52)Ro(x1 — X2; 51, 82) d®x, d®x4 dsy dsy
-2 //{anTl,o(xl,sl) + (Kys1 — km)h(x1)[ G + VT 0(x1,51) ]} d3x, ds;
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/ VTI,o(JQ, SQ)Ro(xl - X3, 81, 82)d3X2 d32. ' (3.8b)

The optimal kernel T;(x, s) satisfies the equation 6W£1), = 0, so that we have,
in particular,

Wi DlT10(] = 0, SWIIT0(), Tia()] = 0. (39)
The first of these equations yields straightforwardly |
P(S)V . {KmVTl,O(X, 8) + (st - Iim)h(x)[ G+ VTx,o(x, S)]} =0, (310)

which is just the equation for the disturbance, T(l)(x,s), to the temperature field
G - x in an unbounded matrix, introduced by a single spherical inhomogeneity of
conductivity Kys, located at the origin. The analytic form of this disturbance is
well-known:

- Km

Tio(x,s) = T(x,s) = 38(s) G - Vep(x), A(s) = m'

(3.11)

here

— 1. _ h(y) 3
p(x) = hx* m, Le. o(x) -/md Yy
is the Newtonian potential for a single sphere of radius a, located at the origin.
(We assume, obviously enough, that P(s) # 0.)
With T} o(x, s) already found, one should vary only T; ;(x, s) in the functional
(3.8) in order to derive the Euler-Lagrange equation for the latter. However, this
is not possible, because Eq. (3.10) yields

W DI 0(), Tia()] = W 2 IT0()) (3.12)
Hence, according to Eq. (3.6) for the optimal upper three-point bound x(3) we have

1

WS VIOl + 5T VT 001"+ ofe?). (3.13)

k*G* < k®)G? = (k) G? + —
The foregoing reasoning has two implications. First, we can conclude that the
optimal upper bound () to the order c? depends only on the field T(})(x, 5); the
explicit form of T} ;(x, s) is not required at all, see Eq. (3.13). Second, the kernel
Ti(x, s) is optimal to the order c¢? if its leading coefficient T} o(x,s) in the virial
expansion (3.5) is proportional to the single-sphere disturbance field 7()(x, s). In
this connection it is to be noted that the known Ritz type procedure of Torquato [16]
leads to the optimal bound to the order c2. (For the latter the kernel T (x, s) in (3.1)
should be chosen as Tj(x,s) = AT(!)(x,s), where A is an adjustable parameter.)
This fact holds also for dispersions of radial inhomogeneous spheres with random
radii, see [17]. To the order ¢? at p > 2, however, the cluster bounds of Torquato
are not optimal even for the monodisperse case, see [9, 12].
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Repeating the above arguments with respect to the dual principle (1.7) leads to
a fully similar conclusion for the optimal lower bound, namely, that to the order ¢2
the latter is fully determined by the disturbance q“)(x s) to the heat flux Q in an
unbounded matrix, introduced by a single spherical inhomogeneity of conductivity
Kys, located at the origin.
Let

'C*

= 1 +01,;C+az,¢02+"' (3-14)

Km
be the virial expansion for the effective conductivity of the dispersion. Making use of
Egs. (3.10) and (3.11), the connection of the disturbances T(})(x, 5) and q(!)(x, s),
and the relation h(x)VT()(x, s) = —B(s)h(x)G, we easily get as a consequence of
(3.7), (3.13) and their counterparts for the dual variational principle (1.7), that

a=3N, N=NPOJ= (0@ = [A6PEds . @15
(¢}

so that the upper and lower bounds coincide to the order ¢, as it should have
been expected. After simple algebra, based on Egs. (3.8), (3.10), (3.11), (3.13) and
their counterparts for the lower bound, we get the following inequalities for the
c2-coefficient ayy:

a2,‘~3{

a3, =3 { ———ds, | (sz)M2(31,52)d32} (3.16¢)
0'/ ‘ /

ag, < azx < agm (3163')

](ISI fim dsl / ,32(52)./\42(81, 82)d82 } (316b)

where

- 1710,
Ma(s1,82) = —2—/ -55—- (r;81,82)dr (3.17)
0

is a statistical parameter for the dispersion; the function Fo(r;s;, s2) is defined in
Eq. (3.4), r = |z|.

