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1. THE THEORY OF DIOPHANTINE APPROXIMATION
IN DEVELOPMENT

The theory of diophantine approximation, i.e. the approximation by rational
numbers, begins with an investigation of Peter Gustav Lejeune Dirichlet (1805-
1859). The prehistory begins with the first known approximation of an irrational
number by a finite continued fraction, which is the first known writing by continued
fraction. This was the Italian mathematician and engineer Rafael Bombelli (1526

in his book Algebra,

1573) who presented the number /13 as equal to 3 + ; i <
6

edited in Venezia in 1572, making an error of v/13 — 3,6 < 0,006.

* Invited lecture delivered at the Session, dedicated to tire centenary of the birth of Nikola
Obreshkoff.

AT



A half century later another Italian mathematician Pietro Antonio Kataldi
(1552-1626), introduced and studied continued fractions ,by using notations, close
to the contemporary ones. In the book “Trattato del modo brevissimo di trovere
la radice quadra delli numeri”, edited in Bolognia in 1613, he wrote:

\/ﬁ:‘l.&—?-
SE s,
2. 2,2

bri 4.8 —&—&—.
or, briefly, &8.&8.&8.

This is a particular case of the formula

Val+b=a+ b A
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2a +
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The first known application of continued fraction convergents for approxima-
tion by rational fractions with large numerators and denominators was made in
1625 by the German mathematician and philologist Daniel Schwenter (1585-1636).
He used recurence relations. A more detailed study of the recurrence relations for
the convergents was made by the English mathematician John Wallis (1616-1703)
in his book “Arithmetica infinitorum”, edited in 1656. In it he introduced the
special term “fractiones continue fractae”.

An important application of continued fractions was made by the Dutch math-
ematician, physicist and astronomer Christian Huygens (1629-1695) in connection
with the planetary model of the solar system, exposed in Paris in 1680. The the-
oretical basis was described in his book “Descriptio automati planetarii”, edited
in 1698. Huygens gave the optimal ratio of the numbers of teeth of the gears, by
which he modelled the revolutions of planets around the sun. He found that the
convergents are the optimal rational fractions in the following meaning: If the real
number « has an expansion in continued fraction and Pg/Q% is its convergent with
@ > 1, and if p/q is a rational fraction for which (p,¢) = 1 and ¢ < Q, then
from |a — (p/q)] < |a — (P /Q¢)| it follows that ¢ = Qk, and p = Px. (A stronger
result was given as late as 1877 by the English mathematician Henry John Smith
(1826-1883)).

During the 18th century the theory of continued fractions was directed to
the Analysis. Interesting results were given by Leonard Euler (1707-1783). He
applied continued fractions in his monograph “Introductio in analysin infinitorum”
(first edition — 1748). Euler showed that periodical continued fractions are equal
to quadratic irrationalities. The reciprocal theorem was proved by Joseph Louis
Lagrange (1736-1813). In a publication in 1798 Lagrange deduced the following
relations:
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These relations express properties of continued fractions in themselves. In the
second edition of his book “Essai sur la theorie des nombres” in 1808 Adrien Marie
Legendre (1752~-1833) proved that if (p,q) = 1 and
P 1
a q] < TR (2)
then p/q is a convergent to the continued fraction of «.

The theory of diophantine approximation begins with the study of the approx-
imation of real numbers by rational fractions. The first result was deduced and
proclaimed on April 14, 1842, by Lejeune-Dirichlet [2], who generalized a theorem
about continued fractions and applied it in the theory of numbers. Dirichlet proved

that if a,, ..., a,, are arbitrary real numbers and s is a positive integer, then there
exist integer numbers z1, .. ., £, not all equal to 0, for which |z;| <s,i=1,...,m,
and integer number z, so that
1
[1,'0 + o121+ .. .amxml < ==
s

The proof is very interesting and remarkable. In the contemporary literature
the theorem of Dirichlet for the case m = 1 is usually formulated in the following

form:

