FOJNUIIHUK HA CO®UNCKUA YHUBEPCUTET ,CB. KJIIUMEHT OXPUIACKU“

PAKYJTET I1O MATEMATUKA U UTHPOPMATHUKA
Kuura 2 — [lpunokna matemaTHka u MHGOpPMaTUKa
Tom 90, 1996

ANNUAIRE DE L’UNIVERSITE DE SOFIA ,ST. KLIMENT OHRIDSKI"

FACULTE DE MATHEMATIQUES ET INFORMATIQUE
Livre 2 — Mathématiques Appliquée et Informatique
Tome 90, 1996

A CONSTRAINT BASED SYSTEM
FOR LEXICAL KNOWLEDGE RETRIEVAL”

STOYAN MIHOV

This paper is concerned with the lexical knowledge retrieval system created at the Linguistic
Modelling Laboratory. The main goal of the system is to provide a powerful and comfortable
interface for lexical knowledge retrieval from large morphological dictionary. To achieve this a
constraint based approach is applied that leads to a very effective algorithm. The algorithm for
query building, which is also used for retrieving of general grammatical knowledge, is presented
in details. In our opinion this method is very suitable for knowledge retrieval in domains with

complex and irregular classifications.

Keywords: lexical knowledge retrieval, morphological dictionary, query building
1991/95 Math. Subject Classification: 68T50

1. INTRODUCTION

Recently, many systems containing large amount of lexical knowledge have
been built. They make use of different approaches for processing and knowledge
representation. Detailed study of the problem is presented in [4] and [1].

The Linguistic Modelling Laboratory is working on a Large Morphological Dic-
tionary that will cover most of the wordforms in modern Bulgarian (see [3]). Now
the system contains grammatical information for more than 500 000 wordforms and
is systematically upgraded. The grammatical information is structured in Features
Structures (refer to [5] for a good introduction). It is known that Feature Structures
(FSs) are de facto standard for representing linguistic information. That is because

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.

141

they allow comfortable description of knowledge with complex classifications and
many irregularities.

The program which interfaces the lexical knowledge in our system is called
kernel program. We can think the knowledge as a set containing all 500 000 feature
structures corresponding to the information of wordforms. The kernel input is a
Feature Structure — the query constraint that should be satisfied. The output
contains all Feature Structures included in our knowledge base, unifiable with the
input. See Fig. 1 for some examples of the kernel functioning. It is clear that it is
very inefficient to keep all 500 000 FSs in the memory and to check every one for the
query constraint satisfaction. The kernel program uses a synthesizing algorithm.
The grammatical information of the output Feature Structures is built by the uni-
fication of certain basic constraints. Each basic constraint is a Feature Structure
which corresponds to a feature-value pair of the grammatical information. In Fig.
2 there are some examples of Feature Structures’ which present basic constraints
corresponding to feature-values.

This paper revcals in details our approach for query building. It is shown
how general grammatical knowledge is retrieved by our procedure. In Section 2
we describe the problem for query building. Then in Section 3 the algorithm is
presented and explained. In Section 4 some details about the implementation are
described. Some comments on the possibilities for generalization are given in the

conclusion.

2. PROBLEM DESCRIPTION

The main goal of the system is to provide an appropriate way for knowledge
retrieval. There are very different necessities concerning system interaction. For
example, in syntactic analysing systems the grammar information should be ex-
tracted after the input of wordform, as it is shown in the first example in Fig. 1.
In Natural Language Generation the system should find the wordform by process-
ing input of a stem and some grammatical information. The professional linguist
should be able to extract all wordforms (or stems, endings...) which satisfy a cer-
tain constraint. On the one hand, there should be no limitations on the contents
of a query constraint. But, on the other hand, many of the queries are inconsistent
with the grammatical knowledge. For example, there are no items in the knowledge
base, which satisfy the following FS:

lexeme info {gradability gradable]

grammeme info [tense imperfect]

That is because only adjectives and adverbs are gradable and they do not allow a
tense characterization. It is meaningless to process a query which we can a priori

! For a clearer presentation, in the example we are noting the unbound anonymous variables
explicitly with ‘..

142

Sutuondpuny [puiad) aY) jo sejdwexy ‘1 91y

...

