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INTRODUCTION

The great Bulgarian mathematician Nikola Obreshkoff (1896-1963) left a vast
scientific inheritance. About 45 of his papers contain the results of his investiga-
tions on the zero distribution of algebraic polynomials and some classes of entire
functions, as well as on the numerical methods for solution of algebraic equations.

N. Obreshkoff was a world-known expert with considerable contributions to
the field just mentioned. To write even a brief review on his achievements, seems
to be a very hard work. That is why the author of this short survey has chosen
some of the most remarkable results concerning zeroes of algebraic polynomials
and entire functions of exponential type. In the first place, of course, his famous
generalization of the classical Descartes rule is discusssed. Further follow his gen-
eralizations of Schur’s and Malo’s composition theorems obtained by means of the

* Invited lecture delivered at the Session, dedicated to the centenary of the birth of Nikola
Obreshkoff.
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generalized Poulain — Hermite theorem. Some attention is paid to his results on
zero distribution of finite Fourier transforms.

1. CLASSICAL DESCARTES RULE

1.1. The classical Descartes rule gives an upper bound for the number of
the positive roots of a non-constant algebraic polynomials with real coefficients.
It i1s remarkable that this upper bound depends only on the sign-changes of the
(non-zero) coefficients of the polynomials under consideration.

Let Ag, A1, A2, ... be a finite or infinite sequence of real numbers. It is said that
between A, and A, (0 < r < s) there isa variation iff A\, 11 = Arg2 = ... = A,_, =0,
and moreover A, A, < 0.

Let '

fz) =ao+ a1z +az® + ... +apz" (1.1)

be a real polynomial of degree n > 1. Denote by V = V(f) the number of the
variations in the sequence

ag, @y, @z, ..., Gp (1.2)
and let p = p(f) be the number of the positive roots of f. Then the classical
Descartes rule can be formulated as follows:

The number p of the positive roots of the polynomial f is not greater than the
number V of the variations in the sequence of its coefficients and in any case the
difference V — p is an even number, i.e.

p=V -2k (1.3)
where k is a non-negative integer.

Remark. Further, by V = V(f) will be named the number of the variations
of the polynomial f.

1.2. Descartes rule 1s formulated in the last part of his book Discours de la
methode pour bien conduir sa raison, et cherche la verité dans les sciences. Plus la
dioptrique, {es Meleors et {a Geomelirie, qui sont des essais de set methode, Laiden,
1637, namely in la Geometrie.

The first proof of Descartes rule for algebraic equations with only real zeroes
is due to J. A. von Segner. The auxiliar statement he has used is known now as
Segner’s lemma, namely:

Let ¢ > 0 and V be the number of the variations of the polynomial (:c —-c)f(z).
Then V =V + 2k + 1, where k is a non-negative integer.

Descartes rule had been formulated, proved, as well as rediscovered by many
authors. Among them are J. Newton ( Universal arythmetic, 1728), J. P. de Guadet
Malv (1747),J. B. J. Fourier (1796) and F. I. Budan (1803). In the whole generality
it had been proved by K. F. Gauss (1828).

Remark. The above historical data are taken from the Bulgarian translation
of A. P. Jushkevitch’s Comments to Descartes Geometry (Descartes, Geometry.
Sofia, 1985, p. 199 (in Bulgarian)).
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A proof, as well as numerous generalizations of Descartes rule are due to E.
Laguerre ( Oeuvres, 1, Paris, 1898).

1.3. Descartes rule is carried over equations of the kind
n
Zaupk(z):O, ar €ER, k=0,1,2,...,n, (1.4)
k=0 . .

where {cpk(r)}:=0 is a given system of real functions.

In the second part of G. Pdlya and G. Szego’s Aufgaben und Lehrsdize aus
der Analysis, Berlin, 1925,can be found a necessary and sufficient conditions which
“ensure” the validity of Descartes rule for the equation (1.4) provided that the
functions {(,ok(:v)}:::o are sufficiently smooth.

