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1. INTRODUCTION

[t 1s well-known that on the first order structure of arithmetic every inductive
set can be defined inductively also by means of very simple formula — I1Y, and
positive with respect to its set variable ({2, 6]). When study induction on abstract
structures, it is reasonable to consider the so-called acceptable structures. Even in
this case, however, the above mentioned result of Kleene and Spector is no longer
valid. In other words, there are acceptable structures for which the class of the
I19-positive inductive sets is strictly included in the class of all inductive sets (cf.
for example [1]). So, a question arises to find a characterization for this type of
inductive definability.

* Lecture presented at the Fourth Logical Biennial, Gjuletchitza, September 12-14, 1996.
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Let us mention that a similar problem is considered in [1], where the sets, which
have X9 and simpler (excepting I19 positive) inductive definitions, are characterized
by means of prime and search computability in Kleene’s quantifier E. Here we
describe 11 positive inductive definability in terms of some particular characteristic
of the non-deterministic programs — the so-called sets of points of Y-definedness
([3, 5]). It turns out that a set is II3-positive inductive iff it is the set of all points
of V-definedness of some non-deterministic program.

From here it is easily obtained that every I19-positive inductive set on accept-
able structure 2 can be represented as {5 | VaanR(a(n),n, s)} and vice versa. Here
the predicate R is prime computable over 2 and the second order variable a ranges
over the set of all infinite sequences with elements in |2].

In view of further applications, we shall consider here some special acceptable
structures, namely least acceptable extensions [4]. It will be transparent, however,
how to modify the proofs for an arbitrary acceptable structure with a sufficiently
simple coding scheme.

2. PRELIMINARIES

Given an arbitrary total structure Ao = (B; fi,..., fa; R1,..., Ry) (the case
fi is O-ary is admitted as well), we define its least acceptable extension 2 in the
following way. Take an object O ¢ B and fix some pairing operation I : CxC — C
(C' D BU{QO}) such that no element of B U {Q} is an ordered pair. Let B*
be the smallest set containing B U {Q} and closed under II. Denote by () the
restriction of IT on B*. We extend the initial functions and predicates of 2 on B*,
setting fi(s1,...,8n) = Qif (s1,...,5,) € B", and Rj(s1,...,sm) = “falsity” if
(s;,...,sm} ¢ B™.

Now put A = (B*;0,( ), f1,..., fa; B, Ry,...,R;). From now on we shall
suppose that the equality relation is among the basic predicates of 2. Throughout
the paper we shall assume this structure fixed.

Let ¢(zy,...,2x, X) be a formula in the first order language Lo of A with k
object variables z1,..., 2 and one k-ary relational variable X which occurs in ¢
only positively. Then ¢ determines the following mapping [y, : (B*)F — (B*)*:

Lo(A) = {(s1,---s8) [ (51, ... 56, A)}.
Define I by transfinite induction on £ as follows:
E=r,(UJmn).
n<§
Then the set I, = |JI{ is the least fixed point of I', (see for example [4, Ch. 1A]).
3
For every 5 € [, set
5| = min{¢ | 5 € I{}.

[t will be convenient to consider that |§| = |B*|* for 5 € I,, where |B*|* is the
least cardinal, greater than the cardinal number of B*.
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A set A C (B*)* is called inductively definable (by ¢ on A)if A = {(sy,...,sx) |
(s1,...,8k,t1,...,tn) € I,)} for some fixed t;,...,t,, n > 0, built up from the basic
functions and constants of 2.

Remark. The last requirement imposed on ty,...,1, is a slight deviation
from the usual definition in [4, Ch. 1D], where these parameters are supposed
arbitrary. In our case perhaps more appropriate would be to say that A is absolutely
inductively definable.

We shall say that the set A is £ (117) positive inductive (on ) iff it is induc-
tively definable by some X9 (I19) X-positive formula ¢(z, X).

In this paper we shall consider non-deterministic programs, in which the non-
determinism is understood as possibility of choosing arbitrary elements of |2|.
These programs are built up from the following three types of (eventually la-
beled) operators: assignment operator z; := 7(zj,,...,&;,.), conditional opera-
tor if R(zj,,...,z;j,) then go to ¢ (7 and R being a term and a quantifier-free
formula in £g, respectively), and choice operator z; := arbitrary(B*).

Semantics of the assignment and conditional operators is the usual one. The
execution of the choice operator assigns to the variable z; an arbitrary element of
B*. The choice of this element is arbitrary: it does not depend on the input, on
the current configuration, etc.

Now let P be such non-deterministic program. Along with the usual input-
output relation Rp in this case we can speak also about the so-called set of points
of V-definedness of P, to be denoted by Dp. An input § belongs to Dp iff all
possible executions of P, starting from this input, are finite.

The main part of the exposition is based on a certain syntactical description
of these sets of points of V-definedness. It is easily obtained from a more gener-
al uniform characterization of all possible pairs (Rp, Dp) which we are going to
formulate below.

Let us call x elementary if it is atomic or a negation of an atomic formula.
A clause is an expression of the form Il = 7, where 7 is a term and Il is a finite
conjunction of elementary formulas in the language £4. A sequence of clauses
{II(") = r(")}n is regarded primitive recursive if the function, which assigns to

each n the code of 11" = (") is primitive recursive.

Throughout the paper a = {a(n)}5%; will denote an infinite sequence with
elements from B*. As usual, &(n) will stand for {(a(1),...,a(n))), where () is
some effective coding of all finite sequences from B*.