[einid 1squnu rem3uls IaquInu
ojut swadwwrerd ' ojul swdwuwreId
¢ uosiad ¢ uosiad
1uasaxd 3sUY | Juasaxd 3sU3Y |
OJUl SWISXa| OJUul 2WIaXa[
qI2A yoaads jo jred| qIdA yd9ads jo jred ¢ uosiad p—
VEVLO, w3 VEVLO, ways yuosaid - asuy
«LVEVLO, ::o::o\i ! VEVLO, WIOPIOM ; VHVLO: wa3s
Zz sod
" 03} uoljeUII[E
J, wol}
Vs durpu?
2)IUYSpUl SSIUSIUYIP |
ren3uis Iaquinu
’ ojut swawure1d
I E) I3pual
aansod 93133p |
3 £ 8]
SlqEpelsin nrqEpe! OJUI WX
aanoafpe yoasads jo ﬁ.&.
HAHAOH, u1a3s
VHHA04, urIojpIom —.<Emm0m, Euouvuokﬁ

sgJ ndinQ

(K1ond)) g4 nduj

Feature-value

Corresponding basic constraint

-

part of speech — noun [wordform -]

stem -

ending -
'pa,rt of speech noun i
noun type -
animateness -
humanness -

lexeme info gender -
verb type not defined
gradable not defined
transitivity not defined
numeral type not defined
. 4
number i
definiteness _
article form _

grammeme info |tense not defined
person not defined
case not defined

non-finite form — participle [wordform -

stem -

ending -
part of speech verb i
verb type -
noun type not defined

lexeme info gradable not defined
transitivity not defined
numeral type not defined
finiteness non-finite |
non-finite form participle
number -~

grammeme info |tense -
definiteness not defined
case not defined

144

Fig. 2. Example of feature-value pairs and the corresponding basic constraints

consider as inconsistent. That is why we have to implement a more sofisticated
query building algorithm.

We think that the best way is to build the query incrementally. That means
that the user should be able to specify the query step by step, selecting a feature-
value pair. The purpose is to receive information which feature-value pairs are
acceptable (do not lead to an inconsistent query) after each step. If we switch those
feature-values as unacceptable, the user would not be able to build an inconsistent
query. Moreover, the user will receive general grammatical information about the
consistency of some constraint combinations.

Another advantage of the system would be if the algorithm automatically se-
lects some feature-value pairs which are derivable from the existing query spec-
ification. For example, if the user selects ‘part of speech — verb’ and ‘gender -
masculine’, then the ‘finiteness’ has to be ‘non-finite’.

To achieve the above mentioned requirements for the query building procedure,
a deduction procedure has to be implemented. This procedure should check on each
step the consistence of every feature-value pair with the query and should select
the feature-values which are deducible from the specification of the query.

3. THE QUERY BUILDING ALGORITHM

The simplest way to fulfil the above algorithm specification is to generate a list
of all possible combinations of feature-values. Unfortunately, there are thousands
of possible combinations of grammatical feature-values in the system. That is why
an algorithm based on this information would be very inefficient. Our algorithm is
based on the basic constraints corresponding to feature-values which are only about
150 in the system. Those constraints are already defined in the system, because
the kernel program is producing the result via their unification.

The FSs used in our application are of the classic type. That means that
they are not sorted and we do not allow negation and disjunction inside the FSs.
The generalization of the algorithm in order to use disjunctive FSs is not a serious
problem, but if we want to use negation inside the FSs, the algorithm should be
generally revised. Using negation, we loose the nice classic semantic about FS’s
— the interpretation that a FS represents partial knowledge. For a comprehensive
study of FS semantics see [2].

Some notion preliminaries: when we write a feature-value pair, in fact we mean
a pair of feature path and value, where the feature path is a list of features. In
our application we are interested only in features carrying grammatical information
(other features like ‘stem’, ‘wordform’, etc. could not be classificated). That is why
we note only the last feature in the path and the value and call this a feature-value
pair. In the application there are about 60 features (feature paths) carrying gram-
matical information. All feature-value pairs are about 150. This 1s a rather small
number, hence the algorithm based on this information will be comparable effec-
tive. Bellow we present our algorithm which satisfies all requirements mentioned
above.

145

Algorithm 1. The Query Building Algorithm.

Step 1. Set the initial query FS to the empty FS.
Set all Feature-value pairs to ‘acceptable’.
Step 2. Wait the user to select a (‘acceptable’) feature-value pair.
Step 3. Unify the query FS with the basic constraint corresponding to
the selected feature-value pair and mark it as ‘sellected’.
Step 4. For every ‘acceptable’ basic constraint
check the unifiability with the query
if the basic constraint does not satisfy the query,
then set it to ‘unacceptable’.
Step 5. For every feature check
if exactly one value for this feature is acceptable, then
select this feature-value and go to Step 3.
Step 6. If there are no more acceptable pairs or the user has finished,
then go to Step 7, else go to Step 2.
Step 7. Call the kernel program with the query as input.