Theorem of Dirichlet. Let a and Q be real numbers and @ > 1. Then there
exist integer numbers p and ¢ such that

|aq-—p[<é— with 0<¢<@. (3)
Proof. Case I. @ is an integer. We consider the following @ + 1 numbers:
0, {a}, {2a}, {3a}, ..., {(Q - 1a}, 1, (4)

where {z} is the fractional part of z, i.e. {z} = z — [z], and [z] is the integer part
of z (the greatest integer number not greater than z). These @+ 1 numbers belong
to the interval [0, 1]. We divide the interval [0, 1] into the following Q subintervals:

bo) [oa) - [F5%) [ o

Obviously, there is at least one subinterval (5) which contains at least two numbers
(4). Let they be {ra} and {sa} with integers r and s, r > s for instance, and
0<r<Q-1,0<s<Q~1. Their difference will be not greater than the length
of any of the intervals (5), and this length equals to 1/Q. So

1
{ra}—{sa} < 5,

1e.
Ira = sa = [ra)+ [sa]] < 5,
and denoting r — s = q, [sa] — [ra] = p, we have

lqa-pis-é— and 0<g=r—-s<@Q
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as in (3).
Case II. Q is not an integer. Then j 1
. t /= +
and proceed similarly to Case 1. tustead of Q we use the number Q @
With this the theorem is proved.
The main idea of Dmchlet applied in this

proof, can be expressed as the
following principle:

If n+1 things are put on n places, then there will be at least one place
containing at least two things.

This is the famous principle of Dirichlet. Later, in 1907 Herman Minkowski (3]
named this principle as “pigeonhole principle”, thinking the places or subintervals
as “pigeonholes”.

The inequality of Dirichlet’s theorem can be written in the following way:

<0 <7 ©

These inequalities are similar to (1) and we can say that every real number can be
approximated by a rational fraction p/q with exactness 1/¢2. It is easy to deduce
from (6) that if o is irrational, then there exist infinitely many rational fractions &

g
with (p, ¢) = 1 for which
P 1
a-2l< . 7
l <1| q? @
This follows from the left inequality in (6) when @ tends to co as a is irrational,
so a — (p/q) # 0. Inversely, if « is rational, the inequality (7) can be satisfied only

for finitely many rational fractions p/¢ with (p,¢) = 1. Indeed, let « = a/b # p/q
and (a,b)=1,6> 0, ¢ > 0. Then ag — bp # 0 and ' |

_|lag—bp] _ 1
b qlT g by

If p/q are infinitely many, then there will be ¢ > b for some ¢ and

a p

which contradicts (7).

Thus the theorem of Dirichlet shows different approximability of the ratlonal
and irrational numbers. This singularity was generalized two years later by Joseph
Liouville (1809-1882) who proved in 1844 the remarkable theorem that if o is a
real algebraic number of degree n > 1, then there exists a constant C' = C(a) such
that

p C
a—=|>— 8
QI q" ()

for all rational numbers p/q, ¢ > 0, p/q # c.
It is easy to find examples for « when (8) is not satisfied, such that these o are
non-algebraic, transcendental numbers. The theorem of Liouville was continued by
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A. Thue, C. L. Siegel and others, and completed finally by K. Roth in 1955, but
here our aim is to follow directly the Dirichlet’s theorem.

In 1891 Adolf Hurwitz (1859~1919) [4] proved that if « is irrational, then the
inequality

Q_E

\/— 5g ®)
has infinitely many solutions in 1ntegers p, ¢ with (p,q) = 1. Thls 1s not true if in
(9) we substitute /5 by a greater number.

In 1895 K. Vahlen [5] proved that if p,,_1/qn—1 and p, /q. are two consecutive
convergents of the real number «, expanded in a continued fraction, then at least
one of them satisfies the inequality

p
a—«-

<22

The theorem of Vahlen complements the assertion of Legendre about (2) that
p/g can be only convergent.