Proposition 2.1 (Normal form theorem). Let P be a non-deterministic
program with k input and one output variables. Then there exisls a primitive recur-
sive sequence of clauses {T1(") = r(")},., each with variables among zo,z,, ..., Tk,
such that

(s1,...,8k) € Dp & VaElnII(”)(&(n),sl,,..,sk),
(s1,..., 8k, t) €E Rp & 3a3n(ﬂ(")(d(n),sl, . .,sk)&r(")(dr(n),sl, o, Sk) =t
&me<n—|ll(”‘)(d(m), 81,4, sk))
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for every sy,..., sk, t in B*.
Conversely, for every such sequence {H(") = ‘r(")}ﬂ there ezists a program P
such that Dp and Rp satisfy the above equivalence.

The proof of this proposition is rather technical to be presented here. We
are going to make some comments instead. Every a : N — B* can be thought
of as being a sequence of successive values of the choice operator (which may be
assumed unique). So, every particular (finite or infinite) execution of P is uniquely
determined by the input 5 and some choice sequence a. In addition, this execution
is carried out in elementary steps in some canonical way. More precisely, given an
input § and a sequence «, the values II(1) (a(1), 5), I(®) (a(2), 5), ... are computed
in turn until the first n with II(®) (&(n),5) = true is reached. Then an output
(") (&(n), 5) is returned.

From this point of view it is clear that an input § belongs to Dp iff for every
a there exists n such that H(™)(a(n),s) holds. Further we shall be interested in
sets of the type Dp rather than of Dp and Rp as a pair. For this purpose it will
be enough (and even more appropriate) to consider non-deterministic programs
without output variable. In this case a particular execution is regarded finite if the
output operator stop is reached during the computation.

So, as a consequence of Proposition 2.1, for any non-deterministic program P
(with or without output variable) we have

Proposition 2.2, Let P has k inpul variables. Then there exists a primitive

recursive sequence {H(”)}n with variables among zg,2,,..., T such that
(s1,...,8x) € Dp & VaInIl(™) (a(n),sy,...,se),
whenever sy, ...,sk € [Y|.

3. INDUCTIVE DEFINABILITY OF THE SETS
OF ALL POINTS OF V-DEFINEDNESS

We begin with some preliminary definitions. Set
Nat = {0, (0,0), ((0,0),0), {{((0,0),0),0), ... }.

We shall identify the natural numbers 0,1,2,... with elements of Nat (as listed
above). For every n € Nat, n+ 1 will stand for (n,0). Let L and R be the left and
right decoding functions for the mapping (). We shall assume that L(0) = R(0) = 0
and L(s) = R(s) =1 for s € B.

A coding (( )) of all finite sequences from B* is defined inductively by the
equalities

« » =0, «SI» = (0,81), «31) X "Sﬂ+1» = («51)' "’Sﬂ»!sﬂ+1)' '

Set also Seq = {s | s = ((s1,..., sn)) for some s1,...,8,, n > 0}. The function
lh (length) is defined in the usual way:

,h(s):{n if s = ((s1,...,5n),

0 otherwise.
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Finally, denote by (s); the decoding function corresponding to {( )):

(s).»={8=' if 5= (s1,...,80) and 1 <i <m,
0 otherwise.

Suppose that t = ({t1,...,t,)). As customary, t * ¢ will stand for (¢,q) =
(t1,...,ta,g). For any sequence o we shall write o > ¢ to denote that a(z) = t;
for every i = 1,...,1h(%).

Now let P be an arbitrary non-deterministic program over 2. We shall assume
for simplicity that P has one input variable. According to Proposition 2.2, there
is a primitive recursive sequence {l'I(")}oo with variables zo and z; such that for
every s € B*

n=0

s € Dp & Vadnll™(a(n),s).

Let us fix some effective coding ™ ... of all finite conjunctions of elementary
formulas with variables among zo and z;. Let ® be the universal relation for this
class of formulas, defined by the equivalence

®(n,t,s) < nis a code of some elementary formula x and x(t, s) holds.
Denote by g the primitive recursive function An."I(™7, Then we have
s € Dp & Va3dn®(g(n),a(n),s). (3.1)
Now set
0*(n,t,s,X) < Nat(n)&Seq(t) & (®(9(n),t,5) VVqe((n+1,t*q,s) € X))).

Let us first check that Dp is a section of Iy x.

Lemma 3.1. Dp = {s](0,0,s) € I,*}.

Proof. For the inclusion Dp D {s|(0,0,s) € I,+} we need the following more
general assertion:

Seq(t) & Ih(t) = n&(n,t,s) € I,» = Yo, ,Im®(g(m), a(m), s). (3.2)
We are going to prove (3.2) by transfinite induction on |n,t,s|. It can be easily
seen that

n.t,s] = 0 if ®(g(n),t,s),
21T Vsup{|ln+1,t*q,s|+1| g€ B*} otherwise.

If |n,t,s| = 0, take m = n. We have by assumption

&(m) = &(n) = (a(1), .., a(n)) =1
and therefore ®(g(m), a(m), s).

Now choose some (n,1,s) € I,» with |n,t,s| > 0 (and, of course, Seq(t) and
Ih(t) = n). Take some & > t and set a(n+1) = q. We have In+1,txq,s| < |n,t,sl,
as well as Seq(t*q) and lh(txq) = n+1. So by induction hypothesis ®(g(m), @(m), 5)
for some m, which completes the verification of (3.2).

