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CHRISTO 1. CHRISTOV

The paper presents the numerical implementation in 2D of a Fourier-Galerkin
expansion with complete orthonormal basis system of localized functions. The bilinear
Laplace equation is considered as a featuring example. Coordinate splitting is used to
reduce the cost of inversion of the linear matrices for the coefficients. The axisymmetric
soliton is calculated as a 2D problem and compared to a numerical solution, found by

means of a difference scheme.
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1. INTRODUCTION

Calculating the shapes of localized waves, e.g. solitons, is of importance for
the modern theory of non-linear waves. The difficulties are connected with the
unboundness of the integration domain. For example, in numerical treatment,
when using finite-difference or finite-element schemes, one has to consider large
enough domains in order to reduce the influence of the truncation (the so-called
“actual infinity”). In 1D the problems of domain size and mesh resolution can still
be tackled, although sometimes up to 20000 grid points (see, e.g. [12]) have to be
used. Clearly, in 2D, when the mesh size is at least the square of the 1D mesh-size,
it is a very hard problem.

One of the ways to circumvent the said difficulty is to employ a complete
orthonormal (CON) system of functions on the infinite interval and to devise an
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algorithm for implementation of one of the spectral techniques: Galerkin’s, pseu-
dospectral, tau-method (see [5, 3]). The successful application of the Galerkin
method requires, however, that the product of two members of the system can be
conveniently represented by means of the functions of the system. CON system
with the required properties was introduced first in [6] and applied for finding a lo-
calized solution to the Burgers equation. Later on, the numerical Fourier-Galerkin
technique was extended to Korteweg-de Vries (KdV) and Kuramoto-Sivashinsky
(KS) equations [11] and the fifth order KdV [1]. Boyd {2, 4] showed that the new
CON system can be obtained by an algebraic mapping of the Tchebishev polynomi-
als on an infinite interval, see also [3]. In this way he derived a variety of properties
of the expansion.

Employing a spectral expansion with a specialized CON basis system dras-
tically reduces the required computational resources. They can be even further
reduced if the resulting algebraic system is treated in the appropriate manner by
means of a splitting method. The aim of the present paper is the creation of an
algorithm for implementing the Fourier-Galerkin technique in 2D.

2. POSING THE PROBLEM

Consider the following generic equation (the non-linear Klein-Gordon equation)

—_u+3u2+ giﬁ.‘.@
- 0x2 = Oy?

9%u

which, as is well-known, possesses localized solutions that propagate stationary. In
the co-ordinate system connected with the center of the localized structure (the
so-called “moving frame”) one can introduce new independent variables £z — ¢;t,
n = y — cat, where ¢, ¢z are the components of the phase speed of the center of the
localized structure. Then for the stationary localized solution one arrives at the
equation
0%u d%u
—u+ 3u’+ — + 00— | =0, 2.2
(ﬂ1 ae2 B2 o (2.2)
where 3; = l—c,?. Here we consider only “subsonic” solitons for which 8; > 0. The
boundary conditions stem from the vanishing of the solution at infinity:

u—0 for &£,7— *oo. (2.3)

~ Clearly, the problem (2.2), (2.3) is a bifurcation one, since the trivial solution-
u = 0 always persists. A similar problem was treated in [14] for the classical spec-
tral method with harmonic functions in application to the sixth order Boussinesq
equation. To avoid the trivial solution, one can impose a condition at the origin of

the co-ordinate system, say,
u(0, 0) = const. (2.4)
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Strictly speaking, (2.4) will overpose.the problem unless some additional degree of
freedom is introduced, say, through an additional coefficient of the non-linear term

d%u 0%u
—u+ 3au® + (ﬁl r + P25 ) =0, (2.5)
which is to be calculated so as to fit the imposed boundary conditions at the .origin
of the co-ordinate system. The definitive relation for the new unknown is the

equation taken in the origin:
0u  u\|
u(O, 0) - (ﬂl 652 ﬂz ) ' ] . (26)
z=0,y=0

The last relation does not overpose the problem, since the equation in the
origin is not used in the scheme for u, but rather it is replaced by the prescribed
boundary condition (2.4). Thus we arrive to a boundary value problem (b.v.p.)
which does not possess a trivial solution. In addition, for the unknowns (u,«)
explicit relations are available. Then the construction of an iterative procedure is
straightforward. In some cases, however, the convergence is achieved only when a
relaxation for a is performed.

