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It is shown here that the transformed Chebyshev polynomial of the second kind Un(z)
:= Un(z cos ;77) has the greatest uniform norm in [-1, 1} of its k-th derivative (k=

1,...,n) among all algebraic polynomials of degree not exceeding n, which vanish at +1
and whose absolute value is less than or equal to 1 at the points {cos L~ / cos ;%};‘;11 .
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{ INTRODUCTION AND STATEMENT OF RESULT

Denote by 7, the set of all real algebraic polynomials of degree at most n.
As usual, Tp(x) = cosnarccosz denotes the n-th Chebyshev polynomial of the
first kind. In what follows, || - |} will mean the uniform norm in [—1,1], ||l :==

sup | f(z)l-

re[-1,1]
The classical inequality of I. Schur [15] asserts that the transformed Cheby-

shev polynomial Tn(2) = Tn (x cos 21) has the greatest uniform norm of its first
n

derivative on [~1, 1] among all f € mn, which vanish at the boundary points %1,
and whose uniform norm is less than or equal to 1.

Recently, this result was extended to higher order derivatives by Milev and
Nikolov {10] (the special cases k = 2 and k = 3 have been examined earlier by

* The research was done during the author’s stay at the University of Bradford, UK. The author
was supported by a grant from the Royal Society and by the Bulgarian Ministry of Education,
Science and Technologies under Grant MM-513/95.
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Milev [8, 9]).
Theorem A ([10, Theorem 1.1]). If f € 7, satisfies

f(-1)=f(1)=0 (1.1)
and
A<, (1.2)
then \
BN < 1T (1.3)

fork=1,...,n. Equality in (1.3) is possible if and only if f = +T,,.
Let {y5}7={ be defined by

» _ cos(jm/n)
i T Cos (m/2n)

For k > 2 Milev and Nikolov proved the following extension of Theorem A.

Theorem B ([10, Theorem 1.2]). Let f € m, satisfy (1.1) and
IfWI<T, j=1,...,n-1. (1.4)

Then the inequality (1.3) holds for k = 2,...,n. Moreover, equality is possible if
and only if f = +T,,.

Theorem B asserts that the condition (1.2) in Theorem A is unnecessarily
restrictive, and that for k£ > 2 the inequality (1.3) remains valid if (1.2) is replaced
by the weaker requirement |f(z)| < |Tn(z)| at the extremal points of T, i.e., at
{y; ;‘;11. This is very similar to the extension of the Markov inequality, found by
Duffin and Schaeffer [4]. For some related results the reader may consult [1, 2, 5,
11-13, 16].

Regarding Theorem B, the following question arises in a natural way: what

would happen if the “comparison points” {yf ;‘._ff in (1.4) are replaced by some

other points? Answering this question for arbitrary {y; ;‘;f seems to be a very
difficult task.

In this paper we examine completely the case

o cos (jm)
Ui = os (r/(n+1))

It turns out that in this case the extremizer for all k € {1,...,n} is the transformed
Chebyshev polynomial of the second kind U,,

, J=1,...,n—-1.

Un(z) := U, (:z:cos - _7:_ 1) :
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Precisely, we prove the following Duffin-Schaeffer-Schur type inequality:

Theorem 1.1. Let f € 7, satisfy (1.1) and

‘f (cosc(():;]:/:)l)))‘<1 j=1,...,n-1 (1.5)

Then )
1N < T (1.6)
for all k € {1,...,n}. Moreover, equality in (1.6) is possible if and only if
f=xU,.
The paper is organized as follows. In Section 2 we prove a pointwise inequality
(Theorem 2.1), which is the main ingredient of the proof of Theorem 1.1. The
necessary auxiliary results are proven in Section 3, with the exception of Lemma

3.5, the proof of which is the content of Section 5. In Section 4 we prove Theorem
1.1.