2. BUDAN -~ FOURIER THEOREM

2.1. The first generalization of the classical Descartes rule is due to Budan
and Fourier. Their theorem gives an upper bound for the number of the roots of a
non-constant real algebraic polynomial lying in an interval of the real axis.

Let f(z) be a real polynomial of degree n > 1. Then the sequence

(), f'(2), f"(2),.... fP(e), zE€R, (BF)

is called Budan - Fourier (BF) sequence for the polynomial f(z).
Denote by V; = V;(f) the number of the variations in the (BF) sequence.
Then the following statement is true, namely:

The number p(a,b) of the roots of the polynomial f in the interval (a,b) (a < b)
is not greaier than V, — V, and in any case the difference Vo — Vy — p(a,b) is an
even number, 1.e.

pla,b) =V, — Vj — 2k, (2.1)
where k 1s a non-negative tnteger.

2.2. It is clear that Descartes rule is a particular case of Budan -~ Fourier
theorem. Indeed, if b > 0 is great enough, then V = 0, i.e. Vo = 0. Moreover,
since Vo = V and p(0, 00) = p, the equality (1.3) is a corollary of (2.1).

3. OBRESHKOFF’S GENERALIZATION OF BUDAN ~ FOURIER THEOREM

3.1. Let a < b and f(z) be a real polynomial of degree n > 1. Denote by
M (a,b) the inside of the rectangle which is determined by the following conditions:

(I) It is symmetrically situated with respect to the real axis.

(IT) Two of its opposite vertices are at the points a and b.

(IIT) The angles at these points are equal to 27 /(n~V,) and 27/ V4, respectively.

Remark. If V3 = 0, 1.e. when b is great enough, then M(a,b) is an angular
domain with a vertex at the point a.
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Let further u(a,b) be the number of the roots of the polynomial f(z)in M(a,b).
Then the next statement is valid. .

Theorem 1 (Obreshkoff’s generalization of Budan — Fourier theorem [1—3})'
Let f(a)f(b) # 0, then pu(a,b) is not greater than V, — Vs and in any case the
difference V, — V, — p{a, b) 15 even, 1.e.
pla,b) = Vo =V — 2s, (3.1)
where s is a non-negative integer.
The case a = 0 and & = oo gives the following statement:

Theorem 2 (Obreshkoff’s generalization of Descartes rule [1-3]). Let u be the
number of the roots of the polynomial f(z) having their arguments in the interval
(=w/(n=V),n/(n-=V)). Then

p=V - 2s, (3.2)
where s 1s a non-negative integer.

Remark. The classical Descartes rule is a corollary of the above statement.
Indeed, if 2q is the number of the non-real roots of the polynomial f in the angular
domain M = Mo, 0), then p = p+2q¢ and (3.2) gives that p = V —2(q+s), where
q + s 1s a non-negative integer.

Another version of Theorem 2 is the next statement.

Theorem 3 (Obreshkoff [4]). If the real polynomial f of degree n > 1 has
p roots with arguments in the interval (—7/(n + 2 — p), n/(n + 2 — p)), then the
number V' of ils variations is at least equal o p and moreover, the difference V —p
is an even number, i.e. V = p+ 2k, where k is a non-negative integer.

Let us mention that Theorem 1 is proved by the aid of two statements, where
each of them can be regarded as analogous to Segner’s lemma. Let again f(z) be
a real polynomial of degree n > 1 and let V be the number of its variations.

- Lemma 1 (Obreshkoff [1, 3, 5]). Let p>0and 0< p < w/(n+2—V), then
the number of the variations of the polynomial (z? — 2pcos p.z + p?)f(z) is equal
to V + 2(k + 1), where k is a non-negative integer.