In 1903 Emile Borel (1871~ 1956) [1] proved that if P,_2/Qn-2, Pn—1/Qn-1 and
P./@n are three consecutive convergents to «, then at least one of them satisfies

the inequality
1

\/_q

The proof is achieved by reductio ad absurdum.
Let o be an arbitrary irrational number. Its expansion in a simple continued

fraction has the form

a_I_’

1

a=ap+ 1 , (10)
a; +
! az+ -
or, briefly, @ = [ag;a;,a2,...], where ap is an integer and a; (: = 1,2,...) are
positive integers. (a; — incomplete quotients of a. If a is rational, then a =
[ao; a1,a2,...,as] for some integer n > 0.)
In 1918 M. Fujiwara [6] proved that if n > 1 and an41 > 2, then
P; I 2
a — ———
Qi ~ 5Q?

fori=n—1ort=n+1. (For more details about Diophantine approximation
until 1936 see [7].)

2. TWO THEOREMS OF OBRESHKOFF ABOUT RATIONAL
APPROXIMATION

Academician Nikola Obreshkoff (1896—1963) wrote 18 publications about dio-
phantine approximations ([8-25]). In the first of them (8] and briefly in [12] he
deduced a very important result, expressed by two theorems:
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First theorem of Obreshkoff for ratjonal approximation. Let o b¢ am
arbitrary irrational number with ezpansion in simple continued fraction (10)- Then

at least one of the convergents P,_,/Q A
- ~2, P,_ _ saizsﬁes
the inequality " n-1/@n-1 and P,/Qn to @

1)‘.
Y — —

1

< ———
Qil " VaZ+1Q?

Second theorem of Obreshkoff for rational approximation. Let m be
an arbitrary integer number, m > 1, and let E be the set of all irrational numbers
whose incomplete quotients are < m — 1 and of their equivalent numbers. Let o be
an arbitrary irrational number not belonging to E. Then for at least one of three
consecutive convergents p/q to o we have

(11)

p 1
a—;(—————-—m' (12)

The number vVm?2 4 4 in (12) can not be substituted by a greater number.

The first theorem of Obreshkoff evidently is a nice generalization of the theorem
of Borel. The proof is deduced by reductio ad absurdum.

These two theorems of Obreshkoff are reviewed in the international journals
very modestly.

In Mathematical Reviews the great number theorist H. Davenport [26] wrote
about the first theorem of Obreshkoff: “The author’s first result is a simple gener-
alization of Borel’s theorem on three successive convergents to a continued fraction.

Let

1 1
f=ap+—— -
0 a+ az+
and let p,/¢n be the general convergent to f. Then the inequality
Pi 1
f——|<
’ ¢i|  gf(a} +4)'/2

is satisfied for at least one of the three values n — 2, n — 1 and n”.

In Zentralblatt fir Mathematik another great number theorist K. Mahler {27]
described the first theorem of Obreshkoff, showing the inequality (11).

In spite of the original and official publications of the theorems of Obreshkoft
and their international reviews, these theorems were forgotten for years.

3. REDISCOVERING THE THEOREMS OF OBRESHKOFF

In 1955 Max Miiller [28] proved several theorems and two of them punctually
repeat the theorems of Obreshkoff, but his name is not cited. (In conversations
with me, Obreshkoff said that he did not like the fact that his name was not cited.)
The paper of Miiller was reviewed in Zentralblat fur Mathematik (Bd. 64, 1956,
p. 44) by the very known J. W. S. Cassels, who wrote that “Theorems of Vahlen,
Borel follow at once since anyy > 1, and theorems of Fujiwara if anyy > 27, In
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Mathematical Reviews, vol. 16, No 11, 1955, p. 1090, J. H. H. Chalk wrote that
Miller “establishes several inequalities of which the following is typical. If n > 1 and
1

vai,, +4B;

for at least one of the values v = n — 1,n,n 4+ 1”7, but this is the first theorem
of Obreshkoff. In Pegpepamuenwii xcyprnas, Mamemamuxa, No 987, 1956, P. G.
Kogoniya accurately described all the theorems of Miiler. But nobody of these
reviewers noted that Obreshkoff was the first. In 1959 F. E. G. Rodeja {29] proved
a theorem, which was reviewed by the great specialist on continued fractions A.

v

z—_—'—

B,

the continued fraction has at least n+ 2 elements, then

N. Hovanski {30] in the form: “Ecmm %’5 (k=0,1,2,...) — nmoaxoxasamme apobu
k

LenHo# Apo6H, B KOTOPYIO pa3jlodkeHo uucio «, o = (ap,d, dz,...), TO BHINOA-

1
HAETCA M0 MeHbIUEH Mepe OJHO M3 TeX HepaBeHcTs |a — “2t| < ,
A+ a? o2
Im 4+ai, 95

m=k—1, k, k+ 1. IIpu aTom uucyo (/4 a} , HeJb3A 3aMeHUTH GOALIWUM

naxke npu ysenuuenun uymcia HepaBeHcTB.” Obreshkoff is not cited.