2. A POINTWISE INEQUALITY

For the sake of convenience we examine the usual Chebyshev polynomial of
' 1
the second kind U,(z) := sinf(n + 1) arccos z)

\/i_—$2

on the interval [—n,n], where n :=

cos : T For this reason the conditions (1.1) and (1.5) are replaced by
n
f(=n) = f(n) =0, (2.1)
and ‘
lf(coslf-) <1, j=1,...,n—-1 (2.2)
Throughout, || - ||« will mean the uniform norm in [~7, 7], i.e.,
flle:= sup [f(2)].
z€[(~n,n)

Theorem 1.1 is proved with the help of the pointwise inequality, given by the
next theorem.

Theorem 2.1. Let f € 7, satisfy the conditions (2.1)—(2.2).
Then for each k € {1,...,n} and for every z € -9, 7)

1£5)(z)] < max{{UEN ()], |Zn (21},
where

Zur(@) = 1 | (- ntEp) 1) + RIPE)| . 3)

n
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Proof. Let zog < z1 < ... <z, be the zeros of w(z) := (22 — n?)T(z), and let

wy(z) :=w(z)/(z ~x,), v=0,...,n. For every polynomial f of degree at most n
the Lagrange interpolation formula yields
[P z) = Z ! (”” (@) (2.4)
In particular, for f € 7, satisfying (2.1)-(2.2), (2.4) yields
1F®)(z)| < z_:l Vk()if)) (2.5)

According to a well-known result of V. Markov, if the zeros of two polynomials
interlace, then the interlacing property is inherited by the zeros of their derivatives
(for a proof see, e.g., [14, Lemma 2.7.1]). In particular, for polynomials of the same
degree this result could be interpreted as monotone dependence of the zeros of the
derivative of a polynomial on its zeros ([1, p. 39]). Since for i > j the zeros of w;(z)
are less than or equal to the corresponding zeros of w;(z), we conclude that the

same relation remains valid for the zeros of w( ) and w( ), Hence, the ] -th zeros

of the polynom:als {w( )} are Iocated between the j-th zero of w$) and the
j-th zero of w{®). Denote by {B: )32 " and {0:}27F*! the zeros of Wi and w((,k),
respectively, arranged in increasing order Set ay := =17, Ba_k4+1 = 1, then the

above reasoning implies that
sign {w{®)(z)} is the same for all v € {1,...,n — 1} when z € [a;,5;].  (2.6)
We observe that the zeros of w and U, interlace, and in addition
Un(z,) =sign{w,(z,)} = (-1)", v=1,...,n-1.
Therefore, for z € (o, 4;] (7 € {1,...,n — k + 1}) the substitution f = U, in (2.4)

yields
Z Cwi @) |
I“’V(xV),
Comparison of (2.7) and (2.5) lmphes that if f satlsﬁes the assumptions of Theorem
2.1, then

wi(x)

|U(k) (z)| = (2.7)

— w,,(:r,,)

n—k+1
1f®B(z) < |UE(2)]  forall z € U [aj, Bi]. (2.8)
i=1
Our next goal is to prove that under the same assumptions
n—k

|f®)N2)| < |Zai(z)] forallze U (Bj, ajs1). (2.9)
j=1
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Observing that the j-th zero of U, is located between the j-th zero of w, and the
J-th zero of wy (precisely, the first zeros of U, and w, and the last zeros of U,
and wyp coincide), we conclude on the basis of V. Markov’s result that each interval

(Bj,a;+1), 7=1,...,n— k, contains exactly one zero of U( ), and consequently
sign {UF)(a;)} = sign {UF(B;)} = ()" *-3 ) j=1,...,n—k  (2.10)
Using the identity (cf. [17, eqs. (4.7.28)])
UP(z) = 2UE, () + (n + kU D (2), (2.11)

it is not difficult to see that

1 n+k \
_ k) - — (k)
Zn k() — U (z) - (x - n) wi(z), (2.12)
(k) 1 n -+ k (k)
Zak(z)+ UM (2) = " T+ ——1 | wy (z), (2.13)

whence

-Ur(,k)(z) forr=aj, j=2,...,n-k+1,
Znk(z) = (2.14)