This algorithm is almost self-explaining. In Step 1 the initialization is made.
Step 2 and Step 3 build the query by unification of the basic constraint correspond-
ing to the selected feature-value pair. Step 4 checks all other basic constraints for
consistence with the query and switches all feature-values which are inconsistent
with the query to an ‘unacceptable’ state. Step 5 is responsible for the automatic
deduction of feature-values. Step 6 and Step 7 close the loop and invoke the kernel
program respectively. We omit a detailed proof about the correctness of this algo-
rithm, which in our point of view, is rather obvious. Maybe the only non trivial
problem is the termination. The next lemma is concerned about that.

Lemma 1. Algorithm 1 is always terminating.

Proof. The two loops are always passing through Step 3, where a feature-value
pair is set to ‘selected’. There are only a finite number of pairs. Hence, after a finite
number of iterations there will be no more ‘acceptable’ pairs, which guarantees the
termination of the algorithm.

It has to be noted also that in the Algorithm is essentially used the ‘Closed
World Assumption’. In Step 5 we assume that there are no other values possible
for the feature. In our application, where the general grammatical knowledge is
fixed, this assumption is generally true. In fact, exactly this step is responsible for
the automatic feature-value selection, when the value of a feature can be deduced
from the information already specified by the query. Without the ‘Closed World
Assumption’ we could not deduce anything new in our system.

4. IMPLEMENTATION

We have created a prototype version in Sicstus Prolog with Tcl/Tk on Windows
environment, which is able to extract about 20 FS per second. The system is

146

supplied with a very friendly user interface. The query is created using the Windows
Graphical User Interface. By clicking on a feature in the list box, another list box
is displayed, where the acceptable values for this feature are listed. By selecting a
value, the unification with the corresponding constraint is invoked. If some feature
or value is disabled, then the corresponding entry in the list box will be switched
‘gray’ (unacceptable). There are several options for the output format. The user
can choose between the output of the whole FSs or only the values of some features
(e.g. wordform, stem, etc.).

A more faster version will be created using C/C++ language soon. This im-
plementation will provide a retrieval speed of about 200 FS per second. There
will be no other differences between the C/C++ and the Prolog version. We hope
that this system will be widely used for Bulgarian language education and research
purposes.

Also, there is a World Wide Web version planned. The idea is to specify the
query using the form options in HTML. Then the query will be passed to the
knowledge retrieval system using a CGl-script. In this way the resources will be
accessible through INTERNET.

5. CONCLUSION

The most interesting part of the algorithm, in our opinion, is the untraditional
deduction procedure. It is clear that the application is very simple. That is why
in fact the loop Step 3 — Step 5 will not make new changes to the acceptability
of feature-value pairs. We think that this deduction procedure could be classified
as a new approach to certain problems. It leads to a very elegant and effective
algorithm for deduction in domains with complex classifications. In current version
only classic feature structure interpretation and unification in empty theory are
applied. At the moment we are working on the generalization of this approach to
allow more powerful constraint based technics.

ACKNOWLEDGEMENTS. The author of this paper wants to thank all members
of the team of Linguistic Modelling Laboratory for the support and fruitful atmosphere,
without which this work could not exist.

REFERENCES

1. Briscoe, T., A. Copestake, V. de Paiva (eds.). Default Inheritance in Unification
Based Approaches to the Lexicon. ESSLLI’92 readings, 1992.

2. King, P. J. A logical formalism for head-driven phrase structure grammar. Doctoral
dissertation. Manchester University, Manchester, England, 1989.

3. Paskaleva, E., K. Simov, M. Damova, M. Slavcheva. The long journey from the core
to the real size of a large LDB. In: Acquisition of Lexical Knowledge from Text,
Boguraev, Pustejowski (eds.), Columbus, Ohio, 1993, 161-169.

147

4. Pustejovsky J. The Generative Lexicon. MIT Press, 1995.

5. Shieber, S. An Introduction to Unification-Based Approaches to Grammar. CSL/
Lecture Notes, 4, 1986.

Received on September 12, 1996

Linguistic Modelling Laboratory
Laboratory for Parallel and Distributed Processing
Bulgarian Academy of Sciences

E-mail: stoyan@lml.acad.bg

148

