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ON THE BRITTLE FRACTURE OF A PIN-JOINTED FRAME
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The aim of the paper is to report some preliminary results concerning rupture
through damage accumulation of a simple pin-jointed frame under tension. Under the
elastic and stationary creep conditions {(at small strains) this is a well-known problem
of strength of material and mathematical theory of creep. Here we assume additionally
that damage also evolves in the rods, obeying the classical Kachanov’s law, which es-
sentially complicates the problem. In the brittle case, the only one, considered in detail
in this paper, the problem is formulated eventually as a coupled nonlinear system of dif-
ferential equations for the damage variables in the rods. This system, in general, does
not admit a close form analytical solution unlike the classical examples of continuum
damage mechanics, so that numerical treatment is needed. That is why the special,
but realistic case of a common “damage exponent” of the rods is only considered and a
simple explicit solution for the damage evolution is found and discussed in more detail.
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1. INTRODUCTION

Consider the pin-jointed frame, shown in Fig. 1. The tensile force F is applied
in the direction of the rod BD. Finding the stresses in such a frame is a well-known
exercise in strength of materials, provided the rods behave elastically, see, e.g., [1]
and many other textbooks on the subject. If the rods’ behaviour is governed by
stationary creep law equations, the stresses in the system and, in particular, the
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creep rate of the loaded node D, are first found by Kachanov [2], provided the creep
deformation is small (so that the so-called elastic analogy applies), see also [3].

Our aim here will be a more detailed investigation of the strain and failure of
the frame when damage in the rods appear and evolve following some of the classical
schemes of continuum damage mechanics initiated and developed by Kachanov [4,
5], see also [6] for further results and generalizations. Since the rods undergo
different stresses, damage within them will reach different levels and will thus lead
to a more complicated picture of stress and damage distribution than the ones
treated in the classical examples of damage mechanics. In this preliminary stage
of our investigation, only the purely brittle case will be ‘dealt with. The problem is
rigorously posed in Section 2. But even in this simpler case, unlike the examples of
damage mechanics, no simple analytical solution will be possible, since the problem
under study will be eventually formulated as a system of two coupled nonlinear
differential equations governing the damage evolution in the rods which admits, in
general, only numerical treatment. That is why the particular, but realistic case
of a common “damage exponent” v of the rods is only considered in Section 3. In
this case it appears that the damage parameters of the rods are proportional and
a simple explicit solution for the damage accumulation is found in Section 4. This
solution is discussed in more detail in the final Section 5.

Vr

Fig. 1. The pin-jointed frame under study

2. POSING THE PROBLEM

Let all the rods possess in their undamaged state one and the same cross-section
So and Young’s modulus E¥. Denote as usual by 3 the continuity parameter, so
that w = 1 — ¢ is the damage variable. In the brittle regime under discussion the
damage accumulation in a single rod (under uniaxial tension) is governed by the

well-known Kachanov’s law )
. 0o
w=C|—]} , 2.1
(%) @
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where o9 = F/Sp is the applied stress, C and v are material constants {4, 5]. The
brittle time-to-rupture, ¢}, of such a single rod is given then by the known relation

1

= e -
see again [4, 5]. Hereafter the dimensionless time-scale
T =1/t (2.3)

will be used, since ¢ is a natural time-unit for the problem under study.
To derive the damage evolution equations in the rods, let us write down first
the only non-trivial statics equation for the problem, namely,

2Tycosa+T=F, (2.4)
as well as the equation of the compatibility of the strains in the nod D, namely,
g1 =¢ccos’ . (2.5)

Hereafter all quantities with the subscript ‘1’ refer to the rods A’D or A”D, and
those without a subscript — to the central rod BD. Hence, in particular,

01=T1/So, UZT/S(), 0’0=F/So (26)

are the stresses in the rods, Ty and T being the respective magnitudes of the tensile
forces in them, see Fig. 1; oy would be the stress in any of the rods if they were
single and subjected to the same force Fy. Note also that dealing with brittle
fracture solely implies that strains are small, so that the angle a in Egs. (2.4) and
(2.5) remains constant — something that does simplify the study (in the ductile
and mixed brittle-ductile failure this angle changes considerably during loading and
hence an additional non-linear equation involving this angle should be added to the
basic equations).