U Nz) forz=p, j=1,...,n—k

If f € m, satisfies the assumptions of Theorem 2.1, then according to the above rea-
sonings | f(¥)] < IUnk)] at the zeros of wok) and w'F (k) . The relations (2.14) and (2.10)
then imply that each of the polynomials Z, :l:f(") has at least one zero in each of
the intervals [a;, 3], 7 = 2,...,n — k. Moreover, sign {(Z, » * N an-r41)} =
—sign (U (an-r41)} = —1. Since Zn i £ f&) have positive leading coefficients,
it follows that each of them has at least one zero located to the right of ap,_r41.
Similar arguments show that 7, i :i:f(") must have at least one zero located to the
left of 3,. Hence, each of the polynomials Z, ; + f(¥) has maximal possible number
of zeros (n — k + 1), and all these zeros lie outside the set U;‘;f(ﬂj ,@;j+1). Now the
observation that |f(¥)] < |Z, x| on the boundary of this set completes the proof of
(2.9). Theorem 2.1 is proved. i

Remark 1. The claims of both Theorem 1.1 and Theorem 2.1 are trivial
when n < 2. Followmg the proof of Theorem 2.1, one observes that if £ = n, then
lf(")(:v)[ < |Un (:c)l on the whole real axis for every function f satisfying (2. 1) and
(2.2). Thus, for k=n

1B < 0D (2.15)

Furthermore, if £ = n — 1, then f*) is a polynomial of degree 1, and therefore
| f®)||, is attained at z = —n or at £ = 1. According to (2.8), at these points we
have |f(¥)] < |U,Ek)|, and therefore again (2.15) holds. The statement of Theorem
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1.1 then follows for k = n — 1, n from (2.15) after a linear transformation (see also

(16, Corollary 4]).
For this reason, we may restrict our considerations to the case n > k + 2.

Remark 2. Studying carefully the proof of Theorem 2.1, one can see that
n—k

for any fixed point zo € |J (8, @;j+1) the exact upper bound for |f(¥)(z4)| in
i=1

(2.5) subject to the constraints (2.1)-(2.2) is attained for a polynomial, which
alternates between —1 and 1 at the points {z;}]_, 1 with only one exception (i.e.,
|f(z;)|=1,i=1,...,n—1,thereisal € {1,...,n— 2}suchthatf(;c;\)f(:v,\+1)>0
and f(zi)f(zi41) < 0 for i # A). Following the notations of Gusev [6], we may
call these polynomials as Zolotarev polynomials. The number of the essentially
different Zolotarev polynomials is [(n —1)/2], e.g., 1,ifn = 3,4; 2, if n = 5,6; 3, if
n = 7,8, etc. Hence, for small n one can examine directly all the possible extremal
polynomials in Theorem 1.1.

3. AUXILIARY RESULTS

We begin with llstmg5 in a lemma some well-known properties of the ultra-
spherical polynomials Py (A > —1/2). Recall that P is the n-th orthogonal
polynomial in [—1, 1] with respect to the weight wy(z) = (1 - 2))“1/2 and nor-

A—1
malized (for A # 0) by P, '\)(1) = (n +2n ) (in particular, Py’ = U,). In the
case A = 0 the Chebyshev polynomial 7}, is orthogonal and satisfies 7,(1) = 1.

Lemma 3.1. (i) For every A > —1/2, A #0,
d A
—{(PPV(@)} = 2P11(e)

(the case A = 0 reads as T,(z) = nP( )l(x))
(1) For every A > pu > —1/2, P,(n) obeys a representation

P'(‘A)(x) = Z am.n(A!#)Prs'tp)(z) with am.n(A) ”) ...>.. 0) m= 0, TRl
m=0

(iii) For A > 0 the absolute values of the local exirema ofP ) increase as the
distance between the points of local extrema and the origin increases.
(iv)y= 2 satisfies the differential equation

Y — (22 + Dzy + n(n+22)y = 0.