The formula (3.15) clearly indicates that the effective conductivity * depends
on the statistical distribution of conductivity of spheres even to the order ¢. (Let
us recall that the c-coefficient a;. is independent of the size distribution for a
dispersion of spheres of random radii, see [1, 17, 18].) Moreover, it is to be noted
that in general (B(5)) # B((3)) = B(1) = (Ky — £m)/(Ks + 2km), so that the
dispersion is not equivalent to a monodisperse dispersion of sphere (with the same
sphere fraction c) of the mean conductivity K; even to the order c, see Eq. (3.15).
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3.2. ON THE BERAN'S BOUNDS FOR THE DISPERSION

According to (3.2), the Beran’s kernel Kp(x), see (1.8), is transformed into
the kernel
Tg(x, S) = (I(]S o I{m) G- ch(x) (318)

at the transition from «'(x) to ¥'(x;s). Due to Eq. (3.11), the kernel K,(x)
= MKp(x), A € R, will be optimal to the order ¢ and consequently to the or-
der ¢? also (see (3.12)), if and only if T())(x,s) = AT(x,s) for a certain A € R
and for all s such that P(s) # 0. It is shown, however, that it is possible only if
P(s) = 6(s — sg), 1.e., if the probability to find a sphere of conductivity different
of Kysg is equal to zero; in other words, for the usually considered dispersions of
spheres possessing one and the same conductivity. Hence, we can conclude that the
Beran’s bounds are not optimal even to the order ¢ for the considered dispersions.

The above arguments imply the following simple way for a generalization of
the Beran’s procedure. Namely, if we choose the kernel K(x) in the form K;(x)
= A(s)Kp(x), see (1.8), where now A(s) is an adjustable function, then the optimal
bounds to the order ¢? will be obtained.

Let us note that the Beran’s bounds are more complicated for the dispersion
under study. For example, the minimization of the functional (3.7) at T} o(x, 5) =
ATg(x,s) with respect to A € R leads to the following upper bound a'l‘n( By on the
c-coefficient ax:

.~ 2
ajx < ay al = Ky _ 1- (K5~ km)) ;
Ix = %1x(B)> 1x(B) Kom Kom ((KIS"—- nm)z(]{fg:_*. 2Km)) '

(3.19)

the equality sign, ajx = a‘l‘n(B), being achieved at P(s) = (s — so) only, i.e. if the
spheres have one and the same conductivity.

3.3. EXAMPLES

We shall illustrate the influence of the statistical distribution of conductivities
of spheres on the obtained c¢?-bounds (3.15), (3.16). First, we note that if we adopt
the assumption of statistical independence of the conductivities of each two spheres,
1.e.

Py(s1,82) = P(s1)P(s2), (3.20)

which sounds reasonable enough (at least in the dilute case under study), then the
form of the bounds (3.16) becomes more or less similar to that in the monodisperse
case. Namely, in the frame of this assumption

Ro(x12; 51, 82) = P(s1)P(s2)R(x12), Fo(y;s1,82) = P(Sl)P(Sz)Fo(Y),

where

R(x12) =1 = go(x12), Fo(y) =/"(1'C)R(x ~y)d’x
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are the same functions that appeared in [8] when dealing with the monodisperse
case. Then the formulae (3.16) simplify:

b 150 (=)}

Kj = K .
ad, =3 {N'~’ +{B*(3)) —f—é—"—mg} : (3.21)
where - -
1 [Fy(r), A2
0 2

is the same statistical parameter as in the monodisperse case, see [8]. In particular,
if the spheres have non-random conductivity k; = Ky, then

ay, = 36° {1 + kc—]mz} , a3, = 3p° {1 -+ -[flmz} : (3.23)
Kt Am
where (k] = Ky — km, B = B(1) = [k]/(k; + 2km), see [8] again, which coincides
with the monodisperse result of Markov [8]. Under the assumption (3.20) we shall
consider the following two examples. .