Lemma 2 (Obreshkoff [1, 3, 5]). If p> 0 and 0 < ¢ < n/(V + 2), then the
number of the variations of the polynomial (z? + 2pcos p.z + p?)f(z) is equal to
V — 2k, where k is a non-negative integer. :

4. SCHOENBERG’S EXTENSION OF DESCARTES RULE
TO THE COMPLEX DOMAIN

A corollary of Theorem 2 is the following statement:

Let f be a real polynomial of degree n > 1 and let V be the number of its vari-
ations. Then the number v of ils roots with arguments in the interval (—m/n, n/n)
is not greater than V and differs from V by an even number, 1.e. v = V — 2k,
where k is a non-negative integer.
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The first attempt to generalize the above corollary to polynomials with ar-
bitrary complex coefficients is due to 1. J. Schoenberg ( Eztension of theorems of
Descartes and Laguerre to the complez domain. — Duke Math. J., 2, 1936, 84-94).
In order to formulate his result we need some definitions.

Let A be an open and convex angular domain with vertex at the origin. Define
C to be its opposite angular domain, i.e. C:={z € C: ~z € A}. Both 4 and C
form a pair of sectors, which we denote by S = (A4, C).

The complement of A|JC with respect to the complex plane is a union of two
closed angular domains B and D, each of them being the opposite of the other.
Let B* = B\ {0} and D* = D\ {0}.

Let F(z) = co+ 1z + c222 4+ ... 4 cp2"” be a non-constant polynomial with
arbitrary complex coefficients. If there exists a pair of sectors S = (4, C) such that
all its coefficients are in B U D, then we say that S is a dividing pair of sectors for
the polynomial F'.

Ifo0<r<sandec € B", ¢, € D" or ¢, € D*, ¢, € B*, and moreover
Crg1 = Cr42 = ... = Cy~1 = 0, then we say that there is a vartation between ¢, and
¢s. We denote the number of the variations by V(F,S) in order to emphasize that
it depends on the polynomial F', as well as on the dividing pair of sectors S.

Schoenberg’s extension of Descartes rule is the following statement:

Let there ezist a dividing pdir of sectors S(A,C) for the polynomial F' and let
f € (0,7) be the angular measure of A. Then the number of the roots of F having
their arguments in the interval (—6/n, 6/n) is not greater than V(F,S).

A refinement of the above theorem is given later by N. Obreshkoff [6].

5. VARIATION-DIMINISHING TRANSFORMATIONS

5.1. Let A = (aij) be a real m x n-matrix. We say that the linear transorf-
mation R” — R™ defined by the matrix A (or simply the matrix A) is variation-
diminishing iff whatever the vector z = (1, z2,...,z,) € R" be, then V() < V(y),
where y = Az and V(z), resp. V(y), is the number of the variations in the sequence
£1,22,...,%n, TESP. 1,42, .-+, Ym- ‘

In 1930 Schoenberg gave (Uber variationsvermindernde lineare Transformatio-
nen. — Math. Zeitschr.,32, 1930, 321-328) a sufficient condition for a real matrix
to be variation-diminishing, namely:

If the matriz A 1is totally posilive, i.e. all tls minors are positive, then 1t s
variation-diminishing.

Later T. Motzkin ( Beitrdge zur Theorie der linearen Ungleichungen, Disserta-
tion, Basel, 1936) found necessary and sufficient conditions for a real matrix to be
variation-diminishing,. |

A shorter proof was given by I. Schoenberg and A. Whitney (A theorem on poly-
gons in dimensions with application o variation-diminishing and cyclic variation-
diminishing linear transformations. — Compositio Math.,9, 1951, 141-160).
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It seerr}s th.at .the notion of yariation-diminishing transformation, as well as
Schoenberg’s criterion have been inspired by Obreshkoff’s proof of the generalized

Budan - Fourier theorem, and in particular by that of Lemma 2. In fact Obreshkoff
has proved that the matrix '

—2pcos ¢ p? 0 0 0...0 0
0 1 =2pcosp p2 0...0. 0
0 0 0 0 0.1 ~2pcosy

is variation-diminishing by establishing that all its principal minors are positive.