Assume next that the rods A’D and A”D have the same “damage exponent”
v but different material parameter C; in the Kachanov’s law (2.1) than the central
one BD.! This means that Eq. (2.1) applies for the central rod BD, but in the two
“side” rods A’D and A”D damage accumulates according to the law

d)l = Cl (‘;—1) y ' (27)

where C # C;. The reason to take different material parameters C and C) is that
the well-known elementary elastic solution for the frame under study suggests that
the central rod is obviously more stressed than the two “side” ones, i.e. ¢ > 0;.

1Note that the more general case when the exponents v of the rods differ as well can also
be treated without much effort, though no closed form solution is possible. This case will be
considered elsewhere.
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This means that the central rod will fail faster. That is why, to make the frame
more “damage-resistant”, one should accordingly choose for the central rod CD a
more “damage-resistant” material which accumulates damage slower, i.e. C < C;
at one and the same fixed damage exponent ». Hence for a given v and C;, the
dimensionless time-to-rupture of the frame

=t} )ty = T(C/C)) | (2.8)

will be a function of the dimensionless parameter C/C), as we shall see below. As
a matter of fact, the function 7 will be of central importance in our study, since
its behaviour (local extrema if any, monotonic decrease and/or increase, etc.) will
allow us to draw non-trivial conclusions, concerning optimal “damage-resistant”
design of the frame under study, i.e. to get its time-to-rupture 77 as big as possible
through an optimal choice of the damage material constants of the rods.

3. BASIC EQUATIONS

Let us now write down the above formulated basic equations in a dimensionless
and more convenient form.
First, the equation of statics (2.4) in such a form reads

25y cosa+s=1, (3.1)

where .
sy =0y/og, s=afog, (3.2)

with oy and o defined in Eq. (2.6).
Next, the damage law (2.1) can be recast as

dw 1 s\’
dr ~ 1+v (E) ! (3.3)
see Egs. (2.2), (2.3) and (3.2). In turn, the appropriate damage law for the side-rods

becomes " ) ,
L s
= (o) (34)

where the dimensionless quantity

§=C/Cy (3.5)

determines, so to say, the relative “damage-resistance” of the central rod as com-
pared to that of the side ones (at a fixed “damage exponent” v for all rods, let us
recall).

To find the stresses in the rods and thus the damage accumulation rates by
means of Egs. (3.3) and (3.4), use is to be made now of the strain compatibility
condition (2.5). Recall to this end that the rods are assumed to possess, in the virgin
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state (¢ = ¢¥; = 1), one and the same Young’s modulus EY. Two possibilities are
open now.

First, as the simplest and rough approximation, one can assume that the
Young’s modulus is not influenced by damage. Then, from Eq. (2.5) (dividing
both its sides by EV0yp), one gets

sy = scos’a. (3.6)

Together with Eq. (3.1), the latter relation yields the well-known elastic stresses in
the rods, namely,

o 1 o cos? a

— = (3.7)

s=;;= 1+2cosda’ 81=0,0- 1+2cos3a’

which therefore are not affected by the damage process taking place in the rods.
In this way damage accumulation in them is not coupled in the case under study,
cf. Egs. (3.3) and (3.4), and hence they can be solved separately. The failure will
have two distinct stages: in the first one all rods will sustain load (¥, ¥; > 0); in
the second stage either the central or the two side rods will already have failed,
depending on the ratio &, see (3.5), so that the eventual failure will happen when
the last of the rods will fail as well. Of course, these two stages will appear in
the general case as well, but here, when damage accumulation in the rods is not
coupled, the investigation and the appropriate formulae for the time-to-rupture are
not difficult to be derived; that is why they will be skipped here. |

Instead, let us treat in more detail the more realistic assumption when the cur-
rent Young’s modulus is influenced by damage, i.e. E = E(%). (This assumption,
as well as the idea to measure damage through the observed change in the elastic
moduli of a damaging solid, is discussed in detail in [6], where the appropriate
references are given as well.) The simplest approximation is to assume that