For easy reference we formulate in a lemma two simple facts from calculus
which will be used frequently in the sequel.
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Lemma 3.2. (i) For any fized o € (0,2) the sequence a,, = nsin ﬂ, n =2,
n

3, ..., ts monotone increasing.
(i1) For any fized 0 < a < 3 < 2 the sequence b, := ﬂﬁw_/rﬂ, n=34,...,
| sin{(am/n)
1s monotone increasing.
Lemma 3.3. For every natural n > 2 and for k= 2,...,n there holds
max ITE(2)] = T (). (3.1)

z€[- cos(x/n),cos(x/n)]

Proof. It suffices to prove only the case k = 2. Indeed, if (3.1) is established
for k = 2, then it follows that |[Tj||« = Ti(n) for all m < n. For k > 3, Lemma
3.1(1)—(i1) yields

n—k+2
T(z) = > amTi(z) with apm >0,
m=2
and consequently,
n—k+2 n—k+2
”Trgk)”* < Z am || Tl = Z amTrm(n) :Tr(zk)(ﬂ)'
m=2 m=2

Thus 1t remains to prove (3.1) for £k = 2. The cases n = 2, 3 are trivial, therefore we
suppose that n > 4. According to Lemma 3.1(i), (iii), we have to compare 7}/(n)
with 7}/(z), where z = cos 7 is the last critical point for 7/, i.e., the last zero of
T". The explicit representation of 7;, yields, with z = cos8, 0< 8 <,

in nf cos nf
T (g) — psinnd _ ,cosnfd P
(2) = ncos sin’8 " sin?f’ (32)
T (z) = = n5 7 {3 (n* +2)sin®§)sinnd — 3nsinf cosfcosnf} . (3.3)
sin
Putting § = 27/n and 6 = 37/(2n) in (3.3), we get
T, (cos ?1) = _3n2____~_c.os4(21r/n) <0,
n sin”(2m/n)
3 n 3
i T — 2 2 -2 i 0
Tn (“’S 2n) sin>(37/(2n)) [(" +2sin” 50 -3 >0,
. . 2w 3T . . .
hence 7" has a zero in the interval [cos —, cos %) This zero is readily seen to
n
be unique, and it is the last critical point of 7.
The equation (3.2) can be rewritten as
T/ (cos0) = ———p(0), 3.4
2(cos0) = ——p(0) (3.4
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where p(f) = (n + 1)sin(n —1)8 ~ (n ~ 1)sin (n + 1)8. The points in (0,7), at

which the function ¢ has local extrema, are 6, = —W, k=1,...,n—1, and
n

.k
le(0x)| = 2nsin 77[ (3.5)

o : » 2m 3
Taking into account the inequalities cos — < cos T < cos 5, e obtain from (3.4)
n

n
and (3.5)

T (cos T)| < n? snzér(li(’,i?%;r)z)) (3.6)
The substitution § = % in (3.2) yields
m n?
T, (cos ;)l = ey (3.7)

and the lemma will be proved if we succeed to show that the right-hand side of
(3.7) is greater than the right-hand side of (3.6), which is equivalent to

(sin(sw/(zn)))“’ > 2cos ™. (3.8)

sin(m/n) n

According to Lemma 3.2(i), the left-hand side of (3.8) is increasing with respect to
n, and for n > 4 it is greater than 2. This completes the proof of Lemma 3.3. 1

Remark 3. A more precise examination of equation (3.3) shows that forn > 5
. . . . 2m [k
the last critical point of 7} is located in (cos —, COS —) (see the proof of Lemma

n 4n
5.1 below).

As an immediate consequence from Lemma 3.3 we get

Corollary 3.1. For all natural k < n there hold:
(a) [1USOI = U (m);
(b) Tl = T () for k > 2.