Note that the above procedure is valid only when the expected solution has
non-zero amplitude in the origin of the co-ordinate system. When this is not the
case (say, for solutions that are odd functions), one can impose a similar condition
on one of the partial derivatives of u in the origin. In order not to overload the
presentation, we skip the details of such a case and consider here only the case of
even functions.

1
3u2(0,0)

a =

¢
3. FOURIER-GALERKIN EXPANSION

3.1. THE BASIS SYSTEM OF FUNCTION IN L?[—00, o]
The first CON system in L?(—o00, c0) suited for non-linear problems was pro-
posed in [6]. The different formulas were compiled and verified in [7]. Here we cite

the necessary formulas in order to make the paper self-content.
The products of members of series are expanded in series of the system

1 w
CnC _ Cn - Cn - Cn... + Cn- -1 = n C ’ 3.1
k 2\/%'[ +E+1 +k k k—1)] f\;oﬂ k1CI (3.1)

SnSk =

1 o0
Wr [ Cntk+t — Cngk + Crcik — Crnog—1] = Z ank 1C1, (3.2)
SnCr = \/-—[ Sn+k4+1 + Sn+k + Sp—k — Sn_k-1] Z‘Ynk 15 (3.3)
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The first derivatives of the functions of the system are expressed as

dSn 1 |
4z - 3 [(nCr-1+ (2n + 1)Cs + (n + 1)Cry4],
dC, 1

dz — —5 [nSn_l + (271 + l)Sn <+ (n + l)Sn+1] .

Respectively, for the second derivatives one has

d*C, 1 ‘
T = {n(n = 1)Crz —4n’Ch_y + [n? + (n+ 1) + (2n + 1)?] C,
—4(71 + 1)2Cn+1 + (n + 1)(n + 2)Cn+2} ) (34)
d%S, 1 2 2 2 2
7 =] {n(n=1)Sa_2 —4n®Sa_1+ [P + (n+ 1)* + (2n + 1)?] S,

—4(n +1)®Saq1 + (n + 1)(n + 2)Snqt2} . (3.5)

3.2. THE GALERKIN EXPANSION

The simplest and oldest spectral technique is the Galerkin one in which the
sets of test and trial functions coincide. The main purpose of the present work is
to provide an efficient iterative algorithm for treating the linear part of the system.
For this reason we select a system with a quadratic non-linearity, for which the
Galerkin method is the most efficient. When a more complicated non-linearity is
present, then one of the pseudo-spectral techniques should be used. In addition, our
equation admits even solution. That is why, for the sake of simplicity, we consider

the following series:
n=N

u= Z AmnCm (z)Cn(y). (3.6)

n=0

3.3. THE CONDITIONS FOR COUPLING THE SYSTEM

Introducing the expressions for the derivatives in the differential equation, one
gets a five-diagonal system for each subsystem of coefficients C,, S,. The system
has to be truncated at n = 0 (no terms of negative order show up, since they
are expressed by the functions of positive order) and for certain sufficiently large
n = N. Then the problem of toupling conditions arises. Here we resort to even
functions only and the formulas are similar for the odd functions. The condition
for coupling the system for n = 0 and n = 1 comes from the very formulae of the
second derivatives (3.4)

&2C, 1

, |
e ‘-§Co +C) - '2'02, 3.7)
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d*Cy 7 3