E(¥)=E'Y = E'(1 —w) (3.8a)
for the central rod and, accordingly,
E(p))=E"¢Y, = E'(1 —wy) (3.8b)

for the two side-rods, E' denoting the Young’s modulus for the virgin rods. It
is noted that such an assumption is natural enough if one recalls the original
Kachanov’s interpretation of the continuity parameter i as the fraction of the
undamaged rod cross-section area that only sustains load. Also, this assumption,
roughly speaking, reflects the well-known Voigt approximation in mechanics of com-
posite media, if the damage parameter w is treated, somewhat loosely of course, as
the void volume fraction in a porous solid. In this case, noting that

0’1-=E"¢'161, 0’=E”1/)6

in virtue of Eqgs. (3.8), one finds from Eq. (2.5)

71 =7 cos?a (3.9)
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which, when coupled with Eq. (3.1), yields

P s = Y cos? a
P + 29 cosd a T U+ 21, cos3 a

8= (3.10)

Not surprisingly, for undamaged rods (¥ = %; = 1) the purely elastic solution,
Eq. (3.7), is recovered once again from Eq. (3.10).
When inserted into Egs. (3.3) and (3.4), the stresses from Eq. (3.10) now lead

to the basic system of coupled differential equations that describes the damage
accumulation of the rods, namely, :

dy

i -f ¢’¢ )) )
dr (s (3.11a)
dyy 1
S =2 W),
with the notations
f(¥, 1) = (¢+2¢1 cos®a)™” = ¢ - (3.11b)

cos"’"

since w = 1 -9, wy = 1—1¥,. The system (3 11) should be solved under the natural

initial conditions
1/):':1, ¢1=1, at T=0, (312)

reflecting the fact that the rods are undamaged at the moment ¢ = (0 when loading
is applied.

4. SOLUTION OF THE BASIC SYSTEM OF EQUATIONS (3.11)

The solution of the basic initially-value problem (3.11) - (3.12) is elementary.
First, dividing equations (3.11a) gives

dy L
T =A, ie v=Al—-1)+1,

or
w:l—t/):Awl, w1=1—¢1. (4.1)

Hence an important consequence of the assumption of common damage expo-
nent v of the rods is the fact that their damhage parameters are proportional, with
the proportionality factor A, given in Eq. (3.11b). In this way it turns out that the
value of the factor A, i.e. of the dimensionless ratio £ = C/C}, determines which
of the rods will fail first. More precisely:

C/C

2
pvT <1 or C<Cicos” a, | (4.2a)

a) ifA<1, ie. A=
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then the two side-rods fail simultaneously first;

elle

b) fA=1, ie. A= ——=1or C=C( cos? a, (4.2b)
cos? o
then all rods fail simultaneously;
c) if A>1, ie A= C/L,?l >1 or C> C;cos? , (4.2¢)
cos? o

then the central rod fails first.

It 1s noted that these results are natural enough since, e.g., the inequality
(4.2a) means that the “damage-resistance” of the central rod is considerably higher
than that of the side ones because the constant C of the former is considerably less
than that of the latter. The central rod accumulates thus damage slower than the
other two and, not surprisingly, it ruptures last.

Now, introducing Eq. (4.1) into the second of Egs. (3.11a) gives

dy 1 / " -V
—_—=—— (A .
=T AT A A (43)
with the constants '
A=1-A, A"=A+2cosa. (4.4)
The integration of Eq. (4.3) gives
_ A 3 v+l / u‘ v+1
T—A+2cosaa[(l+2cos a) (4 + AT (4.5)

Solving Eq. (4.5) with respect to %, and using Eq. (4.1) lead to the needed expliéit
time-dependence of the rods” damage parameters during the loading in the frame
under study. ‘

5. DISCUSSION AND CONCLUDING REMARKS

Consider now in more detail the above mentioned three particular cases a)
— ¢), see Egs. (4.2), in order to determine the eventual time-to-rupture 77 of the
frame.
~ Let first A < 1, i.e. the case a) takes place. Then, at the end of the first stage
of failure of the frame, when v¥; = 0 and the side-rods fail, the damage parameter
of the central rod has the value w; = A < 1, see Eq. (4.1). As it follows from Eq.
(4.5), this happens at the moment

_ A
T A+ 2cosda

Ty

[(1+2c0% )™ = (1-2)™"] (a<). (5.1a)

In the second failure stage, when 7 > 77, only the central rod “works”, so that
one should solve Eq. (2.3) with the initial condition w = w; at 7 = 77 in order to
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find the final time-to-rupture, 77, of the whole frame, corresponding to the moment
when w = 1. Elementary calculations give

7 = TWE) =17 + (1 - A (5.1b)

with 77 given in Eq. (5.1a). (Note that in this second failure stage T' = F', so that
s=1.)