Now put ¢ = {( ) ( = 0) and n = 0 in (3.2) and use (3.1) to conclude that
Dp 2 {S l (0,0,S) € I‘P’}'
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To see that the converse inclusion also holds, take some s such that (0,0, s) ¢
Ip+. By the definition of ¢* we have =®(g(0),0,s) and (1,{q:)),s) ¢ I, for
at least one ¢q;. Assume that for some n > 1 we have found q1,...,¢n with
~®(9(7), (g1, ..., qi)),s) fori=1,...,n—1 and (n, (q1,...,qn)),8) & I,+. From the
latter it follows that ~®(g(n), {(q1,...,¢s)),s) and (n + 1, {(qy, .. S Gng1)), ) & Lpe
for some ¢ 4.

In this way we construct a sequence a = ¢1,qa,... for which the right-hand
side of (3.1) fails. Therefore s € Dp.

For any list g1,...,9%; @1, ..., Q) of functions and predicates in B* denote by
(As g1, .., 9% Q1, ..., Q1) the extended structure

(B‘§@,()»fl'---;fa,gl,---;glc§B:RI»'--:Rb,Ql:Hle)'

We have established so far that the set Dp is inductive in the structure
(%; g; Nat, Seq, ®). To eliminate the additional function and predicates, we shall
need the following refinement of the Transitivity Theorem [4, Th. 1C.3], which
follows immediately from the corresponding proof in [4]:

If p(z,X) is 7 (N9) formula in (2; Q), positive with respect to
X and @, and Q is X{ (IT7) positive inductive on 2, then I, is
¢ (119) positive inductive on 2. (3.3)

Further we shall apply this fact in the next modified form.

Lemma 3.2 (Transitivity Lemma). Let o(z,X) be Y (1Y) formula in
(91, 986Q1, ..., Q) tnwhich Qy, ..., Q; and X occur only positively. Suppose
also that the graphs Gy, ,..., Gy, are XY (Gy,, ..., Gy, are NI9) positive inductive
on A and Qy,...,Q are XY (117) positive inductive on Y. Then I, is X9 (I19)
positive inductive on 2.

Proof. Assume first that g, has a unique occurrence in ¢ and let 7y,..., 7,
be the arguments of g, in this occurrence. Let ¥ be the formula which is ob-
tained from ¢ when we replace gi(r1,...,7m) by y. If ¢ is LY, then ¢ is X% in
(A 92, .-, 95 Q1, ..., Q). Set

x(z,X) © Fy(Gy(ri,...,™Tm, y) & ¥).

Obviously, ¢ <> x. By assumption G, is %9 positive inductive on 2 and according
to (3.3) I (and hence I,) is £{ positive inductive on (U;gs,...,9k;Q1,..., Q).
When ¢ is 117, consider the 119 formula

x(2,X) & Vy(=Gy,(m1,...,Tm,y) V).

If g1 has ¢ > 1 occurrences in @, proceed by induction on 7, applying the above argu-
ment to the innermost g;. Iterating this procedure, exclude successively g, ..., gx.
For the elimination of @y, ..., Q; apply directly (3.3).

Lemma 3.3. Let p(Z,X) is Y (T}) positive formula and I, is the unique
fized point of T'y. Then I, (the complement of I,,) is 11} (£9) positive inductive.
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Proof. We have z € I, & ¢(Z,1,) and hence
tel, & -p(1,) & ¢'1,),
where ¢'(Z, X) is obtained from -y after the replacement of every occurrence of X

by —X. Obviously, ¢’ is equivalent to some ¢"(Z, X), which is X-positive and mn?
(£9) if @ is B9 (I1}) respectively. From the above equivalence it follows that

el, & ¢'(z,1,),
i.e. I, is a fixed point of T'y». Assuming that A is another fixed point of Iy we
obtain successively

€A o (€A & (2 A) & ¢, A).

So A is a fixed point of I'y, and hence A = I,, A = I,, i.e. I, is the unique fixed
point of 'y,

Say that a set is A? positive inductive on 2 if it is both £f and IIY positive
inductive on 2.

For any s € B* define ||s|| (norm of s) as follows: ||s|| = 0 for s € B U {0},
ll(s1, s2)|| = max({|s1]], ||s2]|) + 1. We shall use systematically an induction on this
norm when proving the next lemma.

Lemma 3.4. (i) Let f € {L,R,Ih, Az,i.(2):i}. Then Gy (the graph of f) 1s
£y positive inductive on U and Gy 1s 119 positive inductive on 2.
(ii) Nat, Nat, Seq and Seq are AY positive inductive on .