In the framework of the Galerkin method, the truncation of the system at
n = N requires to assume that C, = 0 and Cp4; = 0. Then, for the last two
members of the series one gets the following expressions for their second derivatives:

@Co-1 _ _(n=2)(n-1),

dz?2 4
2 _
—_— 3'" 23n + ICn—l + n2Cn1 (39)
d*C n(n—~-1 In?+3n+1
2o __(_4_)(;,,_2 +n2Cp -0 0, (3.10)

Thus the second z-derivative in the governing equation (2.2) is approximated
by 5-point finite difference in the system. Denote by A;; and Ay, the respective
five-diagonal matrices which are obtained after half of the identity operator, %, is
subtracted from each of the second-derivative operators. Then the original equation
is approximated by the algebraic system

n,_N m:—M n:-N m;-M

o Z Z Z z niym.,n ﬂzmz m8@min;8mjn,

ni=0 m;=0 nz=0 m3;=0

+ (Azz + Ayy)amn = 0, (3.11)

where 3% and BY are the matrices of coefficients from (3.1) for z and y, respectively.
The system (3.11) is taken for all n # 0 and m # 0. In the origin the boundary

condition
apgo = 1

is imposed. Respectively, the system (3.11), taken at n = 0,m = 0, gives the
definitive relation for «, namely

- —bBh (—laoo +ajo ~ -020) 52 (--aoo + ap; — %002)
&= 1-—N m;-M nz—N m:-M ’

3 Z Z E z ﬁ:1m1,0 namj,0 mlnlam2n2

n;=0 m;=0 n,=0 mg_

(3.12)

~ where the unknowns @, are from the new iteration (fictitious-time stage) k + 1.
The relaxation for « is performed as follows:

o+ ok (1 — @) + Gw.

4. THE SPLITTING SCHEME

In previous works on 1D problems ([11, 1]) we used the Brent’s routine for
solving the non-linear system for the coefficients. Despite of the rather simple
expressions for the products of members of system into series in the system (see

173



(3.1) — (3.3)), using a pseudo-Newton algorithm like the Brent’s one becomes too
expensive in 2D because of the large size of the Jacobian. This justifies the search
for alternative algorithms. Here we use a simple iteration for the non-linear term.
The appropriate series representation of the products of the terms in the system
is rather “sparse,” so a lot of iterations can be easily performed. It is desirable,
however, to have the linear part approximated implicitly. We split it to reduce the
calculations. Thus we use the following scheme corresponding to the so-called (see
[15]) scheme of stabilizing correction:

&,‘j - a"

- Y= Azzaij + Ayyafj + F[afj] (4.1)
k41 =~

ai S - a.'J k
J - = Ayy[a +1 a,‘-’j]. (4.2)

Here 7 1s the time increment with respect to the fictitious time and it plays the role
of an iteration parameter. Respectively, F[a"] is the expression for the non-linear
term when evaluated with the values for a;; from the “old” iteration

nNm..

F[ak] - Z z :B:Im;, ngmg, afn

n=0 m=0
After excluding the half-time-step variable a, one gets

ak+l — o+ k+1 k
) = (e + Ayy)a*+! + Fa*] (4.3)

(B + 7 Acedyy
which converges to (3.11) in the limit k¥ — oo, when a**! — a*. The important
feature of the system (4.1), (4.2) is that it requires inversion of five-diagonal matri-
ces for which special very fast elimination- algorithms are available. We make use

here of the algorithm from [9].
The iterations are terminated when the following criterion is satisfied

|a"th - ak| < 10710,

5. RESULTS AND DISCUSSION
5.1. THE AXISYMMETRIC LOCALIZED SOLUTION

2D calculations of solitons are rarely found. That is why there are no available
cases for comparison. However, for §; = f; one can compare a cross-section of
the solution obtained by the 2D algorithm of the present work to 1D solution of
the equation when the axial symmetry is acknowledged. Hence we consider the
equation