3.3.1.. “Triangular” distribution. Since the conductivity Ky = K;5 > 0, it is
impossible to adopt the popular Gaussian distribution. That is way we consider
the “triangular” (Simpson) distribution of X in the interval (K, K] as a certain
counterpart of the Gaussian one. Then

2Kf [1_ |]{1+K2—2Kf$|
P(s)={ Ka=Ki |~ Kz - Kj

] at R']S € [I’ﬁ,Kz],
(3.24)

0 otherwise,

where K; = (K + K2)/2. After simple algebra, based of Egs. (3.15) and (3.24),
we get :

a;x =3N, N=1+

o [4(», +2)In(2y + 4)

(12 - @) +4) n(y(2 - @) +4) - (12 +0) + H (2 +w) + 4)],  (325)

where ¥ = Kf/km and w = (K3 — K1)/K; is, so to say, the “divergence” of
the non-dimensional sphere conductivity. Since K > K; > 0, then ¥ > 0 and
0<w<2

Similarly, with Eq. (3.20) taken into account, the bounds (3.16) read

ahe = 3{N? + T(1,0)A(r,w)m2}, afe = 3{N?+ (7~ DA(y,w)ms}, (3.26a)
where

T(y,w)=1- 73-2- (2 -w)In(2 = w) + (24 w) In(2 +w) - 4 1n-2], (3.26b)
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A(y,w) =1+ 7;—32 2(2y + 7) In(2v + 4)
—(v2-w)+ ) In(v2 - w) +4) = (7(2+ w) + 7) In(7(2 + w) + 4)] . (3.26¢)

The quantities a;., a'l‘K(B), a'z,; and a}, as functions of the parameter w are
shown in Fig. 1 and 2 for ¥ = 5. The “well-stirred” case go(r) = 1 at r > 2a
is considered, when m; = 5 — $In2 & 0.14045, see [8]. In Fig. 1 the value of
approximation a1x = 3(y — 1)/(y + 2) for a1, is also given, which corresponds to
the rough assumption that the dispersion is replaced with a monodisperse one of

1.7:
1.651

1.6 :

0 0.5 1 1.5 2

Fig. 1. The variations of the c-coefficient a1, of the effective conductivity of the dispersion with
“divergence” w in the “triangular” case (v = Ki/nm = 5); ayx — the exact value (3.15); a‘l‘“( B)
— the Beran's upper bound, see (3.27); a;x — the “monodisperse” approximation

1.5 :b
) agn .
1.25¢
1 .,
0 0.5 1 15 5 Y

Fig. 2. The variations of the c>-bounds a} . and a, of the effective conductivity of the

dispersion with “divergence” w in the “triangular” case (v = Ky /xm = 5)
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sphere’s conductivity that equals the mean value K; (the “monodisperse” approx-
imation). It is seen that this approximation is non-realistic; it is only justified at
the limit case w — 0. The dependence on w of the upper Beran’s bound a*

which now has the form 1x(B)>

P N T e O
1x(B) =7 72v3w? 4+ 8(y = 1)3 (v +2)’

(3.27)

is plotted as well in Fig. 1.
3.3.2. A Dispersion Containing Two Kinds of Spheres. Consider the case when
there exist only two kinds of spheres in the dispersion, having the conductivities

Kffl), rc(fz) and volume fractions ¢y, ¢a, respectively, ¢ = ¢} + ¢3. Then

P(S) = plé(S - 3(1)) +p25(s _ 3(2)),

where s0) = g )/I&, pi =cife,i =12, Ky = pi1& k! )+p n(z). In this case the
c-coefficient ay, becomes
a1x = 3(p1B1 + p2P2),

where R0 i
' y t
YO N A S Ll SV, S
= [(s = , Q= ——  1=12.
ﬂi ﬂ( ) f;)-‘-?nm a.+2 1 Kom

Similarly, the bounds (3.16) on the c-coefficient az, read

2
aze =3 Z(Piﬂi + (p101 + paag — l)ﬂ,?mz).