5.2. In Obreshkoff’s paper [6] by means of Schoenberg’s criterion a pure al-
gebraic proof (i.e. without using the continuity of the polynomials considered as
functions of a real variable) of the classical Budan — Fourier theorem is given. In
the same paper, again by the aid of Schoenberg’s criterion, the following statement
is proved: '

Theorem 4 (Obreshkoff (6]). Leta €R, ax €R, k=0,1,2,...,n, and h > 0.
Then the number of the roots of the polynomial

ag+ai(z—a)+ax(z~a)(z—a—2h)+- - -+an(z—a)(z—a-nh)""!', n>0, a, #0,

is less or equal to the number of the variations in the sequence ag,ay,...,an,.
The last sequence can be replaced by the sequence

f(a), f'(a+ k), f'(a+2h),..., f™)(a + nh).

Remark. If a = h = 0, then as a corollary of the above theorem one gets
again the classical Descartes rule.

6. COMPOSITION THEOREMS

6.1. Let

A(z) == ao + (’;) a1z + (;)0222 + ...+ an2z",

B(z) = bo + (Y)blz - (;) boz? 4+ ... +by2"
be polynomials of degree not greater than n and with arbitrary complex coefficients.

Let us form the polynomial

C(Z) = apby + (Y) arbyz + (g) 026222 + ...+ a,b,.
It is of great importance to know how the distribution of the zeroes of the
polynomial C(z) in the complex plane depends on the distribution of the zeroes of
A(z) and B(z).
The most popular statement answering the above question is due to G. Szego
(Bemerkungen zu einem Satz von J. H. Grace tiber die Wurzeln algebraischer Gle-
ichungen. — Mathem. Zeitschr., 13, 1922, 28-55), namely:
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Let the zeroes of A(z) be in a circular domain K and By,Bs;...,B. be the
zeroes of (B). Then every zero of C(z) has the form —AB,, where A € K and s is
some of the numbers 1,2,3,...,n.

Remark. A circular domain in the complex plane is either the closure of the
inside or the closure of the outside of a circle, or the closure of a half-plane.

The above theorem of Szego is a corollary of a statement known as the theorem
of Grace (The zeroes of a polynomial. — Proc. Cambridge Philos. Soc., 11, 1902,
352-357). In fact Szego has given to the Grace’s theorem a form which is more
convenient for applications.

Here are two statements which can be proved by using Szegé’s theorem. The
first one is due to I. Schur (Zwe: Saize uber algebraische Gleichungen mit lauter
reellen Wurzeln. — J. reine u, angew. Math., 144, 1914, 75-88) and the second to
E. Malo (Note sur les équations algébriques dont toutes les racines soni réelles. —
J. de Math. spéciales (4), 4, 1895, 7-10):

(I) Let the real polynomial
| f(z) =ap+ a1z +asz’ + ...+ apz™
have only real roots and let the real polynomial
| g(z) = bo+ byz + baz? + ... + bz
have either only real and positive or real and negative roots. Then the polynomial
aobo + 1lahyz + 2lashsz? + ... + klagbrz®, (6.1)

where k = min(m, n), has only real roots.
(II) Under the same conditions and notations the polynomial

aobo + a1b1z + ashoz? + ... + apbpzt
has only real roots.

6.2. The following statements generalize Schur’s and Malo’s theorems:

Theorem 5 (Obreshkoff [7-9]). Let the polynomial f(z) have only real zeroes
and let the zeroes of the real polynomial g(z) lie in the angular domain G(m) defined
by the inequality |sinf] < m~1/2 (§ = argz). Then the polynomial (6.1) has only
real zeroes.

Theorem 6 (Obreshkoff [7-9]). Let the zeroes of the both real polynomials
f(z) and g(z) lie in the domain G(m). If all the coefficients of g(z) or g(—z) have

the same sign, then the polynomial (6.2) has only real zeroes.

A classical result due to Ch. Hermite (Questions. — Nouv. Ann. Math,, 2
sér., 5, 1866, 432-479) and S. J. Poulain (Théoremes génerauz sur les équations
algébriques. — Nouv. Ann. Math., 2 sér., 6, 1867, 21-33) is the following statement:

If the polynomials f(z) and g(x) have only real zeroes, then so does the poly-
d
nomial g(D)f(z), where D = o
A generalization of Hermite — Poulain theorem is given by the next statement.
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Theorem 7 (Obreshkoff [7-9)). Let the polynomial f(z) of degree m have only
real zeroes and let.the zeroes of the real polynomial g(z) lie in the domain G(m)-
Then the polynomial g(D)f(z) has only real zeroes.