Proof. By definition we have
L(s)=t & s=t=0Vse B&t=1V3q(s = {tq))

So the set G is explicitly definable by £ formula and, in particular, it is 9
positive inductive on 2. Similarly, G is I19 explicitly (and hence inductively)
definable on 2. The case f = R is analogous.
Set
p(z,X) & =0V R(z) =0& L(z) € X.
Evidently, Nat is a fixed point of T',. Towards establishing that it is the unique
fixed point of T',, assume that A and A’ are some fixed points of I',. Then

t€A © r=0VR(x)=0&L(z) €A and
reA © c=0VR(z)=0&L(z) € A" (3.4)

Let s €A. We shall use induction on ||s|| to see that s € A’. Suppose, first, that
lIs|| = 0. The case s = 0 is obvious; the other case s € B is impossible, since then
we would have R(s) = 0. If s = (s1,52), then by (3.4) R(s) = 0 and L(s) = 51 € A,
By induction hypothesis s; € A’ and applying again (3.4) we conclude that s € A'.
So A C A’ and symmetrically, A’ C A. Thus Nat is the only fixed point of T'y,.
Consequently, Nat and (by Lemma 3.3) Nat are AJ inductive on (2; L, R). Now,
having in mind the facts about L and R just established and applying Lemma 3.2,
we obtain that Nat and Nat are AY positive inductive on 2.
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For the predicate Seq apply the same argument to the formula
Y(z,X) & ¢ B&(z =0V L(z) € X).
By virtue of its definition lh satisfies the equivalence
lh(s) =n < (-Seq(s) Vs =0)&n =10
V Seq(s) & s # 0& Nat(n) & n # 0&1h(L(s)) = L(n).

An easy induction on ||s|| convinces us that lh is the only function with this property.
In other words, Gy, is the unique fixed point of I‘x, where

x(z,y,X) < (-Seq(z) vz =0)&y=
VSeq(z)&z #£0& Nat(y) &y #0&(L(z), L(y)) € X.

So, by Lemma 3.3 G}, and Gy, are AJ positive inductive on (A; L, R, Nat, Seq,
Seq). To see that Gy is LY positive inductive on 2, apply again the Transxtwnty
Lemma and the previous result.s similarly for Gy,.

Finally, for the function (z); it is also immediate that G(,), is the unique fixed
point of 'y, where

0(z,i,y,X) & (-Nat(t)Vi=0Vi> lh(z))&y=0
VSeq(z) &z # 0& (Ih(z) = i&y = R(z) V (L(z),1,y) € X).
Here the predicate “>” (greater than) over Nat is defined inductively as
n>k < Nat(n)&Nat(k)&n#0&(k=0V L(n) > L(k))

and therefore is AY positive inductive on 2. To complete the proof, repeat the
arguments used above.

Let f is a k- ary function in B*. Say that f is primitive recursive if the restric-
tion of f over Nat* is primitive recursnve (considered as a function over the natural
numbers) and f(3) = 0 for 5 ¢ Nat*.

Lemma 3.5. Let f be primitive recursive. Then Gy is £Y positive inductive
on A and Gf is 19 positive inductive on 2.

Proof. By induction on the definition of f. If f is initial primitive recur-
sive, then it has a A explicit definition on 2. If f is a superposition, say f =
fo(f1,..., fn), then we have the representation

f(sl,...,sk) =1 & Nat(81)& &Nat(sk)&aql ...Elq,‘(fl(sl,...,sk) — 91&~“
&fn(slv '-ssk) = QY&&fO(QI) -')Qn) - t)
V ~(Nat(s;) & ... & Nat(sg)) &t =0

Now the result follows easily from the induction hypothesis, Lemma 3.4 and the
Transitivity Lemma.

Finally, assume that f is obtained by primitive recursion from some ¢ and h.
Then

f(s1,..,86,9) =t < Nat(s)) & ... & Nat(s) & Nat(q) & (¢ = 0&t = g(s, .., s¢)
Vg#0&3r(f(s1,..., s, L(q)) =r&h(s,..., s, L(g),r) =t)
V —(Nat(s;) & ... & Nat(sz) & Nat(q)) &t = 0
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A trivial induction on ¢ € Nat convinces us that f is the unique function,
satisfying this equivalence. To see that f has the desired properties, proceed as in
the proof of the previous lemma.

It remains to check that the universal relation @ from the definition of ¢* is
inductive on 2. Of course, ® depends on the particular coding of the syntactical
objects that we have fixed. Below we specify some primitive recursive coding, which
allows us to assert that ® has AY inductive definition on 2.

In order to save space, here we shall assume that the basic functions and
predicates of Ay = (B; f1,. .., fa; R1,..., Ry) are unary. We shall use also the same
letters for the corresponding symbols in Lg.

Let p; be the i-th prime number (starting from po = 2). Set also (0); = 0;
(n); = max{j | p! divides n} for n > 0.
Now put
O = 0, el =1, Tz;7=2, f‘(.rl,1.2)ﬁ — 22_3'7;"5"12",
Cfi(r) =223 for1 <i<a,
CRi(r)Y=35"", TRi(r)?’=3"57 for1<i<b,
CB(r) = 3%+ 57T TaB(r) = 325 Ty &gyt = 33T 7T
Obviously, the predicates
K(n) < nis a code of a term with variables among zo, 71,
M(n) < nis a code of some finite conjunction of elementary
formulas with variables among zg,

are primitive recursive.
Let U be the universal for the class of all terms with variables among zo and

r;, in other words,
U(n,t,s) =q < nisacode of a term 7 with variables z), z; and 7(t,s) = ¢