Let us note that the dispersion under study represents a three-phase medium:
in the matrix two types of spherical particles of different conductivities are dis-
tributed. The generation of the above formulae for n-phase media of this kind is
straightforward.

4. VARIATIONAL DERIVATION OF ¢2-FORMULA FOR THE EFFECTIVE
CONDUCTIVITY OF THE DISPERSION

Consider now the series (2.14) as a class of trial fields:

Tf) = {0_()() | 6(x) =G -x +//T1(x - y,s)Df;)(y;s) d*y ds

+////T2(x - ¥Y1,X— yz,Sl,sz)D,(pz)(Yu}’z;sl,Sz)dsn d’y; ds dsz} , (4.1)
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where now the kernels 71(x, s) and T5(x,y, s1,52) are adjustable. Using the for-
mulae for the moments of the fields be‘) and D'(f), see Eqgs. (2.15), the restriction

Wf) [T1(-), T2(-, -)] of the functional W4 over this class becomes
W (), Ta(, ) = Walror = WL+ W (1), (-, ),
where
W,(‘z) [Tl('),T2('1’)] - "2Nm////go(y?.1)P2(81,82)[|V:T2(x‘y1:x‘y%3hs2)|2

+V:To(x — y1, X — y2,81,82) - V. To(x — y2,x ~ )'1,82,31)] d®y, d3y; dsy ds;

+ 2n2////go(y2|1)P2(81,32) [(K,sl — Km)h(x - y1)VTi(x — y3, 52)

+(Kys2=£m )h(x=y2)VTi(x—y1, 81)] VT2 (x—y1,X=y32, 51, 52) d°y; d®y2 ds; ds;

+n2////90(?2.1)P2(81,82)[(1{131 ~ km)h(x = y1) + (K752 — &m)h(x — y2)]
X [IV,Tg(x —¥Y,X—Y2, 81,32)'2 + V&‘TZ(X - YL X—-Y2,8, 52)

V:Ta(x — y2,%X — y1, 82, 51)] d°y1 d®y, ds) dsz + o(n?).

The optimal kernels Tj(x,s) and T3(x,y, s1,82) are looked for again in the
virial form (3.5) for 77 and

T2(x) Y, s1, 32) = T2(xl Y, 51,82, n)
= T2,0(xa Y, s, 32) + T2,l(x»Y) 81, 82) n+-.--
for T, which implies the respective virial expansion of the functional Wf(‘z), namely,
W (), Ta(-, ) = (8) G2 + WS [Th0()] n

+ Wf’z) [T1,0(-), T1a(), T2,0(:, -)) n* + o(n?), (4.2)

where

WD [T1,0(), Tia (), Taof-, )] |
= W T,0(), Tia O] + W3 [T0(), Tool, )]s (4.3)

here W‘gl'l) and Wf‘l'z) are the virial coefficients from Eq. (3.6) for which, let us

recall, Eqs. (3.11) and (3.12) hold. Hence, the minimization of the functional W‘,(‘z)
is reduced to that of the functional

W T, ) = WP [TO(), Ty o, )
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The Euler-Lagrange equation for the latter is

Pz(sx,sz){ﬂm(vz, + Vz,) - [go(zl - 22)(Vz, + VZQ)TZ,O(ZI»ZZ)SI,-‘Q)]

+ (Vzl + Vz,) . [90(21 —— zz)[(K]sl -— Icm)h(zl)VT(l)(22,82)
+(Kys2 = Kim)h(22) VT 21, 81)) |
+ (Vzl + Vz,) . [go(zl - 22) [(K;s; - @m)h(zl) + (1\"!32 - Km)h(22)]

+(Vz, + Vz,) To0(21, 22, 51, 52) ]} =0 (4.4)
with the notation
T.0(21, 22, 81,89) = T3,0(21, 22, 81, 52) + T2,0(22, 21, 52, 81).