Evidently, Rodeja also rediscovered the theorem of Obreshkoff. But he added
more about the exactness of the constant.

In 1966 F. Bagemihl and J. R. McLaughlin {31] proved the following theorem:

Let a is an arbitrary real number with expansion (10). Let s be a natural
number (positive integer). If a,—; > s for some n > 1, then at least one of the
three inequalities

Pi

1
- =< —=————, j=n-1nn+1,
il Vs?+4¢?

holds.
Evidently, this is the second theorem of Obreshkoff, but the authors do not
cite it. .
In 1982 Fuzhong Li [32] published certain results in Chinese, whose English
summary in Zentralblatt fur Mathematik [33) shows full coincidence with the first
theorem of Obreshkoff. |
In 1983 Jingcheng Tong published a paper [34], in which he defined the number
1
- anr%
following theorem which shows the conjugate property of the Borel theorem.

Theorem. For n > 2, at least one of M;, i = n—1,n, m+1, exceeds , /a,";'H,1 +4;

at least one of M;, i=n —1,n,m+ 1, is less than /a2, +4.”

Evidently, the first part of this theorem coincides with the first theorem of
Obreshkoff and is not new. But its second part is really a new theorem of Tong.
We shall call it the Theorem of Tong of 1983. This Tong’s very interesting theorem
completes the theorem of Obreshkoff.

M,, from the equality , and wrote: “In this paper we prove the

P
a——
q
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In 1994 Tong [35].a,chieved in some sense the best improve of the first theorem
of Obreshkoff by proving, with the above notations, that

Mn < \/(an+1 + pn)? + 4

implies

(Mn-1,Mn41) > \/(ang1 + Hn)? +4,
where

Hn = Ian_ﬂni) an = [O;an+2>an+3;---], ﬁn - [0)an)an—1;--~,al]-
But the name of Obreshkoff is not mentioned. Instead of this the reviewer Hans
Kopetzky wrote in Mathematical Reviews [37] how to obtain the result of Miiller

as a particular case. Evidently, it was not known yet that “the result of Miller” is
the first theorem of Obreshkoff.

4. ASYMMETRIC APPROXIMATION — ANOTHER WAY FOR
REDISCOVERING THE OBRESHKOFF’S THEOREMS

In 1945 Beniamino Segre [38], using a geometrical method, proved the following
theorem:

Let a be an arbitrafy real number. Then for every real 7 > 0 there exist
infinitely many rational fractions p/q such that

1 p T
q2m<a q<q2m (13)
A precision of this result of Segre was proposed by Nicolae Negoescu [39], but
it turned out to be wrong, as remarked by R. A. Rankin [40]. In 1953-1954 W.
J. LeVeque [39] proved the precise theorem. The author of the present paper has
written more details about this history in [45].
In 1988 Jingcheng Tong [35] proved the following theorem:

Let 7 > 0 and let a be an irrational number with expansion (10), and let p, /¢n,
n = 1,2,..., be its convergents. Then among the three consecutive convergents
pi/gi,1=2n-1,2n,2n+4 1, n > 1, at least one satisfies the inequalities

T : 1
_ <a-P < ..

q? V a%n-*—l + 4t % Qs? V a%n+1 + 4t

Evidently, putting 7 = 1, we receive a variant of the theorem of Obreshkoff.

5. THE FIRST CITATION OF THE FIRST THEOREM OF OBRESHKOFF
: IN THE FOREIGN LITERATURE

Very probably, it was H. Jager and C. Kraaikamp [44], in 1989, who first
among the foreign mathematicians (relative to Bulgarians) cited the first theorem
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of Obreshkoff. In his paper, Jager and Kraaikamp gave a new proof of the first
theorem of Obreshkoff and of the Theorem of Tong of 1983.