Lemma 3.6. (i) Gy is £y positive inductive on 2 and Gy 1s 11{ positive
inductive on 2.
(i) ® is A? positive inductive on 2.
Proof. (i) By definition we have
U(n,t,s)=q & -K(n)&q=0
VM(n)&(n=0&q=0Vn=1&q=tVn=2&q=s
V(n)o = 2& 301302(U({n)1,t,5) = 1 & U((n)2,t,5) = q2& ¢ = (41, 92))
Vin)o = 3& 3 (U((n)1,t,8) =& filar) = Q) V...
V(n)o = a+2&3Iq(U({n)1,t,5) = a1 & falgr) = q))-
Moreover, U is the unique function which satisfies this equivalence (a simple
induction on n). All arithmetic functions which appear in the above formula are

primitive recursive. Now proceed again as in the proof of Lemma 3.4, using also

the previous lemma.
(ii) To see that @ is both £J and II{ positive inductive on 2, use the same

argumentation, noticing first that & is the unique relation satisfying the equivalence
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®(n,t,s) & M(n)& ((n), = 1& Ry (U({n)y,t,s))V
V{(n)y = b& Ro(U({n)2,t,5)) V(n)1 = b+ 1 &Ry (U({n)2,t,s)) V...
V(n)1 = 2b& ~Ry(U((n)2,t,5)) V (n)1 = 2b+ 1 & B(U((n),,t,s))
V(n); = 2b+ 2&-B(U((n),,1,s))
V(n); = 2b+ 3& ®((n)2, t,s) & ®((n)s,t,s)).

Now we are in a position to claim

Proposition 3.7. Every set of points of V-definedness Dp 1is 1] positive
inductive on U.

Proof. By Lemma 3.1 Dp is a section of I+, where ¢* is II? positive formula
in some extended structure (; g; Nat, Seq, ®). Here g is primitive recursive, so by
Lemma 3.5 G, is I1{ positive inductive on 2. According to Lemma 3.4 and Lemma
3.6 the predicates Nat, Seq and @ are I1{ positive inductive on %. Now apply the
Transitivity Lemma to conclude that I, is II{ positive inductive on 2.

4. PROGRAM CHARACTERIZATION
OF THE 119 POSITIVE INDUCTIVE DEFINITIONS

Let ¢(z1,...,xk, X) be an arbitrary 1} formula in which the k-ary relational
variable X occurs positively. After contracting the quantifiers and converting the
matrix into the disjunctive normal form, ¢ becomes equivalent to a formula of the

following type:
vy(v@ v e () exe e (n“ll,--w i) €X V.

k
Vi@ & (15 i) e X & & (1) eX),
where ¥, ¥, ..., ¥, are quantifier-free formulas in which X does not occur.

Further we shall consider the case k = 1, m = 2 and ny = ny = 1, since it 1s
sufficiently representative. Without essential loss of generality we may omit also
¥y and ¥, (dropping the formula 9, however, trivializes the problem). So ¢ takes
the form

Vy(¥(z,y) V7(z,y) € X V pu(z,y) € X).

Now consider the following simple non-deterministic program P, for which we
are going to establish that Dp coincides with the fixed point I,:

P: input(z); z := ((z));

1: y := arbitrary(B*); z := head(z);
if ¥(z,y) then stop;
.= append(tail(:c), «T(z$ y)! #(Z) y)»):
if £ = x then go to 1.

Head, tail and append act as the usual string-transforming operations, here
applied to codes of sequences. It is an easy exercise to show that these functions
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can be computed by means of programs of the type considered here. Of course, in
the above program P the operators, involving this functions, should be considered
as macros rather than as assignments.

The proof of the equality Dp = I, will be carried out by two lemmas. For
the first one let us denote by D the set of all t € B* such that Seq(t) and every
computation of P, starting from the choice operator y := arbitrary(B*) with
current. value of the variable z equal to ¢, is terminating.

Obviously, s € Dp iff ((s)) € D. Further, if Seq(t), then
t€D < Vq(P(head(t),q)
V append(tail(t), (r(head(t), ), u(head(t), q))) € D). (4.1)

Lemma 4.1. Let s € I,. Then for everyt = ((t1,...,s,...,1,)) is true that
tebD.

Proof. Transfinite induction on |s|. Let us notice (having in mind the agree-
ment |s| = |B*|* for s ¢ I,,) that whenever s € I,

0 if Ygu(s, q),
|s|={ sup  (min(|7(s, 0)], [u(s,)[) + 1) otherwise. (4.2)
g:~Y(s.q)

For every t = ((t1,...,s,...,1a)) set pos(s,t) = min{i | s = {;}.

Now let s € I, and suppose first that |s| = 0. Using induction on pos(s,t), we
are going to prove that t € D for every ¢ = {{t1,...,s,...,ta)).

Case 1: t = {s,t2,...,t,)). From the assumption |s| = 0 it follows that
Vg (s, q), in other words, Vqiy(head(t), ¢) and therefore by (4.1) t € D.

Case 2: t = {(t1,...,t,)) with s = t; for some ¢ > 1. Pick any ¢ € B* and set
t' = {(ta,...,ta, 7(t1,9), u(t1,q))). Obviously, pos(t’, s) = i — 1 and hence t' € D by
induction supposition. Since ¢ is arbitrary, applying again (4.1) we obtain ¢t € D.

Now let s € I, |s| > 0 and assume that for all s’ with |s’| < |s| the lem-
ma is true. We shall use second induction on pos(s,t) again. Suppose first
that ¢ = {(s,t2,...,tn)). In order to establish that the right-hand side of (4.1)
holds, take an arbitrary ¢ € B*. If ¥(s, ¢), there is nothing to prove; if not, by (4.2)
|s| > min{|7(s, q)|, |u(s,q)|}. Suppose for definiteness that |s| > [r(s,q)|. Then,
in particular, 7(s,¢) € I, and by induction hypothesis for s’ = 7(s,¢), applied to
t' = ({t2, ..., tn, 7(s,q), u(s,q))), we obtain t' € D. So by (4.1) t € D. Finally, con-
sider t = ({ty,...,t,)) with pos(s,t) =1 > 1. For t' = ({ta,... tn, 7(t1,q), u(t1,9))),
where ¢ is any element of B*, we have pos(s,t’) = ¢ — 1. Therefore t' € D and
hence t € D.