Taking into account that (Vz, + Vz,)g0(21 — z2) = 0, an appropriate change
of variables allows to recast Eq. (4.4) as

go(2)Pa(s1, sz){nmA,i‘z,o(x, X =8,01,8)
+Va [(Kys1 = km)h(x) VT (x 2, 82) + (K 82— km )h(x—2)VTM(x, 51)] (4.5)
+Vz- [[(K;sl — km)h(x) + (K82 — £m)h(x - z)] V,’fg'o(x,x - 2, 81,32)] } = 0.
Similarly to the monodisperse case [5], the solution of Eq. (4.5) is

Tg,o(x,x —2Z,81,82) = T?(x,s,;2, 59) — T(l)(x, 51) — T(l)(x —~z,8), (4.6)

where T(*)(x,s;1;y,s2) is the disturbance to the temperature field G - x in an
unbounded matrix of conductivity «,,, generated by two spherical inhomogeneities:
one of conductivity Ks; located at the origin, and the other of conductivity K;s3
located at the point y.

Making use of Eq. (4.4), the minimum value of the functional Wff” can be
recast now in the form in which the field 7% o(x,y, 51, 52) enters linearly:

min Wﬁm [T2,0(-,7)] = n2////go(zl — 29)Py(s1, 52)

X [(Ky81 = km)h(z1) VT (23, 83) + (Ky52 = K )h(22) VT (24, 51) ]
. (Vz, + Vz,)Tglo(Zl y &9, 81, 82) d3zl d322 dsl d82

= n? /// Pa(s1,52)(Kss1 = Km)g0(y)R(x)VTH(x — y, 53)
(V.T(x, 513y, 82) = VT (x,81) = VT (x — y, 55)] d®x d®y dsy ds,.  (4.7)
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Taking into. account Egs. (4.2), (4.3), (3.11), (3.12) and the formulae

/h(x) dax/go(y)VT(l)(x - y, EE VT(I)(x, 51)d%y =0,

Py(s1, 82)/h(x) daX/Qo()’)‘IVT(”(X — ¥, 82)* d®y = 30%(s2)Ma(s1, 52) V2,
one finds for the ¢2-coefficient
a2 = 3N? +0’2,;,

where
1 K¢sy — &k
afu — V—£//P2(S1,32)f—;—m dsidsy

m

X /h(x) d3x/go(y)V,T(1)(Jf ~-y,82) - V.TP(x, 51y, 55) d°y. (4.8)

Let us recall that the latter result follows from the fact that the solution of the
random problem (1.2), asymptotically valid to the order c?, is one of the trial
fields from the class TP), see Sec. 2.2, over which the energy functional W4([8(.)]
is minimized. The formula (4.8) is the counterpart of the formula (3.9) in [14] in
the monodisperse case. Note that the formula (4.8) contains absolutely convergent
integrals only, see [10, 11} for details, so that no “renormalization” is needed, similar
to that used by Jeffrey [19]. . |

Finally, it is to be noted that the coefficient T} 1(x, s) in the expansion (3.5)
cannot be found within the frame of the above performed variational n?-analysis.
For the full solution of the random problem (1.2) to the order ¢? in the explained
above sense it is necessary, however, to know the virial coefficients T} o(x, s),
T1.1(x, s) and Ty 0(x,y, 51,52): for example, when evaluating the two-point corre-
lation function (8(x)6(y)), the convolution [T} o(x —y,s)T1,1(y,s)d3y appears,
see [6] for details. That is why, in order to obtain function T} (x,s) and as a
consequence the full statistical solution of problem (1.2) to the order ¢?, either the
higher degrees of n in the virial expansion of the functional W should be consid-
ered or the procedure of Christov and Markov [5] should be employed instead. In
the latter, however, conditionally convergent integral in the formula for the effec-
tive conductivity will show up with a correct mode of integration extracted in the
course of the appropriate solution, see again [2, 6, 7] for details.
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