However, the second theorem of Obreshkoff, which was rediscovered also by
M. Miiller, and by F. Bagemihl and J. R. McLaughlin, remaines forgotten (not
counting the present paper and [45]).

6. ON THE CONSTANT OF BOREL

In his memoir of 1903, E. Borel [1] proved many theorems; one of them we
cited above as the theorem of Borel, another one is the following:

Let a and b be given real numbers. Let M be an arbitrary positive number.
Then there exist integer numbers z, y and z such that

0V + b% + 1

M? ’
where 6 is a constant, not depending on a, b and M. In his History, L. E. Dickson
(43, p. 96] called @ the constant of Borel, and wrote that it was not found. But in
1956, i.e. after 53 years, N. Obreshkoff [18] (also [20, 24]) proved that § = 1. We
see that, unfortunately, the constant of Borel is not remarkable, and furthermore
we shell speak about “constant of Borel” only historically.

lz| < M, lyl < M, |z2| <M and |az+by+z|<

7. OTHER OBRESHKOFF’S RESULTS ABOUT DIOPHANTINE
APPROXIMATION

In his first paper [8] Obreshkoff improved not only the theorem of Borel, but
also the classical inequality of Dirichlet, demonstrating the validity of the following
theorem:

Let e be an arbitrary real number and let n be an arbitrary positive integer.
Then there exist integer numbers z and y, for which 1 < z < n and

laz — y| < .
A “n+1
The equality sign of the inequality is achieved only if a = d(n + 1), where d is an
arbitrary positive number with (d,n+ 1) = 1.

In the last paper [25] he generalized this theorem in the following way:

Let o be an integer > 0 and n be an integer > a. Then for every real a, for
which 0 < a, there exist at least two integer non-negative numbers z and y, for
which 0 < z 4+ y < n and

1

"’+a]+2.
n+1

!ar~yls[

Moreover, the equality sign is achievable.
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In some papers Obreshkoff generalized the inequality of Dirichlet for sever-

al variables. Especialy, in [23] he deduced as a consequence of his theorem the
following theorem of Thue - Nagel:

Let @ and b be integer numbers and m be an integer positive number. Then
the congruence

, az +by =0 (mod m)
has always a solution in positive integer numbers z and y, for which z% + y*> > 0
and 2| < /m, [y] < V.

The generalization of Obreshkoff is the following:

Let ai, as, ..., ar be k integer numbers and let m be a positive integer. Then
the congruence
a1z) + axz2+ ...+ arzr =0 (mod m)
has a solution in integer numbers z1, Z3, ..., Zx, not all equal to 0, satisfying the
conditions

k
,IPIS \/-fﬁ, P=—'1,2,...,k.

When k = 2, we have the above cited theorem of Thue ~ Nagel.

In [15] Obreshkoff proved a theorem and H. Davenport wrote about it in Math-
ematical Reviews (vol. 12, No 3, 1951, p. 163):

“The author proves the following simple but elegant variation of a well-known
result on diophantine approximation. Let wj, ..., wir be real numbers, and n a
positive integer. Then there exist integers z;, ..., zx (not all zero) and y, such
that 0 < z; < n and

lwizy + ... +weze + Y| < N7,
where N = kn + 1. The proof is by Dirichlet’s principle.”

Obreshkoff showed the conditions when the equality sign is achieved. The
reviewer had a remark that the conditions “does not seem obvious to the reviewer”.

In [23] Obreshkoff proved a more precise and general theorem:

Let us have the linear form

ni n2 Ty
f= Z al,,sz) +-Z (12“231(_‘2) T - Zaw:cff’),
u=1 p=1

p=1
where ayy, a2y, ..., Gpy are arbitrary real numbers and ny, n, ..., n, are integer
positive numbers. Let my, my, ..., m, also be integer positive numbers. Then
there exist integer numbers :cg"), zg"), o z) n=1,2,...,p, not all zero but all

non-negative or all non-positive, and integer y, for which

2| <m,, 1<p<n, 1<v<p,

and )

where M = (nym; + 1)(namz +1)...(npm, + 1).
The equality sign in (14) can be achieved.
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