The function Z, y(z) appearing in Theorem 2.1 can be represented as

Zn k(x) = ex[un ik (2) — vo k(2)], (3.9)

where ¢ := 1/(kn) and
un k(z) = (22 = DTEH () + kT (2), (3.10)
Un k(2) = <" : kq2 - 1) T+ (). (3.11)
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We quote without proof the following simple lemma:

Lemma 3.4. The inequalily

k
ntEsa
mn

holds for every n > 9 if k = 1, for every n > 5 if k = 2, and for every n,k > 3.

Corollary 3.2. For n and k as in Lemma 3.4 there holds

|lvn k[l = vn ik (n).
The next lemma shows that a similar conclusion holds for the function u, i(z).
Lemma 3.5. For all natural k > 3 there holds

l|tun,kllx = un,k(n). (3.12)

The proof of this lemma requires more work, and we put it off to the last
section.

4. PROOF OF THEOREM 1.1

According to Remark 1, we may assume that n > k + 2. We exclude also the
cases k = 1, 3 < n < 8 and k = 2, n = 4, which are verified directly as indicated
in Remark 2. For the remaining n and k& we shall prove the inequality

1Zn lle < US| (4.1)

Having established (4.1), we can readily deduce Theorem 1.1 as a corollary of
Theorem 2.1. Indeed, if f € m, satisfies (1.1) and (1.5), then p(z) := f(z/n) will
satisfy (2.1)-(2.2). It follows then from Theorem 2.1 that for every z € [-7,7)

Ip(z)| < max{|UF (@)1, 1 Zn 1 (2)]} < NUP ke = ULP (). (4.2)
Then f(z) = p(zn) will satisfy
k
O = * Pl < *US) = 701

whence the inequality of Theorem 1.1 follows. To clarify the cases in which equality
holds, we observe that equality in (4.2) is possible only if z = 7 and p = £U,.
This completes the proof of Theorem 1.1.

It remains to prove (4.1). Equation (3.9) and Corollary 3.2 yield

W Zn ke < cklllunklls + Nvnkll] = cklvn k() + [lun k]

=—Zni(n) + Ck[un,k(n) + ”Un.k”*]

k(2n + k)

= UF)(n) — ¢ nT,(,k)(T)) + ci[unk(n) + ||tn kll+]
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(for the last equality we used equation (2.13)). Clearly, the inequality (4.1) will
hold if we succeed in showing that

nT ) (). (4.3)

In the proof of (4.3) we shall distinguish between the cases k = 1, k = 2 and & > 3.
Note that

k(2n + k
Un k(N) + [[un k|« < (_n—)

cos(m/(n + 1)) .
sin?(r/(n + 1))

Case k = 1. Lemma 3.1(iv) implies that u, ;(z) = n2T, (z) and the inequality
(4.3) in this case reduces to
2
T n
s +1 (n + 1) ’

the verification of which causes no difficulties.
Case k = 2. Using Lemma 3.1(iv) we obtain u, »(z) = (n?—1)T"(z) —zT)/(z).
The explicit form of T}, and Lemma 3.3 yield the estimate

n(n?—1)
sin(w/(n+ 1))

Ta(n) = — cos To(n)=n, TY(n)=n(n+1) (4.4)

T
n+1’

+ 1T, (n),

lun2lle < (n* = DIToll + 12T (2)|1x <
and consequently,
N
un,2(n) + ”un,2“* < n(n2 - 1) (l +sin~! n—-H) .

Therefore, (4.3) will follow with k = 2 if

n(n—1) [sin nil + sin? n+1] < 4(n+ 1) cos? m—
Putting An, = (n + 1)sin n: T we rewrite the latter inequality in the following
form . -
_ 2 A : 2
(n—2)A, + A2 +( ,,+2)smn+1+231n m— <4(n+1). (4.5)

According to Lemma 3.2(1), A, < Ay = 7, and we increase the left-hand side of
(4.5) to obtain the inequality

2 m

2si 1 1),
+ 2sin n+1< (n+1)

(n—2)m+ 72+ (7 + 2)sin njlr—l
which is easily seen to be true for all n > 4.