_g2_ B9 [ ou) _
u—3u r(?r(rar)—o’ (5.1)
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Fig. 1. The axisymmetric soliton for 8; = 32 = 1 as obtained with N + 1 = 20 functions
in the spectral expansion

for which a localized solution is sought in —o0, c0. To this end we employ the so-
called Method of Variational Imbedding (MVI), proposed in [8] for the homoclinic
‘solution of the Lorenz system. To an equation of the type of (5.1), but with a cubic
non-linearity, the MVI was applied in [10]. The algorithmic problems of application
of MVI are elucidated in detail in [13] in application to the solitary-wave solution
of the Kuramoto-Sivashinsky equation. For this reason we present here only the
result for the axisymmetric soliton. Fig. 1 shows the shape of this solution alongside
with the well-known sech-solution of the 1D case. It is seen that the axisymmetric
soliton is taller (maximum height equal to 0.79735, while in 1D the maximum equals
exactly 0.5) and of slightly smaller support. The solution presented in the figure
is taken as a reference when assessing the approximation of the spectral scheme in
the next subsection. |

5.2. VERIFICATION OF ALGORITHM

The practical convergence of the method can be assessed if a cross section of
the 2D solution is taken as function of the radial co-ordinate. Fig. 2 shows the
result for different number of terms in the spectral series. Being reminded that the
maximum of solution is approximately 0.8, one sees that even 8 functions are able
to provide approximation closer to the solution than 0.3%, and 20 terms in the
series give approximation better than 0.006%. It is to be mentioned here that no
special care for optimization of the method has been taken in the present work. As
shown in [11, 1], one can further improve the approximation with fewer number of
terms by means of scaling the independent variable(s) in order to bring it closer to
the characteristic measures (length of support) of the basis functions Cy, S,.
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Fig. 2. The difference between the spectral solution with different number of functions
and the finite difference solution with 401 points in the interval [0, 9.9875)

In two dimensions the shape of soliton is presented in Fig. 3 as obtained by the
2D algorithm developed here. Note that a cross-section of this solution is compared
in Fig. 2 to the solution with radial symmetry from Fig. 1.

5.3. THE NON-AXISYMMETRIC SOLUTION

As mentioned in the precedence, the convergence of the spectral series can be
improved ([11]) if one succeeds to select the optimal scaling for the independent
variable. This is especially important when in two dimensions the coefficients before
the different highest-order derivatives differ significantly. In our case these are the
coefficients B; and B;. The optimization needs a special attention together with
an extensive set of numerical experiments and goes beyond the framework of the
present paper. Here we have only demonstrated the effectiveness of the splitting
scheme for solving the algebraic system for the coefficients. For this reason we do
not scale the independent variables even for the case shown in Fig. 4, where there
is a considerable difference between the two coefficients 83 = 1 = 1084, £ = 0.1.

In this case a solution obtained by an independent numerical technique is not
available and the convergence test is performed by the standard increase of the
number of terms in the expansion and by assessing the contribution of the last
term. Once again, employing 15 terms gives accuracy of 0.1% and 20 terms bring
the difference down to 0.01%. This means that even for one order of magnitude
difference between the coefficients of the second derivatives, 20 terms in the expan-
sion is fully enough for securing a very good accuracy. When the ratio between the
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Fig. 3. The axisymmetric soliton for 8; = 2 = 1 as obtained with M+1=N+1=20
functions in the spectral expansion

Fig. 4. The soliton for ; = 0.1, 82 = 1 as obtained with M +1=N+1 =20 functions
in the spectral expansion

coefficients f3; is still larger, one can attempt optimization of the algorithm through
different scaling of the independent variables (see [11] for the details in 1D).