Applying this result to t = {(s)), we obtain [, C Dp. The opposite inclusion
is given by the next lemma.

Lemma 4.2. Dp C I,.

Proof. Consider particular execution (finite or infinite) of P with some input s.
Let z,, and y, be the current values of the variables z and y immediately after the
n-th running of the choice operator (if the execution has stopped after the m-th run
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of this operator, we assume that z,, = z,, and y, = ym for n > m). Set a(n) = yn,
n=1,2,... Obviously, every z, is uniquely determined by the input s and «a. Let
F be such that F'(s,a,n) = z,.

Now choose some s &€ I,. In order to prove that s € Dp, it is enough to find
a sequence « such that

—(head(F (s, a,n)), a(n)) for every n=1,2,... (4.3)

To this end we are going to define recursively two sequences {s,}, and {gn}n
satisfying the condition

s1=8; Sok =7(8k,qk);  Sok41 = p(Sk,qk);
—(sk,qc) and s & I, for k =1,2,... (%)

We shall see later that (4.3) is true for a = {gn }n.

Indeed, set s; = s. By assumption s & I, and therefore ~¢(s, I,). Consequent-
ly, there is ¢; € B* such that ~9¥(s1,q1), s2 = 7(s1,q1) € Iy and s3 = p(s1,q1) € Iy
Let us assume that for some n > 1 we have found sy,...,82~_;y and q1,...,q2n-1_3
with the property

st =8 s2 = 7(Sk,qk);  S2k+1 = p(Sk, Gk);
—t(sk,qx) forevery k=1,2,...,2" ' =1; s1¢€ly,.... 50 1€ Lo, (%)n

We shall construct elements gon-1,...,g2n_1 and So=,...,S3a41_1 such that
(*)n+1 holds for s1,...,82241-; and q1,...,q2n—1. Let k be an arbitrary number
between 2"~1 and 2" — 1. From the fact that sy ¢ I, it follows that for some
ax € B*, ~¥(sk,qx), T(sk,qc) & I, and p(se,qe) & L, Set syx = 7(sk,qx) and
sox+1 = H(sk, gx). Obviously, all the requirements of (*)n+1 are satisfied. Therefore
(%) is true for the sequences {sn}n and {gn}n constructed in this way.

Set finally a(n) = ga, n = 1,2,... We are going to check that (4.3) holds for
this sequence . Let us first notice that for every n, F(s,a,n) = (sp,...,52n-1))-
Indeed, the case n = 1 is obvious. Assuming that this is true for some n > 1, we
shall have head(F(s, @, n)) = sn. By (*) -%(sn,¢n) and therefore

F(s,a,n+ 1) = append(tail(F(s, &, n)), {7(sn, gn), #(5n, 3n)))
= append({(sn+1,---,52n-1)), «Szmszn+1») = (Sn41,- ) S2n41)).-
So, in particular, head(F(s,a,n)) = s, for every n = 1,2,... and using again (*)

we conclude that (4.3) is true.

Proposition 4.3. Let A be a TIY positive inductive set. Then there ezists a
non-determinisiic program P such that A = Dp.

Proof. If A is I,, the result follows directly from the lemmas just verified.
Otherwise A is a section of some I, 1.e.

A={(s1,.-,86) | (51, .., 8k, b1, ., tm) € L)}

for some fixed t;,...,tm, built up from the basic constants and functions of 2.
Choose some 71, ...,Tm such that Mg = ¢y, ..., Tma = tm. Let Py be such that
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I, = Dp. Denote by zy,...,Zi4m the input variables of Py. Now consider the
following program P with input variables z;, ..., z;:

P: zppyi=75 . Thgm i=Tm; Po.
Obviously, Dp, = A.

5. INDUCTIVE DEFINABILITY BY EXISTENTIALLY
RESTRICTED FORMULAS

Let us call ¢ ezistentially restricted (e.r.) iff all existential quantifiers of ¢
range over the set Nat C B*. In this section we establish that these quantifiers do
not increase the inductive expressive power, i.e. the least fixed point I, of every
e.r. X-positive o(z, X) is I1? positive inductive. This result is based on the next
lemma, which ascertains the same for the II3 positive formulas.

Lemma 5.1. Let p(z, X) be existentially restricted 113 positive formula. Then
I, is 1Y positive inductive.

Proof. Our aim is to build a non-deterministic program Q with Dg = I, and,
applying Proposition 3.7, to conclude that I, is IIY positive inductive.

We shall assume for simplicity that ¢ has one object variable z, so it is in the
following general form:

Yy(3z€ Nat)(¢(z,y,2) Vth(z,y,2)&n € X& ... &, EX V...
Vm(z,y,2)&mmy €X& ... &Tmn,, € X), (5.1)

where 9, ¥y, ..., ¥, are quantifier-free.

For the sake of clarity we shall confine ourselves to the case m = 1. When
m = 2 (a case which is typical of the general case), combine the idea used in the
construction of the program @ below with the in-width search in an appropriate
binary tree, as carried out in the previous section.