Case k > 3. According to Lemma 3.5, in this case [tn k|« = un x(n) and the
inequality (4.3) becomes

k‘2
(1= )T () + 5= 1T8(n) 2 0,

118



which is obviously true, since 7 is located to the right from the right-most zero of
,(;k), k=1,...,n. With this (4.3) is proved and therefore Theorem 1.1. §

5. PROOF OF LEMMA 3.5

We first observe that the general case is a consequence of the case k = 3.
Indeed, let

llun 3llx = n,3(n). (5.1)

It is readily seen that u, 3 is strictly monotone increasing to the right of z = 7.
This implies that (5.1) follows also with n replaced by m, m < n. Then for £ > 4
Lemma 3.1(ii) and Corollary 3.1(b) yield

n—k+3
T)(z) = Z b T2/ (z) with non-negative b, m=3,...,n —k +3,
m=3

[ tlls = [I(2? = VT (2) + 32T () + (k = 3)2 ()l
n—k4+3
= || Z bnum,3(z) + (k- S)xTr(ak)('r)”*
=3

n—-k+3

< S bmllumalls + (k = 3)nT(n)
m=3

n—-k+3
= 3 bmtma(n) + (k= 30T (1) = un,x(n)-

m=3

The proof of (5.1) goes through several lemmas. For the sake of simplicity we
suspend the indices in u, 3(z) and simply write u(z), where

u(z) = (22 — )TV (z) + 32T (z) = (n* - )T}/ (z) - 22T, ().

It is not difficult to verify that (5.1) is true for n < 10 and we suppose in what
follows n > 11.

We shall need information about the location of the last critical points of
u(z) (i.e., the last zero of u'(z)), which we denote by . As a first, we observe

that the zeros of u'(z) and T,S‘”(:c) interlace and a brief examination shows that

€€ (cos 27[, cos 2_7r) Sharper bounds are given in the next lemma.
n n

Lemma 5.1. For every natural n > 10 there holds

(k.1 o
cos 7 < € < cos I (5.2)
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Proof. Putting z = cos#, after some straightforward calculations we obtain

—nsin nd

u'(z) := (5 + 04)t3 — 30t n} [9(tn, 05) + cos O cot nf], (5.3)

sin’ f
where o, :=4/n?, t, = t,(0) := nsind, and

(1 +20)t* — (15 + 60)t? + 30
(5 + o)t® — 30t

g(t,o) = (5.4)

2n 22
4.5and 0 < 0, < 1/30, ie., (tn,0,) € A, where

: 2w 3
Since £ € (cos —, cos —) and n > 11, we may assume that ¢,(6) > 11sin o >

A:={(t,o)|t>4.5, 0< 0 <1/30}.

dg

The function g(t¢,0) has continuous derivatives in A and 5 > 0 therein. This
implies for (¢,0) € A
t* — 15¢2 + 30 32t* — 456t% + 900
t) .= <yg(t,o) < = ga(l), .
0(t) = =55 350 <99 S 515 g0 o). (55)

where ¢;(t) = ¢(¢,0) and g2(t) = g(t,1/30). Moreover, g,(t) and g,(t) are monotone
increasing for t > 4.5. Lookmg at (5.3) and taking into account 8 € (3x/(2n), 27/n),
we observe that

sign {u'(cos @)} = sign {g(tn,0n) + cos @ cot nf} := sign {h(0)}. (5.6)

For 6, = 217:1 Lemma 3.2(1) yields t,(0;) < 1w (61) < 5.498, hence for n > 11
n

h(61) < ¢2(5.498) — cos % = —0.065 < 0.

For 65 = —2—71 and n > 11 Lemma 3.2(i) asserts t,(62) > t;1(82) > 5.04 and therefore
n

h(gg) > 91(504) + cot 5% = 0.024 > 0.