6. CONCLUSION

In the present paper a Fourier-Galerkin algorithm for numerical treatment of
the bifurcation problem for localized solutions of 2D non-linear PDE 1s developed.
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To avoid the always present trivial solution, an additional boundary condition is
imposed in the origin of the co-ordinate system and a coefficient is added before
the non-linear term. The equation itself taken in the origin serves as an explicit
definitive relation for the new coefficient. The iterative procedure involves artificial
- time and co-ordinate splitting of the linear operator corresponding to the partial
derivatives. The convergence is secured through selecting the values of the artificial-
time increment and the relaxation parameter for the sought coefficient of the non-
linear term. In 2D the splitting-type procedure has a significant advantage over the
direct Newton-type quasi-linearization algorithms for solving the algebraic system
for the coefficients of the Galerkin expansion.

Results are obtained for a generic equation of Klein-Gordon’s type with a
quadratic non-linearity. The 1D an axisymmetric soliton of the equation in the
moving frame is obtained by means of two different techniques and the comparisons
give the quantitative assessment of the truncation errors of the spectral expansion.

ACKN OWLEDGEMENTS This work was partially supported by the National Sci-
ence Foundation of Bulgaria under Grant NZ-611/96.

REFERENCES

1. Bekyarov, K. L., C. I. Christov. Fourier-Galerkin numerical technique for solitary
waves of the fifth-order KdV equation. Chaos, Solitons & Fractals, 1, 1992, 423-430.

2. Boyd, J. P. Spectral methods using rational basis functions on an infinite interval.
J. Comp. Phys., 69, 1987, 112-142. ’

3. Boyd, J. P. Spectral Methods. Springer-Verlag, New York, 1989.

4. Boyd, J. P. The orthogonal rational functions of Higgins and Christov and alge-
braically mapped Chebishev polynomials. J. Approz. Theory, 85, 1990.

5. Canuto, C., M. Y. Hussaini, A. Quarteroni, T. A. Zang. Spectral Methods in Fluid
Dynamics. Springer, 1987.

6. Christov, C. I. A complete orthonormal sequence of functions in I*(~o0, 00) space.
SIAM J. Appl. Math., 42, 1982, 1337-1344.

7. Christov, C. I. A method for treating the stochastic bifurcation of plane Poiseuille

" flow, nonlinear stochastic systems. Ann. Univ. Sof., Fac. Math. Mech., 76, Livre 2,

Mécanique, 1982, 87-113.

8. Christov, C. I. A method for identification of homoclinic trajectories. In: Proc. 14-th
Spring Conf. Sunny Beach, Sofia, Bulgaria, 1985, 571-577.

9. Christov, C. I. Gaussian elimination with pivoting for multidiagonal systems. In-
ternal Report, 4, University of Reading, 1994.

10. Christov, C. I. On the mechanics of localized structures in continuous media. In:
Fluid Physics, eds. M. G. Velarde and C. I. Christov, World Scientific, 1995, 33-60.

11. Christov, C. I., K. L. Bekyarov. A Fourier-series method for solving soliton prob-
lems. SIAM J. Sci. Stat. Comp., 11, 1990, 631-647.

178



12.

13.

14.

15.

Christov, C. I., G. A. Maugin. An implicit difference scheme for the long-time
evolution of localized solutions of a generalized Boussinesq system. J. Comp. Phys.,
116, 1995, 39-51.

Christov, C. I., M. G. Velarde. On localized solutions of an equation governing
Bénard-Marangoni convection. Appl. Math. Modelling, 17, 1993, 311-320.

Steyt, Y., C. I. Christov, M. G. Velarde. Solitary-wave solutions of a generalized
wave equation with higher-order dispersion. In: Continuum Models and Discrete
Systems, ed. K. Z. Markov, World Scientific, 1996, 471-479.

Yanenko, N. N. Method of Fractional Steps. Gordon and Breach, 1971.

Received on September 23, 1996

National Institute of Meteorology and Hydrology
Bulgarian Academy of Sciences

BG-1184 Sofia, Bulgaria

e-mail: christo.christov@meteo.bg

179