Let us point out that 77 = 0 at A =0, 1e. 77 = 1at A = 0 as it should
be. The reason is that A = 0 means that C; = oo, so that the two side-rods
fail instantaneously and from the very beginning only the central rod sustains
load. Moreover, the time-to-rupture 7; as a function of A should be increasing
in the interval A € [0, 1], since increasing A at fixed C and v (and thus at fixed
t;) implies that the parameter C; decreases; hence the side-rods become more
“damage-resistant” which increases, naturally enough, the life-time of the frame.

Next, from Egs. (5.1) one immediately finds the time-to rupture 77 in the case
b) when all the rods fail simultaneously, just putting A =1 in them:

'r; = T(b)(f) = (1 + 2 cos® a)" (A = 1) . (52)

Let now A > 1, i.e. the case c) takes place. Then, at the end of the first stage
of failure of the frame, when ¥ = 0 and the central rod fails, the damage parameter
of the side-rods has the value wy = 1/A < 1, see Eq. (4.1). This happens at the
moment :

.- _ A 3 _\v+1 3 A-1 v
T = T 9o a [(1+2cos a) (2cos a A

(A>1), (5.3a)

as it again follows from Eq. (4.5). In the second failure stage, when 7 > 77, only
the side-rods “work”, so that one should solve Eq. (3.4) with the initial condition
w = wy at 7 = 77 in order to find the final time-to-rupture, 7}, of the whole frame,
corresponding to the moment when w; = 1. Elementary calculations give

T} = TEE) =77 +2(1 = A cos® o (5.3b)

with 77 given this time by Eq. (5.3a). (Note that in this second failure stage
2T cosa = F, so that s; = 1/2cosa.)

It is noted that 77 — oo at A — oo, which again is natural. Indeed, at fixed
C > 0 (in order that the basic time-unit {; makes sense, cf. Eq. (2.2)) A — oo only
if C; — 0, so that in the limit A = oo the side-rods do not accumulate damage.
The only damage phenomenon will be in this case the failure of the central rod
which will happen at the moment

lim 77 = (1+ 2cos® @)Vt — 2Vl cos3(v ) o |
A—o00

as it follows from Eq. (5.3a).
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Combining now the formulae (5.1) to (5.3) gives

TE)(E), if € < cos? a, ‘
1 =T() = T®(E), if& = cos? a, (5.4)
TE)(E), if€ > cos? a,

which accomplishes our aim — analytic evaluation of the function 7(£), see
Eq. (2.8), that gives the time-to-rupture 7; of the whole frame for a given di-
mensionless ratio £ = C/C; of Kachanov’s material parameters of the rods (with
a fixed and common “damage exponent” v). The superscripts in Eq. (5.4) corre-
spond obviously to the three different situations a) — c) of frame failure, discussed
in Section 4, see Eq. (4.2).

For illustration the plot of the function 7§ = 7(£) for a typical angle o = 7/4
and ¥ = 3 is shown in Fig. 2.

A‘r}

L i A 4 1

- —
0 2 4 6 8 10 A

Fig. 2. Dimenstonless time-to-rupture 1'; of the frame as a function of the parameter
A= (C/C1)/cos** aat a=n/4and v =3

A more detailed numerical investigation shows that 7 is always a monotoni-
cally increasing function of the ratio C'//Cy. This means in the damage mechanics
context that for a given central rod one should add side-rods for which C) is as
small as possible, i.e. their “damage-resistance” is as high as possible. Of course,
this result should have been expected qualitatively. The above analysis allows us,
however, to draw quantitative conclusions as well, i.e. to evaluate simply the rela-
tive time-to-rupture increase of the frame as compared to that of the central rod if
it were a single one and subjected to the same tensile force F.
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