. 7 :
Consequently, we obtain u’ (cos 4—2) < 0 and v’ (cos g—:) > 0. This completes

the proof of Lemma 5.1. 1

Lemma 5.2. The local mazima of |u(z)| increase as |z| increases.

For the proof of Lemma 5.2 we apply the following result (see, e.g., [17, (7.31)]):
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Lemma 5.3 (Theorem of Sonin-Polya). Let y(z) be a non-trivial solution of
the differential equation

(py')' + Py =0, (5.7)

where p(z) and P(z) are continuously differentiable and positive in the interval
(a,b), and let the function p(x)P(z) be non-decreasing (non-increasing) on (a,b).
Then the relative mazima of |y| in (a,b) form a non-increasing (non-decreasing)
sequence.

The application of Lemma 5.3 with ¥y = u is possible because of the next

lemma.

Lemma 5.4. The function u(z) satisfies a differential equation of the type
(5.7) with

B (1 _ 1.2)7/2
p(:l?) - n2(1 - .’L‘2) -6 (58)
and
P(a) = (1 —22)5/2 [(n? — 4)n%(1 — 2?) — 10n? + 48] | (5.9)

[n2(1 = 27) — 6]

The proof of Lemma 5.4 is by direct verification, applying Lemma 3.1(iv). For

the proof of Lemma 5.2 one only have to check that the functions p and P defined

by (5.8) and (5.9) are positive in (— cos Z%, cos 2—2) and that (pP)’ is negative in
om

(0, cos gl) . This is an easy exercise if the inequality n?(1 —z?) > t?, (3_11) > 25
n
is taken into account. i

Now we are in a position to prove (5.1). According to Lemma 5.2,

llullx = max{|u(§)], u(n)}

and 1t suffices to show that

W@NsuG%n:I). (5.10)

We have

7r _n(n+1)cos(m/(n+ 1) n(n L2 T
u(cosn+l) B sin*(7/(n + 1)) [ (n+2)s n

1—6

and for n > 11 the application of Lemma 3.2(1) yields the estimate

7r n(n+1)
u (cos -y 1) > 3'457sin4(7r/(n 1) (5.11)
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At the point £ we have (n? — 6)T,£3)(§) = 2£T,$4)(£), and using Lemma 3.1(iv)
repeatedly, we obtain

4£?
=11 2 _ 11
W€ = [+ e g | (- 9TE) (5.12)
. oo . o (ks om
According to Remark 3, 7/(z) is monotone increasing in { cos i 53, and
n

equation (3.2) shows that 7}’ is negative therein. Therefore |T/(£)| is bounded

T (cos ;j—:{-) .

equation (5.12) is given by 1+ 4/(121sin? 57/33 — 10). Substituting these bounds
in (5.12), we obtain

For n > 11, an upper bound for the first factor in

from above by

n(n? — 4)
ue)] < 5188 g

In view of (5.11) and (5.13), (5.10) will hold if

(;:227/7;{1(1"1);))3>16743 o n’ - I [(n+1)51n : 1],

(5.13)

or if the following stronger inequality holds:

sin(77/(4n)) n? -4
(5H) 2505

According to Lemma 3.2(ii), the left-hand side of the latter inequality increases
monotonically as n increases and for n > 24 it is greater than 5.26. By verification
its validity is seen also for 11 < n < 23. This proves (5.10), (5.1) and Lemma 3.5. 1

Remark 4. It is not difficult to see that Theorem 1.1 remains true even if
the polynomials under consideration are allowed to have complex coefficients (the
same applies to Theorem B). Indeed, let p be the extremal polynomial from this

larger class, and let

SlJIP{III("’II} = () =e?pM(r), Tel-1,1]

with some real 6. Then the polynomial g(z) = Re{e!’p(z)} also belongs to the
class under consideration and satisfies g(¥)(7) = |p(¥)(r)|. Thus we found another
extremal polynomial, which, in addition, has real coefficients. Following the proof
of Theorem 1.1, we conclude that this is only possible if 7 = +1 and g = +U,,.

-
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