The above theorem is a simple corollary of the following lemma:

Lemma 3 (Obreshkoff [7-9]). If the polynomial f(z) of degree m has only real
zeroes and, moreover, |[sinf| < m~1/2 then the polynomial
f(z) = 2pcosb.f'(z) + p*f'(z), p>0,
has only real zeroes. '

Let us mention that the generalized Schur’s and Malo’s theorems are proved
in [7-9] by means of Theorem 7.

7. ZEROES OF FINITE FOURIER TRANSFORMS

A well-known fact is that the entire functions of exponential type defined as
finite Fourier transforms, namely

a

F(z) = / o(t) explizt) di, (7.1)
-a
where 0 < a < oo and ¢ € L1(—a,a), play an important role in the mathematical
analysis and its applications.

A great number of classical special functions have integral representations of
the kind (7.1). A typical example is the Poisson formula

1
vt +1/2)(3) ) = / (1 = €)= exp(izt) dt,
=1

where J, is the Bessel function of the first kind with index v.
Particular cases-of (7.1) are the entire functions

a

C(z2) = /zp(t)cos zt dt (7.2)
and
S(z) = / o(t)sin zt dt. (7.3)

Remark. It is clear that when studying the entire functions (7.1) it can be

assumed a = 1.

A problem of considerable importance is that of the zero distribution of the
entire functions (7.1), resp. (7.2) and (7.3). It has been studied by many authors
and it seems that it is not exhausted till now. E. g. the problem of finding necessary
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and sufficient conditions the entire functions (7.1), resp. (7.2) and (7.3), to have
only finite number of non-real zeroes seems to be still open.

Remark. A more difficult problem is that of finding necessary and sufficient
conditions an entire finction of the kind

/ ®(t) cos zt dt (7.4)
0

to have only finite number of non-real zeroes. This problem has been inspired by
the fact that the Riemann’s {-function has a representation of the kind (7.4).

G. Pdlya was the first who studied systematically the zero distribution of the
entire functions (7.1), resp. (7.2) and (7.3) (Uber die Nullstellen gewisser ganzer
Functionen. — Math. Zeitschr., 2, 1918, 352-383). In order to formulate his main
result, we introduce the class E of the real functions ¢ defined and R-integrable on
the interval [—1,1] and having the property that the polynomials

Pa(p;2) = ; np (‘E) 2

have their roots in the unit disk, provided that n is great enough. Pélya has proved
that:

If the function @ 1s in the class E, then the entire funclions C(p; z) and S(ip; 2)
have only real zeroes.

Example. If ¢ is non-negative and not decreasing, then it is in the class E.

A rather surprising result concerning the zero distribution of the entire func-
tions of the kind (7.2) and (7.3) has been established by N. Obreshkoff. It can be
formulated as the following statement:

Theorem 8 (Obreshkoff [6]). If the function ¢ € E and h is a real plynomial
having all its roots in the half-plane Rez < 1/2, then the entire functions C(ph;z)
and S(ph;z) have only real zeroes.

In fact Obreshkoff has proved that if ¢ € E, then ¢h € E. He has succeeded
to get this result by using the following statement:

Lemma 4 (Obreshkoff [6]). Suppose that the (algebraic) polynomial f(z) of
degree n > 1 has all its roots in the unit disk. Then whatever the complez number
v with Rey > —n/2 be, all the roots of the polynomial vf(z) + zf'(z) are in the
unit disk too.

The above statement can be regarded as a “complex version” of an well-known
theorem due to E. Laguerre, namely~

Let f(z) be a real polynomial of degree n and 7y be a real number outside of the
interval [—-n,0]. Then the polynomial vf(z) + zf'(z) has as many real roots as the
polynomial f(z).
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