Dropping also ¥, in (5.1) (since it is unessential here), we come to the following
formula ¢:

Vy(3z€ Nat)(¢(z,y,2) V7(z,y, z) € X).

Now define the program @ as follows:
Q: input(z); t:=()); v :=0;
l: z :=z; y:= arbitrary(B*);
t:=append(t, (y))); u:i=u+1; v:=1;
2: if ¢¥(z,(t)y, [u]y) then stop;
if u = v then go to 1;
z:=7(z,(t)y, [uly); vi=v+1;
if z = r then go to 2.
By An,i.[n]; we have denoted the decoding function for a fixed effective coding
x of all finite sequences of natural numbers (assuming, as customary, that [n]; = 0 if
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i > lh(n)). Obviously, An,i.[n];, being recursive, can be computed with a program
of our type.

Let us mention that the program @) that we propose here is far from being the
most efficient one with the property Dg = I,. Its advantage is the easy way to
prove this fact.

Let us consider a particular execution of  with input s. Suppose that during
the computation we have arrived at the operator 2: if ¥(z,(t),,[u],) then stop
with current values of variables 2, ¢, u and v, respectively ¢, r, n and 7. Obviously,
g is uniquely determined by s, r, n, i, i.e. there 1s a function go such that ¢ =
go(s,r,n,i). Set g(s,a,n,i) = go(s,a(n), n,?). Clearly, g satisfies the following
equalities:

g(s’ a) n) 1) - s)
o(s,,m,i+1) = 7(g(s, @, m, i), a(i), [)s) for 1 < i < n.
Using this observation, one can easily check that
s € Dg iff Vadn,o(3ti<icn¥(9(s, @, n, 1), a(i), [n];). (5.2)

We shall use this equivalence in proving that the program @ has the desired
property I, = Dg.

Now let us agree until the end of the proof that n (eventually indexed) denotes

an element of Nat.
For the first inclusion I, C Dg we shall use induction on [s|. A straightforward

verification convinces us that for every s € I,
0 if VgInu(s, ¢, n),
Is| =

sup  (min{|r(s,q,n)|+ 1| n € Nat}) otherwise.
¢Vn-y(s,q,n)

Now take some s € I,. In order to show that s € Dg, it suffices to see
that the right-hand side of (5.2) holds. To do this, pick a sequence o and denote
its first element by ¢. If |s| = 0, then there exists ng : ¥(s,q,n,). Set i = 1 and
n = x(n,) (or, for example, n = x(n,,0) if x(n,) happens to be 0). Then, obviously,

d)(g(sa a,n, i)’ a(i)» [n]i)'

Now suppose that |s| > 0. If there is ny with ¥(s,q,n,), proceed as above.
Otherwise there should exist n, such that 7(s,q,n,) € I, and |7(s,q,n,)| < |s].
Set 8(n) = a(n+ 1), n = 1,2,... By induction hypothesis 7(s,q,n,) € Do and
according to (5.2) exist m and ji<j<m:

(o (r(5,2,4), B, 3), BG), [m];). (5.3)
Now take n > 7+ 1 such that
[n)i=n, and [nj=[m)i-;forl=2...,7+1.
An easy induction on ¢ = 1,...,j convinces us that
g(s,a,n, i+ 1) =g(7(s,q,nq), B, m, 1).

In particular, g(s,a,n,j + 1) = g(7(s, q,ny), 8, m, j). From here, using (5.3) and
taking 7 = j + 1, we get the desired

¥(g(s, @,n, i), a(i), [n]:).
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Towards establishing the converse inclusion Do C I, suppose that A is an
arbitrary fixed point of I', and take some s ¢ A. Then —¢(s, A) and therefore for
at least one q; € B*

Vni-¢(s,q1,n1) and Vny7(s,q1,n;) & A.
Analogously, from the latter there exists some ¢, € B*:
VnVno—(7(s,q1,11),92,n2) and VnVnor(7(s,q1,n1),q2,n2) &€ A.
Iterating this procedure, we build a sequence a = g, g2, . .. satisfying for each
nandi€ {1,...,n}
~Y(g(s, a,n,4), a(d), [n];).
From here, applying (5.2), we get s ¢ Dg.

Proposition 5.2. Let (&, X) be an arbitrary ezistentially restricted positive
formula. Then I, is II{ positive inductive.

Proof. Our idea is to reduce ¢ to a II positive formula ¢* such that I, is a
section of /,+ and to apply the result just obtained.

With no loss of generality we may assume that ¢ has one object variable z.
Now consider first the case when ¢ is 1 formula, i.e. it is equivalent to

Vz3tenatV2' tena ¥(2, 2,1, 2, 1)
with ¢ — a quantifier-free. Let ¢*(z,y, X) be the formula
VzItenar(y = 0& ((z,2,t),1) € X Vy = 1&¥(z, 2,1, X)),

where 1 is constructed from 4 in the following way: first replace simultaneously
the variables z, z, t, 2/, U by (z), (z)2, (z)3, 2 and ¢, respectively. Then in the
formula thus obtained replace each formula 7 € X by (7,0) € X. We claim that

for every s € B*
s€l, & (s,0) € L. (5.4)

We are going to prove (5.4) for the case when the matrix ¥ is in the following

simple form:
x(z,z,t,2" ') Va(z,2,t,2,t') € X,

since the verification of the general case is much similar to it.
So the corresponding formula ¢*(z,y, X) is the following:

Vzdtena(y = 0& ({(z,2,1),1) € X
Vy = 1& (x((@)1, (2)2, ()3, 2,1) V (@((@)1, (2)s, (2)s, 2,2),0) € X).
The set I, is a fixed point of I',., therefore for any =z
(z,0) € I« & VzItena(({z,2,1),1) € I,+)
& Vz3tenaVz ena(X(z, 2,8, 2 ) V (a2, 2,1, 2°,1'),0) € I,e).  (5.5)

Towards establishing the equivalence (5.4) suppose that s € I,. Then s € Ig
for some ordinal €. Using transfinite induction on €, we are going to check that
(5,0) € I,-. Indeed, under definition, s € I{ if and only if

Vz3tenatVz It g (x(s, z,t,2 ') Va(s, 2,t,2 1) € U 13). (5.6)
n<§
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Taking an ordinal < £, we get by inductive supposition that
a(s,z,t,2, V') € I = (a(s,2,t,2',1'),0) € I,..
So, using (5.6), we obtain
Vz3tena V2 Itena (X (s, 2,1, 2", 1) V (afs, 2,1, 2',1'),0) € I,.),

which according to (5.5) means that (s,0) € L,..

Now, conversely, assuming that (s,0) € Ii. for some €, by induction on ¢ we
prove that s € I,. We have

(5,0 €L & (5,0 €Ty (J 1) & VoItenat (52,0, 1) € | 1)

n<§ n<§
Now suppose that ({(s, z,t)),1) € |J I. for some n < £&. Then
n<§
Vz' e nar (x(s,z,t,z',t') \% (a(s,z,t,z',t'),O) ' U IS.))
u<n

and by the induction hypothesis for u
V2'Hena(Xx(5, 2,8, 2", t) Va(s, 2,1, 2, t') € I,).
So we obtained
({(s, z,t),1) € U ID. = V2'3ena(x(s, 2,1, 2 1) Va(s, 2,1, 2 1) € L,).
n<§ )
From here
Vz3teNat ((((s,z,t)), 1) € U IZ‘)
n<§
= Vz3tenaV2 Hena(x(s, 2,8, 2, ') Va(s, 2,8, 2, t') € 1),
in other words,
(s,0) € I,f,. = s€l,

and hence s € I,.

Thereby, the verification of equivalence (5.4) is completed. So I, is a section of
I+, which is IT9 positive inductive on (%, Az,i.(z);). From here, I, is I positive
inductive on A (under Lemma 3.4 and Transitivity Lemma). By Lemma 5.1 I, is
MY positive inductive on 2 and hence I, is II{ positive inductive on 2.

Now let p(z, X) be an arbitrary e.r. positive formula. We may assume that ¢
is 19, k£ > 2, i.e. that ¢ is equivalent to

Vz!'3t e - - V2  HEnac (2, 22,80, 25 ) X)
with ¥ — a quantifier-free. Set ¢* to be the following formula:
Vz3tenat(y = 0& ((z,2,t),1) e X V..Vy=k - 2& ({z,z,t), k- 1) e X
Vy=k—-1&y(z,2,1)).

Here the formula zl)(a:,z,t) is constructed from ¥ as it follows: first replace in ¥
variables z, z! and ¢! by (z);, ()2 and (z)3, respectively, and denote the formula
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thus obtained by ¥(1). To define ¥(?), replace in ¥(!) each occurrence of (z); by
((z)1)i for i = 1,2,3 and 22 and t% by (z); and (z)3, respectively. Repeat this
procedure k — 1 times. Finally, in the formula %(*~1) replace 2* and t* by z and
t, respectively, and then replace all formulas of the type 7 € X by (7,0) €X. The
formula, constructed in this way, is ¥.

Now the equality I, = {s | (5,0) € I,-} is verified as above. As we have
already seen, it immediately implies that I, is II{ positive inductive on .

Theorem 5.3. Let A C (B*)*. The following conditions are equivalent:

(i) A 1s the set of all points of V-definedness for some non-deterministic pro-
gram P,

(ii) A is inductively definable by some 119 positive formula;

(111) A 1s inductively definable by some ezistentially resiricted positive formula,

(iv) A = {5 | Ya3nR(a(n),n,s)}, where the predicate R is prime computable
on A.

Proof. The equivalence between the first three conditions follows from Propo-
sition 3.7, Proposition 4.3 and Proposition 5.2. The easiest way to complete the
proof of the theorem, is to show that (i) and (iv) are equivalent. We shall use the
observation that prime computability (PC) is equivalent to computability by means
of deterministic programs (see, for example, [5, Ch. 1.3]).

Now, assuming that the non-deterministic program P is determined by the
recursive sequence {II(™}, (in the sense of Proposition 2.2), let us set

R(t,n,5) < Seq(t)& Nat(n) & lh(t) = n & I(™)(t, 5).

Having in mind some basic facts about prime computability, we may assert
that R is prime computable on 2. It is clear that Dp = (5 | YadnR(a(n),n, 5)}.

Conversely, let R(t,n,3) be a prime computable predicate and Py be some
deterministic program that computes it. Denote by y, z, x;, ..., zx the input
variables of Py. Now set

P input(zy,...,zx); y:=()); z:=0;

1: t := arbitrary(B*); y :=y*t; z:=z+1;
Py; if 1 = z; then go to 1.
It is immediate by the construction of P that

5§ € Dp & Va3n(P, stops at input (&(n),n,s)) « Va3nR(&(n),n,s).
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